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In this paper, three things are done. First, we study from an algebraic point of view the infinite-
dimensional Bondi-Metzner-Sachs (BMS)-like extensions of the Carroll algebra relevant to the asymptotic
structure of the electric and magnetic Carrollian limits of Einstein gravity. In the course of this study we
exhibit by the “Carroll-Galileo duality” a new infinite-dimensional BMS-like extension of the Galilean
algebra and of its centrally extended Bargmann algebra. Second, we consider the electric Carrollian limit of
the pure Einstein theory and indicate that more flexible boundary conditions than the ones that follow from
just taking the limit of the Einsteinian boundary conditions are actually consistent. These boundary
conditions lead to a bigger asymptotic symmetry algebra that involves spatial supertranslations depending
on three functions of the angles (instead of one). Third, we turn to the Carrollian limit of the coupled
Einstein-Yang-Mills system. An infinite-dimensional color enhancement of the gauge algebra is found in the
electric Carrollian limit of the Yang-Mills field, which allows angle-dependent Yang-Mills transformations
at spatial infinity, not available in the Einstein-Yang-Mills case prior to taking the Carrollian electric limit.
This enhancement does not occur in the magnetic limit.
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I. INTRODUCTION

The Carroll algebra C is one of the contractions of the
Poincaré algebra, obtained by sending the speed of light c
to zero (“ultrarelativistic limit”) [1,2]. Its commutation
relations are

½Mi;Mj� ¼ ϵijkMk; ½Mi;Bj� ¼ ϵijkBk; ½Bi;Bj� ¼ 0;

½Mi;Pj� ¼ ϵijkPk; ½Pi;Bj� ¼ δijE; ½Mi;E� ¼ 0

½E;Bi� ¼ 0 ½Pi;Pj� ¼ 0; ½Pi;E� ¼ 0: ð1Þ

where Pi, Mi, E, and Bi are respectively the generators of
spatial translations, spatial rotations, time translations and
Carroll boosts.
The Carrollian limit of Einstein gravity arose initially as

the “strong coupling limit” [3] or “zero signature limit” [4,5]
of general relativity. It is relevant to the description of the
generic behavior of the gravitational field in the vicinity of a

spacelike singularity [6,7] and even more so when p-forms
are included [8,9] (see the review [10]). The geometry of the
Carrollian limit was constructed in [11]. Since then, many
applications and properties of Carrollian structures have
been studied, in particular in the context of the geometry of
null surfaces and the Bondi-Metzner-Sachs (BMS) sym-
metry [12–14] (see the recent articles [15,16] for an
updated, comprehensive list of references and [17] for a
review of non-Lorentzian theories).
It was shown recently that there are at least two different

Carrollian limits of general relativity, an “electric” one and
a “magnetic” one [18] (see also [19–21] for a different
perspective on Carrollian gravity theories). The electric
Carrollian action corresponds to the zero signature limit of
Einstein gravity, whereas the magnetic limit is equivalent to
the Carrollian gravity theory found in [22] by gauging the
Carroll algebra [23].
In a very interesting paper [24], the asymptotic structures

of the electric and magnetic limits of the Einstein theory
were determined (see [25] for the analysis in the presence of
negative cosmological constant). It was shown that the
magnetic and electric limits have distinct asymptotic sym-
metry groups. While the asymptotic symmetries in the
magnetic case are simply the c → 0 contractions of those of
Einstein’s theory with the same number of improper [26]
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gauge transformations, there is an effective disappearance in
the electric case of all the dynamical improper gauge
symmetries [boosts and time (super)translations], because
these become, in the limit, proper gauge transformations
acting trivially on the physical states.
The boundary conditions studied in [24] were naturally

taken to be the Carrollian contractions of the various
boundary conditions considered at spatial infinity for
Einstein’s theory ([27–30]). It turns out that in the
Carrollian electric limit, a less strict set of boundary
conditions can also be consistently imposed. These are
not obtainable through the limiting process and lead to an
infinite-dimensional enhancement of the Carroll spatial
supertranslations.
One purpose of this paper is to analyse these more

flexible boundary conditions for the electric Carrollian
limit of Einstein gravity. We explicitly show that while the
boosts and the time supertranslations remain pure gauge, as
in [24], new space supertranslations introducing further
functions of the angles indeed appear. These involve three
functions of the angles and have no analog in the inves-
tigations of [27–30] of the Einstein case.
In order to shed light on the algebras that can occur

asymptotically, we study prior to the asymptotic consid-
erations the Carroll-like contractions of the BMS4 algebra
[31,32] from a purely algebraic viewpoint. This analysis
enables one to exhibit, by “Carroll-Galileo duality”, a new
infinite-dimensional BMS-like extension of the Galilean
algebra and of its centrally extended Bargmann algebra. We
also study the BMS-like extensions of some ideals of the
Carroll algebra relevant to the asymptotic symmetries.
Another purpose of our paper is to include the coupling

to the Yang-Mills theory. This system is of interest in the
asymptotic analysis context since it was shown in [33,34]
that there were obstructions to finding at spatial infinity the
angle-dependent color transformations exhibited at null
infinity [35–37], except in the Abelian case studied in [38].
We start by considering the Yang-Mills theory on a flat
Carroll background. We show that while the magnetic limit
presents the same difficulties as its Lorentzian counterpart,
the electric limit allows again for a greater flexibility. We
present boundary conditions that are compatible with the
Carroll symmetry and invariant under an angle-dependent
color group.
We then extend these results to the different Carrollian

limits of the coupled Einstein-Yang-Mills system, which is
a rather direct task once the flat Carroll case has been
understood.
Our paper is organized as follows. Sections II and III

study the algebraic structure of the Carroll algebra and its
BMS-like extensions. A BMS-like extension of the
Carroll algebra is by definition a semidirect sum of the
homogeneous Carroll algebra and an infinite-dimensional
Abelian algebra parametrized by functions on the sphere

(the “supertranslations”) that contains the ordinary space-
time translations. This is just the analog of the BMS
extension of the Poincaré group [31,32]. We use the 3þ 1

parametrization of the symmetry introduced in [39] (see
also [28]). We show that there exist at least three
inequivalent BMS-like extensions. By applying the same
methods to the nonrelativistic limit, we exhibit similarly a
third, and to our knowledge new, BMS-like extension of
the Galilean algebra and of its centrally extended version,
the Bargmann algebra, in addition to the two extensions
already constructed in [40]. We study next the asymptotic
analysis of the electric Carrollian limit of pure Einstein
gravity, after a brief survey of the Minkowskian results
(Secs. IVand V). We then turn the electric Carrollian limit
of the Yang-Mills theory in flat Carroll space (Sec. VI) and
finally to the different Carrollian limits of the combined
Einstein-Yang-Mills system (Sec. VII). Section VIII con-
tains concluding comments.

II. IDEALS OF THE CARROLL ALGEBRA

Among the Carroll transformations, Pi are Mi are
kinematical transformations defined within equal time
hypersurfaces, while E and Bi are dynamical transforma-
tions involving time evolution. The kinematical transfor-
mations form a subalgebra isomorphic to the algebra of
Euclidean displacements isoð3Þ.
The Carroll algebra is not simple and possesses many

ideals. For instance, the dynamical transformations E and
Bi form an Abelian ideal D. The quotient of the Carroll
algebra by the ideal D is isomorphic to isoð3Þ,

C
D
≃ isoð3Þ: ð2Þ

The energy E (time translations) by itself also generates a
one-dimensional (Abelian) ideal I . The quotient of the
Carroll algebra by the ideal I is isomorphic to the semi-
direct sum of isoð3Þ and a three-dimensional Abelian
algebra t3 transforming in the vector representation of
isoð3Þ, denoted d3

C
I
≃ isoð3Þ ⊕σ t3 ≡ d3 ð3Þ

(of which t3 is an ideal).
The subalgebra of homogeneous Carroll transforma-

tions is spanned by the spatial rotations and the boosts. It is
six-dimensional and isomorphic to soð3Þ ⊕σ t3. These
transformations grow up at infinity linearly with r, while
the spatial translations and the time translations tend to
constants.
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III. SUPERTRANSLATIONS

A. Carroll-BMS (C-BMS) algebra

Each of the previous quotient algebras, including the
Carroll algebra itself, admits infinite-dimensional exten-
sions by supertranslations. We now describe extensions for
each of them, even though only the extensions of C and
isoð3Þ are realized through the asymptotic conditions
displayed below.
Before turning to these infinite-dimensional extensions,

it is helpful to briefly review the Lorentzian case. As is well
known, both at null [31,32] and spatial infinity [28,29], the
Poincaré algebra is extended by supertranslations that are
labeled by an arbitrary function on the 2-sphere. These
transform as an infinite-dimensional representation of the
homogeneous part of the Poincaré algebra, i.e., the Lorentz
algebra. In a Hamiltonian description around spatial infin-
ity [28,29], one naturally finds a parametrization in terms of
one even Tðθ;φÞ and one odd function Wðθ;φÞ on the
2-sphere that transform as

T̂ ¼ YA
∂AT − 3bW − ∂AbD̄AW − bD̄AD̄AW;

Ŵ ¼ YA
∂AW − bT: ð4Þ

In these expressions, b ¼ bini parametrizes the boosts and
YA the rotations, where the ni’s are the components of the
unit normal vector to the 2-spheres—we refer the reader to
the original works for our notation. An analysis in hyper-
bolic coordinates in the neighbourhood of spatial infinity
[28,39] allows one to match this Hamiltonian description
involving an even and an odd function on the 2-sphere to
the description in terms of the single, unrestricted function
on the 2-sphere that one finds at null infinity.
Let us now turn to the Carroll algebra C. In a similar way

to the Poincaré algebra, the Carroll algebra can be extended
by Carroll supertranslations, which form an infinite-
dimensional representation of the homogeneous Carroll
subalgebra and commute among themselves. One expedient
manner to obtain the extension is to take the c → 0
contraction of the BMS4 algebra in a way compatible with
the Carrollian contraction of the Poincaré algebra.
In a formulation adapted to the Hamiltonian description,

