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Here we look at an application of the Hartle metric to describe a rotating version of the spherical string
cloud/global monopole solution. While rotating versions of this solution have previously been constructed
via the Newman-Janis algorithm, that process does not preserve the equation of state. The Hartle method
allows for preservation of equation of state, at least in the sense of a slowly rotating perturbative solution. In
addition to the direct utility of generating equations which could be used to model a region of a rotating
string cloud or similar system, this work shows that it is possible to adapt the Hartle metric to slowly
rotating anisotropic systems with Segre type [(11)(1,1)] following an equation of state between the distinct
eigenvalues.

DOI: 10.1103/PhysRevD.106.104038

I. INTRODUCTION

We use the shorthand “koosh” to describe the hyper-
conical, spherically symmetric Kerr-Schild geometry with
the line element

ds2 ¼ −κ2dt2 þ 1

κ2
dr2 þ r2dθ2 þ r2 sin2 θ dϕ2: ð1:1Þ

This metric describes a hypercone in four dimensions in
that the circumference of a circle of proper radius r� is
2πκr�. Its Riemann tensor has only one independent
nonzero element Rθϕ

θϕ ¼ ð1 − κ2Þ=r2. Since spherically
symmetric Kerr-Schild metrics may be written in the form
−gtt ¼ 1=grr ¼ 1 − 2mðrÞ=r, where mðrÞ is a “mass”
function, we can identify that for a koosh

m ¼ λr; ð1:2Þ

such that κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2λ

p
. Demanding that the t coordinate

remains timelike requires 2λ < 1.
The only nonzero energy-momentum tensor components

are

Tt
t ¼ Tr

r ¼ −
λ

4πr2
: ð1:3Þ

This means that the eigenvalue structure is Segre type
[(11)(1,1)] with

Λ0 ¼ Λ1; Λ2 ¼ Λ3 ¼ 0 ð1:4Þ

where Λ0 is the eigenvalue associated with a timelike
eigenvector andΛ1;2;3 are the other eigenvalues. This can be
thought of as a “stringy” equation of state, in that it applies
to solutions with vacuum cosmic strings [1–4].
This solution seems to have been initially discovered by

Lettelier as a cloud of radially aligned strings [3], arranged
like the filaments on a koosh ball toy and giving rise to our
name. It was independently examined as a model for a
“global monopole” [5]. Several later papers have also
examined the koosh or similar systems as stringy systems
or monopoles arising from various theories [6–8]. One
intriguing recent development is the consideration of the
λ → 1=2− limit. If such a system is cut off at a finite radius
by a shell, it acts as an interior to the Schwarzschild black
hole, and further has the correct mass scaling characteristics
without changing the interior density profile. This is a
“quasiblack hole” configuration [9]. The quasiblack hole
does have the problem that it is a singular configuration, but
it is noteworthy that the hyperconical geometry of metric
Eq. (1.1) only applies to global monopoles at sufficient
radius from the center; at extremely small radii the global
monopole described in [5] is de Sitter like and nonsingular.
Replacing the interior of a quasiblack hole with a very
extreme global monopole would lead to a system with some
properties like certain gravastar [10–13] or dark energy
star models [14] (in that the compact object is bounded by
some kind of thin shell at or near the horizon) and other
properties like Bardeen [15] or similar (e.g., [16–18]) type
nonsigular black holes (in that the interior is Kerr-Schild
and the pressure everywhere follows pr ¼ −ρ, there is a
de Sitter center, and the solution decreases in density as
one moves outward).
There have also been various examinations of rotating

solutions generated from the Newman-Janis algorithm
[19–21] which have string cloud behavior in their static*philipbeltracchi@gmail.com
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versions [22]. While the Newman-Janis algorithm pre-
serves Segre type [(11)(1,1)], the stringy equation of state is
not preserved in passing to rotation under the Newman-
Janis algorithm [23].
In this paper we modify the Hartle formalism [24,25]

to produce a perturbative model for a slowly rotating
koosh which preserves the stringy equation of state.
Originally, the Hartle formalism involved perfect fluid
(Segre type [(111),1]) equations of state. Effects from first
order in rotation for anisotropic systems had been pre-
viously considered for anisotropic neutron star models [26]
and anisotropic continuous pressure gravastar models [27].
Very recently, a treatment more similar to Hartle’s involv-
ing the second order in rotation deformation terms for a
particular anisotropic Segre type [(11)1,1] neutron star
model was presented [28]. The situation with a koosh is
extremely anisotropic in that one of the distinct eigenvalues
is always zero, and the Segre type is different than what has
been considered previously.

II. AXISYMMETRIC SPACETIMES AND THE
HARTLE FORMALISM

One convenient notation of the general axisymmetric
metric in coordinates ðt; r; θ;ϕÞ comes from [29]

ds2 ¼ −e2ν dt2 þ e2ψ ðdϕ − ωdtÞ2 þ e2αdr2 þ e2βdθ2

ð2:1Þ

where the five functions ν, ψ , α, β, ω are functions of r
and θ. The functions ν, ψ , ω can be isolated as scalar
functions because of the existence of the time and axial
Killing vectors

Kμ
ðtÞ ¼ ð1; 0; 0; 0Þ; ð2:2Þ

Kμ
ðϕÞ ¼ ð0; 0; 0; 1Þ: ð2:3Þ

Adopting the nomenclature from [30], we define additional
vectors l and N, which in these coordinates are

lμ ¼ ð1; 0; 0;ωÞ; ð2:4Þ

Nμ ¼ ð−1;−eα−ν; 0; 0Þ; ð2:5Þ

such that

l ¼ KðtÞ þ ωKðϕÞ; N · N ¼ 0; N · l ¼ −1: ð2:6Þ

With these auxiliary vectors, we can define two physically
relevant scalar quantities, being the surface gravity
parameter

