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Solutions to the angular Teukolsky equation have been used to solve various applied problems in physics
and are extremely important to black-hole physics, particularly in computing quasinormal modes and in the
extreme-mass-ratio inspiral problem. The eigenfunctions of this equation, known as spin-weighted
spheroidal functions, are essentially generalizations of both the spin-weighted spherical harmonics and
the scalar spheroidal harmonics. While the latter functions are quite well understood analytically, the spin-
weighted spheroidal harmonics are only known analytically in the spherical and oblate asymptotic limits.
Attempts to understand them in the prolate asymptotic limit have met limited success. Here, we make use of
a high-accuracy numerical solution scheme to extensively explore the space of possible prolate solutions
and extract analytic asymptotic expansions for the eigenvalues in the prolate asymptotic limit. Somewhat
surprisingly, we find two classes of asymptotic behavior. The behavior of one class, referred to as “normal,”
is in agreement with the leading-order behavior derived analytically in prior work. The second class of
solutions was not previously predicted, but solutions in this class are responsible for unexplained behavior
seen in previous numerical prolate solutions during the transition to asymptotic behavior. The behavior of
solutions in this “anomalous” class is more complicated than that of solutions in the normal class, with the
anomalous class separating into different types based on the behavior of the eigenvalues at different
asymptotic orders. We explore the question of when anomalous solutions appear and find necessary but not
sufficient conditions for their existence. It is our hope that this extensive numerical investigation of the
prolate solutions will inspire and inform new analytic investigations into these important functions.
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I. INTRODUCTION

Spin-weighted spherical harmonics sYlmðθ;ϕÞ are used
widely in physics, providing a complete set of orthonormal
basis functions that can be used to represent tensor-
valued functions on the surface of a sphere [1]. Scalar
spheroidal harmonics 0Slmðθ;ϕ; cÞ are similar to the
common scalar spherical harmonics Ylmðθ;ϕÞ, except that
they are obtained from separation of variables in terms of
spheroidal coordinates instead of spherical coordinates.
The additional argument c is the oblateness parameter,
which determines the oblateness of the coordinate system.
While the spin-weighted spherical harmonics sYlmðθ;ϕÞ
and their associated separation constants can be represented
as known analytic functions, closed form solutions for the
spheroidal harmonics and their separation constants are
only known in special cases. Generalizing both the spin-
weighted spherical harmonics and the scalar spheroidal
harmonics are the spin-weighted spheroidal harmonics
(SWSHs) sSlmðθ;ϕ; cÞ.

Introduced by Teukolsky [2], spin-weighted spheroidal
harmonics can be expressed in terms of the spin-weighted
spheroidal functions (SWSFs) sSlmðx; cÞ by separating out
the azimuthal dependence,

sSlmðθ;ϕ; cÞ≡ 1

2π sSlmðcos θ; cÞeimϕ: ð1Þ

The differential equation governing the SWSFs is

∂x½ð1 − x2Þ∂x½sSlmðx; cÞ�� þ
�
ðcxÞ2 − 2csxþ sþ sAlmðcÞ

−
ðmþ sxÞ2
1 − x2

�
sSlmðx; cÞ ¼ 0; ð2Þ

where m, s, and l are integers or half-integers,
l ≥ maxðjmj; jsjÞ, and x ¼ cos θ with θ being the usual
polar angle. Equation (2) is often referred to as the angular
Teukolsky equation. As a Sturm-Liouville problem, the
eigenvalue sAlmðcÞ, also referred to as the angular sepa-
ration constant, is fixed by the requirement that sSlmðx; cÞ
be finite at jxj ¼ 1.
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Teukolsky first derived Eq. (2) for use in relativistic
physics to describe perturbations near rotating black holes.
One of the first applications of Eq. (2) was by Bardeen and
Press to solve for synchrotron radiation of a point mass in
the Kerr geometry [3]. Equation (2) has also been used in
the case of point-mass perturbations orbiting a black hole to
determine radiated angular momentum and energy from the
system [4].
Equation (2) has also been applied in fields outside of

relativity since the SWSHs form a natural basis in sphe-
roidal coordinate systems. Figueiredo used s ¼ 1 SWSHs
to solve the two-center electron problem [5]. Larsson,
Levitina, and Brändas use the scalar spheroidal harmonics
to solve various problems involved in signal processing [6].
An especially important application of SWSHs is in

determining the quasinormal modes (QNMs) and total
transmission modes (TTMs) of the Kerr geometry. In these
applications, Eq. (2) is solved together with the radial
Teukolsky equation. See Ref. [7] and references within for
more details. QNMs are the natural ringing modes for linear
perturbations of various fields. In particular, the spin-
weight s ¼ �2 QNMs are used to describe the gravita-
tion-wave ring-down of a perturbed black hole and are
critical to the interpretation of gravitational-wave observa-
tions. QNMs represent solutions where boundary condi-
tions are fixed so that waves are forbidden from entering the
system. That is, waves are not permitted to move from the
black-hole horizon toward spatial infinity, or to enter from
spatial infinity. On the other hand, TTMs reverse one of
these two boundary conditions. Left TTMs (TTMLs)
reverse the condition at the black-hole horizon. For
TTMLs, waves are forbidden from traveling into the
black-hole horizon. Right TTMS (TTMRs) reverse the
condition at spatial infinity and only allow waves to travel
in from spatial infinity. Both types of TTMs represent the
special modes that do not reflect off of the gravitational
potential, yielding modes that travel entirely away from
(TTMLs) or toward (TTMRs) the black-hole horizon.
Recently, Cook, Anacharicio, and Vickers [8] used

