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We study binary black hole mergers in the extreme mass-ratio limit. We determine the energy, angular
momentum, and linear momentum of the post-merger, remnant black hole. Unlike previous works, we
perform our analysis directly in the test-particle limit by solving the Regge-Wheeler-Zerilli wave equation
with a source that moves along a geodesic. We rely on the fact that toward the merger, small mass-ratio
binary systems follow a quasiuniversal geodesic trajectory. This formalism captures the final premerger
stages of small mass-ratio binaries and thus provides a straightforward universal description in a region
inaccessible to numerical relativity simulations. We present a general waveform template that may be used
in the search for gravitational wave bursts from small and intermediate mass-ratio binary systems. Finally,
this formalism gives a formal proof that the recoil velocity is quadratic in the symmetric mass ratio ν.
Specifically, the velocity is given by V=c ≈ 0.0467ν2. This result is about 4% larger than previously
estimated. Most of this difference stems from the inclusion of higher multipoles in our calculation.
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I. INTRODUCTION

The recent detections of gravitational waves (GW) [1]
are the result of a decades-long theoretical and techno-
logical endeavor. The numerical relativity (NR) break-
through [2–4] promoted the extensive, ongoing research
of comparable mass-ratio binary black hole mergers, which
are the primary GW sources of current earth-based GW
detectors. The study of small mass-ratio binary mergers
was initiated by the pioneering works of Regge, Wheeler,
and Zerilli [5,6], who formulated a simple wave equation
from the field equations of general relativity, given the
Schwarzschild geometry. Teukolsky [7], using Newman-
Penrose formalism, generalized this to Kerr geometry
as well.
Since then, substantial progress has been done in

the study of the small mass-ratio binary merger, its
corresponding GW emission [8–20], and recoil velocity
[12–14,16,21–27]. Moreover, the ability to produce fast
and accurate waveform templates [28–36] will play an
essential role in the next generation GW observatories, as
the Laser Interferometer Space Antenna (LISA), for which
small mass-ratio binaries will be a prominent GW source.
In this paper, we investigate the merger of a nonspinning

binary black hole (BH) system, initially on a quasicircular
orbit, in the extrememass-ratio limit;μ ≪ M, whereM is the
total mass, and μ is the reduced mass of the system. The
merger scenario can be qualitatively divided into three
stages: (i) Quasicircular inspiral, during which the orbit

evolves by the emission ofGW. (ii) Universal plunge, where
the infall path tends to the geodesic universal infall (GUI)
trajectory. (iii) Quasinormal modes (QNM) ringdown.
A binary system, initially at large separation, emits GW,

which leads to a fast circularization of the orbit followed by
a slow decrease of its semimajor axis [37], with a radial
velocity that is much smaller than the angular one. This is
the quasicircular inspiral stage, which continues until the
secondary BH crosses the innermost stable circular orbit
(ISCO), at RISCO ¼ 6M. External to the ISCO, there are
stable circular orbits, so the secondary BH slowly descends
from one to another, but after the ISCO, there are no further
stable circular orbits. Therefore, the secondary BH motion
smoothly shifts from the GW-driven inspiral to a geodesic
free fall. Finally, after the secondary BH crosses the peak
of the curvature potential, at R ∼ 3M, the GW signal is
predominated by the QNM ringing, the intrinsic vibration
modes of the remnant BH [38].
The initial motivation for this work lies in the insight that

the plunge path, of systems that approach the merger along
quasicircular orbits, is universal in the sense that it is
insensitive to the initial separation and the exact mass ratio.
Although the mass ratio determines the number of orbits
internal to the ISCO, for any small mass ratio, the infall
path tends to the GUI trajectory; namely, it coincides with
the free fall trajectory of a test particle that is initially at
the ISCO. Therefore, phenomena that strongly depend
on the final premerger orbits, like the recoil velocity, are
quasiuniversal.
We determine the postmerger energy, angular momen-

tum, and linear momentum of the remnant BH and present*barak.rom@mail.huji.ac.il
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the merger waveform, at the test-particle limit. The energy
and angular momentum, up to first order in the mass ratio,
are derived from their values at the ISCO, while the recoil
velocity is numerically calculated by solving the Regge-
Wheeler-Zerilli (RWZ) equation for a source that moves
along the GUI trajectory. This method allows for calculat-
ing directly at the test-particle limit, without introducing
any finite mass ratio and extrapolating to the μ → 0 limit.
For a small, finite mass ratio, there will be higher order
corrections beyond the first order value, which we calculate
in this paper. Finally, we sum the high multipoles con-
tribution and thus, evaluate the full recoil coefficient by
extrapolating the results to higher l than we numerically
calculate.
Throughout the paperwe use geometric units,G ¼ c ¼ 1.

II. RELATIVISTIC DYNAMICS

The equations of motion of a test particle that moves
arounda nonspinningBH, as derived from theSchwarzschild
metric, are

dΦ
dt

¼
�
1 −

2

R

�
L

ER2
ð1aÞ

dR
dt

¼ �ð1 − 2
RÞ

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

�
1 −

2

R

��
1þ L2

R2

�s
; ð1bÞ

where E and L are the energy and angular momentum, per
unit mass, respectively, and ðt; R;ΦÞ are the Schwarzschild
coordinates. Note that t and R are measured in unites of M.

