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In the gravitational collapse of matter beyond spherical symmetry, gravitational waves are necessarily
present. On the other hand, gravitational waves can collapse to a black hole even without matter. One might
therefore wonder how the interaction and competition between the matter fields and gravitational waves
affects critical phenomena at the threshold of black hole formation. As a toy model for this, we study the
threshold of black-hole formation in 4þ 1 dimensions, where we add a massless minimally coupled scalar
matter field to the gravitational wave ansatz of Bizón, Chmaj, and Schmidt (in a nutshell, Bianchi IX on
S3 × radius × time). In order to find a stable discretization of the equation governing the gravitational
waves in 4þ 1 physical dimensions, which has the same principal part as the spherical wave equation in
9þ 1 dimensions, we first revisit the problem of critical spherical scalar field collapse in nþ 2 dimensions
with large n. Returning to the main problem, we find numerically that weak gravitational wave
perturbations of the scalar field critical solution decay, while weak scalar perturbations of the gravitational
wave critical solution also decay. A dynamical systems picture then suggests the existence of a
codimension-2 attractor. We find numerical evidence for this attractor by evolving mixed initial data
and fine-tuning both an overall amplitude and the relative strength of the two fields.
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I. INTRODUCTION

In many self-gravitating systems that are exactly scale
invariant, or asymptotically scale invariant on small scales,
numerical time evolutions of regular, finite mass initial data
show that datawhich are fine-tunedmore andmore closely to
the threshold of collapse, but otherwise generic, evolve into
arbitrarily small black holes on the supercritical side of the
threshold, arbitrarily large curvature before dispersion on the
subcritical side. This is known as “type II critical phenomena
in gravitational collapse”; see Ref. [1] for a review.
The near-critical time evolutions go through a universal

codimension-1 attractor that is self-similar (or asymptotically
self-similar on small scales) and which itself has a naked
singularity, called the “critical solution.” In the limit of
perfect fine-tuning of any one parameter of the initial data to
the collapse threshold, the time evolution approaches but
never leaves the critical solution, and so a naked singularity is
generated in the time evolution of a codimension-1 set of
otherwise generic initial data.
This is well established numerically, and well understood

mathematically, for a number of Einstein-matter systems in
spherical symmetry; see [1]. Moreover, for at least some of
these systems, type II critical collapse is stable under small
but finite nonspherical perturbations [2,3]. Going beyond
spherical symmetry is interesting for at least two reasons: it

allows for angular momentum and for gravitational col-
lapse in vacuum.
Vacuum critical collapse is of interest, as it is not tied to a

particular choice of matter. However, fine-tuning to the
threshold of collapse in vacuum gravity has proved numeri-
cally very difficult even in twist-free axisymmetry; see
Refs. [4,5] for the current state of the art. As a stepping
stone from vacuum, critical collapse has been investigated
in twist-free axisymmetry with matter, in particular a
perfect fluid [3] and electromagnetic radiation [6].
However, in going beyond spherical symmetry, the moving
matter necessarily also creates gravitational waves. In the
critical collapse of axisymmetric electromagnetic waves, an
approximately discretely self-similar (DSS) critical solu-
tion was observed, but with scale periodicity less regular
than that observed in spherical scalar field collapse [6]. It
was conjectured that this is due to the effect of strong
gravitational waves.
As a spherically symmetric toy model for this interaction

of matter and gravitational waves, one of us with collab-
orators [7] investigated critical collapse with two massless
matter fields, a Yang-Mills (YM) and a scalar field. They
found the well-known critical solutions for pure YM and
pure scalar field matter. Perturbing pure initial data with an
infinitesimal amount of the other type of matter, they
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established that weak YM perturbations of the scalar field
critical solution decay but that weak scalar perturbations of
the YM critical solution grow.
Setting up mixed initial data with different ratios and

fine-tuning again to the black-hole threshold, they found a
mixed-field critical solution that starts as a growing
perturbation of the pure YM critical solution (at large
scales) and ends as a decaying perturbation of the pure
scalar critical solution (at small scales). This solution
changes its matter content from pure YM to pure scalar
field on the fly, while remaining very compact (with
2M=R ∼ 0.5) and approximately DSS, with the approxi-
mate log-scale periodΔ changing from the YM to the scalar
field value.
Here, we investigate another toy model, where the two

interacting fields truly are gravitational waves and amassless
matter field. Bizón et al. [8] proposed an ansatz in 4þ 1

spacetime dimensions on the manifold S3 × ðR × RþÞ,
where the metric on the factor S3 is homogeneous but
anisotropic; namely, it is of Bianchi type IX. Here, all metric
variables depend only on time and radius, even though the
spacetime is vacuum. (This can be generalized to higher odd-
dimensional spheres). To this system, we simply add a
homogeneous massless minimally coupled scalar field Ψ.
We thus have a toy model for matter coupled to

gravitational waves, but where all fields depend only on
radius and time, so that numerical time evolutions are
cheap. Besides the unphysical dimensions, the major
shortcoming of this model is that the scalar field cannot
create gravitational waves if they are absent initially—we
shall discuss this in more detail below.
The field equations for the scalar field and the gravita-

tional waves are essentially spherical wave equations, in the
physical 4þ 1 dimensions for the scalar field Ψ, but
effectively in 9þ 1 dimensions for the gravitational wave
variable b. As is well known, such spherical wave equa-
tions are numerically difficult in high dimensions. It turns
out the methods that work well in 3þ 1 dimensions stretch
to 4þ 1 but not to 9þ 1 dimensions. As a stepping stone,
we were therefore forced to revisit the problem of critical
collapse of a spherically symmetric scalar field in high
dimensions. In Appendix, we rederive and modify the
method of Ref. [9] and present successful tests in critical
scalar field collapse in 9þ 1 (physical) dimensions.
In Sec. III, we present our discretization of the field

equations, using the methods of Appendix for the field b,
and in Sec. IV, we present the similarity coordinates that we
use to display the approximate self-similarity of near-
critical time evolutions. Section V contains our numerical
results, and Sec. VI contains our conclusions.