SG ¼ Nμlνð∇μlνÞ ¼ 1

2
e−α−ν

∂

∂r
e2ν ð2:7Þ

and angular momentum density parameter

J ¼ −Nμlνð∇μKν
ðϕÞÞ ¼ −

1

2
e2ψ−α−ν

∂ω

∂r
: ð2:8Þ

These scalars are related to the Komar mass and angular
momentum(see [31] for the introduction of the concepts,
and [30] for information about the particular formulation),
which can be defined as surface integrals at a given radius,
or as the sum of a surface integral at a smaller radius and a
volume integral of components of the energy-momentum
tensor between the smaller and given radii

MKðrÞ ¼
1

4πG

Z
∂Vþ

ðSG þ ωJ ÞdA

¼
Z
V

ffiffiffiffiffiffi
−g

p ð−Tt
t þ Tr

r þ Tθ
θ þ Tϕ

ϕÞdrdθdϕ

þ 1

4πG

Z
∂V−

ðSG þ ωJ ÞdA; ð2:9Þ

JKðrÞ ¼
1

8π

Z
∂Vþ

J dA

¼
Z
V

ffiffiffiffiffiffi
−g

p
Tt

ϕdr dθ dϕþ 1

8π

Z
∂V−

J dA: ð2:10Þ

For his perturbative framework, Hartle expanded the
line element (2.1) to second order in the angular momen-
tum as [24]

ds2 ¼ −e2ν0ðrÞ½1þ 2h0ðrÞ þ 2h2ðrÞP2ðcos θÞ�dt2 þ
r

r − 2mðrÞ
�
1þ 2

r − 2mðrÞ ½m0ðrÞ þm2ðrÞP2ðcos θÞ�
�
dr2

þ r2½1þ 2k2ðrÞP2ðcos θÞ�½dθ2 þ sin2θðdϕ − ωðrÞdtÞ2�: ð2:11Þ

The function ωðrÞ is the first-order contribution that gives
rise to inertial frame dragging. Here Plðcos θÞ is the
Legendre polynomial of order l, mðrÞ and ν0ðrÞ are the
metric functions of the nonrotating solution, and hlðrÞ,
mlðrÞ, klðrÞ are the monopole (l ¼ 0) and quadrupole

(l ¼ 2) contributions of second order in rotation respec-
tively. The choice k0ðrÞ ¼ 0 is part of Hartle’s choice of
gauge. The Hartle metric (2.11) is equivalent to second
order to general metric (2.1) with the identifications
(see e.g., [32])
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eν ¼ eν0ðrÞ½1þ h0ðrÞ þ h2ðrÞP2ðcos θÞ�; ð2:12aÞ

eψ ¼ r sin θ½1þ k2ðrÞP2ðcos θÞ�; ð2:12bÞ

eα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
r − 2mðrÞ

r �
1þm0ðrÞ þm2ðrÞP2ðcos θÞ

r − 2mðrÞ
�
;

ð2:12cÞ

eβ ¼ r½1þ k2ðrÞP2ðcos θÞ�; ð2:12dÞ

ω ¼ ωðrÞ: ð2:12eÞ

A. Hartle’s energy-momentum tensor

Originally, Hartle’s metric was paired with a perfect fluid
energy-momentum tensor. We describe its construction
here for completeness, but since we are interested in
a system with anisotropic pressures we use a different
method to construct and examine the energy-momentum
tensor which is described in the following section. With a
background metric of the form

ds2 ¼ −e2ν0ðrÞdt2 þ dr2

1 − 2mðrÞ
r

þ r2dθ2 þ r2 sin2 θdϕ2

ð2:13Þ

and the unperturbed energy-momentum tensor Tμ
ν ¼

diagð−ρ; p; p; pÞ, Einstein’s equations give the following
relationships:

∂m
∂r

¼ 4πr2 ρ; ð2:14Þ

∂ν0
∂r

¼ ðmþ 4πr3pÞ
r2ð1 − 2m

r Þ
; ð2:15Þ

−
∂p
∂r

¼ ðmþ 4πr3pÞðρþ pÞ
r2ð1 − 2m

r Þ
: ð2:16Þ

Given an equation of state and appropriate boundary
conditions, one may in theory solve this system for the
unperturbed metric functions. In the notation of Hartle [24],
the perturbed energy-momentum tensor is

Tμν ¼ ðE þ PÞuμuν þ Pgμν; ð2:17Þ

where E and P are the energy density and pressure in
the comoving frame of the rotating fluid, and uμ is its
four-velocity

ut¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt−2Ωgtϕ−Ω2gϕϕ

q ; uϕ¼Ωut; ur¼uθ¼0:

ð2:18Þ

To order Ω2,

E ¼ ρðrÞ þ E0ðrÞ þ E2ðrÞP2ðcos θÞ; ð2:19Þ

P ¼ pðrÞ þ P0ðrÞ þ P2ðrÞP2ðcos θÞ; ð2:20Þ

where E0ðrÞ, E2ðrÞ,P0ðrÞ, P2ðrÞ are monopole and quadru-
pole perturbation functions of order Ω2, where in the case of
these perfect fluid systems the rotation parameter Ω has a
simple interpretation as a uniform angular velocity (Ω loses
such a simple interpretation for vacuum energy type sol-
utions, such as the pure vacuum Hartle-Thorne solution [25]
and de Sitter like solutions [33–37] because the four velocity
drops out the energy-momentum tensor (2.17). Note that
in [25], they define fractional changes

P ¼ pðrÞ þ ðρþ pÞðδp0ðrÞ þ δp2ðrÞP2ðcos θÞÞ; ð2:21Þ

E¼ρðrÞþ dρ
dp

ðρþpÞðδp0ðrÞþδp2ðrÞP2ðcosθÞÞ; ð2:22Þ

which are commonly used in other works. With Eq. (2.17),
the Einstein tensor for Eq. (2.11), appropriate boundary
conditions, and the equation of state, one may solve for the
perturbation functions.