A. The GUI trajectory

We examine the geodesic infall of a test particle that is
initially at the ISCO. Since it is a marginally stable orbit,
the test particle will fall, after an infinitely long time, to the
BH; the path toward the merger is schematically composed
of infinite quasicircular orbits in the vicinity of the ISCO,
followed by a rapid fall, during which the test particle
passes most of the radial distance in Oð1Þ cycles, as
demonstrated in Fig. 1.
This orbit is a geodesic, and it is quasiuniversal, as

toward the merger, small mass-ratio binary systems, which
had evolved along quasicircular orbits, tend to this trajec-
tory. Therefore, we identify it as the geodesic universal
infall (GUI) trajectory.
Given the values of energy and angular momentum at the

ISCO, EISCO ¼
ffiffi
8
9

q
, LISCO ¼ ffiffiffiffiffi

12
p

M, the GUI trajectory

can be analytically calculated, yielding the implicit relation
t ¼ gðR0Þ − gðRÞ, with R0 ¼ Rðt ¼ 0Þ and

gðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
8R

6 − R

r
ð24 − RÞ þ 44

ffiffiffi
2

p
sin−1

� ffiffiffiffiffiffiffiffiffiffiffi
6 − R
6

r �

− 4 tanh−1
� ffiffiffiffiffiffiffiffiffiffiffi

6 − R
2R

r �
: ð2Þ

This result is equivalent to a previous result of [39].

B. Regge-Wheeler-Zerilli equation

The RWZ equation, as presented below, is a wave
equation with a potential, induced by the spacetime
curvature, and a source term, derived from the stress-
energy tensor,

∂
2
tψ

ðλÞ
l;m − ∂

2
r�ψ

ðλÞ
l;m þ VðλÞ

l ψ ðλÞ
l;m ¼ SðλÞl;m; ð3Þ

where ðl; mÞ are the multipolar indices, λ ∈ fe; og is the
parity, r� ¼ rþ 2M log ð r

2M − 1Þ is the tortoise coordinate,
VðλÞ
l is the curvature potential, and SðλÞlm is the source term.

For the explicit expressions, see Appendix A. Note that

the RWZ function, ψ ðλÞ
l;m, is proportional to the asymptotic

GW amplitude, where the 1=r dependence is factored
out [40].

1. Energy & linear momentum fluxes

The physical quantities associated with the GW can be
determined from the RWZ function, ψ ðλÞ

l;m. Specifically, the
energy and linear momentum fluxes are given by [40,41]

_E ¼ 1

8π

X
l≥2

0≤m≤l

δm
ðlþ 2Þ!
ðl − 2Þ! j _ψ

ðλÞ
l;mj2; ð4Þ

FIG. 1. The geodesic universal infall (GUI) trajectory of a test
particle from the ISCO, R ¼ 6M, to the BH’s horizon (black
dashed line).
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wherewe sumonly overm ≥ 0, using the symmetryψ ðλÞ
l;−m ¼

ð−1Þmψ ðλÞ�
l;m and denoting δm ¼ f 1=2 m¼0

1 otherwise.

_Pxþ i _Py ¼
1

8π

X
l≥2

0≤m≤l

δm½ial;m _ψ ðeÞ
l;m _ψ ðoÞ�

l;mþ1þbl;m _ψ ðλÞ
l;m _ψ ðλÞ�

lþ1;mþ1

− ðial;−m _ψ ðeÞ�
l;m _ψ ðoÞ

l;m−1þbl;−m _ψ ðλÞ�
l;m _ψ ðλÞ

lþ1;m−1Þ�;
ð5Þ

where

al;m ¼ 2ðl − 1Þðlþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmþ 1Þ

p
bl;m ¼ ðlþ 3Þ!

ðlþ 1Þðl − 2Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðlþmþ 2Þ

ð2lþ 1Þð2lþ 3Þ

s
:

III. NUMERICAL METHOD

Following [10], we numerically solve the RWZ equa-
tion using a second-order Lax-Wendorff scheme, with
Sommerfeld absorbing boundary conditions [42,43]:

lim
r�→�∞

ð∂tψ ðλÞ
l;m � ∂r�ψ

ðλÞ
l;mÞ ¼ 0: ð6Þ

For the initial conditions, adopting [10] pragmatic approach,

we set ψ ðλÞ
l;mðr�; t ¼ 0Þ ¼ _ψ ðλÞ

l;mðr�; t ¼ 0Þ ¼ 0. This con-
venient choice leads to an unphysical initial burst that
propagates outward, as can be seen in Fig. 4. In our
numerical scheme, we model the delta function in the
source term as a narrow Gaussian, with a standard
deviation of four grid cells.

