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We have recently proposed a simple relativistic theory which reduces to modified Newtonian dynamics
for the weak-field quasistatic situations applied to galaxies, and to cosmological behavior as in the ΛCDM
model, yielding a realistic cosmology in line with observations. A key requirement of any such model is
that Minkowski space is stable against linear perturbations. We expand the theory action to second order in
perturbations on a Minkowski background and show that it leads to healthy dispersion relations involving
propagating massive modes in the vector and the scalar sector. We use Hamiltonian methods to eliminate
constraints present, demonstrate that the massive modes have Hamiltonian bounded from below, and show
that a nonpropagating mode with a linear time dependence may have unbounded Hamiltonian for wave
numbers k < μ and bounded otherwise. The scale μ is estimated to be ≲Mpc−1 so that the low momenta
instability may only play a role on cosmological scales.
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I. INTRODUCTION

The dark sector (DS)—dark matter and dark energy—
plays a pivotal role in cosmology and astrophysics. As
yet, the evidence for the DS comes exclusively via its
inferred contribution to the gravitational fields that known
matter is observed to experience. Thus, it is possible that
the phenomena of dark matter and/or dark energy may arise
from a modification to the gravitational interaction.
Typically, theories of gravity different to general rela-

tivity (GR) introduce new degrees of freedom into the
gravitational sector beyond the metric tensor present in
GR [1,2]. While these degrees of freedom may have an
important role to play in explaining aspects of the DS, it is
crucial that they do not also introduce instabilities that are
incompatible with observation.
Observational constraints suggest that there exist regions

of spacetime that can be approximated by highly symmetric
solutions (for example geometry in the solar system can be
described as a perturbed Minkowski spacetime, whereas
the late universe on the largest scales can be described as
perturbed de Sitter spacetime) and that these approxima-
tions persist for a proper time at least of the order τs (for
example lower bounds on the age of the solar system or the
period of Λ-domination in cosmology).
It is vital then that new degrees of freedom do not

introduce instabilities that grow on timescales τi ≪ τs.
To probe this question, one can consider the propagation
of small perturbations to the aforementioned highly

symmetric solutions. Classically, some theories of gravity
allow perturbative modes that grow exponentially, where
the timescale τi of growth may depend on basic parameters
in the theories which can lead to significant constraints on
their viability [3,4]. Another possibility is that around some
backgrounds, some perturbative modes can carry negative
energy—either via wrong-sign kinetic terms (ghosts) or
wrong-sign mass terms (tachyons). The former especially
can signal pathological behavior in the quantum theory of
these perturbations, signaling at the least that the back-
ground solution cannot be considered stable.1 If experi-
mental constraints suggest that approximations to the
background are long lived then this suggests that the
theory of gravity in question is not healthy. Such consid-
erations are therefore vital when considering the viability of
a gravitational theory [6–16].
We have recently proposed a relativistic theory which

introduces additional fields in the gravitational sector in
order to account for the dark matter phenomenon [17]. The
theory depends on the metric tensor gμν but also introduces
a unit timelike vector field Aμ—called Aether in the past
[18]—and a noncanonical shift-symmetric scalar field ϕ
into the gravitational sector. Hence, we refer to our proposal
[17] as aether scalar tensor: AeST.
The new degrees of freedom in AeST combine with the

metric to produce modified Newtonian dynamics (MOND)
phenomenology [19,20] in the quasistatic, weak-field limit
relevant to galaxies while accounting for precision
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1We note that special cases have been constructed where the
presence of a ghost does not lead to unstable behavior, see [5].
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cosmological data [21] comparably well to the cold dark
matter (CDM) paradigm.2 The CDM-like cosmological
behavior is unrelated to MOND but it is due to terms
involving the new fields which have the same form as shift-
symmetric k-essence and the ghost condensate model
[39,40]. This results in its cosmological energy density ∝
ð1þ zÞ3 plus small decaying corrections which makes
fitting large scale cosmological data possible.
Our goal is to study the linear stability of AeST on a

Minkowski background and to establish that the theory
is free of propagating ghost instabilities. In Sec. II we
introduce the theory in detail; in Sec. III we consider small
fluctuations of the fields around a Minkowski background,
and expand the action to quadratic order. There, we also
discuss gauge transformations and separately compute the
dispersion relations for tensor, vector, and scalar modes,
determining at the same time the conditions on the theory
parameters for these relations to be healthy. The case of
scalar perturbations requires further treatment and in
Sec. IV we consider their Hamiltonian formulation. We
discuss our findings and their interpretation in a cosmo-
logical setting in Sec. V and conclude in Sec. VI.
We use a metric signature −þþþ and curvature

conventions of Wald [41]. We use brackets to denote
antisymmetrization with the convention that ½A;B� ¼
1
2
ðAB − BAÞ.

II. THE THEORY

AeST depends on a metric gμν universally coupled to
matter so that the Einstein equivalence principle is obeyed,
a scalar field ϕ and a unit timelike vector field Aμ. The
action is

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16πG̃

�
R − 2Λ −

KB

2
FμνFμν

þ 2ð2 − KBÞJμ∇μϕ − ð2 − KBÞY

− F ðY;QÞ − λðAμAμ þ 1Þ
�
þ Sm½g� ð1Þ

where g is the metric determinant, ∇μ the covariant
derivative compatible with gμν, R is the Ricci scalar, Λ
is the cosmological constant, G̃ is the bare gravitational
strength, KB is a constant and λ is a Lagrange multiplier
imposing the unit timelike constraint on Aμ. The matter
action Sm is assumed not to depend explicitly on ϕ or Aμ.
AeST has a functionF ðY;QÞwhich depends on the scalars
Q ¼ Aμ∇μϕ and Y ¼ ðgμν þ AμAνÞ∇μϕ∇νϕ, while Jμ ¼
Aν∇νAμ and Fμν ¼ 2∇½μAν�. The function F is subject to
conditions so that the cosmology of AeST is compatible

with ΛCDM on FRLW spacetimes and a MOND limit
emerges in quasistatic situations.
On a flat FLRW background the metric takes the form

ds2 ¼ −dt2 þ a2γijdxidxj where aðtÞ is the scale factor
and γij is a flat spatial metric. The vector field reduces to