numerical methods to explore gravitational TTMs of the
Kerr geometry, identifying a new branch of the gravitational
TTMs which required solutions to Eq. (2) in the asymptotic
limit c → −i∞. Unfortunately, relatively little is known
about the asymptotic limit of the SWSHs as c → complex-
∞. However, their numerical solutions were sufficiently
accurate that they were able to extract the first four terms in
the asymptotic expansion for sAlmðcÞ in the limit c → −i∞
for s ¼ �2, and their results were in agreement with the
known asymptotic limit for the angular separation constant
for the scalar spheroidal harmonics [9,10].
As mentioned above, even the scalar spheroidal har-

monics do not have known analytic solutions except in
special cases. Flammer [9] explored these functions in the
limit of small c, and in the asymptotic limits of purely real
and purely imaginary c. We refer to coordinates and

solutions where c is purely real as oblate. Likewise, when
c is purely imaginary, the coordinates and solutions are
called prolate. In general, c can be complex. In this case,
there is no direct connection to a spheroidal coordinate
system, but we still refer to c as the oblateness parameter.
Beyond the scalar case, less is known about the asymptotic
limits of the SWSHs. In the oblate case, an asymptotic
expansion for sAlmðcÞ has been derived analytically by
Ottewill and Casals [11]. However, for the prolate case,
only the leading order term in the asymptotic expansion for
sAlmðcÞ has been determined [10]. And, as we will show in
this work, even this leading order term in the prolate
expansion is not valid for all asymptotic solutions.
The success in determining an asymptotic expansion for

prolate sAlmðcÞ in the special case of s ¼ �2 [8] was made
possible by the high accuracy and precision of numerical
solutions of Eq. (2) using the spectral method described in
detail in Ref. [7]. In this paper, we employ this approach to
explore the prolate asymptotic limit of the SWSHs for a
broad range of spin weights. We have generated extensive
numerical solutions of the SWSHs for a large range of
integer values for l, m, and s; and we have constructed
sequences of solutions where l, m, and s are held fixed
while c covers a range of purely imaginary values from the
small prolate limit c → −i0 to values large enough to
accurately explore the asymptotic prolate limit c → −i∞.
Using this data, we have been able to construct the first

few terms in the asymptotic expansion for sAlmðcÞ in the
prolate case. However, we have found that the asymptotic
behavior has a richer structure than expected. Most of the
sequences we find have a leading asymptotic behavior that
is in agreement with prior analytic work [10]. We refer to
such sequences with fixed values of l, m, and s as normal
sequences, and for these sequences we have determined the
asymptotic expansion through the first five terms. However,
for certain values of l,m, and s, the leading behavior of the
asymptotic expansion is not normal. We call such sequen-
ces anomalous, and interestingly, the asymptotic behavior
mirrors that of the oblate case [10,11] for the first few
terms. However, complicating things, the number of terms
that mirror the oblate expansion varies. We suspect that this
unusual behavior in the prolate case may be related to the
difficulties in analytically constructing an asymptotic
expansion [10].
The purpose of this paper is to give a detailed description

of the behavior of the SWSHs in the prolate asymptotic
limit based on our numerical solutions. The asymptotic
expansions we extract from the data will be useful in their
own right. But it is also our hope that a more complete
understanding of the behavior of the SWSHs in this limit
will provide some insight that will aid in deriving the
asymptotic limit fully analytically. We will begin in Sec. II
with a summary of what is known analytically about
Eq. (2). Then in Sec. III, we will describe the general
behavior of, and fits to, our numerically generated
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eigensolutions. We will also explore the conditions under
which anomalous solutions exist. Finally, in Sec. IV, we
summarize our findings.

II. ANALYTIC SOLUTIONS TO THE ANGULAR
TEUKOLSKY EQUATION

An excellent overview of what is known analytically
about solutions to the angular Teukolsky equation can be
found in Ref. [10]. For brevity, we review only the most
important of these results.

A. Symmetries of the angular Teukolsky equation

The basic symmetries obeyed by the SWSFs and
the separation constants follow from Eq. (2) through
three transformations: fs → −s; x → −xg, fm → −m;
x → −x; c → −cg, and complex conjugation. From these
transformations, it follows that the SWSFs and the sepa-
ration constants satisfy the following conditions:

−sSlmðx; cÞ ¼ ð−1Þlþm
sSlmð−x; cÞ; ð3aÞ

sSlð−mÞðx; cÞ ¼ ð−1Þlþs
sSlmð−x;−cÞ; ð3bÞ

sS�lmðx; cÞ ¼ sSlmðx; c�Þ; ð3cÞ

and

−sAlmðcÞ ¼ sAlmðcÞ þ 2s; ð3dÞ

sAlð−mÞðcÞ ¼ sAlmð−cÞ; ð3eÞ

sA�
lmðcÞ ¼ sAlmðc�Þ: ð3fÞ

B. The spherical limit

As the oblateness parameter c → 0, the SWSHs reduce
to spin-weighted spherical harmonics. Thus, the angular
separation constant also tends towards the eigenvalue of the
spin-weighted spherical harmonics, such that

sAlmðc ¼ 0Þ ¼ lðlþ 1Þ − sðsþ 1Þ: ð4Þ

For small but nonvanishing c, the separation constant can
be expressed as a Taylor series [12],

sAlmðcÞ ¼ lðlþ 1Þ − sðsþ 1Þ − 2ms2

lðlþ 1Þ cþ
X∞
p¼2

fpcp;

ð5Þ

where the expansion coefficients fp have been worked out
and presented through order c6 in Ref. [10].