Carroll supertranslations are parametrized by one even
function Tðθ;φÞ and one odd function Wðθ;φÞ on the
2-sphere. The transformation properties of the parameters
of supertranslations under boosts can be obtained from (4)
by the scaling limit T → cT, b → cb,W → W, yielding the
transformation law

T̂ ¼ YA
∂AT − 3bW − ∂AbD̄AW − bD̄AD̄AW;

Ŵ ¼ YA
∂AW: ð5Þ

Here, D̄A stands for the covariant derivative associated to
the metric ḡAB on the 2-sphere. This contraction reproduces

in particular the commutation relations (1) of the energy
and the linear momentum with the Carroll boosts, i.e.,
½Pi; Bj� ¼ δijE and ½E;Bi� ¼ 0.
The symmetry algebra defined by (5), together with the

commutators ½Mi;Mj� ¼ ϵijkMk, ½Mi; Bj� ¼ ϵijkBk and
½Bi; Bj� ¼ 0 of the homogeneous Carroll generators, is
denoted by C-BMS. It arises in the magnetic Carrollian
limit of Einstein gravity [24]. The charge associated with
the C-BMS transformations were found to take the form

QM
ξ ¼ biBi þ 1

2
bijMij þ

I
d2x

ffiffiffī
g

p
TT þ

I
d2xWW; ð6Þ

(Mij ¼ ϵijkMk) where the Poisson-Dirac brackets of the
Carroll boosts and the spatial rotations with the Carroll
supertranslations are given by

fBi;T ðθ;ϕÞg ¼ 0; ð7Þ

fBi;Wðθ;ϕÞg ¼ −3niT ðθ;ϕÞ − D̄AniD̄AT ðθ;ϕÞ
− niD̄AD̄AT ðθ;ϕÞ; ð8Þ

fMij; T ðθ;ϕÞg ¼ −D̄Bðx½iej�BT ðθ;ϕÞÞ; ð9Þ

fMij;Wðθ;ϕÞg ¼ −D̄Bðx½iej�BWðθ;ϕÞÞ; ð10Þ

in agreement with (5).
Interestingly, the transformation laws

T̂ ¼ YA
∂AT; Ŵ ¼ YA

∂AW − bT; ð11Þ

arising from the opposite scaling limit T → T, b → 1
c b,

W → 1
cW with c → ∞ define one BMS extension of the

Galilean algebra (reproducing in particular the Galilean
relation ½Pi; Bj� ¼ 0 and ½E; Bi� ¼ Pi). The comparison of
this BMS extension with the extensions constructed in [40]
is discussed in the next subsection.

B. d3-BMS algebra

The ideals of the Carroll algebra C listed above can be
extended to include supertranslations. One can for instance
enlarge the ideal generated by the time translation generator
E to include all time supertranslations.
If one takes the quotient of the algebra C-BMS by this

ideal, one gets an extension of d3 by space supertransla-
tions, i.e., the algebra generated by Bi,Mij, andW with (8)
replaced by

fBi;Wðθ;ϕÞg ¼ 0: ð12Þ

We call this algebra the d3-BMS algebra. It is not realized
through the asymptotic conditions given below.
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C. isoð3Þ-BMS algebra

Similarly, one can enlarge the ideal generated by the time
translation generator E and the boosts Bi to include all time
supertranslations. This time, the quotient of the Carroll-
BMS algebra by this ideal is spanned byMij and the spatial
supertranslationsW, with the above commutation relations.
This algebra is called the isoð3Þ-BMS algebra and arises

in the electric Carrollian limit of Einstein gravity [24].

D. Extended isoð3Þ-BMS algebra

Another infinite-dimensional extension of isoð3Þ rel-
evant to the asymptotic analysis of the electric limit of
Einstein theory is obtained by adding more spatial super-
translations, which we denote WAðθ;ϕÞ (parametrized by
IA) and which commute with the spatial supertranslations
parametrized byW. While theW’s are odd functions on the
sphere, the IA are even functions.
The transformation of the functions IA under rotations is

ÎA ¼ YB
∂BIA − IB∂BYA; ð13Þ

leading to the corresponding brackets for the generators
WA,

fMij;WAðθ;ϕÞg ¼ D̄Bðx½iej�BWAðθ;ϕÞÞ
− x½iD̄Aej�BWBðθ;ϕÞ: ð14Þ

This algebra is called the extended isoð3Þ-BMS algebra.
It cannot be obtained by contraction of the BMS4 algebra
since it contains more spatial supertranslations. These are
parametrized by one odd function (W) and two even
functions (IA) on the sphere.

E. Spherical harmonics presentation

1. BMS4 algebra

The supertranslation generators T and W can be
decomposed in terms of spherical harmonics,

T ¼
X

l≥0;even

Xm¼l

m¼−l
PlmYl

m; W ¼
X

l≥1;odd

Xm¼l

m¼−l
PlmYl

m; ð15Þ

The BMS4 commutation rules take then the form [41]

½Bi; Plm� ¼
X
l0

X
m0

ðCiÞl0m0
lm Pl0m0 ð16Þ

in addition to the commutation relations of the homo-
geneous Lorentz group ½Mi;Mj� ¼ ϵijkMk, ½Mi; Bj� ¼
ϵijkBk, ½Bi; Bj� ¼ −ϵijkMk and the commutation relations
½Mi; Plm� that express that the spherical harmonics fYl

mg
(m ¼ −l;…; l) form a basis of the spin-l representation of

the rotation group, so that T and W transform as scalar
functions on the sphere.
The detailed form of the structure constants ðCiÞl0m0

lm will
not be needed here. It can be found in [41] (after making the
appropriate normalization of the Plm’s explained in
[28,39]). The only property of the ðCiÞl0m0

lm ’s that we will
need is

ðCiÞl0m0
lm ¼ 0 unless l ¼ l0 � 1; ð17Þ

so that (16) involves only two contributions,

½Bi; Plm� ¼
X
m0

ðCiÞl−1;m
0

lm Pl−1;m0 þ
X
m0

ðCiÞlþ1;m0
lm Plþ1;m0

ð18Þ

Furthermore, jm0 −mj must be at most equal to one.
Irreducible representations of the Lorentz algebra

[soð3; 1Þ] have been systematically investigated in [42–
44]. They are characterized by two numbers. In the work of
[42,43], which we follow, these two numbers are denoted l0
and l1, and the corresponding representation is denoted
ðl0; l1Þ. The first number l0 is a non-negative integer or half-
integer and is the minimum soð3Þ-spin occurring in the
decomposition of the representation of the Lorentz algebra
according to its soð3Þ-subalgebra. The second number l1 is
an arbitrary complex number. When l1 − l0 is a strictly
positive integer, the representation is finite-dimensional and
l1 is equal to the maximum soð3Þ-spin plus one. There exist
then another representation of soð3; 1Þ characterized by the
“dual” values l00 ¼ l1 and l01 ¼ l0. This representation
ðl1; l0Þ is called the “tail” of the finite-dimensional repre-
sentation ðl0; l1Þ. It is infinite-dimensional since l01 − l00 ¼
−ðl1 − l0Þ is strictly negative.
The two numbers l0 and l1 determine the structure

constants ðCiÞl0m0
lm and the two soð3; 1Þ Casimirs [42,43],

C1 ≡ J2 ≡ 1

2
MαβMαβ ¼ M2 −B2 ¼ −ðl20 þ l21Þ þ 1 ð19Þ

and

C2 ≡ −
1

2
ϵαβγδMαβMγδ ¼ −M · B ¼ −il0l1; ð20Þ

where Mαβ are the Lorentz generators in covariant form
(M12 ¼ M3 etc.). This formula shows that the Casimirs are
invariant under the exchange of l0 with l1, ðl0; l1Þ → ðl1; l0Þ,
and thus, cannot distinguish the corresponding (in general
distinct) irreducible representations. In particular, it cannot
distinguish between a finite-dimensional representation and
its tail, which have the same Casimirs.
The representation of the Lorentz group given by the

supertranslations is not irreducible, but is indecompos-
able [41]. There is a four-dimensional invariant subspace,
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characterized by the values l0 ¼ 0 and l1 ¼ 2. This is just
the standard vector representation, spanned by ordinary
spacetime translations with maximum soð3Þ-spin equal to
1. The Casimirs are C1 ¼ −3, C2 ¼ 0. The quotient
representation of the supertranslations by the translations
is infinite-dimensional and isomorphic to the irreducible
representation with dual values l0 ¼ 2 and l1 ¼ 0. This
infinite-dimensional representation is thus the “tail” of the
finite-dimensional vector representation.
We close this brief survey of the irreducible representa-

tions of the Lorentz algebra by giving explicitly the action
of B3 in the irreducible representation ðl0; l1Þ. To write this
action, it is convenient to decompose the representation in
terms of irreducible representations of the compact soð3Þ
subalgebra. The representations that occur have soð3Þ-spin
equal to l0, l0 þ 1, l0 þ 2, etc and this never stops unless
l1 − l0 is a positive integer. In a standard spin-basis fξlmg,
the action of B3 reads

iB3ξlm ¼ cl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

p
ξl−1;m − almξl;m

− clþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 −m2

q
ξlþ1;m ð21Þ

l¼ l0; l0 þ 1;…; m¼ −l;−lþ 1;…; l− 1; l; ð22Þ

where

al ¼
il0l1

lðlþ 1Þ ; cl ¼
i
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 − l20Þðl2 − l21Þ

4l2 − 1

s
: ð23Þ

The relation (21) involves a specific choice of relative
l-dependent normalization of the fξlmg, made such that it is
the same set of coefficients cl that characterizes the
component of B3ξlm along ξl−1;m and ξlþ1;m. Note that
al is equal to zero whenever l0 or l1 vanishes.
One can bring the commutation relations (16) with i ¼ 3,

l ¼ 0, and l ¼ 1 to the form (21) with l0 ¼ 0, l1 ¼ 2.
Similarly, modulo terms involving P1m when l ¼ 2, one
can bring the commutation relations (16) with i ¼ 3 and
l ≥ 2 to the form (21) with l0 ¼ 2, l1 ¼ 0.