Aμ ¼ ð1; 0; 0; 0Þ while ϕ → ϕ̄ðtÞ leading to Q → Q̄ ¼ _̄ϕ
and Y → 0, so that we may define KðQ̄Þ≡ − 1

2
F ð0; Q̄Þ.

We require that KðQ̄Þ has a minimum atQ0 (a constant) so
that we may expand it as K ¼ K2ðQ̄ −Q0Þ2 þ � � �, where
the ð…Þ denote higher terms. This condition leads to ϕ̄
contributing energy density scaling as dust ∼a−3 akin to
[39,40], plus small corrections which tend to zero when
a → ∞. In principle, K could be offset from zero at the
minimum Q0, i.e., KðQ0Þ ¼ K0; however, such an offset
can always be absorbed into the cosmological constant Λ
and thus we choose K0 ¼ 0 by convention, implying the
same on the parent function F .
In the quasistatic weak-field limit we may set the scalar

time derivative to be at the minimum Q0, as is expected
to be the case in the late universe. This means that we
may expand ϕ ¼ Q0tþ φ. Moreover, in this limit
F → ð2 − KBÞJ ðYÞ, with J defined appropriately as
J ðYÞ≡ 1

2−KB
F ðY;Q0Þ. It turns out that MOND behavior

emerges if J → 2λs
3ð1þλsÞa0 jYj3=2 where a0 is Milgrom’s

constant and λs is a constant which is related to the
Newtonian/GR limit. Specifically, there are two ways that
GR can be restored: (i) screening and (ii) tracking. In the

former, the scalar is screened at large gradients ∇⃗φ, where
∇⃗ ↔ ∇⃗i is the spatial gradient on a flat background γij, and
in the latter, λsφ becomes proportional to the Newtonian
potential, leading to an effective Newtonian constant

GN ¼
1þ 1

λs

1 − KB
2

G̃: ð2Þ

Screening may be achieved either through terms in J ∼ Yp

with p > 3=2 or through Galileon-type terms which must
be added to (1). Either way, for our purposes in this article,
we may model screening as λs → ∞.

III. LINEAR PERTURBATIONS AROUND
MINKOWSKI SPACE

A. Perturbative setup

We are interested in spacetime regions which are well
approximated by weak gravitational fields modeled as
fluctuations on a Minkowski background ημν and that these
regions exist in the late universe where the time derivative
of the background field has settled in its minimum Q0, i.e.,
_̄ϕ → Q0. In addition, the size of these regions is taken to be
much smaller than the size of the current cosmological

2See [22–38] for alternative approaches to the construction
of relativistic theories of gravity that contain MOND
phenomenology.
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horizon so that we may safely ignore the cosmological
constant.
We expand the metric as gμν ¼ ημν − hμν, where η00 ¼

−1 and ηij ¼ γij, the vector field
3 as Aμ ¼ ð−1þ 1

2
h00; A⃗iÞ,

and the scalar as ϕ ¼ Q0tþ φ. Thus our degrees of
freedom are the metric perturbation hμν, vector field
perturbation A⃗i (only its 3-dimensional part remains free),
and the scalar field perturbation φ, all of which are in
general functions of both space and time. We raise/lower
spatial indices with the spatial metric γij, i.e., A⃗

i ¼ γijA⃗j

and set jA⃗j2 ¼ A⃗ · A⃗ ¼ A⃗iA⃗
i (and use similar notation for

other spatial vectors).

B. Gauge transformations

Our perturbative variables are amenable to gauge tran-
formations generated by a vector field ξμ. Generally, for a
tensor A, its perturbation transforms as δA → δAþ LξĀ.
Usually, on Minkowski space only the metric has a nonzero
background value (ημν), so that other fields besides the
metric perturbation are gauge invariant on such a back-
ground; this is typical of dark fields, i.e., additional degrees
of freedom which contribute to the energy density but do
not mix with the metric perturbation through gauge trans-
formations of this kind. In our case, however, both the
vector field and the scalar field have nonzero background
value: Āμ ¼ ð−1; 0; 0; 0Þ and ϕ̄ ¼ Q0t, hence, their per-
turbations do transform. Specifically, parametrizing ξμ

as ξμ ¼ ðξT; ξ⃗iÞ, we have the usual metric gauge trans-
formations

hμν → hμν þ ∇̄μξν þ ∇̄νξμ ð3Þ

where ∇̄μ is the covariant derivative associated with the
Minkowski metric ημν. In 3þ 1 form the above trans-
formations are explicitly given as

h00 → h00 − 2_ξT; ð4Þ

h0i → h0i þ _
ξ⃗i − ∇⃗iξT; ð5Þ

hij → hij þ ∇⃗iξ⃗j þ ∇⃗jξ⃗i: ð6Þ

The perturbations A⃗ and φ transform as

A⃗ → A⃗ − ∇⃗ξT; ð7Þ

φ → φþQ0ξT: ð8Þ

Notice how the vector field transformation has the same
form as gauge transformations in electromagnetism; how-
ever, the generator here is also a diffeomorphism.
With these gauge transformations at hand we can create

the following gauge-invariant variables:

�
∇⃗φþQ0A⃗;

_A⃗ −
1

2
∇⃗h00; _φþ 1

2
Q0h00

�
: ð9Þ

Hence, the fields φ and A⃗i nontrivially mix with the metric
perturbation through ξT .