III. KOOSH

The stringy equation of state Λ0 ¼ Λ1, Λ2 ¼ Λ3 ¼ 0 is
radically different than a perfect fluid equation of state
Λ3 ¼ Λ2 ¼ Λ1 ¼ fðΛ0Þ. However, we find that if we
examine the Einstein tensor order by order we can identify
Hartle perturbation metrics which correspond to rotating
kooshes and satisfy the stringy equation of state. Keeping
terms which are zeroth or first order in rotation, we find the
metric is specified by

ds2 ¼ −κ2dt2 þ 1

κ2
dr2 þ r2dθ2 þ r2sin2 θdϕ2

− 2r2 sin2θωðrÞdϕ dt ð3:1Þ

and the energy-momentum tensor has nonzero components

Tt
t ¼ Tr

r ¼ −
λ

4πr2
; ð3:2Þ

Tt
ϕ ¼ −

r sin2ðθÞ ð4ω0ðrÞ þ rω00ðrÞÞ
16π

; ð3:3Þ

Tϕ
t ¼ −

ð2ð2λ − 1Þrð4ω0ðrÞ þ rω00ðrÞÞ þ 8λωðrÞÞ
32πr2

: ð3:4Þ
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This suggests two special1 frame dragging solutions:

Tt
ϕ ¼ 0 → 4ω0ðrÞ þ rω00ðrÞ ¼ 0 → ωðrÞ ¼ W1 þ

W2

r3
;

ð3:5Þ

Tϕ
t ¼ 0 → ð4ω0ðrÞ þ rω00ðrÞÞ

¼ −4λωðrÞ
ð2λ − 1Þr →

ωðrÞ ¼ War
−

ffiffiffiffiffiffi
9−2λ
4−8λ

p
þWbr

ffiffiffiffiffiffi
9−2λ
4−8λ

p

r3=2
: ð3:6Þ

Notice that Eq. (3.5) gives the same dragging as the vacuum
Hartle-Thorne [25] and vacuum energy de-Sitter type
solutions [33–37]; we will therefore call it “vacuum

dragging.” Interestingly, there is no Komar angular momen-
tum Eq. (2.10) associated with this frame dragging for the
volume term of the Koosh as we have Tt

ϕ ¼ 0. Note that in
the case of the Hartle-Thorne solution and the vacuum
energy de-Sitter type solutions the W2 term is associated
with an angular momentum concentrated inside the
region of interest (such as a rotating star in the standard
Hartle-Thorne picture [25] or a delta function in [37]). The
W1 term can be associated with angular momentum
concentrated outside the region of interest, specifically
arising from a rotating eternal shell for the vacuum energy
de-Sitter type solutions considered in [33–37].

A. Preservation of the equations of state

The full second order energy-momentum tensor is

Tt
t ¼

−λ
4πr2

þ
�
rð2ωðrω00 þ 4ω0Þ þ rðω0Þ2Þ

48π
−

m0
0

4πr2
þ P2ðcos θÞ

�
κ2ðrk002 þ 3k02Þ

4πr
−
2k2 þm0

2

4πr2
−

3m2

4πκ2r3

−
rð2ωðrω00 þ 4ω0Þ þ rðω0Þ2Þ

48π

��
; ð3:7Þ

Tt
ϕ ¼ −

�
r sin2ðθÞðrω00 þ 4ω0Þ

16π

�
; ð3:8Þ

Tϕ
t ¼ −

�ð4λω − κ2rðrω00 þ 4ω0ÞÞ
16πr2

�
; ð3:9Þ

Tϕ
ϕ ¼

�
κ2r2ðrh000 þ h00Þ− rm0

0 þm0

8πr3
þ h2κ2rþm2

8πκ2r3
−
rð2ωðrω00 þ 4ω0Þ þ 3rðω0Þ2Þ

48π

þP2ðcosθÞ
8πr3

�
r

�
κ2rðrðh002 þ k002Þ þ h02 þ 2k02Þ− 4h2 −m0

2 þ
r3ω0

6
ð3rω0 þ 8ωÞ þ r4ωω00

3

�
þm2 −

4m2

κ2

��
; ð3:10Þ

Tr
r ¼

−λ
4πr2

þ
�
κ2r2h00 −m0

4πr3
þ r2ðω0Þ2

48π
−
P2ðcos θÞ
4πr3

�
3h2rþ 2k2rþm2 þ

r5ðω0Þ2
12

− κ2r2ðh02 þ k02Þ
��

; ð3:11Þ

Tθ
θ ¼

�
κ2r2ðh00 þ rh000Þ − rm0

0 þm0

8πr3
−
h2κ2rþm2

8πκ2r3
−
r2ðω0Þ2
48π

þ P2ðcos θÞ
8πr3

�
r

�
κ2r2h002 þ κ2rh02 þ κ2r2k002 þ 2κ2rk02 −m0

2 þ
r4ðω0Þ2

6

�
− 2h2rþ

�
1 −

2

κ2

�
m2

��
; ð3:12Þ

Tr
θ ¼ r2κ2Tθ

r ¼
�
3 sinð2θÞ ðκ2r2ðh02 þ k02Þ − rh2κ2 −m2Þ

16πr2

�
: ð3:13Þ

Here terms in big square brackets are second order, terms
in curly brackets are first order, and we use the shorthand κ
from earlier. For a stationary axisymmetric metric of the
form Eq. (2.1) the eigenvalues of the energy-momentum
tensor follow a pattern due to its block diagonal structure,
and can be written as