2. C-BMS algebra

With the separation of the spherical harmonics into even
components (containing the time translations) and odd
components (containing the space translations), the Carroll
contraction of the BMS4 algebra is direct. Indeed, to get
from the Poincaré algebra to the Carroll algebra, one must
rescale differently the time translations (l ¼ 0) and the
space translations (l ¼ 1),

E → cE; Pi → Pi; ð24Þ

together with Bi → cBi (c → 0). This can consistently be
extended to all the supertranslations as follows:

Plm → cPlm for l even; l ≠ 0;

Plm → Plm for l odd; ð25Þ

leading to the C-BMS algebra of the rescaled generators in
the limit c → 0 (rescaled generators kept fixed),

½B̃i; P̃lm� ¼
X
l0

X
m0

ðCiÞl0m0
lm P̃l0m0 for l odd;

½B̃i; P̃lm� ¼ 0 for l even ð26Þ

with ðCiÞl0m0
lm unchanged for l odd, and being equal to zero

for l even. Here

B̃i ¼ cBi; P̃lm ¼ cPlm for l even; l ≠ 0;

P̃lm ¼ Plm for l odd: ð27Þ

From now on, we shall drop the tildes and keep the same
symbol for the rescaled generators since no confusion
should arise. So we rewrite the above brackets as

½Bi; Plm� ¼
X
l0

X
m0

ðCiÞl0m0
lm Pl0m0 for l odd;

½Bi; Plm� ¼ 0 for l even ð28Þ

The same convention will be adopted below when we apply
other rescalings to get the other Carrollian (and Galilean)
contractions.
The splitting of the supertranslations into even and odd

parts, natural from the Hamiltonian description, is particu-
larly well adapted to the Carroll contraction.
The homogeneous Carroll algebra spanned by Mi, Bi,

being isomorphic to isoð3Þ, has the two Casimirs

C1 ¼ BiBi C2 ¼ BiMi: ð29Þ

The supertranslation representation (5) [⇔ (28)] has
C1 ¼ C2 ¼ 0.
One can imagine different rescalings of the supertrans-

lations, where the power of c depends on l. The only
restriction is that these should reproduce the rescalings
E → cE, Pi → Pi and yield a well-defined limit consistent
with Bi → cBi when c → 0. One possibility is to take

Plm → c1−lPlm: ð30Þ

In that case, one gets

½Bi; Plm� ¼
X
m0

ðCiÞl−1;m
0

lm Pl−1;m0 ð31Þ

with unchanged ðCiÞl−1;m
0

lm but with ðCiÞlþ1;m0
lm ¼ 0. This

representation of the homogeneous Carroll group has also
its Casimirs both equal to zero, but is inequivalent to the
previous one. Both representations are not irreducible, but
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indecomposable. In the case of C-BMS, each subspace with
even soð3Þ-spin 2k (k is an arbitrary integer) is invariant
and form the finite-dimensional spin-2k representation of
isoð3Þ. Once one takes the quotient by the adjacent even
spins, the subspaces with definite odd soð3Þ-spin are also
invariant and provide the finite-dimensional representations
of isoð3Þ with odd spin. In the case when the super-
translations transform as in (31), one arrives at the same
content in terms of irreducible representations, but the
quotients are nested, in the sense that the representation
with spin j is obtained by taking the quotient of the
subspace with soð3Þ-spin j by the subspaces with lower
soð3Þ-spin j0 < j.
The infinite-dimensional algebras d3-BMS and isoð3Þ-

BMS are easy to describe in terms of a spherical harmonic
decomposition of the supertranslation generators, restricted
in that case to the odd generator Wðθ;ϕÞ, since only the
rotation subgroup soð3Þ acts nontrivially. Similarly, the
extended isoð3Þ-BMS has additional supertranslantions
transforming as vector fields on the sphere, which are most
conveniently expanded in vector spherical harmonics.

3. A note on the Galilean contractions

The Hamiltonian description of the BMS4 algebra is also
adapted to the study of the Galilean contraction

Bi →
1

c
Bi; E → E; Pi →

1

c
Pi; ð32Þ

(c → ∞). Again, there exist various possibilities. One is the
direct analog of the C-BMS algebra and corresponds to
(11). It reads

Plm → Plm for l even; Plm →
1

c
Plm for lodd; ð33Þ

leading to the Galilean-BMS algebra

½Bi; Plm� ¼
X
l0

X
m0

ðCiÞl0m0
lm Pl0m0 for l even;

½Bi; Plm� ¼ 0 for l odd; ð34Þ

with ðCiÞl0m0
lm unchanged for l even, and being equal to zero

for l odd.
This contracted algebra differs from the algebras nrbms�

considered in [40] and is thus new. The algebra nrbmsþ
corresponds to a rescaling analogous to (30),

Plm → c−lPlm; ð35Þ

leading to

½Bi; Plm� ¼
X
m0

ðCiÞlþ1;m0
lm Plþ1;m0 ð36Þ

with unchanged ðCiÞlþ1;m0
lm but with ðCiÞl−1;m

0
lm ¼ 0. As to the

algebra nrbms−, it corresponds to the rescaling

P00 → c2P00; Plm → clPlm ðl ≠ 0Þ; ð37Þ

leading to

½Bi;P1m� ¼ 0; ½Bi;Plm� ¼
X
m0

ðCiÞl−1;m
0

lm Pl−1;m0 ðl≠ 1Þ;

ð38Þ

with unchanged ðCiÞl−1;m
0

lm (l ≠ 1) but with ðCiÞlþ1;m0
lm ¼ 0.

(The Galilean algebra can also be obtained from the Poincaré
algebra through the rescalings Bi →

1
c Bi, E → c2E,

Pi → cPi.)
In fact, the paper [40], to which we refer for the details,

studied the extensions of the Bargmann algebra, which is
the central extension of the Galilean algebra. They con-
sidered scalings equivalent to the ones considered here,
adapted to the central extension. This raises the question as
to whether the Galilean-BMS algebra (34) admits a central
extension that would make it another infinite-dimensional
BMS-extension of the Bargmann algebra.
The answer is affirmative, as can be seen by taking the

appropriate limit of the direct sum BMS4 ⊕ uð1Þ of the
BMS4 algebra with the Abelian algebra uð1Þ, the generator
of which is denoted by C. One thus has prior to contraction

½Bi; C� ¼ 0; ½Plm; C� ¼ 0; ½Mi; C� ¼ 0: ð39Þ

We then “twist” the zero mode sector spanned by the
generators ðP00; CÞ that commute with Mi through the
redefinitions

E ¼ P00 þC; Z ¼ 1

2
ðP00 −CÞ; ⇔ P00 ¼

1

2
Eþ Z;

C ¼ 1

2
E− Z: ð40Þ

Finally, we perform the standard rescalings Bi → B̃i ¼ 1
c Bi,

Mi → M̃i ¼ Mi and (33) for l > 0, together with the zero-
mode rescaling

E → Ẽ ¼ E; Z → Z̃ ¼ 1

c2
Z: ð41Þ

This brings the algebra of the rescaled generators with the
boosts to the form (dropping the tildes)

½Bi; E� ¼
X
m

ðCiÞ1m00 P1m; ½Bi; Z� ¼ 0 ð42Þ

½Bi; Plm� ¼
X
l0

X
m0

ðCiÞl0m0
lm Pl0m0 for l even > 0; ð43Þ
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½Bi; P1m� ¼ ðCiÞ001mZ; ð44Þ

½Bi; Plm� ¼ 0; for l odd > 1; ð45Þ

and provides indeed a BMS-like extension of the Bargmann
algebra different from those of [40].