C. The oblate asymptotic limit

In the limit of large c, the behavior of solutions to Eq. (2)
have been most thoroughly explored for the oblate case
where c is purely real. Breuer et al. [13] performed the first
analytic derivation of the asymptotic oblate case, presenting
sAlmðcÞ as a power-series expansion in c. Their solution is
given as

sAlmðcÞ ¼ −c2 þ 2sqlmc −
1

2
½sqlm2 −m2 þ 2sþ 1� þ 1

c
A1 þ

1

c2
A2 þ

1

c3
A3 þ

1

c4
A4 þOðc−5Þ; ð6aÞ

where

A1 ¼ −
1

8
½sqlm3 −m2

sqlm þ sqlm − 2s2ðsqlm þmÞ�; ð6bÞ

A2 ¼ −
1

64
½5sqlm4 − sqlm

2ð6m2 − 10Þ þm4 − 2m2 − 4s2ð3sqlm2 þ 4sqlmmþm2 þ 1Þ þ 1�; ð6cÞ

A3 ¼ −
1

512
½33sqlm5 − sqlm3ð46m2 þ 92s2 − 114Þ − 132sqlm2ms2

þ sqlmð13m4 − 36m2s2 − 50m2 þ 8s4 − 100s2 þ 37Þ þ 4m3s2 þ 8ms4 − 52ms2�; ð6dÞ

and

A4¼−
1

1024
½63sqlm6−20sqlm

4ð5m2þ10s2−17Þ−292sqlm
3ms2þ sqlm

2ð39m4þ48s4−60m2s2−230ðm2þ2s2Þþ239Þ
þ sqlmmð72s4þ36m2s2−372s2Þ−2m2ðm4−12s4−2m2s2Þþ18m4þ16s4−40m2s2−30m2−60s2þ14�: ð6eÞ
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Note that the term −2s2ðsqlm þmÞ in Eq. (6b) differs
from the corresponding terms in Eq. (4.12) of Ref. [13],
Eq. (3.7) of Ref. [11], and Eq. (2.18) of Ref. [10] where
the factor of 2 is missing. Similarly, the term
−4s2ð3sqlm2 þ 4sqlmmþm2 þ 1Þ in Eq. (6c) differs from
the corresponding terms in Eq. (4.12) of Ref. [13], Eq. (3.6)
of Ref. [11], and Eq. (2.17) of Ref. [10] where the term
inside the parentheses is substantially different. These seem
to be errors that have propagated unnoticed from the
original work [13]. We have also expressed A3 in a more
compact form than found in Refs. [10,11,13]. The versions
of A3 in those references are expressed in terms of A1 but
are correct when the correct version of A1 is used.
We also include a term at order c−4 in Eq. (6a). The

coefficient A4 has not previously been determined.
However, we have been able to obtain this term via fits
to numerical data. The details of the derivation of this
additional term are outlined in Appendix B.
While Breuer et al. [13] were able to obtain the oblate

solution given in Eqs. (6), they were unable to determine
the quantity sqlm as a function of l, m, and s. This was
achieved by Casals and Ottewill [11] who used a WKB
approximation for the spheroidal function near the boun-
daries x ¼ �1 and matched it to a solution valid in the
interior. The full process of determining sqlm is quite
complicated, and we will not describe it in any detail here.
The result is

sqlm ¼
�
Lþ jmþsjþjm−sj

2
þ 1 − z0 l ≥ max ðslm; −slmÞ

2Lþ jm − jsjj − jsj þ 1 otherwise
;

ð7aÞ

where

slm ¼ jmþ sj þ s; ð7bÞ

z0 ¼
�
0 if l − slmeven

1 if l − slmodd
; ð7cÞ

and we have used the convenient notation that

L ¼ l −maxðjmj; jsjÞ: ð8Þ

We note that our forms for Eqs. (7a) and (7b) are slightly
different than those given in Refs. [10,11]. We choose these
definitions because they are equivalent, simpler, and less
prone to misinterpretation.1

Finally, we note that Eq. (6) clearly satisfies the
fundamental symmetry expressed by Eqs. (3d) and (3f),
but it does not satisfy Eq. (3e). This manifests in the

complicated definition of sqlm in Eq. (7), and in particular
because sqlm ≠ −sqlð−mÞ. Because of this, the oblate
asymptotic expansion of Eq. (6) is only valid for positive
real values of c. To obtain the oblate asymptotic expansion
for negative real values of c, one must explicitly
apply Eq. (3e).