C. The second order action

Our aim is to then expand the action (1) to second order
in these fields. With these considerations, and having in
mind the discussion in the previous section, we then expand
the function F as

F ¼ ð2 − KBÞλsY − 2K2ðQ −Q0Þ2 þ… ð10Þ

since F̄ ð0;Q0Þ ¼ 0 by convention and ∂F̄
∂Q jf0;Q0g ¼ 0 at the

minimum. The terms denoted by ð…Þ are higher order
terms which do not contribute to the second order action.
We particularly note that one of these is the MOND-type
term ∼jYj3=2 as discussed in the previous section. This term
does not contribute to the second order action but we return
to it in the discussion section.
As an example, consider the function

F ¼ −2K2ðQ −Q0Þ2 þ λs

�
Y − 2a0ð1þ λsÞ

ffiffiffiffi
Y

p

þ 2ð1þ λsÞ2a20 ln
�
1þ

ffiffiffiffi
Y

p
ð1þ λsÞa0

��
: ð11Þ

In the large Y limit, the expansion (65) is recovered and the
leading correction is ∼

ffiffiffiffi
Y

p
, while in the small Y limit, the

expansion is consistent with (65) upon setting λs ¼ 0 and
the leading correction is the MOND term 2λs

3ð1þλsÞa0 jYj3=2
Notice the presence of λs as a relic of its influence on the
observed value of Newton’s constant in strong gravity
regimes.

3Strictly speaking, to satisfy the Lagrange constraint we need
A0 to second order, i.e., A0 ¼ −1þ 1

2
h00 − 3

8
ðh00Þ2 − 1

2
jA⃗j2 −

h0iA⃗i and similarly for A0. However, for all the other terms in (1),
it is sufficient to expand A0 and A0 to first order.
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Expanding (1) to second order leads to

S ¼
Z

d4x

�
−
1

2
∇̄μh∇̄νhμν þ

1

4
∇̄ρh∇̄ρhþ 1

2
∇̄μhμρ∇̄νhνρ

−
1

4
∇̄ρhμν∇̄ρhμν þKB

���� _A⃗−
1

2
∇⃗h00

����2 − 2KB∇⃗½iAj�∇⃗½iAj�

þ ð2−KBÞ
�
2

�
_A⃗−

1

2
∇⃗h00

	
· ð∇⃗φþQ0A⃗Þ

− ð1þ λsÞj∇⃗φþQ0A⃗j2
�
þ 2K2

���� _φþ 1

2
Q0h00

����2

þ 1

M̃2
p
Tμνhμν

�
ð12Þ

where for convenience we have rescaled the action S →
16πG̃S. We have also omitted the determinant

ffiffiffi
γ

p
in the

measure since we are dealing with integrals on Minkowski
spacetime, but can be understood to be present in all
integrations.
We decompose the fields into scalar, vector, and tensor

harmonics as

h00 ¼ −2Ψ; ð13Þ

h0i ¼ −∇⃗iζ −Wi; ð14Þ

hij ¼ −2Φγij þDijνþ 2∇⃗ðiVjÞ þHij; ð15Þ

A⃗ ¼ ∇⃗αþ β⃗ ð16Þ

where Dij ¼ ∇⃗i∇⃗j − 1
3
γij∇⃗2 is a traceless derivative oper-

ator. The modes W⃗, V⃗, and β⃗ are pure vector modes, that is,

they are transverse: ∇⃗ · W⃗ ¼ ∇⃗ · V⃗ ¼ ∇⃗ · β⃗ ¼ 0, while the
mode Hij is a pure tensor mode, that is, transverse and

traceless: ∇⃗iHi
j ¼ Hi

i ¼ 0.
The matter stress-energy tensor Tμν is likewise decom-

posed as

T00 ¼ ρ; ð17Þ

T0i ¼ ∇⃗iθ þ pi; ð18Þ

Tij ¼ Pγij þDijΣðSÞ þ 2∇⃗ðiΣ
ðVÞ
jÞ þ ΣðTÞ

ij ; ð19Þ

where the scalar modes are the matter density ρ, momentum
divergence θ, pressure P, and scalar shear ΣðSÞ; the vector
modes are the matter vorticinal momentum density pi and

vector shear ΣðVÞ
i , such that ∇⃗ · p⃗ ¼ ∇⃗ · Σ⃗ðVÞ ¼ 0, and the

tensor mode is the tensor shear ΣðTÞ
ij , such that ∇⃗iΣ

ðTÞi
j ¼

ΣðTÞi
i ¼ 0.

With this decomposition, the second order action splits
into three distinct parts: one for the scalar modes SðSÞ, one
for the vector modes SðVÞ and one for the tensor modes SðTÞ.
We consider each of these three one by one.

D. Tensor modes

The perturbations to fields Aμ and ϕ do not contribute
any tensor mode components and so the tensor mode action
takes the form:

SðTÞ ¼
Z

d4xf _Hij _Hij − ∇⃗kHij∇⃗kHij þ 32πG̃ΣðTÞ
ij Hijg:

ð20Þ

This corresponds to the action for tensor modes present in
general relativity, a result consistent with the earlier, more
general calculation that tensor modes in the superclass of
theories of which (1) is a special subset, propagate at the
speed of light [42].

E. Vector modes

We now consider vector modes, which are described by
the action

SðVÞ ¼
Z

d4x

�
−
1

2
ð _Vi þWiÞ∇⃗2ð _Vi þWiÞ

þ KB½j _β⃗j2 − ∇⃗iβj∇⃗i
βj −M2jβ⃗j2�

þ 16πG̃ðp⃗ · W⃗ − ΣðVÞ
i ∇⃗2ViÞ

�
ð21Þ

where

M2 ¼ ð2 − KBÞð1þ λsÞQ2
0

KB
: ð22Þ

The field β⃗ decouples from the metric fields V⃗ and W⃗ and
describes two massive degrees of freedom with mass M.
Clearly then we must require KB > 0 to avoid ghosts and
gradient instabilities. The mass term M is also non-
tachyonic if both 0 < KB < 2 and λs > −1. Hence, stabil-
ity considerations for the vector modes imply the following
constraints on the parameter space of AeST:

0 < KB < 2; λs > −1: ð23Þ

Notice that to this order, the vector modes β⃗ do not couple
to matter and thus they are not expected to be generated by
sources to leading order.