IV. BRIEF OVERVIEW OF BOUNDARY
CONDITIONS IN EINSTEIN GRAVITY

After these algebraic preliminaries, we now turn to the
asymptotic analysis of Carrollian gravities, starting with a
brief overview of Einstein gravity.
The Hamiltonian action of Einstein gravity in four

spacetime dimensions reads

S½gij;πij;N;Ni�¼
Z

dt

�Z
d3xðπij _gij−NH−NiHiÞ−B∞

�
:

ð46Þ

Here, N and Ni stand for the lapse and shift functions,
respectively. The variation of the Hamiltonian action with
respect to these functions imposes the following constraints
on the momentum πij and the 3-dimensional metric gij

H ¼ 1ffiffiffi
g

p
�
πijπij −

1

2
π2
�
−

ffiffiffi
g

p
R ≈ 0; ð47Þ

Hi ¼ −2∇jπij ≈ 0: ð48Þ

The boundary term at spatial infinity B∞ depends on the
boundary conditions and it turns out to be the standard
ADM energy when the lapse and shift functions behave
asymptotically as N → 1 and Ni → 0, respectively [27].
The action of an arbitrary diffeomorphism ξμ ¼ ðξ⊥ ≡ ξ; ξiÞ
on the dynamical fields yields the following infinitesimal
transformation laws

δξ;ξi gij ¼
2ξffiffiffi
g

p
�
πij −

1

2
gijπ

�
þ Lξgij; ð49Þ

δξ;ξiπ
ij ¼ −

ξffiffiffi
g

p
�
Rij −

1

2
gijR

�
þ ξgij

2
ffiffiffi
g

p
�
πmnπmn −

π2

2

�

−
2ξffiffiffi
g

p
�
πimπjm −

1

2
πijπ

�

þ ffiffiffi
g

p ð∇i∇jξ − gij∇m∇mξÞ þ Lξπ
ij; ð50Þ

where Lξ denotes the spatial Lie derivative, which acts on
the fields as

Lξgij ¼ ξk∂kgij þ ∂iξ
kgkj þ ∂jξ

kgki; ð51Þ

Lξπ
ij ¼ ∂kðξkπijÞ − ∂kξ

iπjk − ∂kξ
jπik: ð52Þ

There exist different sets of boundary conditions at
spatial infinity that have been proposed in the literature
[27–29]. For all of them, the falloff of the dynamical fields
in spherical polar coordinates is given by

grr ¼ 1þ h̄rr
r

þ hð2Þrr

r2
þOðr−3Þ; ð53Þ

grA ¼ λ̄A þ h̄rA
r

þ hð2ÞrA

r2
þOðr−3Þ; ð54Þ

gAB ¼ r2ḡAB þ rh̄AB þ hð2ÞAB þOðr−1Þ; ð55Þ

πrr ¼ π̄rr þ πð2Þrr

r
þOðr−2Þ; ð56Þ

πrA ¼ π̄rA

r
þ πð2ÞrA

r2
þOðr−3Þ; ð57Þ

πAB ¼ π̄AB

r2
þ πð2ÞAB

r3
þOðr−4Þ: ð58Þ

What distinguishes the different sets of boundary conditions
are the conditions imposed on the leading orders h̄ij, π̄ij in
the expansion of the fields, which must be imposed for the
symplectic structure to be finite. The Carroll contractions of
the boundary conditions proposed in [27,28] have been
analysed in detail in [24], with the following conclusions:
(i) the Carrollian limit of the boundary conditions of [27]
leads to the finite-dimensional asymptotic symmetry alge-
bras C in the magnetic case, and isoð3Þ in the electric one;
(ii) the Carrollian limit of the boundary conditions of [28]
leads to the infinite-dimensional asymptotic symmetry
algebras C-BMS in the magnetic case, and isoð3Þ-BMS
in the electric one. Since the Carroll contractions of the
boundary conditions of [27,28] are fully understood, we
shall focus here on the boundary conditions proposed
in [29].

A. Boundary conditions of [29]

The third set of boundary conditions at spatial infinity
compatible with finiteness of the symplectic structure that
has been proposed in the literature is also BMS invariant, as
are the ones of [28]. It was introduced in [29] (see also [30]
for more information). The corresponding boundary con-
ditions differ from the boundary conditions of [27] (which
do not have the BMS group as asymptotic symmetry group)
by an improper gauge transformation and for that reason, are
sometimes called diffeomorphism-twisted parity conditions.
In spherical coordinates, the boundary conditions read

[29,30]
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h̄rr ¼ even; ð59Þ

λ̄A ¼ ðλ̄AÞodd þ D̄Aζr − ζ̄A; ð60Þ

h̄AB ¼ ðh̄ABÞeven þ D̄Aζ̄B þ D̄Bζ̄A þ 2ḡABζr; ð61Þ

π̄rr ¼ ðπ̄rrÞodd − ffiffiffī
g

p
△̄V; ð62Þ

π̄rA ¼ ðπ̄rAÞeven − ffiffiffī
g

p
D̄AV; ð63Þ

π̄AB ¼ ðπ̄ABÞodd þ ffiffiffī
g

p ðD̄AD̄BV − ḡAB△̄VÞ; ð64Þ

where ζidxi ¼ ζrðθ;ϕÞdrþ rζ̄Aðθ;ϕÞdxA, D̄A is the covar-
iant derivative on the 2-sphere, and △̄ is the Laplace
operator on the 2-sphere. The function ζr is odd, while the
angular component ζ̄A and the function V are even under
the antipodal map.
The condition λ̄A ¼ 0 (which implies ζ̄A ¼ D̄Aζr) is also

imposed to insure integrability of the boost charges, but
since it can be relaxed in the Carroll electric limit, we keep
this term here.

B. Asymptotic symmetries and BMS4 algebra

This set of asymptotic conditions is preserved by the
following surface deformation parameters

ξ ¼ brþ T þ “more”þOðr−2Þ; ð65Þ

ξr ¼ W þOðr−1Þ; ð66Þ

ξA ¼ YA þ 1

r
ðD̄AW þ “more”Þ þOðr−2Þ: ð67Þ

Here,
(i) Lorentz boosts are generated by b ¼ bini (with bi

arbitrary constants). Being pure vector spherical
harmonic, the function b obeys the equation
D̄AD̄Bbþ ḡABb ¼ 0.

(ii) Spatial rotations are generated by the vectors YA ¼
1
2
bijxiejA (with bij ¼ −bji constant and ejA vectors

tangent to the unit sphere), which are Killing vectors
of the round 2-sphere, i.e., D̄AYB þ D̄BYA ¼ 0.

(iii) The parameters T and W are respectively arbitrary
even and odd functions on the 2-sphere under the
antipodal map θ → π − θ and ϕ → ϕþ π. They
generate all the supertranslations.

(iv) The terms “more” correspond to correcting improper
diffeomorphisms that preserve the condition
grA ¼ Oðr−1Þ, or equivalently λ̄A ¼ 0, which makes
the Lorentz boosts canonical transformations.

The even parameter T and odd parameter W do not obey
any additional condition, and possess non-vanishing gen-
erators. The supertranslations are thus nontrivially realized.
It follows that the asymptotic symmetry algebra at spatial

infinity is given by the BMS algebra. We refer to [29,30] for
the details.

V. ELECTRIC CARROLLIAN LIMIT OF EINSTEIN
GRAVITYWITH TWISTED PARITY CONDITIONS

A. Magnetic limit with diffeomorphism-twisted
parity conditions

The magnetic Carroll contraction of the boundary con-
ditions given above takes exactly the same form, because
the leading orders of the transformation of the fields under
surface deformations coincide with the Einstein case.
Indeed, one now has

δξ;ξi gij ¼ Lξgij; ð68Þ

δξ;ξiπ
ij ¼ −

ξffiffiffi
g

p
�
Rij −

1

2
gijR

�
þ ffiffiffi

g
p ð∇i∇jξ

− gij∇m∇mξÞ þ Lξπ
ij; ð69Þ

and one thus sees that for ξ and ξk of order one, the leading
terms of (68)–(69) and (49)–(50) coincide. The conditions
on the leading terms of the metric and the conjugate
momentum at spatial infinity are thus naturally taken to
be exactly the same as in (59)–(64).
Because the terms being dropped in the Hamiltonian

constraints are algebraic, the analysis of the surface terms in
the canonical generators proceeds as in the Einstein theory.
One can in particular easily verify that Carroll boosts are
integrable when λ̄A ¼ 0 and that the asymptotic symmetry
algebra is C-BMS, as found in [24] for the boundary
conditions of [28].
The twisted parity conditions produce therefore the

expected result in the magnetic contraction. The electric
Carrollian limit, on the other hand, opens new possibilities
and we focus on it in the rest of this section.

B. Electric limit: Action principle
and transformation laws

The Hamiltonian action principle of the electric
Carrollian theory of gravity in four dimensions is given
by [11,18]

SE½gij; πij; N; Ni�

¼
Z

dt

�Z
d3xðπij _gij − NHE − NiHE

i Þ − BE
∞

�
: ð70Þ

Variation with respect to the lapse N and shift Ni functions
enforces again the Hamiltonian and momentum constraints,
which reads in the electric contraction,

HE ¼ 1ffiffiffi
g

p
�
πijπij −

π2

2

�
≈ 0; ð71Þ
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HE
i ¼ −2∇jπij ≈ 0: ð72Þ

These constraints obey the “zero-signature” deformation
algebra [4,11]

fHEðxÞ;HEðx0Þg ¼ 0; ð73Þ

fHEðxÞ;HE
i ðx0Þg ¼ HEðxÞ∂iδðx; x0Þ; ð74Þ

fHE
i ðxÞ;HE

j ðx0Þg ¼ HE
i ðx0Þ∂jδðx; x0Þ þHE

j ðxÞ∂iδðx; x0Þ:
ð75Þ

Variation of the action with respect to the momentum πij

and the 3-dimensional metric gij gives the following
equations of motion

_gij ¼
2Nffiffiffi
g

p
�
πij −

1

2
gijπ

�
þ Nijj þ Njji; ð76Þ

_πij ¼ N
2

ffiffiffi
g

p gij
�
πmnπmn −

π2

2

�
−
2Nffiffiffi
g

p
�
πimπjm −

1

2
πijπ

�

þ LNπ
ij: ð77Þ

The infinitesimal transformation laws of the canonical
pair ðgij; πijÞ under diffeomorphisms generated by ðξ⊥ ≡
ξ; ξiÞ are now

δξ;ξi gij ¼
2ξffiffiffi
g

p
�
πij −

1

2
gijπ

�
þ ξijj þ ξjji; ð78Þ

δξ;ξiπ
ij ¼ ξ

2
ffiffiffi
g

p gij
�
πmnπmn −

π2

2

�
−

2ξffiffiffi
g

p
�
πimπjm −

1

2
πijπ

�

þ Lξπ
ij: ð79Þ

One should note that in (77) and (79), the terms
involving ξ decay at least as r−3 at infinity, even for
parameters ξ that blow up as r, so that the leading order π̄ij

is invariant under normal hypersurface deformations.