II. METRIC ANSATZ AND FIELD EQUATIONS

We make the Bianchi IX ansatz of Ref. [8], restricting to
the biaxial case. We introduce null coordinates adapted to

the Bianchi IX symmetry ðu; x; θ;φ;ψÞ, in terms of which
the line element becomes

ds2 ¼ −2Gdudx −Hdu2 þ 1

4
R2ðe2B dθ2

þ ðe2B cos2θ þ e−4B sin2θÞ dφ2

− 2e−4B sin θ dφ dθ þ e−4B dψ2Þ: ð1Þ

The coordinate u is null, and the tangent vector to the
affinely parametrized outgoing null geodesics ruling the
surfaces of constant u isUa ≔ −∇au ¼ G−1ð∂xÞa. Here,G,
H, R, and B are functions of u and x only. We also
introduce the derivative operator

Ξ ≔ ∂u −
H
2G

∂x; ð2Þ

which is tangential to the ingoing null rays emanating from
the 3-surfaces of constant u and x. In the special case
H ¼ 0, x is also a null coordinate, and Ξ ¼ ∂u.
We fix the remaining coordinate freedom in the ansatz

(1) by imposing

H
2G

¼
�
1 −

x
x0

�
1

2R;xðu; 0Þ
; ð3Þ

Gðu; 0Þ ¼ R;xðu; 0Þ; ð4Þ

Rð0; xÞ ¼ x
2
: ð5Þ

This puts the center R ¼ 0 at x ¼ 0, makes u the proper
time there, and makes x ¼ x0 an ingoing null surface. More
generally, surfaces of constant x are timelike for 0 ≤ x < x0
and spacelike for x > x0. In particular, choosing the outer
boundary of our numerical domain at x ¼ xmax > x0 means
that this boundary is future spacelike and no boundary
condition is required.
Moreover, if x0 is chosen so that the ingoing light cone

x ¼ x0 is approximately the past light cone of the accu-
mulation point ðu�; 0Þ of scale echoes of an (approxi-
mately) self-similar spacetime, our coordinate system
automatically zooms in on this point, giving us good
resolution in critical collapse without the need for explicit
mesh refinement.
Our coordinate x can be related to an ingoing null

coordinate v by

vðu; xÞ ¼ −fðuÞ
�
1 −

x
x0

�
; ð6Þ

where
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fðuÞ ¼ exp

�
−x0

Z
u

0

du0

2R;xðu0; 0Þ
�
: ð7Þ

v is an increasing linear function of x, such that v ¼ 0 is
mapped to x ¼ x0. Our coordinate system can therefore be
thought of as a continuous version of Garfinkle’s algorithm
[10], which rescales v linearly in what in our notation is
called x, but by interpolation at discrete moments of time u,
rather than the continuous use of a radial shift vector. We
had previously used Garfinkle’s method in Ref. [6], and for
that problem, our new algorithm gives the same accuracy
and run times. We have made the change here as it
simplifies convergence testing. Both algorithms require a
good choice of, in our notation, x0 in order to make the
coordinate system zoom in on the accumulation point of
critical collapse.
To regularize the field equations, we redefine two of the

metric coefficients as

B≕R2b ð8Þ

and

G≕R;xg: ð9Þ

There are four algebraically independent components of
the Einstein equations

Rab ¼ 8π∇aΨ∇bΨ: ð10Þ

(Wework in units whereG ¼ c ¼ 1.) From these, we select
one which is an ordinary differential equation for g on the
slices of constant u and two which are wave equations for R
and b. The remaining Einstein equation is then redundant.
We also have a wave equation for the matter field Ψ.
The four field equations thus obtained can be arranged in

the following hierarchy:

Dðln gÞ ¼ 8πR
3

ðDΨÞ2 þ 2R3ðDbþ 2RbÞ2; ð11Þ

DðR2ΞRÞ ¼ gR
3
ð1 − 4e6bR

2Þe−8bR2

; ð12Þ

DðR3=2ΞΨÞ ¼ −
3

2
ΞRR1=2ðDΨÞ; ð13Þ

DðR7=2ΞbÞ ¼ 2

3
gR−1=2e−8bR

2ð1 − e6bR
2

þ bR2ð4e6bR2 − 1ÞÞ

− 4bR3=2ΞR −
7

2
R5=2ΞRDb: ð14Þ

Here,

Df ≔
f;x
R;x

; ð15Þ

so that D is d=dR along the null geodesics ruling the slices
of constant u. Note that these equations do not explicitly
contain H. Rather, H can be chosen freely [we choose (3)]
and appears only when we use

Ψ;u ¼ ΞΨþ H
2G

Ψ;x ð16Þ

in order to advance Ψ in u, and similarly for b and R.
Equations (11)–(14) can be solved for g, ΞR, ΞΨ, and Ξb

in the above order by the integration

If ≔
Z

f R;x dx ¼
Z

f dR ð17Þ

along the outgoing null geodesics, labeled by constant
ðu; θ;φ;ψÞ, starting the integration from the center R ¼ 0.
Because of factors of R, three of the startup conditions are
selected by regularity at R ¼ 0. The fourth startup con-
dition at R ¼ 0 is the gauge choice g ¼ 1, equivalent to
(4) above.
This selection and hierarchical arrangement of the field

equations closely resembles the form of the field equations
for the spherical scalar field and YM field of Ref. [7], with
∂u replaced by its generalization Ξ. Somewhat less closely,
it also resembles the formulation for the spherical scalar
field of Refs. [10–12] (but withD and Ξ applied to Ψ in the
opposite order) and the scheme of Ref. [13] for the vacuum
Einstein equations on null cones with a regular vertex (but
in terms of null coordinates u and x, rather than Bondi
coordinates u and R).
In analogy with the field redefinitions made in Ref. [9]

(see also Appendix), we replace b as an evolved variable by

χ ≔ bþ 2

7
RDb; ð18Þ

from which we can reconstruct b as

b ¼ 1

R7=2

Z
R

0

χ dðR̃7=2Þ: ð19Þ

The computation of b from χ is more stable numerically if
we integrate (19) by parts, giving us

b ¼ χ −
2

9

1

R7=2

Z
R

0

Dχ dðR̃9=2Þ: ð20Þ

The second term on the right-hand side of Eq. (20) is OðRÞ
near the origin and thus generates less error from finite
differencing than the original integral in Eq. (19), which is
Oð1Þ there.
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The evolution equation for χ is

Ξχ ¼ 4

21

g
R3

ΓðbR2Þ − 8

7

b
R

�
ΞRþ g

2

�

−
ðχ − bÞ
2R

�
ΞRþ 2g

3
ð1 − 4e6bR

2Þe−8bR2

�
; ð21Þ

where ΓðxÞ ≔ 3xþ e−8xð1 − e6x þ xð4e6x − 1ÞÞ. Its series
expansion is ΓðxÞ ¼ 30x2 þOðx3Þ, and so the leading
b2R4 term near the origin cancels the first denominator
of Eq. (21).
Furthermore, the expression ΞRþ g=2, which appears in

the second term of Eq. (21), is OðR2Þ near the origin. This
cancels the denominator of the second term. To see
this explicitly, manifestly cancel the Oð1Þ and OðRÞ
contributions in ΞR and g=2 by integrating Eq. (12) by
parts, giving us

ΞR −
g
6
ð1 − 4e6bR

2Þe−8bR2

¼ −
1

R2

Z
R

0

gR̃3

6

�
8π

3
ðDΨÞ2 þ 2R̃2ðR̃Dbþ 2bÞ2

þ 8ðR̃Dbþ 2bÞð1 − e−6bR̃
2Þe−2bR̃2

�
dR̃: ð22Þ

The left-hand side equals ΞRþ g=2þOðR4Þ, and from the
regularity of Ψ and b, the integral on the right-hand side is
OðR4Þ. [We do not use Eq. (22) in our code. It is given here
just to show that Eq. (21) is explicitly regular.]
Finally, the regularity of the last term on the right-hand

side of Eq. (21) follows from the definition of χ, Eq. (18).
We now introduce some diagnostics. We define the