A. Extrapolation to I +

A conceptual limitation of the numerical calculation
stems from the extraction of the GW at a finite distance.
This obstacle is commonly overcome by extracting the GW
at several different radii and extrapolating to null infinity,
Iþ, by expanding it as a series in 1=r [44–46]. There are
other approaches for extracting the signal directly at Iþ,
for example, compactification of the spatial domain [14]
or characteristic extraction [47]. We present a different
method of frequency-domain extrapolation.
Given a time-domain signal, ψR� , numerically extracted

at some finite distance R� ≫ M, its propagation to Iþ can
be analytically calculated. At this limit, the curvature
potential is approximately Vðr�Þ ∼ Λ

r�2, and the RWZ equa-
tion can be solved in the frequency domain1:

∂
2

∂ξ2
ψ̃ þ

�
1 −

Λ
ξ2

�
ψ̃ ¼ 0 ð7aÞ

ψ̃ ¼ Aωe−iξ
ffiffiffi
ξ

p
JiY

�
lþ 1

2
; ξ
�
; ð7bÞ

where ψ̃ðω; r�Þ is the Fourier transform of ψðt; r�Þ,
ξ ¼ ωr�, JiYðν; ξÞ≡ JνðξÞ þ iYνðξÞ is a combination of
the Bessel functions of the first and second kind, and Aω is
a ω-dependant coefficient.
The GW at Iþ can be evaluated by taking the limit

ξ → ∞:

ψ̃∞ ¼ ψ̃R�=χ̃ðξR�Þ; ð8Þ

where ξR� ¼ ωR�, ψ̃R� is the Fourier transform of the
numerically extracted ψR� , and χ̃ðξRÞ is a correction
function, defined as

χ̃ðξR� Þ ¼
ffiffiffi
π

2

r
e−i½ξR�−

π
2
ðlþ1Þ� ffiffiffiffiffiffiffi

ξR�
p

JiY

�
lþ 1

2
; ξR�

�
: ð9Þ

Thus, the GW at Iþ can be determined based on a
numerical calculation of the RWZ function at a single finite
distance. We examine this method by extracting the RWZ
function at different radii, R ¼ 250M, 750M, 1500M, and
independently extrapolating them to Iþ. As can be seen in
Fig. 2, there is a clear mismatch in amplitude and phase
between the unextrapolated signals (dashed lines), which
improves significantly after the extrapolation (solid lines).
Quantitatively, the relative differences in the maximum

FIG. 2. Comparison between the GW extracted at three differ-
ent radii, R ¼ 250M (blue dashed line), R ¼ 750M (red dash-
dotted line), and R ¼ 1500M (yellow dotted line), to the GW at
Iþ, independently extrapolated from each of the signals (solid
lines, respective colors). The time is shifted such that each signal
reaches its maximum absolute magnitude at t − r� ¼ 0. We
present a zoomed picture around the peak of the dominant
RWZ function real part.

1For a given (l; m) and parity λ, which are omitted from the
derivation to simplify the notation.
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absolute magnitude and phase are δA=A ∼ 2.5 × 10−3,
δϕ ∼ 0.069 between R ¼ 1500M and R ¼ 250M, which
after extrapolation, improves by more than an order of
magnitude, δA=AjIþ∼7×10−5, δϕjIþ∼0.003, and between
R ¼ 1500M and R¼750M, δA=A ∼ 5 × 10−4, δϕ ∼ 0.067,
and after extrapolation δA=AjIþ ∼ 6 × 10−6, δϕjIþ ∼
5×10−4. We see the same consistent alignment of the
extrapolated signals in higher multipoles as well.

IV. RESULTS

We implement our numerical method to calculate the
GW and emitted fluxes from a source that moves along a
geodesic in the Schwarzschild geometry. We begin by
reconstructing known results for circular orbits, as a
validation test, and then continue to estimate the emission
from a source that moves along the GUI trajectory.

A. Circular orbits

We test the numerical calculation scheme in the well-
studied circular orbit case [12,14,48,49]. For comparison
with the literature, we examine the GW emission from a
circular orbit at distance R ¼ 7.9456M. We calculate ψ ðλÞ

l;m
up to l ¼ 8, and determine the corresponding energy flux,
using Eq. (4). In addition, we develop a semi-analytical
method to calculate the GW from circular orbits, as
discussed in the following section. We get very good
agreement between the results of the numerical calculation,
the semianalytical method, and known results in the
literature [14], as summarized in Table I of Appendix B.

1. Comparison to semianalytical solution

The RWZ source term has in the circular orbit case a
simple time dependence, S ∝ e−imΩt, where Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
is the orbital frequency. Substituting the ansatz ψðr; tÞ ¼
fðrÞe−imΩt, gives an homogeneous ODE for fðrÞ1:

d2f
dr�2

þ ðm2Ω2 − VÞf ¼ 0: ð10Þ

Thus, the original problem reduces to solving Eq. (10) in
two separate regimes, r� < R� and r� > R�. A unique
solution is obtained by imposing outgoing wave boundary
conditions and specific finite discontinuity conditions at

r� ¼ R�: fΔfjR�¼D̃ðRÞFðRÞ
Δf0jR�¼D̃ðRÞGðRÞ, where D̃, F, and G are given in

Appendix A. The ODE solution is in a good agreement
with the full numerical one, as can be seen in Fig. 3.
Asymptotically, for r → ∞, ψ → βe−imΩðt−r�Þ, where β is

a complex coefficient determined by the discontinuity
conditions. By substituting this expression into Eqs. (4)
and (5), we get the energy and the linear momentum fluxes2

as a functions of β. Thus, for example, the energy flux can
be written as

_El;m ¼ 1

8π

ðlþ 2Þ!
ðl − 2Þ!