F. Scalar modes

We now consider scalar perturbations. Considering only
scalar modes in (12) and after some integrations by parts we
find the action SðSÞ:
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SðSÞ ¼
Z

d4x

�
6

�
1

6
∇⃗2

_ν − _Φ
	�

1

6
∇⃗2

_νþ _Φ
	
þ 4

�
1

6
∇⃗2

_νþ _Φ
	
∇⃗2

ζ þ 2j∇⃗Φj2 − 2

3
Φ∇⃗4

νþ 4

�
∇⃗2Φþ 1

6
∇⃗4

ν

	
Ψ

þ 1

18
j∇⃗ð∇⃗2

νÞj2 þ 2K2 _φ
2 − 4K2Q0 _φΨþ 2K2Q2

0Ψ2 þ KBj∇⃗ð _αþ ΨÞj2 þ 2ð2 − KBÞ∇⃗ð _αþ ΨÞ · ∇⃗χ

− ð2 − KBÞð1þ λsÞj∇⃗χj2 − 16πG̃ρΨ − 16πG̃∇⃗2
θζ − 48πG̃PΦþ 16πG̃

3
∇⃗4Σν

�
ð24Þ

where we have defined the gauge-invariant variable χ as

χ ≡ φþQ0α ð25Þ

that will be shown to play a prominent role in what follows.
Setting scalar matter sources to vanish and moving to Fourier space we have

SðSÞ ¼
Z

dt
d3k
ð2πÞ3

�
−6j _Φj2 þ 1

6
k4j_νj2 þ 2k2

��
1

6
k2 _ν − _Φ

	
ζ� þ c:c:

�
þ 2k2

����Φ −
1

6
k2ν

����2 þ 2K2j _φ −Q0Ψj2

þ KBk2j _αþΨj2 − 2k2
��

Φ −
1

6
k2ν

	
Ψ� þ c:c:

�
þ ð2 − KBÞk2½ð _αþ ΨÞχ� þ c:c:� − ð2 − KBÞð1þ λsÞk2jχj2

�
ð26Þ

where fields in (26) have a subscript k⃗ to explicitly show
their k dependence as they are the Fourier modes of those in
(24) and (c.c.) means complex conjugate.
We now find the normal modes. It is sufficient to work in

the Newtonian gauge by setting ν ¼ ζ ¼ 0. We set the time
dependence of all perturbations to eiωt and rewrite (26) asR
dt
R

d3k
ð2πÞ3 Z

†UZ þ ðh:cÞ, where Z ¼ fΨ;Φ; α;φg and U

is a 4 × 4 matrix of coefficients which depend on ω, k and
the other AeST parameters. The determinant of U is found
to be

detU ¼ 4k6ω2fð2 − KBÞ½ð2þ KBλsÞk2 þ 2K2Q2
0ð1þ λsÞ�

− 2K2KBω
2g; ð27Þ

so setting detU ¼ 0 gives the two dispersion relations

ω2 ¼ 0; ð28Þ

ω2 ¼ c2sk2 þM2; ð29Þ

where the scalar speed of sound is

c2s ¼
ð2 − KBÞ
K2KB

�
1þ 1

2
KBλs

	
: ð30Þ

We notice that the first mode does not lead to a propagating
wave but rather to a mode evolving as ∼A0 þ B0t where A0

and B0 are k-dependent constants. Interestingly also, the
second mode is massive with the same mass as the vector
mode β⃗.

Positivity of c2s implies further stability conditions in
addition to the ones found above for the vector modes.
Specifically, since from (23) we have λs > −1, then 1þ
1
2
KBλs > 0 leading to the condition

K2 > 0: ð31Þ

The other two would-be normal modes are nondynam-
ical, i.e., they have no kinetic term and do not contribute a
term involving ω. This signifies the presence of constraints
which are revealed through Hamiltonian analysis. We
proceed to do so now as it also sheds more light on the
ω ¼ 0 mode.

IV. HAMILTONIAN FORMULATION OF SCALAR
MODES

We now move to the Hamiltonian description of scalar
modes which serves a double purpose. It allows us to de-
constrain the system by removing the redundant gauge and
nondynamical degrees of freedom and further investigate
the significance of the ω ¼ 0 normal mode. Starting from
(26), notice that out of the six fields, two (Ψ and ζ) do not
contain time derivatives. We determine the canonical
momenta (see Appendix A) for the other four which are
found to be

PΦ ¼ −4ð3 _Φþ k2ζÞ; ð32Þ

Pν ¼
1

3
k4ð_νþ 2ζÞ; ð33Þ

Pχ ¼ 4K2½_χ −Q0ð _αþ ΨÞ�; ð34Þ
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Pα ¼ −4K2Q0 _χ þ 2ðKBk2 þ 2K2Q2
0Þð _αþ ΨÞ

þ 2ð2 − KBÞk2χ; ð35Þ

and where we opted to use χ rather than φ as the dynamical
variable. Performing a Legendre transformation we then
find the Hamiltonian density as

H ¼ −
1

24
jPΦj2 þ

3

2k4
jPνj2 þ

1

8K2

jPχ j2

þ 1

4k2KB
jPα þQ0Pχ j2 − 2k2

����Φ −
1

6
k2ν

����2
þ 2 − KB

KB
k2ð2þ KBλsÞjχj2 −

2 − KB

2KB
½ðPα þQ0PχÞχ�

þ ðP�
α þQ0P�

χÞχ� þ CΨΨ� þ C�
ΨΨþ C�

ζζ þ Cζζ
�:

ð36Þ

Since the variables Ψ and ζ are not dynamical, their
function is to act as Lagrange multipliers imposing the
constraints

CΨ ≡ 2k2Φ −
k4

3
ν −

1

2
Pα ≈ 0; ð37Þ

Cζ ≡ −Pν −
k2

6
PΦ ≈ 0; ð38Þ

which essentially cast ν and Pν as functions of the other
variables. As usual we use the symbol ≈ to denote weakly
vanishing constraints (those that vanish only on-shell) [43].
Notice also that the variable α is cyclic; therefore its
canonical momentum Pα is conserved and is an integral
of motion.
We require that the constraints are preserved by time

evolution according to the Hamiltonian H ¼ R d3k
ð2πÞ3 H. We

define the Poisson brackets on phase space as

ff; gg ¼ ð2πÞ3
Z

d3k

�X
I

�
δf
δXI

δg
δP�

XI

−
δg
δXI

δf
δP�

XI

	�
; ð39Þ

where I runs over fΦ; ν; χ; αg. The time evolution of a
variable f is

_f ¼ ff;Hg; ð40Þ

so we have

_CΨ ¼ Cζ; ð41Þ

_Cζ ¼ 0: ð42Þ

Hence, the constraints are preserved by time evolution on-
shell. Therefore as one might expect, the stability of the

primary constraints in the absence of gauge fixing does not
create new constraints. Having ensured the stability of
constraints in the Hamiltonian, we can now simplify the
system by employing gauge fixing.
In the Hamiltonian formulation, primary first-class con-

straints generate gauge transformations. The infinitesimal
change of a phase space quantity f under this gauge
transformation generated by the constraint CI is given by

Δf ¼ ff; C�
I ½ϵI�g; ð43Þ

where we have introduced the smearing C�
I ½ϵI� of a

constraint C�
I with test function ϵI defined as

C�
I ½ϵI�≡

Z
d3k
ð2πÞ3 ϵI;k⃗C

�
I;k⃗
: ð44Þ

Consider the following gauge transformations generated by
the constraints Cζ and CΨ:

Δν ¼ fν; C�
ζ ½ϵζ�g ¼ −ϵζ; ð45Þ

ΔPν ¼ fPν; C�
Ψ½ϵΨ�g ¼ 1

3
k4ϵΨ: ð46Þ

Thus, we may set ν and Pν to zero by a gauge trans-
formation by choosing ϵζ ¼ ν and ϵΨ ¼ − 3

k4 Pν. We then
check what constraints are placed on the Lagrange multi-
pliers ζ, Ψ by this gauge fixing. We invoke two new gauge
fixing constraints:

Gν ≡ ν ≈ 0; ð47Þ

GPν
≡ Pν ≈ 0; ð48Þ

and find

fGν; Hg ¼ 3

k4
GPν

− 2ζ; ð49Þ

fGPν
; Hg ¼ 2

3
k4ðΨ −ΦÞ þ 1

9
k6Gν: ð50Þ

Therefore the following gauge restrictions are placed on
the Lagrange multipliers: ζ ¼ 0 and Ψ ¼ Φ. We recognize
these conditions, respectively, as a restriction to the
conformal Newtonian gauge and the content of the
Einstein equation here dictating equality between metric
potentials in this gauge. We may adopt these conditions
alongside the constraints Gν, GPν

in the Hamiltonian (36)
and the primary constraints, yielding in addition

PΦ ≈ 0; ð51Þ

Φ ≈
1

4k2
Pα; ð52Þ
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so that the deconstrained Hamiltonian density is

HðDecÞ ¼ 1

8K2

jPχ j2 þ
1

4k2KB
jPα þQ0Pχ j2 −

1

8k2
jPαj2

−
2 − KB

2KB
½ðPα þQ0PχÞχ� þ ðP�

α þQ0P�
χÞχ�

þ 2 − KB

KB
k2ð2þ KBλsÞjχj2: ð53Þ

The Hamiltonian densityHðDecÞ is free of constraints but its
form remains rather complicated. We can make an addi-
tional simplification by making a canonical transformation
to canonical pairs ðPX; XÞ, ðPY; YÞ defined via

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBk2 þ ð2 − KBÞμ2

KBð2 − KBÞ

s
Q0

μk
X

þ 1

2

PY

ð2þ KBλsÞk2 þ ð2 − KBÞð1þ λsÞμ2
; ð54Þ

Pχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KBð2 − KBÞ
KBk2 þ ð2 − KBÞμ2

s
μk
Q0

�
2ð2 − KBÞQ0

KB
X þ PX

�

−
1

Q0

ð2 − KBÞð1þ λsÞμ2
ð2þ KBλsÞk2 þ ð2 − KBÞð1þ λsÞμ2

PY; ð55Þ

α ¼ Y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KBð2 − KBÞ
KBk2 þ ð2 − KBÞμ2

s
μk
Q0

�
Q0

KBk2
X

þ 1

2

PX

ð2þ KBλsÞk2 þ ð2 − KBÞð1þ λsÞμ2
�
; ð56Þ

Pα ¼ PY; ð57Þ

where we have also defined

μ2 ≡ 2K2Q2
0

2 − KB
: ð58Þ

This gives a Hamiltonian density

H̃ ¼ 1

4
jPXj2 þ ðc2sk2 þM2ÞjXj2

þ ð2 − KBÞ2λs
16KBK2

1 − k2�
k2

c2sk2 þM2
jPY j2 ð59Þ

where

k2� ¼
1þ λs
λs

μ2: ð60Þ

We see then that the system can be cast in terms of two
decoupled fields, X and Y, with canonical momenta PX and
PY respectively, and each field corresponds to one of the

normal modes in (29). Specifically, the field X propagates
the massive modes in (29) while the field Y corresponds to
the nonpropagating ω ¼ 0 modes.