D. The prolate asymptotic limit

In the prolate case, where c is purely imaginary, much
less is known analytically about the SWSHs. Only in the
scalar case where s ¼ 0 are solutions well understood
[9,14]. Flammer derived an asymptotic expansion for the
angular separation constant in the s ¼ 0 case. The result,
making heavy use of L as defined in Eq. (8), is

0Almð�ijcjÞ ¼ ð2Lþ 1Þjcj − 1

4
ð2LðLþ 1Þ þ 3 − 4m2Þ

þ B1ðL;mÞ
jcj þ B2ðL;mÞ

jcj2 þ B3ðL;mÞ
jcj3

þOðjcj−4Þ; ð9aÞ

where

B1ðL;mÞ ¼ −
1

16
ð2Lþ 1ÞðLðLþ 1Þ þ 3 − 8m2Þ; ð9bÞ

B2ðL;mÞ ¼ −
1

64
½5ðLðLþ 1ÞðLðLþ 1Þ þ 7Þ þ 3Þ

− 48m2ð2LðLþ 1Þ þ 1Þ�; ð9cÞ

and

B3ðL;mÞ ¼ −
1

256

�
1

4
ð2Lþ 1ÞðLðLþ 1Þð33LðLþ 1Þ

þ 415Þ þ 453Þ − 8m2ð2Lþ 1Þð37LðLþ 1Þ

þ 51Þ þ 32m4ð2Lþ 1Þ
�
: ð9dÞ

We note that there is an error in Ref. [9] that is repeated
in Ref. [10] in the coefficient at order c−2. A term of 40

64
L2

has been omitted, but this term is correctly included
in Abramowitz and Stegun [15] and is correctly included
in Eq. (9) which is in excellent agreement with all of our
s ¼ 0 prolate datasets. Because the separation constant

0Almð�ijcjÞ is purely real and depends only on even
powers of m, it is convenient to express Eq. (9a) in terms
of jcj.
A path to generalize this result to s ≠ 0 is well sum-

marized by Berti et al. [10] and depends critically on
determining the number of zeros of the real part of the
SWSFs. Because we will examine the behavior of the
SWSFs in some detail, we include some of the relevant
details from Ref. [10].

1The simplification to Eq. (7a) occurs because −slm < l <
slm if s > 0 and slm < l < −slm if s < 0 whenever
l < maxðslm; −slmÞ.
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Their approach begins by defining a new angular
function,

sSlmðx; cÞ ¼ ð1 − xÞkþð1þ xÞk− sylmðxÞ: ð10Þ

With a change of variables u ¼ ffiffiffiffiffiffiffiffi
2jcjp

x and substituting
Eq. (10) into Eq. (2), one can determine

0 ¼
�
ð2jcj − u2Þ d2

du2

− 2½
ffiffiffiffiffiffiffiffi
2jcj

p
ðkþ − k−Þ þ ðkþ þ k− þ 1Þu� d

du
þ sAlmðcÞ þ sðsþ 1Þ − ðkþ þ k−Þðkþ þ k− þ 1Þ

−
jcju2
2

− i
ffiffiffiffiffiffiffiffi
2jcj

p
su

�
sylm: ð11Þ

In the prolate asymptotic limit, such that ic → �∞, the
real components of Eq. (11) reduce to the differential
equation for the parabolic cylinder functions, DLðuÞ.
Therefore, Ref. [10] determined that the real component
of the inner solution sSinnerlm ðx; cÞ can be approximated by
using Reðsyinnerlm ðxÞÞ ¼ DLð

ffiffiffiffiffiffiffiffi
2jcjp

xÞ, where DL has L zero-
crossings. The domain of this inner solution contains the
region jxj < ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Lþ 1Þ=jcjp

within which all of the zeros
of DLð

ffiffiffiffiffiffiffiffi
2jcjp

xÞ occur. Matching the number of zero
crossings of ReðsSlmðx; cÞÞ in the spherical limit to
DLð

ffiffiffiffiffiffiffiffi
2jcjp

xÞ in the prolate asymptotic limit, Ref. [10]
determined the leading-order approximation for the sepa-
ration constant to be

sAlmðcÞ ¼ ð2Lþ 1Þjcj þOðjcj0Þ: ð12Þ

Using a WKB-type approximation similar to that use in
Ref. [11], they next determined the behavior of sSlmðx; cÞ
in the outer region near x ¼ �1. The result is a solution
which is formally divergent at jxj ¼ 1 but is valid arbitrarily
close to the end points,

sS
outer;�1
lm ðx; cÞ ¼ ð−iÞs2Lþ1=2ð�

ffiffiffiffiffiffiffiffi
2jcj

p
ÞLe−3jcj=2

× ð1 − x2Þ−1=4xLð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ−L−1=2

× ðx − i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ−sejcj

ffiffiffiffiffiffiffiffi
1−x2

p
: ð13Þ

Equation (13) shows that the number of real zero crossings
of sSouterlm ðx; cÞ depends critically on s. Together, the inner
and outer solutions give a full account of the zeros of the
real component of sSlmðx; cÞ.
As mentioned in the Introduction, Ref. [8] was able to

extend the asymptotic prolate expansion for the separation
constant to order c−2 for the special case of s ¼ �2. This
was achieved by fitting to numerically determined values of
the separation constant that had been computed for purely

imaginary values of c extending well into the asymptotic
regime. These were computed while exploring a previously
unknown branch of the gravitational total-transmission
modes of the Kerr geometry. Unfortunately, because they
only explored the cases of s ¼ �2 and because of the error
in Eq. (9) for s ¼ 0 that was present in the literature,
Eq. (26) of Ref. [8] incorrectly associated all of the L2

dependence in the jcj−2 term to the term that scales as s2L2.
Since this equation includes an error, we do not include it
here. However, the general approach of fitting high-quality
numerical solution to extract the asymptotic behavior of the
separation constant is sound, and we will explore this
extensively below.