1As we will see in the next subsection, preservation of the
equation of state is not enough to fully specify the frame
dragging. However, because these examples for frame dragging
lead to terms going to zero, the other equations simplify and exact
solutions for the other functions can be found.
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Λ0 ¼
1

2

	
Tt

t þ Tϕ
ϕ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTt

t − Tϕ
ϕÞ2 − 4Tϕ

tTt
ϕ

q 

; ð3:14Þ

Λ3 ¼
1

2

	
Tt

t þ Tϕ
ϕ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTt

t − Tϕ
ϕÞ2 − 4Tϕ

tTt
ϕ

q 

; ð3:15Þ

Λ1 ¼
1

2

	
Tr

r þ Tθ
θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr

r − Tθ
θÞ2 − 4Tθ

rTr
θ

q 

; ð3:16Þ

Λ2 ¼
1

2

	
Tr

r þ Tθ
θ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr

r − Tθ
θÞ2 − 4Tθ

rTr
θ

q 

: ð3:17Þ

When expanded to second order, the eigenvalues of this
energy-momentum tensor are

Λ0 ¼ Tt
t −

r sin2ðθÞð4ω0 þ rω00Þð4λω − κ2rðrω00 þ 4ω0ÞÞ
64πλ

;

ð3:18Þ

Λ1 ¼ Tr
r; ð3:19Þ

Λ2 ¼ Tθ
θ; ð3:20Þ

Λ3 ¼ Tϕ
ϕ þ

r sin2ðθÞð4ω0 þ rω00Þð4λω− κ2rðrω00 þ 4ω0ÞÞ
64πλ

:

ð3:21Þ

To this second order, we have Λ1 ¼ Tr
r and Λ2 ¼ Tθ

θ

because the effects from the Tr
θTθ

r cross term are pushed
to higher order.
One expression for eigenvectors in ðt; r; θ;ϕÞ coordi-

nates, correct to second order, is

xμ0 ¼
�
1; 0; 0;ω −

κ2rðrω00 þ 4ω0Þ
4λ

�
; ð3:22Þ

xμ1 ¼
�
0; 1;

3 sinð2θÞðm2 − κ2rðrðh02 þ k02Þ − h2ÞÞ
4κ2λr2

; 0

�
;

ð3:23Þ

xμ2 ¼
�
0;−

3 sinð2θÞðm2 − κ2rðrðh02 þ k02Þ − h2ÞÞ
4λ

; 1; 0

�
;

ð3:24Þ

xμ3 ¼
�
−
r3 sin2ðθÞðrω00 þ 4ω0Þ

4λ
; 0; 0; 1

�
: ð3:25Þ

Note that the xμ0; x
μ
3 have the zeroth order term and a first

order term while the xμ1; x
μ
2 have the zeroth order term and a

second order term. Notice that in the vacuum dragging
Eq. (3.5) case xμ3 is purely along the ϕ direction and in
the alternate frame dragging case xμ0 is purely along the t
direction.
Now that we have expressions for the components and

eigenvalues in the energy-momentum tensor for arbitrary
perturbation functions, we can now use a form of the
stringy equation of state (1.4), being Λ2 ¼ 0;Λ3 ¼ 0;
Λ0 − Λ1 ¼ 0, to derive differential equations from which
the perturbation functions should follow. Notice that each
of these equations will separate into a monopole term and a
quadrupole term.
Since Λ2 and Λ3 are separately zero, if we take their

difference we also obtain Λ2 − Λ3 ¼ 0, which leads to the
algebraic condition allowing for the elimination of h2

h2 ¼
−m2

κ2r
−
r4ð4ð7λ − 4Þðω0Þ2 − κ2r2ðω00Þ2 − 8κ2rω0ω00Þ

24λ
:

ð3:26Þ

Next, the equation of state (1.4) requires the condition
Λ0 − Λ1 − 2Λ2 ¼ 0, using the quadrupole part of this
condition and Eq. (3.26) gives a differential equation

m2 ¼ −
κ2r2

72λ
ð−4κ2r4ω0ðð31λ − 16Þrωð3Þ − κ2r2ωð4Þ þ 2ð65λ − 33Þω00Þ

þ κ4r5ðr2ðωð3ÞÞ2 þ rω00ð26ωð3Þ þ rωð4ÞÞ þ 83ðω00Þ2Þ − 12λm00
2 þ 16ð5λ − 2Þð7λ − 4Þr3ðω0Þ2Þ; ð3:27Þ

where (3),(4) specify third and fourth order derivatives with r, which specifies m2. Finally, using the quadrupole part of
Λ0 − Λ1 ¼ 0 gives a differential equation for k2

12κ4λr2ðrk002 þ 2k02Þ ¼ 72λm2 − κ2r5ð−2ðλð56λ − 47Þ þ 8Þðω0Þ2 þ 2κ2ð7λ − 3Þr2ðω00Þ2
− κ4r2ωð3Þðrω00 þ 4ω0Þ − 4ðλð34λ − 31Þ þ 7Þrω0ω00Þ: ð3:28Þ