C. Boundary conditions in the electric Carroll limit

In view of the remark just made, the Carroll contraction
in the electric case of the twisted boundary conditions yield

h̄rr ¼ even; ð80Þ

λ̄A ¼ ðλ̄AÞodd þ D̄Aζr − ζ̄A; ð81Þ

h̄AB ¼ ðh̄ABÞeven þ D̄Aζ̄B þ D̄Bζ̄A þ 2ḡABζr; ð82Þ

π̄rr ¼ ðπ̄rrÞodd; ð83Þ

π̄rA ¼ ðπ̄rAÞeven; ð84Þ

π̄AB ¼ ðπ̄ABÞodd; ð85Þ

where the leading order of the conjugate momentum is now
strictly even or odd since the corresponding improper
gauge terms are of lower order.
The contraction of the twisted boundary conditions also

implies λ̄A ¼ 0, but this condition turns out not to be
necessary in the limit. This condition can be consistently
avoided, leading to a bigger symmetry group.

D. Asymptotic symmetries of the electric Carroll limit

We now give the transformation laws of the leading
orders of the fields under Carrollian diffeomorphisms with
asymptotic form

ξ ¼ brþ T þOðr−2Þ; ð86Þ

ξr ¼ W þOðr−1Þ; ð87Þ

ξA ¼ YA þ 1

r
IA þOðr−2Þ; ð88Þ

where b describes Carrollian boosts, YA spatial rotations,
and T and W stand for Carrollian supertranslations. The
parameter IA also describes spatial supertranslations and its
precise role will depend on whether we impose λ̄A ¼ 0 or
not (see below).
We find that the transformations of the leading orders

under spacelike diffeomorphisms read

δξi h̄rr ¼ YA
∂Ah̄rr; ð89Þ

δξi λ̄A ¼ LY λ̄A þ D̄AW − IA; ð90Þ

δξi h̄AB ¼ LYh̄AB þ 2ðD̄ðAIBÞ þ ḡABWÞ: ð91Þ

We also find that the leading orders of the momentum
transform as

δξi π̄
rr ¼ ∂AðYAπ̄rrÞ; ð92Þ

δξi π̄
rA ¼ ∂BðYBπ̄rAÞ − ∂BYAπ̄rB; ð93Þ

δξi π̄
AB ¼ ∂CðYCπ̄ABÞ − ∂CYAπ̄CB − ∂CYAπ̄CA; ð94Þ

while the subleading order πð2ÞrA, which appears in the
expression of the charges as in the Einstein theory, trans-
forms as

δξiπ
ð2ÞrA ¼ ∂BðYBπð2ÞrAÞ − ∂BYAπð2ÞrB þ ∂BðIBπ̄rAÞ

− ∂BIAπ̄rB þ IAπ̄rr − ∂BWπ̄AB −Wπ̄rA: ð95Þ

Similarly, we find that the transformation law under
timelike deformations are
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δξh̄rr ¼
bffiffiffī
g

p ðπ̄rr − π̄AAÞ; ð96Þ

δξλ̄A ¼ 2bffiffiffī
g

p π̄rA; ð97Þ

δξh̄AB ¼ 2bffiffiffī
g

p
�
π̄AB −

1

2
ḡABðπ̄rr þ π̄AAÞ

�
: ð98Þ

The leading orders of the momentum do not transform
under timelike deformations,

δξπ̄
rr ¼ δξi π̄

rA ¼ δξi π̄
AB ¼ 0; ð99Þ

but one finds for πð2ÞrA,

δξπ
ð2ÞrA ¼ −

2b
3

ffiffiffī
g

p ð2π̄rrπ̄rA þ 3π̄rBπ̄
AB − π̄rAπ̄BBÞ: ð100Þ

1. Canonical generator

Because the symplectic structure takes the standard formR
d3xdVπij ∧ dVgij, the canonical generator of the asymp-

totic symmetries is simply obtained through the approach
of [27]. The surface integral in this case reads

δQE
ξ ½gij; πij� ¼

I
d2xð2ξiδπri − ξrδgjkπjkÞ: ð101Þ

Replacing the asymptotic conditions in (101), we obtain

δQE
ξ ½gij; πij� ¼ r

I
d2xð2YAδπ̄rBÞ ð102Þ

þ
I

d2x½2YAδðπð2ÞrA þ h̄ABπ̄rB þ λ̄Aπ̄
rrÞ

þ 2IAδπ̄rA þ 2Wδπ̄rr�: ð103Þ

The variation of the canonical generator has a linear
divergent term. However, this is equal to zero by virtue
of the asymptotic constraint D̄Aπ̄

AB þ π̄rA ¼ 0, and using
the fact that YA is the Killing vector of the 2-sphere at
infinity. Then, the variation of the charge is given by

δQE
ξ ½gij; πij� ¼

I
d2x½2YAδðπð2ÞrA þ h̄ABπ̄rB þ π̄rrλ̄AÞ

þ 2IAδπ̄rA þ 2Wδπ̄rr�: ð104Þ

To proceed further, we need to distinguish two cases,
according to whether the additional asymptotic condition
λ̄A ¼ 0 is imposed as in the Einstein theory, or is not
imposed, as it turns out to be possible.

2. Asymptotic symmetry algebra—Case
with λ̄A = 0: iso3-BMS algebra

When λ̄A ¼ 0, the parameters IA are not independent.
Indeed, preservation of the condition λ̄A ¼ 0 requires one to
add the following correcting gauge transformation when
one performs a Carroll boost and a spatial supertranslation
parametrized by W,

ξr ¼ Oðr−2Þ; ξA ¼ 1

r
ðIAðbÞ þ IAðWÞÞ þOðr−2Þ; ð105Þ

with

IAðbÞ ¼
2bffiffiffī
g

p π̄rA IAðWÞ ¼ D̄AW; ð106Þ

so that the IA’s are entirely determined by b and W.
Substituting this expression for IA in δQE

ξ ½gij; πij�, one
finds after integration in phase space that the canonical
generator is equal to

QE
ξ ¼ 1

2
bijMij þQW; ð107Þ

where

Mij ¼
I

d2x2x½iej�Aðπð2ÞrA þ h̄ABπ̄rB þ π̄rrλ̄AÞ; ð108Þ

QW ¼
I

d2xWW; ð109Þ

with W ¼ 2ðπ̄rr − π̄AAÞ. The surface term accompanying
the boost is given by

I
d2x

2niffiffiffī
g

p π̄rAπ̄rA; ð110Þ

but this integral is equal to zero due to the parity conditions.
It follows that the boosts are also proper gauge trans-
formations for the diffeomorphism-twisted parity condi-
tions, as in [24]. Furthermore, it can be checked that only
the odd part of W is an improper gauge transformation.
The parameters obey the following transformation laws

ŶA ¼ YB
1 ∂BY

A
2 − ð1 ↔ 2Þ; ð111Þ

Ŵ ¼ YB
1 ∂BW2 − ð1 ↔ 2Þ; ð112Þ

leading to the brackets

fMij;Mklg¼ 1

2
ðδjkMil−δikMjlþδliMjk−δljMikÞ; ð113Þ
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fMij;Wðθ;ϕÞg ¼ −D̄Bðx½iej�BWðθ;ϕÞÞ: ð114Þ

This is the isoð3Þ-BMS algebra.

3. Asymptotic symmetry algebra—case with λ̄A ≠ 0:
Extended isoð3Þ-BMS algebra

Unlike what happens in the magnetic Carrollian theory,
the expression (104) is integrable for arbitrary YA’s, IA’s
and W’s. Thus, there is no need to impose the restriction
λ̄A ¼ 0 which was necessary in that case (and also in
Einstein gravity) to ensure integrability. We thus lift this
restriction and allow configurations with λ̄A ≠ 0.
The electric theory is then invariant under the semidirect

product of spatial rotations and the Abelian set of “gen-
eralized” spatial Carrollian supertranslations parametrized
byW and IA, with canonical generator that can bewritten as

QE
ξ ¼ 1

2
bijMij þQW þQI; ð115Þ

where

QW ¼
I

d2xWW; QI ¼
I

d2xIAWA: ð116Þ

Here,W ¼ 2π̄rr andWA ¼ 2π̄rA. Because π̄
rr is odd and π̄rA

even, only odd parameters W and even parameters IA,
which are otherwise arbitrary functions and vectors on the
2-sphere, define improper gauge transformations.
The transformation laws of the parameters are given by

ŶA ¼ YB
1 ∂BY

A
2 − ð1 ↔ 2Þ; ð117Þ

Ŵ ¼ YB
1 ∂BW2 − ð1 ↔ 2Þ; ð118Þ

ÎA ¼ YB
1 ∂BI

A
2 − IB2 ∂BY

A
1 − ð1 ↔ 2Þ; ð119Þ

and hence, the nonvanishing brackets of the generators read

fMij;Mklg¼ 1

2
ðδjkMil−δikMjlþδliMjk−δljMikÞ; ð120Þ

fMij;Wðθ;ϕÞg ¼ −D̄Bðx½iej�BWðθ;ϕÞÞ; ð121Þ

fMij;WAðθ;ϕÞg ¼ D̄Bðx½iej�BWAðθ;ϕÞÞ
− x½iD̄Aej�BWBðθ;ϕÞ: ð122Þ

This is the extended isoð3Þ-BMS algebra.
This enlargment of the isoð3Þ-BMS algebra cannot be

obtained as a contraction of the BMS4 algebra since it
contains more spatial supertranslations. It is somewhat
reminiscent of the Spi group of [45], but the parity of the
supertranslations are restricted here.