m2

R3
jβl;mj2: ð11Þ

In Appendix B, we provide an analytical solution for
β at the Newtonian limit, R ≫ M, which allows for
reconstructing the known quadrupole radiation formula

[50], _E22 ¼ 32
5
M3μ2

R5 . Moreover, we show that asymptotically,
the contribution of the high multipoles to the emitted fluxes
decays exponentially at a constant, radius-dependent
rate:

_Elþ1

_El

∼
_Plþ1

_Pl

∼
e2

4R
ð12Þ

for l ≫ 1.

B. Inspiral & merger

We now move to calculate the merger waveform by
numerically solving the RWZ equation for a test particle
that moves along the GUI trajectory. A similar methodol-
ogy of calculating the GW emission from a source that
moves along a geodesic has been adopted in [51,52].
Qualitatively, after the initial induced burst, the signal
oscillates, with approximately constant amplitude and
frequency, corresponding to the quasicircular orbits in
the vicinity of the ISCO. Then, it sharply increases in
amplitude and frequency due to the particle’s rapid infall at

FIG. 3. Comparison between the numerical PDE solution of
Eq. (3), and the semianalytical ODE solution of Eq. (10), for a
circular orbit at R ¼ 7.9456M. We present the dominant RWZ
function. The small frame displays an enlarged picture around the
discontinuity at R�, where the two solutions slightly deviate due
to the smoothing of the delta function in the PDE numerical
scheme.

2The angular momentum flux can be calculated in a similar
manner, and the known relation dE

dt ¼ Ω dJ
dt can be easily derived.
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the last few orbits and quickly decays. Thus, for example,
Fig. 4 presents the dominant, quadrupole RWZ function.
As can be seen, the amplitude increases by about 45% at its
peak, compared to its initial magnitude during the quasi-
circular orbits.

1. The GUI waveform

The universality of the GUI trajectory entails that the
test-particle GUI waveform, as presented in Fig. 4, can be
used as a general template for small mass-ratio binary
mergers. The GUI waveform captures the GW emission
pattern from the merger back to the ISCO crossing since the
secondary BH’s deviation from the GUI trajectory, due to
the GW emission, does not yield a significant phase
difference between the GUI waveform and the small
mass-ratio waveform during the infall from the ISCO to
the horizon.
The two signals, the GUI and the small mass-ratio one,

go out of phase on a timescale that corresponds to the
orbital frequency change during the GW-driven inspiral:
Φ̈t2 ∼ _Rt2 ∼ 1 → t ∝ ν−3=10, where we used that the radial
velocity at the vicinity of the ISCO scales as _R ∝ ν3=5

[53,54]. Thus, we can point out three relevant timescales:
the inspiral timescale, t ∝ ν−1, the above mentioned
dephasing timescale, t ∝ ν−3=10, and the plunge timescale,
t ∝ ν−1=5 [53,54].
As a preliminary proof of concept, we compare the

GUI waveform to a waveform from a NR simulation of a
binary merger with mass ratio 1∶10 [55], as presented in
Fig. 5. We get a remarkably good agreement between the
maximum amplitudes of the two signals, with a relative
difference of 0.3%, and they stay in phase for about three
cycles.

2. Linear momentum: recoil velocity

Using Eq. (5), we calculate the emitted linear momentum
flux. The recoil velocity is then obtained by integration:

Vx þ iVy ¼ V0 −
1

M

Z
t

−∞
ð _Px þ i _PyÞ dt0: ð13Þ

First, we point out the scaling. As can be seen in
Appendix A, the source term in the RWZ equation is
linear in μ. Therefore, ψ ∝ μ and its time derivative scales
as _ψ ∝ μ

M ≡ ν. Given this scaling, Eqs. (4) and (5) imply
that the radiated fluxes scale as ν2, and so does the recoil
velocity.
The integration constant, V0, is determined by the

requirement that the initially oscillating velocity, corre-
sponding to the GWemission along the quasicircular orbits,
will have zero mean, as discussed in [12]. For comparison
with the literature, we note that up to l ¼ 7 the recoil
magnitude is Vð7Þ=ν2 ¼ 0.0455, which is about 1–2%
larger than the results of [12,14], which were calculated
for a small, finite mass ratios. Our results are in a closer
agreement to that of [13,27]. Further analysis needs to be
done to establish if this slight deviation stems from
numerical inaccuracies or from the fact that our result is
calculated along the exact geodesic trajectory.
The higher multipoles have a decreasing, yet significant,

contribution to the total recoil velocity [9,12,13,48], as can
be seen in Fig. 6 and in Appendix C, where we present the
detailed results for each multipole separately. Therefore, we
wish to evaluate the contribution of the infinite “tail” of
high multipoles,

FIG. 4. The GUI waveform: binary merger at the test-particle
limit. We present the real part of the dominant RWZ function,
extrapolated to Iþ, as a function of the retarded time. After the
initial induced burst, we see the typical binary merger “chirp”
signal.