Misner-Sharp-like quasilocal mass function Mðu; xÞ, and
the related compactness C, by

C ≔
M
R2

≔ 1 −∇aR∇aR ¼ 1þ 2
ΞR
g

: ð23Þ

In spherical symmetry, a marginally outer-trapped surface
(from now on also referred to as an apparent horizon)
occurs where C ¼ 1, but our formulation of the Einstein
equations does not allow us to reach this. Rather, we take
C → 1 as an approximate criterion for apparent horizon
formation.
For the diagnosis of subcritical scaling, we introduce the

curvaturelike quantities

RΨ ≔ Ra
a ¼ 8π∇aΨ∇aΨ ¼ −

16π

g
ΞΨDΨ; ð24Þ

RB ≔ 6∇aB∇aB ¼ −
12

g
ΞBDB

¼ −
12

g
ðR2Ξbþ 2RΞRbÞðR2Dbþ 2RbÞ: ð25Þ

RΨ is actually the Ricci scalar, which is determined by Ψ
alone, while B does not contribute to the Ricci tensor at all.
However, Ψ and B appear in a similar manner both in the
Einstein equation for g, namely,

Dðln gÞ ¼ 2R
3
ð4πðDΨÞ2 þ 3ðDBÞ2Þ ð26Þ

[compare Eq. (11)], and in the mass aspect, namely,

DM ¼ 2R
3
½3þ e−8B − 4e−2B

þ ðR2 −MÞð4πðDΨÞ2 þ 3ðDBÞ2Þ�: ð27Þ

We have adjusted the overall constant factor in the
definition of RB to reflect this. Note that RΨ is nonzero
at the center, whereas RB ∼ R2 vanishes there.
Even though B represents genuine gravitational waves,

their polarization is in the angular, homogeneous, direc-
tions ðθ;φ;ψÞ, while the scalar field depends only on the
orthogonal directions ðu; xÞ. Therefore, the scalar matter
field cannot create gravitational waves if they are absent
initially, in contrast to the case of electromagnetic waves, or
a nonspherical scalar field or fluid, in 3þ 1 dimensions. In
this respect, the system looks mathematically more similar
to that of Ref. [7] (two matter fields coupled to each other
only through the metric) than to, say, a massless scalar field
minimally coupled to gravity in axisymmetry.

III. NUMERICAL METHOD

Our numerical implementation is an adaptation of that of
Ref. [7]. We represent our fields on a grid with Nx ¼ 600
equally spaced points in x and numerically advance in the
retarded time u. We set xi ¼ iΔx for 1 ≤ 1 ≤ Nx, with
x ¼ 0 not on the grid. We extrapolate to x ¼ 0 where
needed, and for output only, but we use the assumption that
R ¼ 0 there in our boundary conditions.
At every time step, we solve for b, g and the ingoing null

derivatives ΞR, ΞΨ and Ξχ from (20), the integrated
versions of Eqs. (11)–(13), and (21), in this order. We
then evolve R, Ψ, and χ from u to uþ Δu using a second-
order Runge-Kutta method. We use the heuristic time step
criterion

jΞRjΔu ≤ CR;xΔx; ð28Þ

implemented as
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Δu ¼ Cmin
i

2ðRi − Ri−1Þ
maxðΞRi;ΞRi−1Þ

: ð29Þ

C is a dimensionless factor of order unity, as in Ref. [7]. We
use C ¼ 0.1 throughout.
To start up the integration of the Einstein equations, we

make the least-squares fit Ψ ≃ Ψ0 þΨ1RþOðR2Þ to the
two innermost grid points. We then substitute these
expansions into the integral expressions for g, ΞR, ΞΨ,
and Ξχ, obtaining

g ¼ 1þ 4πΨ2
1

3
R2 þOðR3Þ; ð30Þ

ΞR ¼ −
1

2
−
πΨ2

1

3
R2 þOðR3Þ; ð31Þ

ΞΨ ¼ Ψ1

2
þOðRÞ: ð32Þ

These expansions are used at the first grid point to start up
the integrations for g;ΞR, and ΞΨ. No linear expansion is
required for Ξχ as there is no integral.
The derivative D is discretized by symmetric finite

differencing with respect to R,

ðDΨÞi ¼
Ψi −Ψi−1

Ri − Ri−1
; ð33Þ

and likewise for χ and b. Indicating by

Ψ̄i ¼
Ψi þ Ψi−1

2
ð34Þ

the numerical approximation ofΨ in the midpoint of the ith
grid cell (and likewise for other quantities), the integrals
over the grid points 1;…; j are then discretized using the
midpoint rule,Z

Rj

R1

fðΨ;DΨ;…ÞdðfRαÞ

≃
Xj

i¼2

fðΨi; ðDΨÞi;…ÞðRα
i − Rα

i−1Þ; ð35Þ

where fð…Þ is a placeholder for the right-hand sides of (20)
and the integrated versions of Eqs. (11)–(13), and we use
α ¼ 9=2; 2; 2; 3=2, respectively, in these equations. We use
this discretization of the integration measure because of its
lower error near the origin compared with dR.
Because our finite-differencing scheme is second-order

accurate in Δx, we expect any output to also converge to
second order at sufficiently early time. We have checked
convergence with a sequence Nk ≔ N0 · 2k of resolutions
withN0 ¼ 100 and k ¼ 0…4. Denoting by Zk the output of
the code for fixed initial data and Nk grid points, we expect

the quantity ΔZk ¼ 4k · ðZkþ1 − ZkÞ to be approximately
independent of k.
We found pointwise convergence to second order in Δx

in the bulk of the grid, except near the origin. The error at
the first grid point was found to be approximately first
order. We have not found a stable way of improving on this.
The transition to second order is illustrated in Fig. 1.
The computation of the function ΓðxÞ, which appears in

Eq. (21), is done by performing a Taylor expansion up to
seventh order once its argument satisfies bR2 ≤ 0.01.
This way, its zeroth- and first-order terms are manifestly
canceled, avoiding numerical error near the origin from
using the full expression for Γ.
We diagnose the formation of a marginally outer-trapped

surface by comparing the maximum over one moment of
time u of the compactness C ≔ M=R2, defined by Eq. (23),
to a fixed threshold Cmax ¼ 0.999. Similarly, we diagnose
dispersion if the maximum of the compactness over the
slice of constant u becomes smaller than Cmin ¼ 0.001.

IV. SIMILARITY COORDINATES

In any coordinates xμ ≔ ðT; ξ; θ;φ;ψÞ adapted to the
Bianchi symmetry and to DSS, by definition, a spacetime is
DSS if and only if the metric takes the form

gμν ¼ e−2Tg̃μν; ð36Þ

where g̃μν is periodic in T with some periodΔ. In particular,
the area radius R must take the form

R ¼ e−TR̂; ð37Þ

with R̂ again periodic. A scalar field Ψ whose stress-energy
tensor is compatible with this metric must itself be periodic
in T with the same period.