VI. ASYMPTOTIC SYMMETRIES OF THE YANG-
MILLS FIELD IN FLAT CARROLL SPACETIME

Before turning to the coupled Einstein-Yang-Mills sys-
tem in the Carroll limit, we first consider the asymptotic
symmetries of the Yang-Mills field on a flat Carroll
background. We start with a brief overview of the asymp-
totic structure of the Yang-Mills theory in Minkowski
space. We then proceed to the analysis of the electric
and magnetic Carrollian limits.

A. Brief overview of boundary conditions
in Yang-Mills theory

The asymptotic structure of Yang-Mills theory has been
rigorously studied in [33]. Here, we give a brief summary
of their results.
The Hamiltonian action for the Yang-Mills theory on a

Minkowski background in four spacetime dimensions reads

SYM½Ai; πi; A0� ¼
Z

dtd3xðπia _Aa
i −Hþ Aa

0Diπ
i
aÞ; ð123Þ

where πia is the conjugate momentum to the non-Abelian
gauge field Ai ¼ Aa

i Ta. This canonical pair takes values on
some compact semisimple Lie algebra ½Ta; Tb� ¼ fcabTc.
By using the inverse of the invariant metric, one can raise
the internal index a of πia to form an object πi ¼ πiaTa that
transforms as the vector potential in the adjoint represen-
tation [46]. The variation of the action with respect to the
Lagrange multiplier Aa

0 enforces the Gauss constraint

Ga ¼ Diπ
i
a ≈ 0; ð124Þ

where the covariant derivative is defined as DiXa ¼
∂iXa þ αfabcAb

i X
c, with α the Yang-Mills coupling con-

stant. The Hamiltonian density is given by

H ¼ 1

2
πai π

i
a þ

1

4
Fa
ijF

ij
a ; ð125Þ

while the momentum density reads

Hi ¼ πja∂iAa
j − ∂jðπjaAa

i Þ: ð126Þ

Infinitesimal transformation laws of the fields under
Poincaré and non-Abelian gauge symmetries, generated by
ξμ ¼ ðξ; ξiÞ and ε ¼ εaTa, read

δξ;ξi;εA
a
i ¼ ξπai þ ξj∂iAa

j þ ∂iξ
jAa

j −Diε
a; ð127Þ

δξ;ξi;επ
i
a ¼ −DjðξFij

a Þ þ ∂jðξjπiaÞ− ∂jξ
iπja þ αfcabπicεb:

ð128Þ

In spherical coordinates, the vector fields defining the
infinitesimal Poincaré transformations take the form
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ξ¼ brþT0; ξr ¼W0; ξA ¼ YAþ 1

r
D̄AW0; ð129Þ

where T0 stand for time translations ∂AT0 ¼ 0 and W0,
which corresponds to the spatial translations, is a combi-
nation of the l ¼ 1 spherical harmonics and satisfies
therefore the conditions D̄AD̄BW0 þ ḡABW0 ¼ 0. The
decay of the gauge parameter reads

ε ¼ ε̄þOðr−1Þ: ð130Þ

The falloff of the gauge field and its conjugate momentum
is given by

Ar ¼
Ār

r
þOðr−2Þ; AA ¼ ĀA þOðr−1Þ; ð131Þ

πr ¼ π̄r þOðr−1Þ πA ¼ π̄A

r
þOðr−2Þ: ð132Þ

As in the case of electromagnetism [38] and Einstein
gravity [29,30], the symplectic structure is logarithmically
divergent. This can be solved by imposing parity con-
ditions. The authors of [33] first propose the following set
of strict parity conditions

Ār ∼ π̄A ¼ even; ĀA ∼ π̄r ¼ odd; ð133Þ

which ensures the finiteness of the symplectic structure.
These parity conditions differ from those usually imposed
in electromagnetism where Āi is odd instead of being even,
but possess two good features: (i) to leading order, the
vector potential Ai and the derivative operator ∂i possess
same odd parity, so that Di ¼ ∂i − Ai has a definite parity
(namely, also odd parity); and (ii) the SUð2Þ Wu-Yang
monopole solution of the pure Yang-Mills theory [47],

Aa
i ¼ δabϵibc

xc

r2
ð134Þ

fulfills these parity conditions.
Furthermore, these boundary conditions are Poincaré

invariant and make the Lorentz boosts canonical. They are
also preserved by gauge transformations with gauge
parameter that asymptotically tends to an even function
on the 2-sphere, i.e., ε̄ ¼ even. However, the boundary
term of the canonical generator of gauge transformations

G½ε� ¼
Z

d3xεaGa −
I

d2Siεaπia; ð135Þ

is then equal to zero since εa and πia have opposite parity.
There is no improper gauge symmetry at all, contrary to
what happens for electromagnetism. The only symmetries
are the Poincaré transformations, and these are rigid
symmetries with a nonvanishing bulk integral.

The authors of [33] relaxed then the boundary conditions
by twisting the parity conditions as in [29,30,38]. They
imposed accordingly strict parity conditions up to an
improper gauge transformation. Specifically, they proposed
that the Yang-Mills field should behave asymptotically as

Ār ¼ Ū−1Āeven
r Ū; ĀA ¼ Ū−1Āodd

A Ūþ Ū−1
∂AŪ; ð136Þ

π̄r ¼ Ū−1π̄roddŪ; π̄A ¼ Ū−1π̄AevenŪ; ð137Þ

where Ū ¼ expð−ϕ̄aTaÞ, where ϕ̄a depends on the angles.
They verified that these boundary conditions lead to a finite
symplectic structure (by imposing a faster falloff of the
Gauss constraint Ga ∼ r−4). By construction, these condi-
tions are preserved by angle-dependent gauge symmetries
with no definite parity, and hence, nonzero charges.
However, the authors of [33] also showed that there was
a clash with Poincaré invariance, in the sense that the
symplectic structure is not invariant under Lorentz boosts,
which transforms into a nontrivial surface term. While this
problem can be cured in electromagnetism by adding
boundary terms in the symplectic form [38], the same
method does not work in the non-Abelian case [33]. The
difficulty is that the interaction term AiAj in the curvature
Fij is of the same order as the free term ∂iAj and hence, the
interactions cannot be neglected asymptotically.
The conclusion is therefore that there is no known set of

asymptotic conditions at spatial infinity simultaneously
consistent with Lorentz invariance and accommodating
improper color gauge symmetries in the non-Abelian case.

B. Electric Carrollian limit of Yang-Mills

1. Boundary conditions and asymptotic transformations

We now show that the aforementioned difficulties do not
appear in the electric Carrollian limit of Yang-Mills theory,
which possesses an infinite-dimensional color symmetry
group consistent with Carroll invariance. The situation in
the magnetic Carrollian limit, on the other hand, is similar
to the Lorentzian case, i.e., one easily verifies that it is not
possible to have improper gauge transformations consistent
with Carroll invariance. Thus, the asymptotic symmetry
algebra is given in that case by the Carroll algebra only. For
that reason, from now on we focus on the electric limit,
which has a richer structure.
The Hamiltonian action for the electric Carrollian limit

of Yang-Mills theory reads [18]

SEYM½Ai;πi;A0� ¼
Z

dtd3xðπia _Aa
i −HEþAa

0Diπ
i
aÞ; ð138Þ

The Hamiltonian density is given by

HE ¼ 1

2
πai π

i
a; ð139Þ
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and satisfies the relation fHEðxÞ;HEðx0Þg ¼ 0 character-
istic of Carroll-invariant theories. The momentum density
and the Gauss constraint are unchanged. The variation of
the action with respect to the fields yields the following
equations of motion

_Aa
i ¼ πai −DiAa

0; ð140Þ

_πia ¼ 0: ð141Þ

Carroll transformations are generated by the same
surface-deformation vector fields as in the Lorentzian
case, i.e.,

ξ¼ brþ T0; ξr ¼W0; ξA ¼ YA þ 1

r
D̄AW0; ð142Þ

where b is the Carrollian boost parameter, YA is the Killing
vector of the 2-sphere at infinity, the constant T0 stands for
time translations and W0 corresponds to the spatial trans-
lations (satisfying the property D̄AD̄BW0 þ ḡABW0 ¼ 0).
The action on the fields is however different because the
Hamiltonian density is different, leading to variations of the
fields under Carroll and gauge transformations that read

δξ;ξi;εA
a
i ¼ ξπai þ ξj∂iAa

j þ ∂iξ
jAa

j −Diε
a; ð143Þ

δξ;ξi;επ
i
a ¼ ∂jðξjπiaÞ − ∂jξ

iπja þ αfcabπicεb: ð144Þ

The notable difference lies in the transformation rule of the
momenta πia under timelike deformations (boosts and time
translations), which is now δξπ

i
a ¼ 0.