FIG. 5. Comparison between the GUI waveform (blue line) and
NR simulation waveform, from the SXS catalog [55], with mass
ratio 1∶10 (red dashed line). Both of the signals are shifted so that
their real part reaches its maximum value at t − r� ¼ 0. The
vertical dashed line corresponds to the time when the test particle
is at R ∼ 5.5M and the relative distance in the NR simulation is
about 6.15M.
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V ¼ VðLÞ þ
X∞

l¼Lþ1

δVðlÞ; ð14Þ

where L is the highest multipole that was numerically
calculated; for this work, L ¼ 10. Based on the results for
circular orbits as a heuristic guideline, and reinforced by the
results of [56] regarding the QNM energy flux exponential
decay, we assume that the contribution of the higher
multipoles along the merger scenario decreases exponen-
tially as well:

δVðlÞ ¼ a × Cl: ð15Þ

We get a good correspondence between the numerical
results to an exponential decay trend, as can be seen in
Figs. 6 and 7. Using the numerical fit, we determine the
values of the coefficients in Eq. (15) and evaluate the total
recoil velocity: V=ν2 ¼ 0.0467. This value is about 4%
larger than previous results in the literature, which esti-
mated V=ν2 ≈ 0.044. This difference originates mostly due
to the summation by extrapolation of the high multipoles
contribution.

3. Energy and angular momentum

We present a brief derivation of the postmerger energy
and angular momentum of the remnant BH in leading order
of the mass ratio. Up to the ISCO, the emitted energy and
angular momentum can be determined directly: ΔE=ν ¼
ð1 − EISCOÞ ¼

�
1 −

ffiffi
8
9

q �
, ΔJ=ν ¼ −JISCOM ¼ −

ffiffiffiffiffi
12

p
M2.

The time from the ISCO crossing to the merger scales
as t ∝ ν−1=5 [53,54], and as mentioned above, _E ∝ ν2.
Therefore, the total emitted energy after the ISCO

crossing scales as ν9=5, and so does the emitted angular
momentum. Hence, the GW emission after the ISCO
crossing contributes only to the next order in the mass
ratio. In summary, we get that the final energy and spin of
the remnant BH are

Mf=M ¼ 1 −
�
1 −

ffiffiffi
8

9

r �
νþOðν9=5Þ ð16aÞ

a≡ J=M2 ¼
ffiffiffiffiffi
12

p
νþOðν9=5Þ: ð16bÞ

The first order terms are in accordance with known
results in the literature [56,57]. However, the scaling of the
next order, Oðν9=5Þ, which was already derived by [53,54],
differs from the broadly used Oðν2Þ.

V. CONCLUSIONS

We present a thorough investigation of the leading order
effects of a binary BH merger in the extreme mass-ratio
limit. We develop a new approach that allows us to
perform the calculation directly in the test-particle limit,
without introducing any finite mass ratio. This can be done
due to the universal characteristics of the plunge, specifi-
cally its tendency toward the GUI trajectory. In addition,
this straightforward approach allows us to construct a
universal waveform that describes well the peak GW
emission at the final stages of small mass-ratio binary
mergers. This GUI waveform may be used as a computa-
tionally inexpensive template in the ongoing search for
GW from intermediate mass-ratio binary systems in earth-
based detectors.
At last, using this formalism, we show that the recoil

velocity has a quadratic dependence on the mass ratio and
is given by V=c ≈ 0.0467ν2. This result is larger than the

FIG. 6. The final recoil velocity, up to a given multipole l. The
total velocity converges to V=ν2 ≈ 0.0467 (black dash-dotted
line) and corresponds to an exponential decay trend (red dashed
line). The detailed numerical results are presented in Table II of
Appendix B.

FIG. 7. An exponential decay fit in a semilogarithmic scale to
the relative contribution of each multipole to the total recoil
velocity.
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known value in the literature by about 4%, mostly as a
result of the high multipole contributions. As for the final
energy and spin of the remnant BH, we derive analytically
the first order, linear in the mass ratio terms and point
out the scaling of the next order, Oðν9=5Þ, which differs
from the broadly used value in the literature. Our calcu-
lation can be generalized to spinning BH.
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APPENDIX A: SOURCE TERM
AND CURVATURE POTENTIAL

IN THE RWZ EQUATION

The explicit form of the curvature potential and the
source term, for a test particle, in the RWZ equation are as
follows [40]:

SðλÞ ¼ DðλÞðR;Θ;ΦÞ½GðλÞðRÞδðr� − R�Þ
þ FðλÞðRÞ∂r�δðr� − R�Þ�; ðA1Þ

where ðRðtÞ;ΘðtÞ;ΦðtÞÞ are the test particle’s coordinates.
Without loss of generality, we can assume that the motion
is equatorial, and so ΘðtÞ ¼ π

2
. In the following equations,

r, t, and L are measured in units of the primary BH
mass, M.