For the monopole functions, we can use the remaining monopole term from Λ0 − Λ1 ¼ 0 to obtain an expression
for h00, being

ROTATING ANISOTROPIC STRINGY SPHEROID IN A … PHYS. REV. D 106, 104038 (2022)

104038-5



h00 ¼
m0 − rm0

0

κ2r2
þ r3ðrω00 þ 4ω0Þ2

24λ
: ð3:29Þ

If we take the derivative of this we can replace both h00 and
h000 in the other monopole equation [with the condition
Eq. (3.26), Λ2 ¼ 0 and Λ3 ¼ 0 have identical forms], we
obtain a final differential equation for m0

m00
0 ¼ −

r3

24λ
ð8ð13λ − 6Þðω0Þ2 − κ2r2ω00ð2rωð3Þ þ 13ω00Þ

− 8κ2rω0ðrωð3Þ þ 8ω00ÞÞ: ð3:30Þ

Importantly, the stringy equation of state can now be
satisfied (to second order) regardless of what ω is, provided
the second order functions obey the above rules. In theory, a
system with any given function for ω could be used with
Eqs. (3.26)–(3.30) to find second order functions such that
the equation of state is preserved. Presumably ω could be
determined by some ansatz about the form of the energy-
momentum tensor beyond the equation of state, such as
the uniform angular velocity assumption in the standard
Hartle framework.

IV. EXAMPLE FRAME DRAGGINGS

Despite the fact that the preservation of the equation of
state is not sufficient to specify the frame dragging, we have
isolated two cases which have interesting behavior: the
vacuum frame dragging case Eq. (3.5) and the alternate
case Eq. (3.6). In both of these cases we find exact solutions
to the differential equations for the perturbation functions.

A. Vacuum frame dragging

For our first example, consider that the frame dragging is
of the “vacuumlike” form Eq. (3.5). Based on the behavior
of the vacuumlike frame dragging in other systems, we
might expect this solution to apply when the Komar angular
momentum density is concentrated inside (for W2) or
outside (for W1) the region of spacetime in which the
background metric (1.1) applies.
In the vacuum frame dragging case, Eq. (3.30) simply

becomes

m00
0 ¼ −

3W2
2

r5
ð4:1Þ

which may be trivially integrated to obtain

m0 ¼ −
W2

2

4r3
þ z1rþ z2 ð4:2Þ

where zn are integration constants for the monopole
functions. With m0, Eq. (3.29) likewise simplifies and
may be trivially integrated, giving

h00 ¼
1

κ2

�
z2
r2

−
W2

2

r5

�
; ð4:3Þ

h0 ¼
1

κ2

�
−
z2
r
þW2

2

4r4

�
þ z3: ð4:4Þ

This fully specifies the monopole functions. The
quadrupole functions are slightly more complicated.
Equation (3.27) leads to

m2 ¼
1

6
κ2r2m00

2 þ
2κ2ð3λ − 1ÞW2

2

r3
; ð4:5Þ

m2 ¼ q1r
1
2
ð1−SÞ þ q2r

1
2
ð1þSÞ þ 2κ2ð3λ − 1ÞW2

2

ð4λ − 1Þr3 ð4:6Þ

where we introduce the shorthand S ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
24
κ2
þ 1

q
and the

integration constants for the quadrupole functions qn. We
use Eqs. (3.26) to obtain the expression for h2

h2 ¼
3W2

2

2r4
−
m2

κ2r
; ð4:7Þ

where m2 takes the form from Eq. (4.6). Finally, we obtain

12κ4λr2ð2k02 þ rk002Þ ¼
18λð2λð8λ − 5Þ þ 1

4λ−1ÞW2
2

r3

− 72λðq1r1−S2 þ q2r
Sþ1
2 Þ; ð4:8Þ

k2 ¼
q1r−

Sþ1
2

κ2
þ q2r

S−1
2

κ2
þ q3

r
þ q4 þ

ð4ð3 − 8λÞλþ 1ÞW2
2

8ð1 − 4λÞκ2r4 :

ð4:9Þ

The nonzero eigenvalue becomes

Λ0 ¼ Λ1 ¼
−λ
4πr2

þ
�
−

z1
4πr2

þP2ðcosθÞ
2πr2

�
q3ð−3þ 2λÞ

2r
− q4 þ

ðq1r−1
2
ð1þSÞ þ q2r

S−1
2 Þλ

κ2
þW2

2λð−1þ 4ð3− 4λÞλÞ
4r4ð1− 4λÞκ2

��
: ð4:10Þ

Notice how W1, z2, z3 do not show up in the energy-momentum tensor eigenvalue. The entire energy-momentum tensor
simplifies considerably, becoming

Tt
t ¼ Tr

r ¼ Λ0 ¼ Λ1; ð4:11Þ
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r2κ2Tθ
r ¼ Tr

θ ¼
�
−3 sinð2θÞðW2

2λþ q3r3κ2Þ
16πr5

�
; ð4:12Þ

Tϕ
t ¼

−λðW2 þ r3W1Þ
4πr5

; ð4:13Þ

with all other components vanishing to this order.
The SG and J scalars are

SG ¼
�
logðκÞ

κ

�
z2
r2

−
W2

2

r5
þ P2ðcos θÞ

�
1

2
q1r−

3þS
2 ð1þ SÞ

−
1

2
q2r

S−3
2 ðS − 1Þ þ 2W2

2κ
2

r5ð1 − 4λÞ
���

; ð4:14Þ

J ¼
�
−3W2κ sin2 θ

2r2

�
: ð4:15Þ

It is noteworthy that the surface gravity parameter SG of
the unperturbed koosh is zero because the e2ν goes to a
constant, so its derivative is zero (the Komar mass of the
unperturbed koosh is also zero, as for the unperturbed
koosh SG;ω and J being integrated in Eq. (2.9) are all
separately zero). For the system with vacuum frame
dragging, the SG is second order in rotation and J is first
order in rotation.