III. NUMERICAL SOLUTIONS TO THE ANGULAR
TEUKOLSKY EQUATION

A. Spectral eigenvalue method

There are many approaches for numerically solving the
angular Teukolsky equation [7,16–18]. In this paper, we
utilized the spectral decomposition method developed in
Ref. [7]. In this spectral method, Eq. (2) is converted into a
matrix eigenvalue problem. This approach has several
advantages over methods based on solving a continued
fraction. By finding all the eigenvalues of the spectral
matrix, this method yields many solutions simultaneously
whereas continued fraction methods find one eigenvalue at
a time. Also, the exponential convergence of this spectral
method means that we can find any eigenvalues with
exceptional accuracy. Since all of the results in this paper
are derived directly from this method, we include a detailed
description.
The spectral eigenvalue method is based on expanding

the SWSFs using the spin-weighted spherical functions as a
basis,

sSlmðx; cÞ ¼
X
ĺ

CĺlmðcÞsSĺmðx; 0Þ: ð14Þ

The coefficients CĺlmðcÞ will become the components of
the eigenvector of the eigensolution labeled by l and m.
For sufficiently large ĺ, the expansion coefficients CĺlmðcÞ
enter a convergent regime and their magnitudes decrease
exponentially with increasing ĺ [7]. This guarantees that
sSlmðx; cÞ can be accurately approximated using a suffi-
cient number of terms in the sum.
Making use of Eq. (14) in Eq. (2), Ref. [7] eliminates the

x dependence by use of the recurrence relation [19],

xsSlmðx; 0Þ ¼ F slmsSðlþ1Þmðx; 0Þ þ GslmsSðl−1Þmðx; 0Þ
þHslmsSlmðx; 0Þ; ð15Þ

where
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F slm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððlþ 1Þ2 −m2Þ
ð2lþ 3Þð2lþ 1Þ

ððlþ 1Þ2 − s2Þ
ðlþ 1Þ2

s
; ð16aÞ

Gslm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þ
ð4l2 − 1Þ

ðl2 − s2Þ
l2

s
if l ≠ 0; 0 otherwise;

ð16bÞ

and

Hslm ¼ −
ms

lðlþ 1Þ if l ≠ 0; 0 otherwise: ð16cÞ

This yields a five-term recurrence relation on CĺlmðcÞ,

0 ¼ −c2Asðĺ−2ÞmCðĺ−2ÞlmðcÞ − ½c2Dsðĺ−1Þm − 2csF sðĺ−1Þm�Cðĺ−1ÞlmðcÞ þ ½ĺðĺþ 1Þ − sðsþ 1Þ
− c2Bsĺm þ 2csHsĺm − sAlmðcÞ�CĺlmðcÞ − ½c2Esðĺþ1Þm − 2csGsðĺþ1Þm�Cðĺþ1ÞlmðcÞ − c2Csðĺþ2ÞmCðĺþ2ÞlmðcÞ; ð17Þ

where

Aslm ¼ F slmF sðlþ1Þm; ð18aÞ

Bslm ¼ F slmGsðlþ1Þm þ F sðl−1ÞmGslm þH2
slm; ð18bÞ

Cslm ¼ GslmGsðl−1Þm; ð18cÞ

Dslm ¼ F slmðHslm þHsðlþ1ÞmÞ; ð18dÞ

and

Eslm ¼ GslmðHsðl−1Þm þHslmÞ: ð18eÞ

Equation (17) represents an infinite-dimensional penta-
diagonal-matrix eigenvalue problem. Each matrix is con-
structed for fixed values of m, s, and c. Their exist
countably infinite eigensolutions indexed by l for each
matrix. To numerically approximate the eigensolutions for
each combination ofm, s, and c, the matrix is truncated at a
finite size of N × N, and its eigensolutions are determined.
The N eigenvalues can be indexed by l ∈ flmin;…;lN−1g
where lmin ¼ maxðjmj; jsjÞ and N ¼ lN−1 − lmin þ 1.
Alternatively, using the notation of Eq. (8), the eigen-
values can be indexed by L ∈ f0;…; N − 1g. Due to the
exponentially decreasing magnitudes of CĺlmðcÞ in the
convergent regime, the eigensolutions to each matrix are
guaranteed to be accurate for lmax ≪ lN−1 (or Lmax ≪ N),
where lmax (or Lmax) denotes the last eigenvalue that is
accurately computed. For each value of c during the
creation of a solution sequence, the matrix size N is
confirmed to be large enough that jCðlmax−1ÞlmðcÞj < ϵs
and jClmaxlmðcÞj < ϵs for l ∈ flmin;…;lmaxg, where ϵs is
the solution accuracy criteria.
For various combination of m and s, we attempted to

generated solution sequences for values of c ¼ −i10δ
where −5 ≤ δ ≤ 5 in steps of Δδ ¼ 10−3. It was frequently
too expensive to reach the upper limit of δ ¼ 5, but each