1. Even parity perturbations

VðeÞ
l ¼

�
1 −

2

r

� ðΛ − 2Þ2ðΛrþ 6Þr2 þ 36ðΛ − 2Þrþ 72

M2r3½ðΛ − 2Þrþ 6�2 ;

ðA2Þ

where Λ ¼ lðlþ 1Þ.

DðeÞ ¼ μ

�
1 −

2

R

�
8πY�

lmðΘ;ΦÞ
EΛR½ðΛ − 2ÞRþ 6� ; ðA3Þ

GðeÞ ¼ 1

M½ðΛ − 2ÞRþ 6�
�
−12þ 8ð1 − 3E2 þ ΛÞR

þ ðΛ − 2ÞΛR2 − 4imL½ðΛ − 2ÞRþ 6�Vτ

þ 2L2

R2ðΛ − 2Þ fΛ
3R2 − Λ2R½−12þ ð5þm2ÞR�

− 4½3 − 6Λþm2ðR − 3Þ2 − 3Rþ R2�

− 2Λ½3ð5þ 2m2ÞR − 2ð2þm2ÞR2�g
�
; ðA4Þ

where Vτ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ð1 − 2

RÞð1þ L2

R2Þ
q

is the radial velocity

with respect to the particle’s proper time.

FðeÞ ¼ −2ðL2 þ R2Þ. ðA5Þ

2. Odd parity perturbations

VðoÞ
l ¼ 1

M2

�
1 −

2

r

��
Λ
r2

−
6

r3

�
; ðA6Þ

DðoÞ ¼ μ

�
1 −

2

R

�
16πL∂θY�

lmðΘ;ΦÞ
E2R3ΛðΛ − 2Þ ; ðA7Þ

GðoÞ ¼ 1

M

�
L2

R2
ð2R − 5Þ þ imLVτ

þ R

�
1 −

3

R
− 2E2

��
; ðA8Þ

FðoÞ ¼ L2 þ R2: ðA9Þ

In the semianalytical method for circular orbits, as
discussed in Sec. IV. A.1, we introduced D̃ðλÞ≡DðλÞeimΦ,
which factors out the Φ dependence.

APPENDIX B: CIRCULAR ORBITS

We present in Table I a comparison between the radiated
energy fluxes, up to l ¼ 8, as calculated using the semi-
analytical ODE method, the numerical PDE scheme,
extrapolated to null infinity and extracted at finite radii,
and known results in the literature [14]. We note that as l
increases, the amplitude of the m ≪ l moments becomes
increasingly smaller and so more distorted by numerical
noise and rescattering of the initial junk radiation.
However, their contribution to the total emitted fluxes is
negligible.

1. Expansion at the Newtonian limit

Equation (10) can be analytically solved in the Newtonian
limit, where it becomes equivalent to Eq. (7a), with a speci-
fic value of ω ¼ mΩ. Therefore, the solution for fðrÞ is
a combination of Bessel functions of the first and second
kind, as in Eq. (7b). Imposing outgoing wave boundary
conditions and using the known limits of theBessel functions
yield3:

fðr > RÞ ¼ β

( Γðlþ1
2
Þffiffi

π
p ð 2i

mΩrÞl r ∼ R

eimΩr r ≫ R;
ðB1Þ

3At the region r < R, all we need for this calculation is the
asymptotic behavior fjr→R− ∝ rlþ1.
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where Γ is the gamma function. β is uniquely determined by
imposing the discontinuity conditions at r ¼ R:

(
ΔfðλÞjR ¼ γðλÞ

Δf0ðλÞjR ¼ − δðλÞγðλÞ
R ;

ðB2Þ

where γðλÞ ¼ 16π
ΛðΛ−2Þ

nY�
lmðπ2 ; 0Þ even

−∂ΘY�
lmðΘ; 0ÞjΘ¼π

2
=

ffiffiffiffi
R

p
odd and

δðλÞ ¼
nΛ=2 even
1 odd

.

The radiated fluxes can be calculated using Eq. (4) and
(5). For the energy flux, we get

_El;m ¼ 2m2ðlþ1Þð2lþ 1Þðlþ 1Þðlþ 2Þ
Rlþ3lðl − 1Þð2lþ 1Þ!!2

×

8<
:

ðl−mÞ!ðlþmÞ!
ðl−mÞ!!2ðlþmÞ!!2 ðlþmÞ even
4
R

ðl−mÞ!ðlþmÞ!
ðlþ1Þ2ðl−m−1Þ!!2ðlþm−1Þ!!2 ðlþmÞ odd

:

ðB3Þ

TABLE I. Energy flux for a circular orbit at radius R ¼ 7.9456M around a nonrotating BH. We compare the results from the
semianalytical method (subscript ODE), the full numerical scheme, extrapolated to null infinity (subscript PDEIþ ) and extracted at
finite radii, R ¼ 1500M and R ¼ 250M (subscripts PDE1500 and PDE250), and the results of [14] (subscript Bernuzziþ 110), which
were calculated at null infinity. The relative differences, with respect to the semianalytical result, appear in square brackets.