V. DISCUSSION

One notices that the sign of the jPY j2 term in (59) is not
positive definite but rather depends on the relevant wave
number k and parameters λs and k�. Clearly as k → ∞,
jPY j2 comes with a positive sign provided λs > 0, and
negative otherwise, which provides an additional condition
to the one found for vector modes in (23). Taking both
scalar and vector mode conditions on the AeST parameters
we require that

0 < KB < 2; ð61Þ

K2 > 0; ð62Þ

λs > 0: ð63Þ

These conditions also imply that GN > G̃ always.
More generally, when k > k� defined by (60), the

Hamiltonian density is positive while when k < k�, neg-
ative Hamiltonian density can occur if the jPY j2 term in (59)
becomes significant. The solutions for ω ¼ 0 correspond
to Y ¼ A0ðk⃗Þtþ B0ðk⃗Þ while PY ¼ A0ðk⃗Þ. Thus the mode
which could cause negative Hamiltonian densities is the
one evolving linearly with t. Such instabilities are likely
akin to Jeans-type instabilities and do not cause quantum
vacuum instability at low momenta [44].
As discussed in [17], for a spherically symmetric static

source of mass M, the transition between the MOND
and an oscillatory μ-dominated regime occurs at rC ∼
ðrMμ−2Þ1=3 where rM ∼

ffiffiffiffiffiffiffiffi
GNM
a0

q
is the MOND scale which

signifies the transition between the Newtonian and MOND
regimes on even smaller distances. Thus, on observational
grounds μ−1 must be larger than ∼Mpc, otherwise, the
MOND regime would not occur at the scales of galaxies at
distances ∼kpc (for the Milky Way rM ∼ 8 kpc). A system
with a MOND scale of ∼Mpc occurs if its mass is
∼1015 M⊙ which is much larger than typical masses of
bound structures. Thus, for λs ≥ 1, the scale k� is always
hidden inside the MOND regime (i.e., k� < r−1M ) so that the
negative Hamiltonian does not occur in the GR limit for all
systems of interest.
At smaller wave numbers < r−1M , AeST enters the

MOND regime (in which case λs ¼ 0) which would signify
that the Y-mode always has a negative Hamiltonian.
However, then there exists a higher order term

∼jYj3=2=a0 ¼ j∇⃗χj3=a0 that is not part of the analysis
above, and which may stabilize the system.
To investigate this, we set λs ¼ 0 in the expansion (65)

and add the MOND term
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J NL ¼ 2λs
3ð1þ λsÞa0

jYj3=2 ð64Þ

where the presence of λs above is a relic of its influence on
the observed value of Newton’s constant in the strong
gravity regime so that

F ¼ ð2 − KBÞJ NLðYÞ − 2K2ðQ −Q0Þ2 þ…: ð65Þ

With this, the scalar mode action turns into

SðS;newÞ ¼ SðSÞ − ð2 − KBÞ
Z

d4xJ NL ð66Þ

where SðSÞ is given by (24). Since J NL does not contain any
time derivatives, the canonical momenta from Sec. IV
remain the same. Thus the Hamiltonian analysis of the
previous sections follows through so that the deconstrained
Hamiltonian is

H̃ðnewÞ ¼ H̃þ 2ð2 − KBÞλs
3ð1þ λsÞa0

j∇⃗χj3 ð67Þ

where H̃ is given by (59) (with λs ¼ 0) and χ is given
by (54).
Observe that the nonlinear MOND term above comes

with a positive sign and also, it will dominate H̃ðnewÞ for
large χ. Thus, it is suggestive that the MOND term may
make H̃ðnewÞ to be bounded from below. Indeed, that turns
out to be the case for wave numbers k > μ, as we show in
detail in Appendix B. At smaller wave numbers k < μ the
MOND term is not sufficient to make the Hamiltonian
bounded from below; however, that is the regime where the
Minkowski approximation is expected to break down and
expanding on FLRW (or even more specifically de Sitter) is
more appropriate.

VI. CONCLUSION

We have expanded the action of a newly proposed
AeST theory [17] which has a MOND limit relevant for
galactic systems and ΛCDM limit relevant for cosmology,
to second order on Minkowski spacetime. We have
identified the normal modes of the fluctuations and shown
that the propagating vector modes are massive with mass
given by (22) and speed of sound4 equal to the speed of
light while the propagating scalar modes also have the
same mass, (22), and speed of sound given by (30). We
identified in addition, nonpropagating scalar modes with
dispersion relation ω ¼ 0. We computed the deconstrained
Hamiltonian of the scalar modes of AeSTon this spacetime

and via a canonical transformation have shown that it
corresponds to a massive particle corresponding to the
massive normal mode, and a massless particle correspond-
ing to the mode ω ¼ 0. The latter may lead to negative
Hamiltonian densities for wave numbers k < k� given by
(60). However, as was discussed above, k� ≲Mpc−1 so
that such instabilities do not occur in the GR limit of the
AeST for all systems of interest. Furthermore, the non-
linear MOND term creates a nontrivial minimum in the
Hamiltonian density, so that it remains bounded from
below for all wave numbers k > μ. Performing the same
analysis on de Sitter space is left for future investigation.
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APPENDIX A: CANONICAL MOMENTA AND
HAMILTONIAN IN FOURIER SPACE