FIG. 1. The scaled error Δbk for k ¼ 0…4, represented for 0 ≤
x ≤ 0.6 and at a particular time instance u ¼ 0.444 for centered
Gaussian pure gravitational wave initial data with bð0; xÞ ¼
13.88 exp½−ðx=0.25Þ2�. While the curves progressively coincide
for x ≳ 0.2, they differ slightly at the first grid points, although
some (slower) convergence is still noticeable.
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We now introduce the specific DSS-adapted coordinates

T ≔ − ln

�
u� − u

k

�
ð38Þ

ξ ≔
R

u� − u
¼ R

k
e−T ð39Þ

for a constant u� > 0 and u < u�. (For u > u�, both ξ and T
are undefined). The constant k is a length scale which we
set to 1. From Eq. (1), it is clear that the metric in
coordinates ðξ; TÞ is of the form (36) and that the spacetime
is DSS if and only if g, R̂, and B are periodic in T.
When either Ψð0; xÞ ¼ 0 or Bð0; xÞ ¼ 0, we expect all

dimensionless physical quantities, such as Ψ or B and
M=R2, to be periodic in T while the spacetime approxi-
mates the critical solution. We also expect dimensionful
quantities to scale as e−lT , where l is their length dimen-
sion. Thus, in the pure scalar field critical solution, RΨ
behaves as e2T times a periodic function of T (at constant x),
and in the pure gravitational wave critical solution, RB is
e2T times a periodic function of T.

V. NUMERICAL RESULTS

A. Initial data

We choose the two-parameter family of Gaussian initial
data (with parameters p and q)

Ψð0; xÞ ¼ pð1 − qÞAðΨÞ exp
�
−
�
R − μðΨÞ
wðΨÞ

�
2
�
; ð40Þ

χð0; xÞ ¼ pqAðχÞ exp
�
−
�
R − μðχÞ
wðχÞ

�
2
�
; ð41Þ

as well as a two-parameter family with the profile of the
derivative of a Gaussian function:

Ψð0; xÞ ¼ −2pð1 − qÞAðΨÞ

�
R − μðΨÞ
w2
ðΨÞ

�
e
−
�

R−μðΨÞ
wðΨÞ

�
2

; ð42Þ

χð0; xÞ ¼ −2pqAðχÞ

�
R − μðχÞ
w2
ðχÞ

�
e
−
�

R−μðχÞ
w2ðχÞ

�
2

: ð43Þ

Here, pqAðΨÞ and pð1 − qÞAðχÞ are the amplitudes, wðΨÞ
and wðχÞ are the widths, and μðχÞ and μðΨÞ are the centers of
the Gaussians. The free initial data for the evolved variables
are completed by Eq. (5) above.
The field equations, with the gauge boundary condition

g ¼ 1 at the center, are scale invariant in the sense that they
do not change when we replace the arguments ðu; xÞ of G
(or g), R, B (or b), and Ψ by ðλu; λxÞ and the value of R by
λR and of b by λ−2b, but leave the values ofG (or g), B, and

Ψ unchanged. Put simply, everything scales according to its
dimension, with u, x, and R having dimension length, b
having dimension ðlengthÞ−2, and B, G, g, and Ψ being
dimensionless. We fix this overall scale freedom by always
setting the outer boundary of the grid to xmax ¼ 8.
For a fixed value of q, we start the bisection in p with a

large value of x0 close to xmax, adjusting it manually and
restarting the procedure until all individual simulations
retain good spatial resolution throughout their evolution.
This is done by keeping track of the grid point index of the
location of the apparent horizon formed in the supercritical
steps: if x0 is too large, the horizon is formed at small x, and
the dynamics are not well resolved spatially. If x0 is too
small and for sufficient fine-tuning, the apparent horizon is
formed outside the spatial grid.
After some experimentation, we choose widths, centers,

and amplitudes

AðχÞ ¼ 1.0; AðΨÞ ¼ 0.01;

μðχÞ ¼ 0.5; μðΨÞ ¼ 1.15325;

wðχÞ ¼ 0.05; wðΨÞ ¼ 0.115325 ð44Þ

for the Gaussian initial data and

AðχÞ ¼ 0.023; AðΨÞ ¼ 0.034;

μðχÞ ¼ 0.74; μðΨÞ ¼ 1.22;

wðχÞ ¼ 0.074; wðΨÞ ¼ 0.224 ð45Þ

for the Gaussian derivative initial data. These have the
following properties:
(1) For pure scalar initial data q ¼ 0 and pure gravita-

tional wave initial data q ¼ 1, the critical amplitudes
are p ≃ 1. This is essentially a matter of con-
venience.

(2) For the two pure initial datasets, the accumulation
point of echoes at R ¼ 0, u ¼ u�, v ¼ v� is at a
similar value of v�. This is achieved in practice by
independently finding the approximate value of
x0 ≃ v� for two sets of initial data corresponding
to pure scalar field and pure gravitational waves and
then rescaling the scalar field initial data such that
the two values of x0 coincide.

This ensures that when we choose values of q represent-
ing a mixture of the two fields and then fine tune p again to
the threshold of collapse, we can expect the fields to
interact strongly. By contrast, if v� were much smaller for,
say, the scalar field, in fine tuning p for mixed data to the
threshold of collapse, we would be likely to find critical
collapse dominated by the scalar field, with the gravita-
tional waves arriving later and either dispersing or forming
a large black hole.
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All plots in the following correspond to the Gaussian
initial data, except for Fig. 19, which compares results from
the two families.
For given q, we perform 50 bisection steps from a rough

initial bracket for p�ðqÞ to determine its value up to
machine precision. We work in double precision. With
p�ðqÞ known (for a given set of numerical parameters such
as x0, xmax, C, andΔx) the scaling laws are then reevaluated
on 450 evenly spaced points in log10 jp − p�j, with 30
points per decade, to resolve for the fine structure of the
DSS scaling, which we expect to be periodic with period
Δ=ðlnð10ÞγÞ in log10 jp − p�j.

B. The pure field cases

The mass and curvature scaling laws obtained for pure
scalar field (q ¼ 0) and pure gravitational wave (q ¼ 1)
initial data give critical exponents γΨ ≃ 0.415 and
γB ≃ 0.164, respectively, which agree with the results found
in Refs. [9] and [8], respectively.
The echoing periods Δ [in T, defined above in Eq. (38)]

of the best near-critical solutions were estimated by
identifying the period with that of the Fourier mode of
highest peak of Ψ or B and then fitting the curves by eye
with a sine wave of the same period. We determined ΔΨ ≃
1.6 and ΔB ≃ 0.47, in agreement with the values found in
Refs. [9] and [8].