1. Divergences of perturbation functions
in vacuum frame dragging

If the integration constants W2, z2, q1, q3 are nonzero,
then there will be a divergence of the metric perturbation
functions as r → 0. There will likewise be divergences as
r → ∞ in the quadrupole sector if q2 is nonzero. There is a
r → ∞ divergence in the function m0 if the integration
constant z1 is present, but it is noteworthy that m0 enters
into the metric (2.11) in the combination m0=ðr − 2mÞ ¼
m0=ðκ2rÞ, which has no divergences associated with z1.
Note however that for a given system any of these terms
might be present if the background metric (1.1) is only
valid over a certain domain, as is the case with global
monopoles (which differs at small r) or something that is
cut off by a shell (which would differ at large r). The
integration constants W1, z3, q4 do not cause any diver-
gences in the metric functions. Strictly speaking, there
is a divergence in the nonzero eigenvalue of the energy-
momentum tensor Eq. (4.10) associated with q4 as r → 0,
but it has the same 1=r2 divergence as the background
λ=4πr2 term, so the q4 term can still be considered small
with respect to the background term. A similar formally
divergent but small compared to the background term in
Eq. (4.10) comes from z1. The q1, q3, W2 terms in
Eq. (4.10) all diverge faster than the background term as
r → 0, and the q2 term will diverge as r → ∞.
Independently of the divergences at large or small

radii, there are particular values of λ in which there are

divergences. It is not surprising, given the pathological
nature of the background line element (1.1) in the
λ → 1=2, κ2 → 0 quasiblack hole limit, that there are a
multitude of divergences in the perturbation functions,
associated with W2, z2, q1, q2. However, divergences due
to these terms also show up in the eigenvalue Eq. (4.10)
and the surface gravity parameter Eq. (4.14), which are
scalars, showing that divergences caused by these inte-
gration constants in the quasiblack hole limit are not
simply a coordinate artifact. Elimination of W2 means
that the frame dragging inside the quasiblack hole would
go to a constant, which based on the behavior in the de
Sitter type solutions might indicate the angular momen-
tum is localized to the shell.
A more surprising feature is the fact that for nonzeroW2,

the m2 function (and hence h2) will diverge at all radii
when λ ¼ 1=4, in which the background metric exhibits no
special behavior. This divergence at λ ¼ 1=4 also manifests
in the W2 term of Eq. (4.10), and in the surface gravity
parameter Eq. (4.14), indicating it has coordinate indepen-
dent significance. A summary of divergences in scalar
quantities under different conditions and the associated
integration constants is given in Table I.

B. Other frame dragging

Recall that there is a second special frame dragging with
regard to the off diagonal first order in rotation components,
being Eq. (3.6). To simplify the notation, we introduce the
shorthand

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2λ

1 − 2λ

r
ð4:16Þ

such that

ω ¼ War−Z=2 þWbrZ=2

r3=2
: ð4:17Þ

With this in mind, one may solve the monopole equa-
tions (3.30), (3.29) and obtain

TABLE I. Table showing integration constants which cause
divergences in scalar quantities given certain conditions. An
asterisk indicates that, while a divergence is formally present, it
diverges in the same manner as the background and remains
subdominant; z1 and q4 are associated with divergences of this
type. W1 and z3 do not lead to divergences in any of these
quantities.

r ¼ 0 r ¼ ∞ λ ¼ 1=2 λ ¼ 1=4

Λ W2, q1, q3;z�1; q
�
4 q2 W2, q1, q2 W2

SG W2, z2, q1 q2 W2, z2, q1, q2 W2

J W2

ω W2
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m0 ¼
1

24
W2

bðZ − 3ÞrZ −
1

24
W2

aðZ þ 3Þr−Z þ rza þ zb; ð4:18Þ

h0 ¼
W2

aðZ þ 3Þr−Z−1
6κ2ðZ þ 1Þ þW2

bðZ − 3ÞrZ−1
6κ2ðZ − 1Þ −

8λWaWb þ 6κ2zb
6κ4r

þ zc: ð4:19Þ

The solutions to the quadrupole equations (3.27), (3.26), (3.28) are

m2 ¼ qar
Sþ1
2 þ qbr

1−S
2 þ 1

6
W2

ar−Zð−2λðZ þ 1Þ þ Z þ 9Þ þ 1

6
W2

br
Zð2λðZ − 1Þ − Z þ 9Þ; ð4:20Þ

h2 ¼
1
12
W2

ar−Z−1ð2λ − 2λZ þ Z − 9Þ þ 1
12
W2

br
Z−1ð2λþ ð2λ − 1ÞZ − 9Þ − qar

S−1
2 − qbr

−S−1
2

κ2
; ð4:21Þ

k2 ¼
qar

S
2
−1
2ð−2λþ ð2λ − 1ÞSþ 25Þ

κ4ðS − 1ÞS −
qbr

1
2
ð−S−1Þð2λþ ð2λ − 1ÞS − 25Þ

κ4SðSþ 1Þ −
qc
r
þ qd

þW2
ar−Z−1ð16λ2ðZ þ 1Þ − 10λð9þ 7ZÞ − 9ð5Z − 9ÞÞ

12κ2ð2λ − 9ÞðZ þ 1Þ þW2
br

Z−1ð16λ2ðZ − 1Þ þ 10λð9 − 7ZÞ − 9ð5Z þ 9ÞÞ
12κ2ð2λ − 9ÞðZ − 1Þ

−
4λWaWb

3κ4r
−
4λWaWb logðrÞ

3κ4r
ð4:22Þ

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
24
κ2
þ 1

q
as before. Notice that the qa and qb

terms in Eq. (4.6) and the q1, q2 terms in (4.20) are
analogous, as are the z1, z2 and za, zb terms in Eqs. (4.2)
and (4.18). This is because they are associated with the
homogeneous, or ω ¼ 0, equations for m0 and m2, which
become