We adopt the same fall-off of the fields as in the previous
section, i.e., (131), and (132), and the set of twisted parity
conditions (136), and (137). We also take the same
asymptotic behavior (130) of the gauge parameter ε. As
we recalled, these boundary conditions make the symplec-
tic form finite under the additional requirement that the
Gauss constraint should decay as Diπ

i
a ∼ r−4. It is direct to

show that this set of boundary conditions is preserved by
both Carroll and non-Abelian gauge symmetries behaving
as in (130).
The transformation laws of the leading orders of the

fields in the asymptotic expansion (r → ∞) are given in
spherical coordinates by

δξ;εĀa
r ¼

bπ̄arffiffiffī
g

p þ YA
∂AĀa

r þ αfabcε̄bĀc
r; ð145Þ

δξ;εĀa
A ¼ bπ̄aAffiffiffī

g
p þ YB

∂BĀa
A þ ∂BYBĀa

A −DAε̄
a; ð146Þ

δξ;επ̄
r
a ¼ ∂AðYAπ̄raÞ þ αfabcε̄bπ̄cr; ð147Þ

δξ;επ̄
A
a ¼ ∂BYBπ̄Aa − ∂BYAπ̄Ba þ αfabcε̄bπ̄cA: ð148Þ

2. Boosts are canonical transformations: Improper
gauge transformations

The great simplification that occurs in the electric Carroll
contraction of Yang-Mills theory is that the boosts are now
canonical transformations, even with the parity conditions
twisted by a gauge transformation. This is because there are
no spatial derivatives in the energy density (139). The
twisted parity conditions are therefore compatible with
Carroll invariance, while they were not (and could not be
improved to become so) in the Lorentzian case.
As we have also explained above, the twisted parity

conditions (136) and (137) are invariant under angle-
dependent Oð1Þ color gauge transformations, which are
improper when they are odd (in a sense to make precise in
the subsection below).
The electric Carroll contraction of Yang-Mills theory

accommodates consequently an infinite-dimensional angle-
dependent color group without conflict with Carroll
covariance.

3. Asymptotic symmetry algebra:
infinite-dimensional color group

By applying the standard canonical methods, one
then finds that the canonical generator of the asymptotic
symmetries is given by

CE
ξ;ε½Ai; πi� ¼

Z
d3xðξHE þ ξiHi þ εaGaÞ þQE

ξ;ϵ½Ai; πi�;

ð149Þ
where the surface term reads

QE
ξ;ε½Ai; πi� ¼

I
d2xð−ε̄aπ̄ra þ YAĀa

Aπ̄
r
aÞ: ð150Þ

The generator of spatial rotations is the sum of both a
nonvanishing bulk term

R
d4xξiHi (recall that HE and Hi

are not constrained to vanish when Carroll gravity is not
included) and a nonvanishing surface integral

H
d2xYAĀa

Aπ̄
r
a.

A direct computation shows that the Poisson brackets of
the canonical generators are given by

fCE
ξ1;ε1

½Ai; πi�; CE
ξ2;ε2

½Ai; πi�g ¼ CE
ξ̂;ε̂
½Ai; πi�; ð151Þ

where

ξ̂ ¼ ξi1∂iξ2 − ð1 ↔ 2Þ; ð152Þ

ξ̂i ¼ ξj1∂jξ
i
2 − ð1 ↔ 2Þ; ð153Þ

ε̂a ¼ ξi1∂iε
a
2 þ

1

2
fabcεb1ε

c
2 − ð1 ↔ 2Þ: ð154Þ

The symmetry algebra is the semi-direct sum of the Carroll
algebra and an infinite-dimensional set of non-Abelian
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angle-dependent color charges. In order to write the algebra
in a more explicit way, we can recast the canonical
generator CE

ξ;ε½Ai; πi� as

CE
ξ;ε ¼ biBi þ a0Eþ 1

2
bijMij þ aiPi þQYM

ε ; ð155Þ

where

Bi ¼
Z

d3xxiHE; ð156Þ

E ¼
Z

d3xHE; ð157Þ

Mij ¼
Z

d3x2x½iHj� þ
I

d2xx½iej�AĀa
Aπ̄

r
a; ð158Þ

Pi ¼
Z

d3xHi; ð159Þ

QYM
ϵ ¼

I
d2xϵ̄aT a; ð160Þ

with T a ¼ −π̄ra. Then, the nonvanishing brackets of the
asymptotic symmetry algebra are explicitly given by

fPi; Bjg ¼ δijE; ð161Þ

fBi;Mjkg ¼ 1

2
ðδikBj − δijBkÞ; ð162Þ

fPi;Mjkg ¼ 1

2
ðδikPj − δijPkÞ; ð163Þ

fMij;Mklg ¼ 1

2
ðδjkMil − δikMjl

þ δliMjk − δljMikÞ; ð164Þ

fMij; T aðxAÞg ¼ −D̄Bðx½iej�BT aðxAÞÞ; ð165Þ

fT aðxA1 Þ;T bðxA2 Þg ¼ fcabT cðxA1 Þδð2ÞðxA1 − xA2 Þ: ð166Þ

Note that the generators T a ¼ −π̄ra of the improper color
gauge transformations, which form a centerless Kac-
Moody algebra, obey a twisted parity condition and thus
they are not independent functions on the sphere.

VII. CARROLLIAN LIMITS OF EINSTEIN-YANG-
MILLS SYSTEM

In this section, we proceed to combine our previous
results, which can be done easily. One can take different
limits in the Einstein and Yang-Mills sectors of the coupled
theory, which would lead to different consistent Carrollian
limits of the Einstein-Yang-Mills system. We will consider

first, and somewhat in detail, the theory that results from
taking the magnetic Carrollian limit for gravity and the
electric Carrollian limit for Yang-Mills, since it is the one
that admits the most interesting asymptotic structure. We
will then make a summary of the asymptotic symmetry
algebras associated to the remaining Carrollian limits.

A. Magnetic Carrollian gravity coupled to the
electric limit of the Yang-Mills field

The Hamiltonian action for this Carrollian limit of the
Einstein-Yang-Mills system reads

S ¼
Z

dt
�Z

d3xðπij _gij þ πia _A
a
i − NH − NiHi

þ Aa
0GaÞ − B∞

�
: ð167Þ

The variation of the action with respect to the Lagrange
multipliers N, Ni, and Aa

0 yields the following constraints

H ¼ −
ffiffiffi
g

p
Rþ 1

2
ffiffiffi
g

p πai π
i
a ≈ 0; ð168Þ

Hi ¼ −2∇jπij þ πja∂iAa
j − ∂jðπjaAa

i Þ ≈ 0; ð169Þ

Ga ¼ Diπ
i
a ≈ 0; ð170Þ

where the covariant derivativeDi is the complete spacetime
(∇i) and gauge covariant derivative, DiXa ¼ ∇iXa þ
αfabcAb

i X
c.

The constraints are all first class and satisfy the following
algebra

fHðxÞ;Hðx0Þg ¼ 0; ð171Þ

fHðxÞ;Hiðx0Þg ¼ HðxÞ∂iδðx; x0Þ; ð172Þ

fHiðxÞ;Hjðx0Þg ¼ Hiðx0Þ∂jδðx; x0Þ þHjðxÞ∂iδðx; x0Þ;
ð173Þ

fGaðxÞ;Hðx0Þg ¼ 0; ð174Þ

fGaðxÞ;Hiðx0Þg ¼ GaðxÞ∂iδðx; x0Þ; ð175Þ

fGaðxÞ;Gbðx0Þg ¼ fcabGcðxÞδðx; x0Þ: ð176Þ

The infinitesimal transformation laws of the fields generated
by Carrollian diffeomorphisms ðξ⊥ ≡ ξ; ξiÞ and non-
Abelian gauge transformation with parameter εa read

δξ;ξigij ¼ Lξgij; ð177Þ
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δξ;ξiπ
ij ¼ −ξ

ffiffiffi
g

p �
Rij −

1

2
gijR

�
þ ξ

2
ffiffiffi
g

p
�
πaiπja −

1

2
gijπakπ

k
a

�

ð178Þ

þ ffiffiffi
g

p ðξjij − gijξjmjmÞ þ Lξπ
ij; ð179Þ

δξ;ξi;εA
a
i ¼

ξffiffiffi
g

p πai þ ξj∂iAa
j þ ∂iξ

jAa
j −Diε

a; ð180Þ

δξ;ξi;επ
i
a ¼ ∂jðξjπiaÞ − ∂jξ

iπja þ αfcabπicεb: ð181Þ

We take as asymptotic conditions:
(i) for gravity, the twisted parity conditions (59)–(64),

with the additional condition λ̄A ¼ 0 (which implies
ζ̄A ¼ D̄Aζr);

(ii) for the Yang-Mills field, the twisted conditions
(131), (132), (136), and (137).

Additionally, we also assume the faster falloff for the
constraints

H ¼ Oðr−2Þ; Hr ¼ Oðr−2Þ;
HA ¼ Oðr−1Þ; Ga ¼ Oðr−4Þ: ð182Þ

The asymptotic Killing vectors and the non-Abelian
gauge parameters that preserve the fall-off of the fields read

ξ ¼ brþ T −
1

2
bh̄þOðr−2Þ; ð183Þ

ξr ¼ W þOðr−1Þ; ð184Þ

ξA ¼ YA þ 1

r
D̄AW þOðr−2Þ; ð185Þ

ε ¼ ε̄þOðr−1Þ; ð186Þ

where D̄AD̄Bbþ ḡABb ¼ 0, D̄AYB þ D̄BYA ¼ 0 and where
the boost-dependent Oð1Þ compensating term − 1

2
bh̄ is

included in order to make the boost charges integrable, as in
Einstein gravity (the details of this derivation can be found
in [24,28,30]).
These transformations are canonical and hence define

asymptotic symmetries. Their canonical generators are
again obtained through the standard canonical procedure,
and explicitly given by