C. Gravitational waves with
small scalar field perturbation

We now add a small perturbation ε ≪ 1 to both q ¼ 0
and q ¼ 1, so that either b or Ψ evolves as an almost-linear
perturbation on a background solution driven by the
other field.
We begin with the case q ¼ 1 − ε, with ε ¼ 10−6. When

Ψ evolves essentially as a linear perturbation, separation of
variables allows us to consistently look for solutions of the
scalar test field equation of the form

Ψðξ; TÞ ¼ Re eλΨTΨ̂ðξ; TÞ; ð46Þ

where λΨ ¼ κΨ þ iωΨ is a complex number and the
complex function Ψ̂ðξ; TÞ is periodic in T with period
ΔB (the same as the background solution). As a result,
e−κΨTΨðξ; TÞ is only quasiperiodic in T, with a discrete
spectrum offset by ωΨ.
The radius Rah of apparent horizon formation, which has

dimension length, scales as

RahðpÞ ∼ ðp − p�ÞγB : ð47Þ

By applying (46) to the expression for RΨ, which has
dimension length−2, we deduce that it scales as ∼e2ð1þκΨÞT
when the scalar field is treated perturbatively. For near-
critical solutions, the maximum value of curvature is

achieved just after departing from self-similarity, which
occurs at a time T ≃ −γB ln jp − p�j [14]. From this, we
obtain the scaling relation

ðmax
ξ;T

RΨÞ−1=2 ∼ ðp − p�Þð1þκΨÞγB : ð48Þ

The critical exponents γB ≃ 0.164 and γ̃Ψ ¼ ð1þ κΨÞγB ≃
0.133 were calculated from the mass and curvature
scaling laws for q ¼ 1 − ε ¼ 1 − 10−6 (Fig. 2), giving us
κΨ ≃ −0.19.
The perturbation exponent κΨ was independently esti-

mated by adjusting Ψe−κΨT by eye to be as quasiperiodic as
possible in our best near-critical evolution, placing it in the
interval κΨ ∈ ð−0.2;−0.15Þ (see Fig. 6).
Figure 3 shows the residuals of the linear fit of the

scaling law for Rah,

resðpÞ ≔ log10 Rah − γ log10 jp − p�j − β; ð49Þ

where β is the intercept of the fit. Similar plots for R−1=2
B

and R−1=2
Ψ are shown in Figs. 4 and 5.

The quantities Ψ, B=ξ2, and M=R2 are represented in
Figs. 6–8 for the best subcritical evolution for Gaussian
initial data. Both B and B=ξ2 are dimensionless, but B is
OðR2Þ near the origin, while B=ξ2 is Oð1Þ, which is why
we plot the latter. Note that because ϵ is small, at this
resolution, Figs. 3, 4, 7, and 8 are indistinguishable from
their counterparts in the pure gravitational wave case
q ¼ 1, so they can serve to illustrate that case, too.

FIG. 2. Scaling laws for the radius Rah of apparent horizon
formation, and the global maximum of the Ricci scalar RΨ and of
RB for the case q ¼ 1 − ε and Gaussian initial data. These two
last quantities are rescaled by −1=2 in the log plot to account for
their dimension length−2. The black lines represent the linear fits
to each curve. The slope of the lines fitted against Rah and R−1=2

B

are 0.1638, and 0.133 for R−1=2
Ψ .
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D. Scalar field with small gravitational
wave perturbation

Similar calculations hold for B and RB when
q ¼ ε ¼ 10−6, where the gravitational waves are treated

FIG. 4. Residuals of the linear fit to Fig. 2 for RB for q ¼ 1 − ε.
The scaling exponent is γ ¼ 0.1638, and the fitted period of the
residuals is Δres ¼ 1.24, resulting in ΔB ≃ 0.47, consistent
with Fig. 7.

FIG. 5. Residuals of the linear fit to Fig. 2 for the Ricci scalar
RΨ for q ¼ 1 − ε. The scaling exponent is γ ¼ 0.133, and the
fitted period of the residuals is Δres ¼ 1.25.

FIG. 6. The scalar field Ψðξ; TÞe−κΨT for optimal fine-tuning
with q ¼ 1 − ε, κΨ ¼ −0.175. A black line represents the
extrapolation to the regular center R ¼ 0.

FIG. 7. The quantity B=ξ2 for optimal fine-tuning with
q ¼ 1 − ε. A black line represents the extrapolation to the regular
center R ¼ 0.

FIG. 8. The compactness M=R2 for optimal fine-tuning with
q ¼ 1 − ε.

FIG. 3. Residuals of the linear fit to Fig. 2 for the radius Rah of
apparent horizon formation for q ¼ 1 − ε. The scaling exponent
is γ ¼ 0.1638, and the fitted period of the residuals is
Δres ¼ 1.235, which is related to the echoing period of the
critical solution by Δres ¼ ΔB=ðlnð10ÞγÞ, resulting in ΔB ≃ 0.47,
consistent with Fig. 8.

BERNARDO PORTO VERONESE and CARSTEN GUNDLACH PHYS. REV. D 106, 104044 (2022)

104044-8



as a linear perturbation on the dominant scalar field
solution, giving us

Bðξ; TÞ ¼ Re eλBTB̂ðξ; TÞ; ð50Þ

with λB ¼ κB þ iωB. The critical exponent γΨ ≃ 0.413 was
calculated numerically from the scaling laws for the radius
of apparent horizon formation and for the Ricci scalar; see
Fig. 9. The perturbation exponent κB was estimated by
adjusting Be−κBT by eye to be as periodic as possible in our
best near-critical evolution, placing it in the interval
κB ∈ ð−1.55;−1.45Þ. The maximum of the pseudocurva-
ture RB does not show power law scaling in ðp − p�Þ; RB

scales as ∼e2ð1þκBÞT , which decays because κB < −1, and
so its global maximum is dominated by a value at early

times, which is dependent on the initial data, and so one
cannot apply the same argument that led to Eq. (48).
The residuals of the linear fit for the scaling laws of Rah

and R−1=2
Ψ are represented in Figs. 10 and 11. The quantities

Ψ; B=ξ2 and M=R2 are represented in Figs. 12–14 for the
best subcritical evolution for Gaussian initial data. Again,
Figs. 10–12 and 14 are at this resolution indistinguishable
from their counterparts in the case q ¼ 0 of a pure
scalar field.

E. Mixed fields and the bicritical solution

As κB and κΨ both have negative real part, both Ψ and B
are decaying perturbations on the background critical
solution of the other field when their initial amplitude is
sufficiently small such that their dynamics are essentially
linear.
When q is decreased more from q ¼ 1, the scalar field Ψ

still decays, but when q≲ 0.9 (for Gaussian initial data),
the nonlinear dynamics play a more significant role, and Ψ
instead starts growing with T, with RΨ eventually

FIG. 9. Scaling laws for the radius Rah of apparent horizon
formation, and the global maximum of the Ricci scalar RΨ for the
case q ¼ ε and Gaussian initial data. The latter is rescaled by
−1=2 in the log plot to account for its dimension length−2. The
black lines represent the linear fits to each curve. The slope of the
lines fitted against Rah and ðRΨÞ−1=2 was 0.4131.