l m _E=ν2jODE _E=ν2jPDEIþ
_E=ν2jPDE1500

_E=ν2jPDE250

_E=ν2jBernuzziþ110

2 1 8.1628 × 10−07 8.1664 × 10−07 ½0.04%� 8.1718 × 10−07 ½0.11%� 8.3622 × 10−07 ½2.44%� 8.1632 × 10−07 ½<0.01%�
2 1.7062 × 10−04 1.7061 × 10−04 ½<0.01%� 1.7064 × 10−04 ½0.01%� 1.7165 × 10−04 ½0.60%� 1.7065 × 10−04 ½0.02%�

3 1 2.1730 × 10−09 2.1749 × 10−09 ½0.09%� 2.1778 × 10−09 ½0.22%� 2.2833 × 10−09 ½5%� 2.1740 × 10−09 ½0.04%�
2 2.5198 × 10−07 2.5196 × 10−07 ½0.01%� 2.5205 × 10−07 ½0.03%� 2.5506 × 10−07 ½1.22%� 2.5203 × 10−07 ½0.02%�
3 2.5470 × 10−05 2.5475 × 10−05 ½0.02%� 2.5479 × 10−05 ½0.03%� 2.5609 × 10−05 ½0.54%� 2.5481 × 10−05 ½0.04%�

4 1 8.3947 × 10−13 8.4071 × 10−13 ½0.15%� 8.4256 × 10−13 ½0.37%� 9.1434 × 10−13 ½9%� 8.4001 × 10−13 ½0.06%�
2 2.5089 × 10−09 2.5088 × 10−09 ½0.01%� 2.5102 × 10−09 ½0.05%� 2.5608 × 10−09 ½2.07%� 2.5115 × 10−09 ½0.10%�
3 5.7748 × 10−08 5.7766 × 10−08 ½0.03%� 5.7780 × 10−08 ½0.05%� 5.8274 × 10−08 ½0.91%� 5.7777 × 10−08 ½0.05%�
4 4.7252 × 10−06 4.7259 × 10−06 ½0.01%� 4.7265 × 10−06 ½0.03%� 4.7499 × 10−06 ½0.52%� 4.7289 × 10−06 ½0.08%�

5 1 1.2594 × 10−15 1.2621 × 10−15 ½0.22%� 1.2663 × 10−15 ½0.55%� 1.4398 × 10−15 ½14%� 1.2612 × 10−15 ½0.14%�
2 2.7895 × 10−12 2.7891 × 10−12 ½0.01%� 2.7914 × 10−12 ½0.07%� 2.8772 × 10−12 ½3.14%� 2.7925 × 10−12 ½0.11%�
3 1.0932 × 10−09 1.0938 × 10−09 ½0.06%� 1.0942 × 10−09 ½0.09%� 1.1083 × 10−09 ½1.39%� 1.0948 × 10−09 ½0.15%�
4 1.2324 × 10−08 1.2325 × 10−08 ½0.02%� 1.2328 × 10−08 ½0.04%� 1.2420 × 10−08 ½0.78%� 1.2334 × 10−08 ½0.09%�
5 9.4556 × 10−07 9.4593 × 10−07 ½0.04%� 9.4605 × 10−07 ½0.05%� 9.5041 × 10−07 ½0.51%� 9.4660 × 10−07 ½0.11%�

6 1 2.8718 × 10−19 2.8807 × 10−19 ½0.31%� 2.8941 × 10−19 ½0.78%� 3.5025 × 10−19 ½22%� 2.9141 × 10−19 ½1.47%�
2 1.3338 × 10−14 1.3337 × 10−14 ½0.01%� 1.3352 × 10−14 ½0.11%� 1.3938 × 10−14 ½4.50%� 1.3368 × 10−14 ½0.23%�
3 1.9644 × 10−12 1.9657 × 10−12 ½0.07%� 1.9667 × 10−12 ½0.12%� 2.0027 × 10−12 ½1.95%� 1.9677 × 10−12 ½0.17%�
4 3.4949 × 10−10 3.4962 × 10−10 ½0.04%� 3.4972 × 10−10 ½0.06%� 3.5337 × 10−10 ½1.11%� 3.5023 × 10−10 ½0.21%�
5 2.5698 × 10−09 2.5710 × 10−09 ½0.05%� 2.5715 × 10−09 ½0.07%� 2.5881 × 10−09 ½0.71%� 2.5728 × 10−09 ½0.12%�
6 1.9598 × 10−07 1.9606 × 10−07 ½0.04%� 1.9608 × 10−07 ½0.05%� 1.9698 × 10−07 ½0.51%� 1.9621 × 10−07 ½0.12%�

7 1 2.4477 × 10−22 2.4578 × 10−22 ½0.41%� 2.4730 × 10−22 ½1.03%� 3.2534 × 10−22 ½33%� � � �
2 9.2470 × 10−18 9.2450 × 10−18 ½0.02%� 9.2592 × 10−18 ½0.13%� 9.8131 × 10−18 ½6.12%� 9.2734 × 10−18 ½0.29%�
3 1.7391 × 10−14 1.7410 × 10−14 ½0.11%� 1.7422 × 10−14 ½0.18%� 1.7850 × 10−14 ½2.64%� 1.7446 × 10−14 ½0.32%�
4 8.1842 × 10−13 8.1872 × 10−13 ½0.04%� 8.1903 × 10−13 ½0.08%� 8.3052 × 10−13 ½1.48%� 8.2034 × 10−13 ½0.23%�
5 9.7236 × 10−11 9.7312 × 10−11 ½0.08%� 9.7336 × 10−11 ½0.10%� 9.8178 × 10−11 ½0.97%� 9.7500 × 10−11 ½0.27%�
6 5.3160 × 10−10 5.3184 × 10−10 ½0.04%� 5.3193 × 10−10 ½0.06%� 5.3520 × 10−10 ½0.68%� 5.3226 × 10−10 ½0.12%�
7 4.1390 × 10−08 4.1416 × 10−08 ½0.06%� 4.1421 × 10−08 ½0.08%� 4.1603 × 10−08 ½0.52%� 4.1414 × 10−08 ½0.06%�

8 1 3.5076 × 10−26 8.9236 × 10−26 ½150%� 9.3647 × 10−26 ½160%� 1.0378 × 10−25 ½200%� � � �
2 2.5726 × 10−20 2.5724 × 10−20 ½0.01%� 2.5775 × 10−20 ½0.19%� 2.7812 × 10−20 ½8.11%� 2.8445 × 10−20 ½10.57%�
3 2.0951 × 10−17 2.0976 × 10−17 ½0.12%� 2.0995 × 10−17 ½0.21%� 2.1667 × 10−17 ½3.42%� 2.1027 × 10−17 ½0.36%�
4 1.0870 × 10−14 1.0877 × 10−14 ½0.06%� 1.0882 × 10−14 ½0.11%� 1.1080 × 10−14 ½1.93%� 1.0914 × 10−14 ½0.40%�
5 2.6698 × 10−13 2.6722 × 10−13 ½0.09%� 2.6730 × 10−13 ½0.12%� 2.7029 × 10−13 ½1.24%� 2.6777 × 10−13 ½0.30%�
6 2.5109 × 10−11 2.5127 × 10−11 ½0.07%� 2.5133 × 10−11 ½0.09%� 2.5332 × 10−11 ½0.89%� 2.5186 × 10−11 ½0.31%�
7 1.0972 × 10−10 1.0980 × 10−10 ½0.08%� 1.0982 × 10−10 ½0.09%� 1.1044 × 10−10 ½0.66%� 1.0979 × 10−10 ½0.07%�
8 8.8366 × 10−09 8.8428 × 10−09 ½0.07%� 8.8439 × 10−09 ½0.08%� 8.8832 × 10−09 ½0.53%� 8.8253 × 10−09 ½0.13%�
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The result for the even energy flux is in accordance with a
previous calculation of [58]. The total flux, for a given
multipole l, can be evaluated up to subleading order as
_El ¼ P

m
_El;m ≈ _El;l þ _El;l−2, where the contribution of

the odd multipoles is negligible as _EðoÞ
l = _EðeÞ

l ≈Oð 1
RlÞ. From

Eq. (B3), we get that asymptotically for high multipoles,
l ≫ 1:

_El ≈
1

2R3

ffiffiffi
l
π

r �
e2=4
R

�
l

BEðlÞ

BEðlÞ ∼ 1.01þ 3.42
l

þ 4.08
l2

: ðB4Þ

The linear momentum flux is given by

j _Pl;mj ¼
2

Rlþ7=2

ðlþ 2Þ
lðlþ 1Þm

2ðlþ1ÞðhðþÞ
l;m þ hð−Þl;mÞ

×
ðl −mÞ!ðlþmÞ!

ðl −mÞ!!2ðlþmÞ!!2ð2lþ 1Þ!!2 ; ðB5Þ

where, as in the energy flux case, the contribution of the
odd multipoles is negligible, and we denote

hð�Þ
l;m ¼

�
1� 1

m

�
lþ1

ðl�mþ 1Þ

×

�ðm� 1Þðlþ 3Þ
2lþ 3

∓ 4ðl ∓ mÞ 2lþ 1

lðl − 1Þ
�
: ðB6Þ

For l ≫ 1,

j _Plj ≈
e

4R3

ffiffiffiffiffiffi
l
πR

r �
e2=4
R

�
l

BPðlÞ

BPðlÞ ∼ 1.001þ 3.515
l

þ 2.695
l2

: ðB7Þ

We note that _Pl;m ∝ eiΩðt−r�Þ, and therefore, it vani-
shes when averaging over one period of the motion.
Thus, as can be inferred from the symmetry of this
case, there is no accumulation of recoil velocity in circular
orbits.

APPENDIX C: MULTIPOLAR DECOMPOSITION

We present in Table II the detailed numerical results for
the accumulated recoil velocity.
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