Gξ;ϵ½gij; πij;Ai; πi� ¼
Z

d3xðξHþ ξiHi þ ϵaGaÞ

þQξ;ϵ½gij; πij;Ai; πi� ð187Þ

where the boundary terms read

Qξ;ϵ ¼
I

d2x

�
YAð2π̄ð2ÞrA þ Āa

Aπ̄
r
aÞ þ 2

ffiffiffī
g

p
Th̄rr

þ 2Wðπ̄rr − π̄AAÞ þ
ffiffiffī
g

p
b

�
2kð2Þ þ 1

2
h̄rrh̄

þ 1

4
h̄2 þ 1

4
h̄ABh̄

B
A

�
− ε̄aπ̄ra

�
; ð188Þ

with

k̄ ¼ 1

2
h̄þ h̄rr; ð189Þ

k̄ð2Þ ¼ hð2Þrr þ hð2Þ −
1

4
h̄rrh̄ −

1

2
h̄ABh̄

B
A −

3

4
h̄2rr þ D̄Ah

ð2ÞA
r ;

π̄ð2ÞrA ¼ πð2ÞrA þ h̄ABπ̄rB: ð190Þ

The brackets of the canonical generators are given by

fGξ1;ε1 ½gij; πij;Ai; πi�; Gξ2;ε2 ½gij; πij;Ai; πi�g
¼ Gξ̂;ε̂½gij; πij;Ai; πi�; ð191Þ

where the hatted parameters of the commutator trans-
formation ðξ̂; ε̂Þ are

ŶA ¼ YB
1 ∂BY

A
2 − ð1 ↔ 2Þ; ð192Þ

b̂ ¼ YB
1 ∂Bb2 − ð1 ↔ 2Þ; ð193Þ

T̂ ¼ YB
1 ∂BT2 − 3b1W2 − ∂Ab1D̄AW2 − b1D̄AD̄AW2

− ð1 ↔ 2Þ; ð194Þ

Ŵ ¼ YB
1 ∂BW2 − ð1 ↔ 2Þ; ð195Þ

ε̂a ¼ ξi1∂iε
a
2 þ

1

2
fabcεb1ε

c
2 − ð1 ↔ 2Þ: ð196Þ

These transformations define the Carroll-BMS algebra
C-BMS endowed with an infinite set of color charges.
Writing the canonical charges as

Qξ;ϵ ¼ biBi þ 1

2
bijMij þQW þQT þQYM

ϵ ; ð197Þ

where

Bi ¼
I

d2x
ffiffiffī
g

p
ni
�
2kð2Þ þ 1

4
h̄2 þ 1

4
h̄ABh̄

B
A

�
; ð198Þ

Mij ¼
I

d2xx½iej�A
�
π̄ð2ÞrA þ 1

2
Āa
Aπ̄

r
a

�
; ð199Þ

QT ¼
I

d2x
ffiffiffī
g

p
TT ; QW ¼

I
d2xWW; ð200Þ
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QYM
ϵ ¼

I
d2xϵ̄aT a; ð201Þ

with

T ¼ 2h̄rr; W ¼ 2ðπ̄rr − π̄AAÞ; T a ¼ −π̄ra; ð202Þ
we then find that the brackets of the Carroll boosts and
spatial rotations are given by

fBi; Bjg ¼ 0; ð203Þ

fBi;Mjkg ¼ 1

2
ðδikBj − δijBkÞ; ð204Þ

fMij;Mklg ¼ 1

2
ðδikMjl − δilMjk − δjkMilþ δjlMikÞ: ð205Þ

The brackets of the time and spatial Carrollian super-
translations and the non-Abelian charges with Carroll
boosts and spatial rotations read

fBi;WðxAÞg ¼ −3niT − ∂AniD̄AT − ni△̄T ; ð206Þ

fBi; T ðxAÞg ¼ 0; ð207Þ

fBi; T aðxAÞg ¼ 0; ð208Þ

fMij;WðxAÞg ¼ −D̄Bðx½iej�BWðxAÞÞ; ð209Þ

fMij; T ðxAÞg ¼ −D̄Bðx½iej�BT ðxAÞÞ; ð210Þ

fMij; T aðxAÞg ¼ −D̄Bðx½iej�BT aðxAÞÞ: ð211Þ

Finally, the bracket between the non-Abelian charges is
given by

fT aðxA1 Þ;T bðxA2 Þg ¼ fcabT cðxA1 Þδð2ÞðxA1 − xA2 Þ: ð212Þ

B. Magnetic Carrollian gravity coupled to the magnetic
limit of the Yang-Mills field

In this case, the color charges vanish because of the strict
set of parity conditions (of [33]),

Ār ∼ π̄A ¼ even; ĀA ∼ π̄r ¼ odd; ð213Þ

that one must impose on the Yang-Mills field in order to
render Carroll boosts canonical transformations. Thus, the

asymptotic symmetry algebra is only given by the Carroll-
BMS algebra.

C. Electric Carrollian gravity coupled to the electric
limit of the Yang-Mills field

In this case, the theory is invariant under the semidirect
sum of soð3Þwith the direct sum of the infinite-dimensional
sets of generalized Carrollian supertranslations (extended
isoð3Þ-Carroll algebra) and color charges.
The asymptotic Killing vector and the non-Abelian

gauge parameter that preserve the fall-off of the fields read

ξ ¼ brþ T þOðr−2Þ; ð214Þ

ξr ¼ W þOðr−1Þ; ð215Þ

ξA ¼ YA þ 1

r

�
D̄AW þ 2bffiffiffi

g
p π̄rA

�
þOðr−2Þ; ð216Þ

ε ¼ ε̄þOðr−1Þ; ð217Þ

where D̄AD̄Bbþ ḡABb ¼ 0 and D̄AYB þ D̄BYA ¼ 0.
The boundary term of the canonical generator is given by

Qξ;ϵ ¼
I

d2x

�
2YA

�
π̄ð2ÞrA þ 1

2
Āa
Aπ̄

r
a

�
þ 2IAπ̄rA

þ 2Wπ̄rr − ϵ̄aπ̄ra

�
: ð218Þ

The latter can be rewritten as

Qξ;ϵ ¼
1

2
bijMij þQI þQW þQYM

ϵ ; ð219Þ

where

Mij ¼
I

d2xx½iej�A
�
π̄ð2ÞrA þ 1

2
Āa
Aπ̄

r
a

�
; ð220Þ

QI ¼
I

d2xIAWA QW ¼
I

d2xWW; ð221Þ

QYM
ϵ ¼

I
d2xϵ̄aT a; ð222Þ

with WA ¼ 2π̄rA, W ¼ 2π̄rr and T a ¼ −π̄ra.
The brackets of the charges are then given by
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fMij;Mklg ¼ 1

2
ðδikMjl − δilMjk − δjkMil þ δjlMikÞ; ð223Þ

fMij;WðxAÞg ¼ −D̄Bðx½iej�BWðxAÞÞ; ð224Þ

fMij;WAðxAÞg¼ D̄Bðx½iej�BWAðxAÞÞ−x½iD̄Aej�BWBðxAÞ; ð225Þ

fMij; T aðxAÞg ¼ −D̄Bðx½iej�BT aðxAÞÞ; ð226Þ

fT aðxA1 Þ; T bðxA2 Þg ¼ fcabT cðxA1 Þδð2ÞðxA1 − xA2 Þ: ð227Þ

D. Electric Carrollian gravity coupled to the magnetic
limit of the Yang-Mills field

The color charges in this case vanish because of the strict
set of parity conditions on the Yang-Mills field. The
asymptotic symmetry algebra is accordingly only given
by the semidirect sum of soð3Þwith the infinite-dimensional
sets of generalized Carrollian supertranslations. The latter
explicitly reads

fMij;Mklg ¼ 1

2
ðδikMjl − δilMjk − δjkMil þ δjlMikÞ;

ð228Þ

fMij;WðxAÞg ¼ −D̄Bðx½iej�BWðxAÞÞ; ð229Þ

fMij;WAðxAÞg ¼ D̄Bðx½iej�BWAðxAÞÞ− x½iD̄Aej�BWBðxAÞ:
ð230Þ

VIII. CONCLUSIONS

In this paper, we have analyzed the asymptotic structure
of the electric and magnetic Carrollian limits of the Enstein-
Yang-Mills theory. Our results can be summarized as
follows:

(i) We have first constructed BMS-like extensions of the
Carroll group on purely algebraic grounds, without
reference to the dynamics. We used the 3þ 1
description of the symmetry, particularly well suited
to rescalings of the energy and the linear momentum
involving different powers of c. The same techniques
applied to the more familiar non-relativistic case
have led us to a new BMS-like extension of the
Galilean and Bargmann algebras.

(ii) We have then considered the Carrollian limit of the
pure Einstein theory, where we have shown that the
electric contraction allows for a larger set of super-
translations involving three functions on the sphere
(with definite parity conditions). Technically, this is
because the condition h̄rA ¼ 0 on the leading order

of the mixed radial-angular component of the metric,
which reduces the number of symmetry generators
in the Einstein case, is not needed any more in the
electric contraction.

(iii) We studied next the asymptotic symmetries of
Carrollian Yang-Mills theories and have shown that
contrary to its Minkowskian parent [33], the electric
Carroll contraction admits at spatial infinity an
infinite set of angle-dependent color gauge sym-
metries fully compatible with Carroll spacetime
covariance, including the Carroll boosts. The result
extends directly to the combined Einstein-Yang-
Mills system.

Our results can be extended to higher dimensions by
following the methods of [48,49], as well as to the coupled
electromagnetic-massless scalar field system for which the
asymptotic analysis has been performed in [50].
Another possible future direction is to explore the

possibility of realizing the Galilean-BMS algebra (34)
as an asymptotic symmetry by imposing suitable boun-
dary conditions and parity conditions in Newton-Cartan
gravity [51].
It is rather interesting that the electric Carroll limit of the

Yang-Mills theory admits the infinite-dimensional color
symmetry group found at null infinity (but not at spatial
infinity) prior to taking the limit. This property is in line
with the general expectation that the Carroll limit describes
well the dynamics at null infinity but definitely deserves
further study.
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