FIG. 10. Residuals of the linear fit to Fig. 9 for the for the radius
Rah of apparent horizon formation for q ¼ ε. The scaling
exponent is γ ¼ 0.4131, and the fitted period of the residuals
is Δres ¼ 1.7, which is related to the echoing period of the critical
solution by Δres ¼ ΔΨ=ðlnð10ÞγÞ, resulting in ΔΨ ≃ 1.6, consis-
tent with Fig. 14.

FIG. 11. Residuals of the linear fit to Fig. 9 for the Ricci scalar
RΨ for q ¼ ε. The scaling exponent is γ ¼ 0.4131, and the fitted
period of the residuals is Δres ¼ 1.7, which is related to the
echoing period of the critical solution by Δres ¼ ΔΨ=ðlnð10ÞγÞ,
resulting in ΔΨ ≃ 1.6, consistent with Fig. 12.

FIG. 12. The scalar field Ψðξ; TÞ for optimal fine-tuning with
q ¼ ε. A black line represents the extrapolation to the regular
center R ¼ 0.
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dominating RB, and the solution approaches the known
scalar field critical solution for large enough T. The same
behavior is observed for the other two-parameter family of
initial data, although the value of q for which the scalar
field begins to grow with T is q ≲ 0.85. We have inves-
tigated the transition between these two regimes, such that
the scalar field and the gravitational wave neither grow nor
decay in the critical solution found by fine tuning p to p�
for given q ≃ q�. In other words, we have to fine tune in two
parameters at once. In practice, we fine tune to the black-
hole threshold p ¼ p�ðqÞ in an automated inner loop and
fine tune to q� in a manual outer loop, as the bisection
criterion for q is less clear cut than collapse versus
dispersion for p, and we were not sure what to expect at
the q threshold.
We expect the bicritical solution to be an intermediate

attractor for ðp; qÞ ≃ ðp�ðq�Þ; q�Þ, in which the solution

becomes at least approximately self-similar, with both
fields neither growing nor decaying.
In the triaxial vacuum collapse case investigated in

Ref. [15], for which the two competing fields play
symmetric roles (the two critical solutions are the same
up to a discrete symmetry), the bicritical solution was also
found to be discretely self-similar with a constant echoing
period. In the present biaxial case plus scalar field,
however, the two critical solutions are distinct, with
γΨ > γB and ΔΨ > ΔB.
We would have expected that for q ≃ q� and p suffi-

ciently close to p�ðqÞ, the solution starts out with both b
and Ψ equally important. But this is not so at least for our
two two-parameter families. Rather, in these solutions, Ψ
starts out as a growing perturbation of the b critical
solution, before entering a phase where Ψ and b neither
grow nor decay, and spacetime is still approximately DSS.
The presence of this transition phase means that we use

up some of the available fine-tuning of p, and hence some
of the available range of T, before we reach the expected
bicritical solution. This in turn means that we cannot fine
tune q as well as expected, nor observe the properties of the
bicritical solution over as many periods as expected.
Figure 15 illustrates the dimensionless quantities R2RΨ

and R2RB, which can be taken as measures of how much Ψ
andb curve the spacetime, for three different values ofq close
to the threshold q�. In Fig. 15(a), with q ¼ qa ≃ 0.918, the
scalar field growswithT, while the solution is approximately
DSS, and its stress-energy content dominates RB, for
T > 3.5, until both fields eventually disperse (as p < p�
in this evolution). In Fig. 15(c), with q ¼ qc ≃ 0.922, the
scalar field is decaying while the solution is approximately
DSS; the amplitude ofR2RΨ grows until T ≃ 4.5, and then it
decays, while that of R2RB grows until T ≃ 6, after which
both fields disperse. InFig. 15(b),with the intermediatevalue
q ¼ qb ≃ 0.920, both fields Ψ and B seem to stay at
approximately the same relative amplitude until they both
disperse. It is difficult to tell whether Ψ grows or decays
because the intervalwhere the solution is approximatelyDSS
is short, and this makes it harder to determine q� precisely.
However, we are confident that qa < q� < qc, with q� ≃ qb
our best approximation (for the Gaussian initial data). To
improve the bisection in q, one would need to run our time
evolutions in quadruple precision, so as to better fine tune p�
and thus observe more echoing before the fields disperse or
formablack hole.As that is computationallymuchmore time
consuming, we have not attempted it.
For comparison with Figs. 15(a)–15(d) illustrates R2RΨ

for the pure scalar field critical solution (q ¼ 0) and R2RB
for the pure gravitational wave critical solution (q ¼ 1).
Figures 16–18 show Ψ, B, and M=R2 for the best

subcritical evolution with Gaussian initial data and with
q ¼ qb, which was our best estimate of q� up to two
decimal digits. We observe that Ψ and B are approximately

FIG. 13. The quantity B=ξ2e−κBT for optimal fine-tuning with
q ¼ ε, κB ¼ −1.5. A black line represents the extrapolation to the
regular center R ¼ 0. T is restricted to [2, 17] so as to visualize
the exponential correction to B after the dominant scalar field
starts to approximate the critical solution.

FIG. 14. The compactness M=R2 for optimal fine-tuning with
q ¼ ε.
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neither growing nor decaying for 2.5 ≤ T ≤ 7 before
dispersing.
From the data underlying these figures, we have estimated

the echoing periods ofΨ, B, C, R2RΨ, and R2RB as follows.
We take discrete Fourier transforms of ðmaxx ΨÞðTÞ and
ðmaxx BÞðTÞ for a suitable interval of T and adjust the
resulting period forwhat seemed the best fit by eye.Although
this is subjective, from the quality of the fit, we estimate that

we can determine the periods within ∼0.01. The results are
given, separately for ΔΨ=2 andΔB, and for different q ≃ q�,
in Tables I and II, respectively.
Although the separately fitted values ofΔΨ=2 andΔB are

not equal, they are roughly within our estimate of the

FIG. 15. The maxima and minima (over x) of the quantities R2RB (orange) and R2RΨ (purple), plotted against T for different values of
q, with qa < qb < qc, extracted from the respective best subcritical evolutions. For reference, the same quantities for the two pure
critical solutions are plotted together in Fig. 15(d).

FIG. 16. The scalar field Ψðξ; TÞ for optimal fine-tuning with
q ¼ qb. A black line represents the extrapolation to the regular
center R ¼ 0.

FIG. 17. The field B for optimal fine-tuning with q ¼ qb. It is
zero at the origin R ¼ 0 ⇔ ξ ¼ 0 due to Eq. (8).
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accuracy ∼0.01 to which we can determine these periods.
Note that the variation of the periods with q over the ranges
of q considered in the table is somewhat larger than the
difference of ΔΨ=2 and ΔB at the same q. (As already
discussed, we are not able to determine q� very accurately.)
As further tests, we have also compared the fitted values

of ΔΨ=2 and ΔB to our plots of R2RΨ and R2RB,
respectively, and find that they match well. Finally, we
are confident that ΔB ≲ ΔC ≲ ΔΨ=2 (consistent with all
being equal).
In short, our observations are consistent both with ΔB ¼

ΔΨ=2 and ΔB < ΔΨ=2. In other words, we cannot decide if
the critical solution is periodic (DSS) or only quasiperiodic
in T.
We note, however, that in the system for which this one is

a toy model, the Einstein-Maxwell equations in twist-free
axisymmetry, all fields in the critical solution are clearly
only quasiperiodic [6], already when viewed on their own.