Eq:ð3.30Þ → m00
0 ¼ 0; ð4:23Þ

Eq:ð3.27Þ → m2 ¼
κ2r2

6
m00

2: ð4:24Þ

Because the terms are associated with qa, qb and za, zb
terms are associated with the homogeneous mn equations
analogous terms can show up in the mn functions for all
frame draggings.
The nonzero eigenvalue of the energy-momentum tensor

becomes

Λ0 ¼ Λ1 ¼
−λ
4πr2

þ
�
WaWbλ

6πr3κ2
−

za
4πr2

þ λðr−3þZW2
b þ r−3−ZW2

aÞ
12πκ2

þ P2ðcos θÞ
�
qcð3 − 2λÞ

4πr3
−

qd
2πr2

þWaWbλð5 − 2λþ ð6 − 4λÞ logðrÞÞ
6πr3κ4

þ λ

2πκ2
ðqarðS−5Þ=2 þ qbr−ðSþ5Þ=2Þ

− 16λð5 − 2λÞ
κ2

�
r−3−ZW2

a

96πð1þ ZÞ −
r−3þZW2

b

96πðZ − 1Þ
�
− 16Zλð3þ 4λðλ − 5ÞÞ

9þ 4λðλ − 5Þ
�

r−3−ZW2
a

96πð1þ ZÞ þ
r−3þZW2

b

96πðZ − 1Þ
���

:

ð4:25Þ

The energy-momentum tensor follows the structure

Tt
t ¼ Tr

r ¼ Λ0 ¼ Λ1; ð4:26Þ

r2κ2Tθ
r ¼ Tr

θ ¼
sinð2θÞ
8πr2

�
3qcκ2

2
þ ð3ðS − 25þ ðS − 1ÞðSκ2 − 2λÞÞÞðqar1þS

2 þ qbr
1−S
2 Þ

4Sκ2

þ 2WaWbλ logðrÞ
κ2

−
3λ

4
ðr−ZW2

a þ rZW2
bÞ þ

Z
4

�
2λ2 − 13λ

9 − 2λ

�
ðr−ZW2

a − rZW2
bÞ
�
; ð4:27Þ
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Tt
ϕ ¼ −

ðλsin2ðθÞÞðWar−
3
2
−Z

2 þWbr−
3
2
þZ

2Þ
4πκ2

; ð4:28Þ

with all other components vanishing to this order. Notice
that in this case as well as in the vacuum dragging case, we
had Tϕ

ϕ ¼ 0 and Tt
t ¼ Λ0. This is because we either had

one or the other of Tϕ
t or Tt

ϕ as zero for the particular
frame dragging function. For other frame dragging func-
tions for which the product Tϕ

tTt
ϕ ≠ 0, we no longer

require Tt
t ¼ Λ0 and Tϕ

ϕ ¼ 0 to satisfy the general
expressions.
The SG and J scalars become

SG ¼ logðκÞ
κ

�
1

6
r−2þZW2

bðZ − 3Þ − 1

6
r−2−ZW2

að3þ ZÞ þ zb
r2

þ 4λWaWb

3r2κ2
þ P2ðcos θÞ

�
1

2
qar−

3
2
þS

2ð1 − SÞ

þ 1

2
qbr−

3
2
−S
2ð1þ SÞ þ 1

12
ððZ − 1Þκ2 − 8Þðr−2−ZW2

að−1 − ZÞ þ r−2þZW2
bð1þ ZÞÞ

��
; ð4:29Þ

J ¼ 1

4
κ sin2ðθÞðWbðZ − 3ÞrZ−12 −WaðZ þ 3Þr12ð−Z−1ÞÞ:

ð4:30Þ

1. Divergences in the alternate frame dragging

Because the functions in the alternate frame dragging
involve more notational shorthand to write in a reasonable
amount of space, it is helpful to review how the different
shorthand parameters are related to λ before examining
what divergences may exist. Plots of the shorthand para-
maters are depicted in Fig. 1, where we see that 5 ≤ S ≤ ∞
and 3 ≤ Z ≤ ∞. There are many terms in the perturbation
functions and energy-momentum tensor components which
have powers of κ in denominators, which would of course
lead to divergences in the quasiblackhole limit. Notice that
within the eigenvalue Eq. (4.25) and within the surface

gravity parameter Eq. (4.29), both Wa and Wb have to be
zero in order for these scalars to not diverge at all radii in
the quasiblackhole limit, which implies no frame dragging
could be present, or that the alternate frame dragging is
not really compatible with a quasiblackhole configuration.
The other terms in denominators i.e., Z − 1; Z þ 1; S;
S − 1; Sþ 1; S2 − 1; 2λ − 9 do not have a zero over the
0 ≤ λ < 1=2 interval, so there are no intermediate values of
λ causing divergences like λ ¼ 1=4 did for the vacuum
dragging case.
There are however terms which diverge either as r → 0 or