solution was extended to large enough δ to guarantee the
sequence was in the asymptotic regime. Determining that
any sequence is in the asymptotic regime is achieved by
direct inspection. As discussed in Sec. IV, we find that a
normal sequence (see Sec. III C) transitions to the asymp-
totic regime at the point where jReðsAlmðcÞÞj < jcj2 which
typically occurred for δ < 2 for the sequences we consid-
ered. Continuous solution sequences were constructed from
the set of returned eigenvalues obtained at each value of c
by assuming the eigenvalue along each sequence was
smooth through the first derivative. It is important to keep
in mind that the label l (or L) designating a given
eigensolution is not fixed in any way by Eq. (2). For
simplicity, we assign labels to the eigensolutions based on
the limit c → 0 via Eq. (4). The resulting sequences are
fully labeled by m, s, and l (or m, s, and L) and are
functions of c. However, as we follow a sequence from the
spherical limit to the asymptotic limit, the label l (or L)
may loose any connection to specific properties of the
eigenfunction or eigenvalue.

B. Numerical datasets

1. Prolate datasets

Our original datasets covered an extensive range of
possible values of m and s. Datasets were constructed
for all possible combinations of 0 ≤ m ≤ 20 and
0 ≤ s ≤ 20, and were constructed to keep at least the
first 15 values of l (L < 15) with a solution accuracy of
ϵs ¼ 10−15 and using 24 digits of precision.
In order to confirm that numerical errors were not

affecting our solutions and to explore negative values of
m, we created a second set of solution sequences keeping
the same minimum 15 eigenvalues, but with a solution
accuracy of ϵs ¼ 10−24 and using 32 digits of precision.
This set of solutions covered all possible combinations of
−10 ≤ m ≤ 10 and 0 ≤ s ≤ 10.
Finally, to explore some interesting behavior we found in

the solutions that we will discuss below, we constructed a
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select set of solution sequences where we kept at minimum
the first 150 eigenvalues. These sequences were also
created with a solution accuracy of ϵs ¼ 10−24 and using
32 digits of precision. Because of the high cost of
constructing these sequences, we only constructed sequen-
ces for the following fm; sg pairs: f3; 3g, f4; 4 → 10g,
f6; 4 → 9g, f7; 8 → 10g, f8; 7g, f9; 8 → 10g, and
f10; 10g.

2. Oblate datasets

While the main focus of our exploration was the
behavior of prolate solutions, it became clear that we
needed to confirm and extend the results of Ref. [11] for
the asymptotic behavior in the oblate case. In addition to
modifying our sequences so that c ¼ 10δ where −5 ≤ δ ≤
5 in steps of Δδ ¼ 10−3, we also modified the recurrence
relation of Eq. (17) to move the leading order −c2
asymptotic behavior [see Eq. (6a)] from the eigenvalue
to the matrix coefficients. This is possible because there is
no l dependence in this term. We created solution
sequences keeping at least the first 15 eigenvalues with
a solution accuracy of ϵs ¼ 10−20 and using 24 digits of
precision. This set of solutions covered all possible
combinations of −5 ≤ m ≤ 10 and −5 ≤ s ≤ 10.

C. Classes of prolate eigensolutions

Figure 1 shows an example set of prolate sequences
where we plot the separation constant 2Al3ð−ijcjÞ with 3 ≤
l ≤ 20 (L ≤ 17). In the asymptotic regime, the real part of
each sequence grows linearly with jcj as seen in the upper
plot in the figure, and the imaginary part is inversely
proportional to jcj as seen in the lower plot in the figure.
Examination of the real part of each sequence reveals
behavior that agrees with Eq. (12). This suggests that the
sequences displayed in Fig. 1 belong to the class of
solutions described by Ref. [10]. We can further investigate
the behavior of these sequences by observing the zero-
crossings of the real part of the associated spin-weighted
spheroidal functions.
Figure 2 shows the real zero crossings of 2S33ðx; cÞ for

c ¼ −100i. From the discussion in Sec. II D, we expect that
the Re½sSlmðx;−ijcjÞ� will have L zero crossings in an
inner region which becomes progressively narrower as jcj
increases. Figure 3 shows a similar plot for c ¼ −10i
showing the inner region is much wider. There should also
be some number (which depends upon s) of additional zero
crossings in the outer regions. For s ¼ �2, Eq. (13) gives
two zero crossing at x ¼ �2−

1
2. It can be seen in the upper

plot of Fig. 2 that Re½2S33ðx;−100iÞ� has no real zero
crossings in the inner region, appropriate for its value of
L ¼ 0. In the lower plot, we notice that Re½2S33ðx;−100iÞ�
presents two real zero crossings in the outer regions at the
prescribed locations. In Fig. 3, the zero crossings in the
outer regions are not as well approximated by Eq. (13)

suggesting that at c ¼ −10i the solution is not yet fully in
the asymptotic regime. The behavior of 2S33ðx;−100iÞ
demonstrates the behavior described by the class of
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FIG. 1. The real and imaginary components of the first 18
sequences of 2Al3ð−ijcjÞ. The plot of the real components shows
linear leading-order asymptotic behavior, as anticipated by
Eq. (12). The imaginary component follows a leading-order
asymptotic behavior of jcj−1.