By contrast, the quantities in Figs. 16–18 seem, by eye, to
be periodic. One may take this to be an argument in favor of
strict DSS.
Recall that ΔΨ ≃ 1.6 and ΔB ≃ 0.47 in the pure scalar

field and gravitational wave critical solutions, respectively.
So, we can at least say that ΔΨ=2 and ΔB have moved from
their pure values toward a common intermediate value in
the bicritical solution.
Figure 19 illustrates the estimated value of γ for different

q, calculated from the scaling laws for the radius of
apparent horizon formation Rah. To test universality, we
present the results for initial data with a Gaussian profile (in
black) and for initial data with the profile of a Gaussian
derivative (in blue). As q� depends on the family, the black
points are plotted against q, and the blue points are plotted
against

q̃ ≔
sq

1 − ð1 − sÞq ð51Þ

with 0 ≤ s ≤ 1 a free parameter. This transformation has
q ¼ 0 and q ¼ 1 as fixed points, with slope 1 near q ¼ 0 and
slope s near q ¼ 1. By adjusting s, we can ensure that the
neighborhoodaroundq� is located approximately at the same
region in the q̃-axis for both curves. We have set s ¼ 0.5.
From Fig. 19, we see that, for both our two-parameter

families of initial data, γ ≃ 0.41 for q ¼ 0, corresponding to
the scalar field critical solution, and its does not vary
significantly with q until jq − q�j ≃ 0.02. In this interval,
the black-hole mass scaling exponent depends on
lnðp − p�Þ; for poor fine-tuning, we find γ ≃ 0.168, close
to gravitational wave critical solution, and for better fine-
tuning, its value is slightly higher and dependent on q,
decreasing monotonically from γ ≃ 0.22 to γ ≃ 0.18. This
break in the scaling laws corresponds to the transition from
a growing scalar field perturbation to the true bicritical

FIG. 18. The compactness M=R2 for optimal fine-tuning with
q ¼ qb.

FIG. 19. Plot of the critical exponent γ estimated from the
scaling law for radius of apparent horizon formation Rah. The
points in black correspond to initial data with a Gaussian profile,
which are plotted against q. The points in blue correspond to
initial data with the profile of a Gaussian derivative, which are
plotted against sq=ð1 − ð1 − sÞqÞ for s ¼ 0.5.

TABLE I. Estimated periods ΔΨ=2 and ΔB for Gaussian initial
data.

q ΔΨ=2 ΔB

0.9184570312 ¼ qa 0.61 0.59
0.9200439452 ¼ qb 0.59 0.57
0.9216308593 ¼ qc 0.5825 0.56
0.9248046875 0.574 0.55

TABLE II. Estimated periods ΔΨ=2 and ΔB for Gaussian
derivative initial data.

q ΔΨ=2 ΔB

0.859375 0.5875 0.55
0.8671875 0.56 0.518
0.87 0.55 0.512
0.8725 0.55 0.511

BERNARDO PORTO VERONESE and CARSTEN GUNDLACH PHYS. REV. D 106, 104044 (2022)

104044-12



solution in near-critical time evolutions, as seen in
Figs. 16–18. As q approaches 1, γ settles to the value γ ≃
0.164 of the gravitational wave critical solution. For this
range of q, the exponent is small, which is why the number
of echoing periods seen is limited when fine-tuning in p up
to double-precision.

VI. CONCLUSIONS

We have studied the threshold of black-hole formation
for a massless scalar field minimally coupled to the
gravitational wave metric ansatz of Ref. [8] in 4þ 1
dimensions [8] (the latter restricted to the biaxial case).
We think of this as a toy model for matter gravitational
collapse beyond spherical symmetry, where gravitational
waves are also necessarily present.
We found that weak gravitational wave perturbations of

the scalar field critical solution decay, while weak scalar
perturbations of the gravitational wave critical solution also
decay. This is different from the case of critical collapse of
two massless matter fields [7], in which scalar perturbations
on the Yang-Mills field critical solution grow, but Yang-
Mills perturbations on the scalar field critical solution
decay.
These observations suggest the schematic phase space

picture of Fig. 20. Here, any point in the phase space

represents an initial data set, up to an overall length scale.
In our case, each phase space point is parameterised by
the free data ðΨðxÞ; χðxÞÞ on a null slice. A time evolution
curve in this phase space corresponds to a spacetime,
again up to an overall scale, with the time T of the
dynamical system determining the missing scale as e−T .
In this picture, a DSS solution should be a closed curve,
but for simplicity, we represent it as a fixed point.
To find the bicritical solution suggested by this picture,

we then explored the transition between the two pure
critical solutions for mixed initial data in our new toy
model.
The evidence for the existence of the hypothetical

codimension-2 attractor comes from the behavior of our
best near-critical [that is, p ≃ p�ðqÞ] evolutions for differ-
ent values of q. In the limit of perfect fine-tuning of p, as
the mixing parameter q decreases from 1, we observe a
transition from the gravitational wave critical solution to
the scalar field critical solution. By continuity, we expect
there to be a q� such that, in the limit of perfect fine-tuning
to p ¼ p�ðq�Þ, both fields play equal dynamical roles.
Increasing or decreasing p, an infinitesimal amount above
or below the curve p ¼ p�ðqÞ would push the critical
solution to eventual collapse or decay, respectively, while
increasing or decreasing q exactly along this curve would
push it into decaying into the pure gravitational wave or
pure scalar critical solutions, respectively.
The numerical limits of fine-tuning do not allow us to

follow the putative bicritical solution for given q down to
arbitrarily large T, but our observations are consistent with
the assumption that in the limit ðq; pÞ ¼ ðq�; p�ðq�ÞÞ, the
system evolves toward an intermediate attractor for which
Ψ and B neither grow nor decay.
Going beyond that, we want to know if the bicritical

solution is strictly DSS, with a common period for all
variables (in the sense that ΔΨ ¼ 2ΔB), or only quasiperi-
odic. Unfortunately, because we observe the bicritical
solution over few periods, Figs. 16–18 and 15(b) seem
to be compatible both with ΔΨ=2 ¼ ΔB or with a slightly
smaller value of ΔB.
With solutions of the toy model depending only on

radius and time, one might hope to construct a strictly DSS
solution (as the hypothetical bicritical solution) by ansatz,
imposing periodic boundary conditions in T with a period
Δ to be solved for. Such an ansatz was solved numerically
for the spherical scalar field in 3þ 1 dimensions in
Ref. [16], and the numerical approximate solution was
leveraged into a proof of existence as a real-analytic exact
solution in Ref. [17]. However, a failure to find an
approximate numerical solution of such an ansatz would
not prove the absence of an exact DSS solution, as the
numerical solution of a highly nonlinear boundary value
problem may simply not converge from an initial guess that
is too rough. By contrast, it is not clear how one could even
make an ansatz of quasiperiodicity.