Consider the position variable Xðt; x⃗Þ with Fourier
transform

Xðt; x⃗Þ ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗Xk⃗ðtÞ: ðA1Þ

We assume that Xðt; x⃗Þ is real which imposes X�
k⃗
ðtÞ ¼

X−k⃗ðtÞ. The canonical momentum conjugate to Xðt; x⃗Þ is
defined by

Pðt; x⃗Þ≡ δS

δ _Xðt; x⃗Þ ðA2Þ

where S ¼ R dtd3xLðt; x⃗Þ is the action expressed in terms
of real space fields Xðt; x⃗Þ and their time derivatives. We
may also express S in Fourier space as S ¼ R dt d3k

ð2πÞ3 L̃ðt; k⃗Þ
and define the canonical momentum conjugate to Xk⃗ðtÞ as

Pk⃗ðtÞ≡ ð2πÞ3 δS

δ _X�
k⃗
ðtÞ : ðA3Þ

The two canonical momenta thus defined, Pðt; x⃗Þ and
Pk⃗ðtÞ, form a Fourier transform pair. The Hamiltonian
then in Fourier space follows as

4This is not to say that they propagate with the speed of light.
We have defined c2s as the coefficient of k2 in the dispersion
relation. Only in the limit k → ∞ does the speed of sound equal
to the propagation speed.
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H ¼
Z

d3k
ð2πÞ3

�
1

2
ð _Pk⃗X

�
k⃗
þ _P�

k⃗
Xk⃗Þ − L̃ðt; k⃗Þ

�
: ðA4Þ

Note that

δ

δ _X�
k⃗
ðtÞ
Z

d3q
1

2
j _Xk⃗j2

¼ 1

2

Z
d3q½δð3Þðk⃗þ q⃗Þ _Xk⃗ þ δð3Þðk⃗ − q⃗Þ _Xk⃗�

¼ _Xk⃗; ðA5Þ

which is useful for evaluating expressions.

APPENDIX B: THE NONLINEAR MOND TERM
CAN MAKE THE HAMILTONIAN BOUNDED

FROM BELOW

Here we assess the potential of the nonlinear MOND
term to make the Hamiltonian bounded from below. The

dependence of the MOND term on j∇⃗χj ¼
ffiffiffiffiffiffiffiffiffiffiffi
j∇⃗χj2

q
means

that we cannot use Fourier methods: the MOND term is
inherently non-Fourier expandable. This is an issue which
pertains to all field-based realizations of the MOND
proposal and it is likely that a future model may be able
to solve this by providing a different type of MOND term
which is Fourier expandable. Nevertheless, we proceed
using a naive Fourier space calculation followed by a robust
real space calculation to show that the MOND term makes
the Hamiltonian bounded from below.
Our conventions in this appendix is that fields with a k⃗

(or similar) are in Fourier space and fields without, or with
ðx⃗Þ argument are in real space, so that for example,

χðx⃗Þ ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗χk⃗; ðB1Þ

χ k⃗ ¼
Z

d3xe−ik⃗·x⃗χðx⃗Þ: ðB2Þ

1. The naive Fourier space based calculation

Although the MOND term is not strictly speaking
Fourier expandable, let us make the naive assumption that

in Fourier space we can express this as j∇⃗χðx⃗Þj → kχk⃗.
Then the Hamiltonian density (B24) becomes

H̃ðnewÞ
k⃗

¼ 1

4
jPX;k⃗j2 þ jWk⃗j2 − jZk⃗j2 ðB3Þ

þ 2ð2 − KBÞλs
3ð1þ λsÞa0

k3ðjχ k⃗j2Þ3=2 ðB4Þ

where we have introduced the new variables which are
rescaled versions of the old ones:

Wk⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þM2

q
Xk⃗; ðB5Þ

Zk⃗ ¼
1

2
ffiffiffi
2

p M

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2 þM2

p PY;k⃗: ðB6Þ

This is not a canonical transformation but it is sufficient for

our purpose to determine whether H̃ðnewÞ
k⃗

has a minimum.

In these variables we have that

χk⃗ ¼ GW;k⃗Wk⃗ þGZ;k⃗Zk⃗ ðB7Þ

where the kernels GW;k⃗ and GZ;k⃗ are given by

GW;k⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KB
2
c2sk2 þM2

q
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − KB

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ c2sk2

p ; ðB8Þ

GZ;k⃗ ¼
ffiffiffi
2

p
c2s

2M
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ c2sk2
p : ðB9Þ

The extrema of the Hamiltonian are at PX;k⃗ ¼ 0 and
according to the conditions

Wk⃗ þ
ð2 − KBÞλs
ð1þ λsÞa0

k3jχ k⃗jGW;k⃗χk⃗ ¼ 0; ðB10Þ

−Zk⃗ þ
ð2 − KBÞλs
ð1þ λsÞa0

k3jχ k⃗jGZ;k⃗χk⃗ ¼ 0: ðB11Þ

The trivial extremum is at PX;k⃗ ¼ Wk⃗ ¼ Zk⃗ ¼ 0 which
corresponds to the saddle point found without the MOND
term. However, the MOND term can introduce a nontrivial
extremum which we now find. Combining the two con-
ditions above yields

GZ;k⃗Wk⃗ þGW;k⃗Zk⃗ ¼ 0; ðB12Þ
so that

χ k⃗ ¼ −ðG2

Z;k⃗
G−1

W;k⃗
−GW;k⃗ÞWk⃗: ðB13Þ

We insert the above condition into (B10) so that assuming
Wk⃗ ≠ 0 we find

SG
ð2 − KBÞλs
ð1þ λsÞa0

k3jWk⃗j ¼
G−1

W;k⃗

ðG2

Z;k⃗
G−1

W;k⃗
−GW;k⃗Þ2

ðB14Þ

where SG ¼ sign½G2

Z;k⃗
G−1

W;k⃗
−GW;k⃗�. Since G2

Z;k⃗
G−1

W;k⃗
−

GW;k⃗ ¼ k2−μ2
ð2−KBÞμ2k2 G

−1
W;k⃗

, we have that SG ¼ Signðk2 − μ2Þ.
Hence, a nontrivial extremum exists if and only if k > μ.
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Completing the calculation, we find