FIG. 2. The real and imaginary components of 2S33ðx; cÞ at
c ¼ −100i with an emphasis on the real zero-crossings in the
outer region in the lower plot. For s ¼ �2, one expects to see two
real zero-crossings near the points of x ¼ �2−1=2 ≈�0.707.
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solutions discussed in Ref. [10]. Most of our numerically
generated prolate sequences show behavior that agrees with
the predictions made in Ref. [10]. However, there also exist
a large number of individual solution sequences where
neither Eq. (12) nor Eq. (13) agree with the behavior seen in
the separation constant and its associated eigenfunction. An
example of one such sequence can be observed in Fig. 4.
Figure 4 shows an example set of prolate sequences

where we plot the separation constant 2Al2ð−ijcjÞ with
2 ≤ l ≤ 19 (L ≤ 17). While most of the sequences exhibit
similar behavior to that seen in Fig. 1, we find that the

2A32ð−ijcjÞ (L ¼ 1) eigenvalue sequence is in disagree-
ment with the leading order behavior defined in Eq. (12).
This suggests that 2A32ð−ijcjÞ may belong to a separate,
previously unknown, class of prolate solutions to Eq. (2).
An analysis of our remaining datasets demonstrates that the
behavior of 2A32ð−ijcjÞ is not unique, but is indicative of
the behavior of a distinct new set of prolate solutions. Every
sequence of separation constants in this new class exhibits
an asymptotic leading order behavior of

Re½sAlmðcÞ� ¼ jcj2 þOðjcj0Þ: ð19Þ

We will refer to all prolate eigensolutions which obey
Eq. (19) as “anomalous” eigensolution. Eigensolutions
which are in agreement with Eqs. (12) and (13), will be
referred to as “normal” eigensolutions.
Although the focus of this paper is on determining the

asymptotic behavior of prolate solutions to Eq. (2), it is also
important to consider the transitional region between the
asymptotic- and small-c domains when anomalous solu-
tions are present. We can explore the behavior of sequences
of the angular separation constant in this region by looking
at Fig. 5 which focuses on the transitional region for the
sequences displayed in Fig. 4.

Notice in the upper plot of Fig. 5 that there exists some
deflectionlike behavior around ic ¼ 3 between the normal
eigenvalue 2A22ð−ijcjÞ (L ¼ 0) and the anomalous eigen-
value 2A32ð−ijcjÞ (L ¼ 1). The bend in the real part of

2A22ð−ijcjÞwas first noted inRef. [10] and is shown in Fig. 4
of that paper. Using a larger set of eigensolutions, we were
able to determine that the bending behavior described in
Ref [10] was not unique to 2A22ð−ijcjÞ. These deflections
are always found between pairs of sequences with the same
values ofm and s. In each case, the real part of an anomalous
sequence’s separation constant deflects away from an
adjacent normal sequence of smaller l. In the lower plot
of Fig. 5, we see that the imaginary part of the L ¼ 1
anomalous sequence crosses the L ¼ 0 normal sequence
near ic ¼ 3. But, we note that at this crossing the real part of
the separation constants deflect so that there is no degen-
eracy in the eigenvalues. Subsequent to the deflection in the
real part of the L ¼ 1 anomalous 2A32ð−ijcjÞ sequence, we
see that it crosses all of the normal sequences with L > 1.
But, while the real parts of the sequences cross, the lower
plot of Fig. 5 shows that the imaginary parts do not cross and

FIG. 3. The real and imaginary components of 2S33ðx; cÞ at
c ¼ −10iwith an emphasis on the real zero-crossings in the outer
region in the lower plot. At c ¼ −10i, the solution is only
beginning to enter the asymptotic regime. Unlike Fig. 2, the zero
crossings are not well approximated by the roots of Eq. (13).

FIG. 4. The real and imaginary components of the first 18
sequences of 2Al2ð−ijcjÞ. Note the unusual behavior of the L ¼ 1
sequence, which has quadratic leading-order behavior for the real
component and linear leading-order behavior for the imaginary
component.
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again there are no degeneracies. More examples of similar
bending behavior can be found in Appendix C.
The behavior of the SWSFs, sSlmðx;−ijcjÞ, of the

anomalous solutions also differ from that predicted in
Ref. [10], as is demonstrated in Fig. 6. In the caption of
this figure, we introduce a change in notation where we will
differentiate eigensolutions exhibiting asymptotic anoma-
lous behavior by adding a hat(or carat). We will discuss this
new notation in more detail below. Notice that Eq. (10),
which is used in the derivation of Eq. (12), demands that
sSlmðx;−ijcjÞ → 0 at the end points x ¼ �1. It is interest-
ing to note that this anomalous eigenvector solution

2Ŝ32ðx;−ijcjÞ does not go to zero at one end point.
One would also predict three zero-crossings for
Re½2S32ðx;−ijcjÞ�, one zero crossing in the inner region
for 2S

inner
32 ðx;−ijcjÞ and two more at x ¼ �2−

1
2 for

2S
outer
32 ðx;−ijcjÞ. Notice that neither of these expectations

hold true for our numerical approximation of

2Ŝ32ðx;−ijcjÞ. Another assumption used in the derivation
of Eq. (12) is that the number of zero-crossings of
Re½sSinnerlm ðx;−ijcjÞ� be constant for all jcj. The number
of real zero-crossings for the eigenvector shown in Fig. 6

increases with jcj. It was found to be true for all anomalous
eigenfunctions that the number of zero-crossings of
Re½sŜlmðx;−ijcjÞ� was not constant in jcj. In counterpoint,
it was also found that some anomalous eigenvector solu-
tions did go to zero at both of the end points. However,
these solution do exhibit the anomalous behavior of having
an increasing number of zero-crossings as jcj increases. All
of these behaviors of the anomalous eigenfunctions will be
explored in more detail in Sec. III E 4. It seems likely that
the assumptions used in the derivation of Eq. (12) did not
allow previous works to predict the existence of the
anomalous class of solutions for Eq. (2).