r → ∞. Because Z ≥ 3, the presence of nonzero Wa will
cause divergences as r → 0 in the frame dragging, all second
order functions, and all nonzero energy-momentum tensor
components for general λ. The Wb terms are typically
associated with divergences as r → ∞. However, for
λ ¼ 0, Z ¼ 3, the Wb term in frame dragging goes to a
constant, and the Wb terms in the monopole perturbation
functions and energy-momentum tensor components/eigen-
values vanish, but the quadrupole perturbation functions still
have divergent Wb terms as r → ∞. Among the monopole
integration constants, za causes a divergence inm0 as r → ∞
[note the caveat that the combination in the line element
m0=ðr − 2mÞ ¼ m0=ðκ2rÞ remains finite since za and z1 are
analogous terms from the homogeneous solution] and a
formally divergent but small compared to the background
term in Eq. (4.25), zb causes a divergence in h0 as r → 0,
and zc does not cause any divergences. Among the quadru-
pole constants, qa is associated with divergences as r → ∞,
qb and qc are associated with divergences as r → 0, and qd
causes another formally divergent but small compared to the
background term in the eigenvalue Eq. (4.25). We give a
summary of divergences for the alternate frame dragging in
Table II. It is important to reiterate that one may not care
about divergent terms if they occur outside the domain where
the background solution would be valid, such as r → ∞ for
objects cut off by a shell or r → 0 for global monopole like
objects with a smoothed core.

FIG. 1. Graph showing the behavior of the shorthand items with
respect to the parameter λ. Over the interval 0 ≤ λ < 1=2 that we
are interested in, κ2 goes from 1 to 0, Z goes from 3 to ∞, and S
goes from 5 to ∞.
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V. CONCLUSION

Within general relativity, rotating axisymmetric systems
are of considerable interest. In this paper we show that a
modified Hartle formalism (using the same form of
perturbed metric but different conditions on the energy-
momentum tensor) is capable of producing rotating sol-
utions in a perturbative framework which preserve heavily
anisotropic equations of state far different from the original
application of perfect fluids. This is accomplished by
deriving differential equations for the second order pertur-
bation functions and presenting closed form solutions to a
system which could be interpreted as describing a region of
some global monopole or string cloud with rotation,
although additional information beyond the equation of
state is required to specify what frame dragging will be
appropriate in a given physical situation. Examining
specific physical situations and attempting to determine
the appropriate frame dragging function (and by extension
the other functions) is a possible avenue for future work.
For instance, it seems likely that a system of the “vacuum”
dragging case with W1 only soldered to a Hartle-Thorne
exterior may describe a stationary interior bounded by a
rotating shell, although this would have to be verified.
Additionally, one might consider a situation further akin to
the original Hartle method and postulate a uniform angular
velocity. This may be appropriate for a literal string cloud
as it would prevent the strings from getting progressively
more tangled, which could violate the assumption of a
stationary system.
One other possible extension of this work is examination

of slowly rotating nonlinear electrodynamics monopoles. In
the static case, Bardeen type nonsingular black holes can

also arise from nonlinear electrodynamics theories (see
e.g., [17,38,39]) because of their [(11)(1,1)] Segre type, so
rotating nonsingular black holes may also be amenable to
this method. It is known that rotating versions of these
black holes and nonlinear electrodynamics monopoles can
be generated by the Newman-Janis algorithm (for instance
[40,41]), but these rotating versions typically no longer
follow the equation of state associated with the underlying
nonlinear electrodynamics theory supposed to generate
the static version [23,42]. Beyond the preservation of the
equation of state, rotating systems generated by the
Newman-Janis algorithm may contain singularities even
if the original system was nonsingular [43], which is an
obvious drawback for modeling of nonsingular black holes.
However, the koosh is also a Segre type [(11)(1,1)] system,
can describe a monopole in a particular nonlinear electro-
dynamics theory [8], and a modified version of the Hartle
formalism was able to give rotating solutions which
preserved its equation of state. Appropriate equations of
state for nonsingular black holes or nonlinear electrody-
namics monopoles may be derived from a Lagrangian, or
may be phenomenologically derived from the nonrotating
solution as in [23]. That the modified Hartle method works
for the koosh gives hope that rotating solutions for Bardeen
type black holes or other nonlinear electrodynamics sys-
tems which satisfy the underlying equation of state may be
found in a similar manner, at least within the slowly
rotating nearly spherical limit.
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TABLE II. Integration constants which cause divergences in scalar quantities given certain conditions. An asterisk
indicates that, while a divergence is formally present, it diverges in the same manner as the background and remains
subdominant. Unlike the previous case, both frame dragging W constants are associated with divergences, and we
also have divergent terms proportional to the product Wa ×Wb. Additionally, there is no intermediate value of λ
associated with divergences in these quantities. Corresponding behavior with respect to conditions for divergences
of the integration constants from the homogeneous sector of the equations (za, zb, qa, qb versus z1, z2, q1, q2) is
evident in comparing the results with Table I. The integration constant zc has no associated divergences in these
quantities.

r ¼ 0 r ¼ ∞ λ ¼ 1=2

Λ Wa;Wa ×Wb; qb; qc;z�a; q�d Wb, qa Wa;Wb;Wa ×Wb; qa; qb
SG Wa;Wa ×Wb; zb; qb Wb, qa Wa;Wb;Wa ×Wb; zb; qa; qb
J Wa Wb
ω Wa Wb
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