Wk⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − KB

p ð1þ λsÞa0μ4
λsðk2 − μ2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KB
2
c2sk2 þM2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ c2sk2

p eiθk⃗ ðB15Þ

where θk⃗ is an arbitrary phase, and this leads to

χk⃗ ¼ −
ð1þ λsÞa0μ2
λskðk2 − μ2Þ e

iθk⃗ ðB16Þ

and so we find that the Hamiltonian density at the nontrivial
extremum takes the form

H̃ðnewÞ
k⃗

¼ −
ð2 − KBÞð1þ λsÞ2a20μ6

3λ2sðk2 − μ2Þ3 : ðB17Þ

This is of course negative but that is not an issue and in fact

expected. The question is whether H̃ðnewÞ
k⃗

is a minimum. To

determine this, we evaluate the Hessian (matrix of second
derivatives) at the nontrivial extremum. It is sufficient to
consider the subspace spanned by Wk⃗ and Zk⃗ only. Letting

Ak ¼ 3ð2−KBÞλs
2ð1þλsÞa0 k

3 we find

C ¼
 
1þ AkG2

W;k⃗
jχk⃗j AkGW;k⃗GZ;k⃗jχ k⃗j

AkGW;k⃗GZ;k⃗jχ k⃗j −1þ AkG2

Z;k⃗
jχk⃗j

!
ðB18Þ

which is symmetric, and thus, has real eigenvalues. We are
interested in the sign of the eigenvalues. The two eigen-
values σ� obey the characteristic polynomial

σ2� − ðtrCÞσ� þ det C ¼ 0: ðB19Þ

Now, σþ þ σ− ¼ trC and σþσ− ¼ det C which explicitly
gives

σþ þ σ− ¼ AkðG2

W;k⃗
þ G2

Z;k⃗
Þjχk⃗j; ðB20Þ

σþσ− ¼ 1

2
: ðB21Þ

Thus both eigenvalues are positive and the (B17) is a
minimum (provided that k > μ so that it exists).

2. Real space calculation

We now address the same issue in real space. There, χ is
given by

χðx⃗Þ ¼
Z

d3y½GWðx⃗ − y⃗ÞWðy⃗Þ þ GZðx⃗ − y⃗ÞZðy⃗Þ� ðB22Þ

where Wðx⃗Þ and Zðx⃗Þ are the real space analog of Wk⃗
and Zk⃗ respectively, and likewise for the kernels GWðx⃗Þ
and GZðx⃗Þ.
Letting

B0 ¼
ð2 − KBÞλs
ð1þ λsÞa0

ðB23Þ

the deconstrained Hamiltonian density in real space is thus

H̃ðnewÞðx⃗Þ ¼ 1

4
P2
X þW2 − Z2 þ 2

3
B0j∇⃗χj3: ðB24Þ

To find the extrema, we take the functional derivatives
of H̃ðnewÞðx⃗Þ with respect to fPX;W; Zg. This leads to the
conditions PX ¼ 0 (as before) and

δðy⃗ − x⃗ÞWðx⃗Þ − B0GWðy⃗ − x⃗Þ∇⃗ · ðj∇⃗χj∇⃗χÞ ¼ 0; ðB25Þ

δðy⃗ − x⃗ÞZðx⃗Þ þ B0GZðy⃗ − x⃗Þ∇⃗ · ðj∇⃗χj∇⃗χÞ ¼ 0; ðB26Þ

which are to be taken to hold in the sense of distributions.
Combining the above two conditions, leads after manipu-
lation to

Zðx⃗Þ ¼ −
Z

d3z
Z

d3yGZðx⃗ − y⃗ÞG−1
W ðy⃗ − z⃗ÞWðz⃗Þ ðB27Þ

so that

χ ¼
Z

d3yGχðx⃗ − y⃗ÞWðy⃗Þ ðB28Þ

where

Gχðx⃗Þ ¼−
c2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−KB

p
2M2

Z
d3k
ð2πÞ3 e

ik⃗·x⃗ ðk2−μ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2sk2þM2

p
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KB
2
c2sk2þM2

q :

ðB29Þ

Consider now the nonlinear term j∇⃗χj3 ¼ j∇⃗χjð∇⃗χÞ2 in the
Hamiltonian and integrate it by parts to get

H̃ðnewÞðx⃗Þ→ 1

4
P2
X þW2 −Z2−

2

3
B0χ∇⃗ · ðj∇⃗χj∇⃗χÞ: ðB30Þ

Thus, we use (B25) to eliminate the nonlinear term,
leading to

H̃ðextrÞ ¼ W2 − Z2 −
2

3
χ

Z
d3yG−1

W ðy⃗ − x⃗ÞWðy⃗Þ: ðB31Þ

Using the kernels, we may then go back to Fourier space to
find
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H̃ðextrÞ ¼ −
1

3
ð2 − KBÞμ2

Z
d3k
ð2πÞ3

k2

k2 − μ2
jχk⃗j2: ðB32Þ

Interestingly, inserting the expression (B16) into the above
equation yields the naive Fourier result (B17).
Provided k > μ then H̃ðextrÞ < 0. For the opposite case k <

μ it would seem that H̃ðextrÞ is positive; however, given that
the trivial extremum is a saddle point, this is a contradiction.

Rather, for k < μ the second extremum does not exist and the
Hamiltonian remains unbounded from below. Back to the
k > μ case, the nontrivial extremum is in fact a minimum,

which is seen due to the fact that the nonlinear term j∇⃗χj3 in
(B24) is positive, hence, by increasing W or Z, the nonlinear
term will dominate and always make the Hamiltonian
positive. Thus the MOND term makes the Hamiltonian
bounded from below for wave numbers k > μ.
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