FIG. 20. Schematic conjectured phase space picture, with the
infinite-dimensional phase space represented in three dimensions.
The framed plane represents the black-hole threshold (in reality a
hypersurface). All arrow lines represent trajectories (spacetimes).
The filled dots represent fixed points (DSS spacetimes); the scalar
field critical solution, on the left; the gravitational wave critical
solution, on the right; and the codimension-2 critical solution in
between. Here, the middle fixed point has two unstable modes,
while the left and right ones have one each. An infinite number of
phase space dimensions of the black-hole threshold are sup-
pressed, and with them an infinite number of stable modes of each
fixed point within the black-hole threshold. The two dashed lines
represent three families of initial data with q ¼ 0 (left) and q ¼ 1
(right). Hollow dots represent initial data with p < p�, p ¼ p�
and p > p� for each family. Figure taken from Ref. [7].

CRITICAL PHENOMENA IN A GRAVITATIONAL COLLAPSE WITH … PHYS. REV. D 106, 104044 (2022)

104044-13



APPENDIX: SCALAR FIELD EQUATIONS IN
SPHERICAL SYMMETRY IN n+ 2 DIMENSIONS

In this Appendix, we explore the problem of a massless
scalar field minimally coupled to gravity in a spherically
symmetric spacetime in nþ 2 dimensions. We use coor-
dinates ðu; x;ΩnÞ, where u and x are the same as defined in
Sec. II, and Ωn are coordinates on the n-sphere:

ds2 ¼ −2gR;xdudx −Hdu2 þ R2dΩ2
n: ðA1Þ

The Einstein equations

Rab ¼ 8π∇aΨ∇bΨ ðA2Þ

and the scalar field wave equation

∇a∇aΨ ¼ 0 ðA3Þ

can be put in the following hierarchy in these coordinates:

Dðln gÞ ¼ 8πR
n

ðDΨÞ2; ðA4Þ

DðRn−1ΞRÞ ¼ −
n − 1

2
gRn−2; ðA5Þ

DðRn=2ΞΨÞ ¼ −
n
2
Rn=2−1ΞRDΨ: ðA6Þ

Using boundary conditions at R ¼ 0, we write the above
equations in integral form to make the link to the numerical
integrations more explicit:

g ¼ exp
�
4π

n

Z
R

0

ðDΨÞ2 dðR̃2Þ
�
; ðA7Þ

ΞR ¼ −
1

2

1

Rn−1

Z
R

0

g dðR̃n−1Þ; ðA8Þ

ΞΨ ¼ −
1

Rn=2

Z
R

0

DΨΞRdðR̃n=2Þ: ðA9Þ

The division by Rn−1 to calculate ΞR in Eq. (A8)
generates numerical instabilities near the origin R ¼ 0
when the dimension increases. While it produces no
significant effect in nþ 2 ≤ 5 dimensions, in 8þ 1 dimen-
sions, it leads to unphysical behavior in ΞR. A simple
solution to this is to integrate the equation by parts as
suggested in Ref. [9] and to use Eq. (A7):

ΞR ¼ g
2
þ 4π

nðnþ 1Þ
1

Rn−1

Z
R

0

gðDΨÞ2 dðR̃nÞ: ðA10Þ

The second term in Eq. (A10) can be more accurately
computed as it is OðR2Þ near the origin.

In a similar manner, the wave equation, Eq. (A9),
displays instabilities in 8þ 1 dimensions near the origin
R ¼ 0 which arise from integrating over and dividing by
Rn=2 the term on the right-hand side, which is Oð1Þ for
small R. To avoid this, we define a field h as

h ≔
dðRn=2ΨÞ
dðRn=2Þ ¼ Ψþ 2

n
ðDΨÞR; ðA11Þ

from which we can recover

Ψ ¼ 1

Rn=2

Z
R

0

h dðR̃n=2Þ: ðA12Þ

(An evolution equation for h follows below). The problem-
atic integral in Eq. (A9), which is no longer needed, appears
to have simply been replaced by another problematic
integral, Eq. (A12). However, this can again be integrated
by parts to make it more explicitly regular, whereas integra-
tion by parts would not be useful for Eq. (A9).
The final form of our field equations can be collected in

the following hierarchy:

Ψ ¼ h −
1

n
2
þ 1

1

Rn=2

Z
R

0

Dh dðR̃n=2þ1Þ; ðA13Þ

g ¼ exp

�Z
R

0

2πn
ðh −ΨÞ2

R̃
dðR̃Þ

�
; ðA14Þ

ΞR ¼ g
2
þ 4π

nðnþ 1Þ
1

Rn−1

Z
R

0

gðDΨÞ2 dðR̃nÞ; ðA15Þ

Ξh ¼ 1

2R
ðh − ΨÞ

�
ðn − 1Þgþ n

4
ΞR

�
: ðA16Þ

The second term on the right-hand side of Eq. (A13) below
is OðRÞ at the origin, and thus more stable to compute than
ΞΨ. [It is not useful to integrate the expression for ΞΨ in
Eq. (A9) by parts directly, as the integrand would involve
second-order derivatives of Ψ.] The new evolution
equation (A16) does not require an integral and does not
come with high powers of R. Equations (A14) and (A16)
are well defined at the origin as h − Ψ ¼ OðRÞ by
Eq. (A11) and by regularity of Ψ. In nþ 2 ¼ 4 dimensions
in particular, it is OðR2Þ and reduces to Ξh ¼ 0 in
Minkowski spacetime, where g ¼ −ΞR=2 ¼ 1.
This field transformation has been commonly used in

four dimensions, for example, in Refs. [10–12]. In
Ref. [18], Garfinkle et al. introduced a generalization of
h from 3þ 1 to higher spacetime dimensions, completely
different from Eq. (A12), that maintains the property of h
being constant along ingoing light rays in Minkowski
spacetime, Ξh ¼ 0. This is possible only for even n, as
solutions of the wave equation in flat spacetime satisfy
Huygens’s principle only in even spacetime dimensions.
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We have tried to explain in this Appendix why the
definition of h of Bland et al. [9] is numerically advanta-
geous even though for n ≠ 2 it does not have the very

property that seems to have motivated its introduction
in n ¼ 2.
As an indication that our implementation of this formu-

lation works, Figs. 21–23 show the critical solution in
8þ 1-dimensional spherical scalar field collapse, found by
fine-tuning the amplitude of a family of initial data to the
collapse threshold.
In the main paper, we are concerned with the dynamics

of the field b, whose governing equation is mathematically
similar to that of the scalar wave equation in 8þ 1
dimensions. As in odd spacetime dimensions, we cannot
use the methods of Ref. [18]; we have adopted the
formulation described here for arbitrary integer n, with
our χ and b in 4þ 1 dimensions the equivalents of h and Ψ
in 8þ 1 dimensions.
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