D. Normal sequences

In order to generalize a power-series expansion for
prolate sAlmðcÞ, we must explore the behavior of the
anomalous and normal sequences separately. However,
the presence of anomalous eigensolutions introduces some
ambiguity in the labeling of sequences by L. This ambi-
guity is best explained through example. Consider the
dataset shown in Fig. 5 for m ¼ 2 and s ¼ 2, which
contains an anomalous sequence with l ¼ 3 (L ¼ 1).
Based upon Eq. (12), one would anticipate a linear-order
behavior of 2Lþ 1 for all normal sequences.
Using the 2Al2ðcÞ sequences, we numerically deter-

mined that 2A22ðcÞ ¼ jcj þOðjcj0Þ (L ¼ 0), agreeing with
Eq. (12). However, all subsequent normal eigenvalue
sequences (L > 1) fit as if L → L − 1. For example, we
numerically determined that 2A42ðcÞ ¼ 3jcj þOðjcj0Þ
(L ¼ 2), in disagreement with Eq. (12). This trend holds
true for all combinations of m and s for which there exists
an anomalous eigensolution.
This shift in L is due to an incompatibility in the labeling

of L in the spherical and asymptotic limits. Recall that the

FIG. 5. Close of up the same eigenvalue sequences for

2Al2ð−ijcjÞ shown in Fig. 4. Note the deflectionlike behavior
that occurs between the real parts of the eigenvalue sequences

2A22ðijcjÞ and 2A32ðijcjÞ at jcj ≈ 3.

FIG. 6. Eigenvector solution for 2S32ðx;−100iÞ ¼
2Ŝ22ðx;−100iÞ. Notice that this differs from the expected
behavior described in Ref. [10]. 2S32ðx; cÞ does not have a
number of real zero-crossing equivalent to L ¼ 1 nor does the
eigenvector go to zero at both end points.
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labeling of L used in our datasets is based upon the
spherical limit eigensolutions of sAlmðcÞ; we merely
carried over this label of L as jcj increased into the
asymptotic regime. However, Eq. (12) uses an index of
L based on the parabolic cylinder functions, DLðxÞ. The
derivation of Eq. (12) guarantees a one-to-one relation
between each normal solution and a corresponding DLðxÞ.
In the presence of anomalous sequences, the index L we
used in the spherical limit and the label used in Eq. (12) for
the asymptotic prolate limit are not the same. To ensure that
our labeling of L is consistent with analytic predictions, we
find it useful to define two parameters. We define sNlm
as the number of anomalous eigensolutions that exist
for m and s with smaller values of l.2 We also define
L̄ ¼ L − sNlm. It then becomes true that all of our normal
asymptotic sequence data, regardless of the presence of
anomalous sequences, obeys the leading-order asymptotic
fit of

sĀlmðcÞ ¼ ð2L̄þ 1Þjcj þOðjcj0Þ: ð20Þ

Here, and in Fig. 7 below, we introduce another change
in notation where we will differentiate eigensolutions
exhibiting asymptotic normal behavior by adding an
overbar.
The normal sequences of sSlmðx; cÞ also exhibit their

expected behavior when using the label L̄. For example, the
sequence 2S12;2ðx; cÞ ¼ 2S̄11;2ðx; cÞ, shown in Fig 7, dem-
onstrates that there are L̄ ¼ L − 1 ¼ 9 real zero crossings
in the inner region of the eigenvector. As a result, we shall
be using the index L̄ in the numerical fits of our normal
asymptotic prolate data. Furthermore, we will compute the
sequence labels l for asymptotic normal sequences via
Eq. (8) using L̄ instead of L. Because L̄ takes on
consecutive values starting with 0 regardless of the pres-
ence of anomalous sequences, relabeling l for asymptotic

normal eigensolutions removes any dependence on knowl-
edge of associated anomalous sequences.
While in the scalar case of Eq. (9a) we could expand the

solution in terms of jcj for both positive and negative
imaginary values of c, the general case is more compli-
cated. For fitting, we will not expand in terms of jcj but
instead restrict ourselves to fitting sequences with negative
imaginary values of c. In this case, we can express our
asymptotic expansion as

sĀlmðcÞ ¼ ð2L̄þ 1Þic − 1

4
ð2L̄ðL̄þ 1Þ þ 3 − 4m2Þ

þ 1

4
C0 −

iB1ðL̄; mÞ − 1
16
C1

c
−
B2ðL̄; mÞ − 1

64
C2

c2

þ iB3ðL̄; mÞ þ 1
256

C3

c3
þ
X∞
n¼4

Cn

cn
: ð21Þ

To find the values of C0→3, we fit the last 40 (largest
values of jcj) data points from our numerically generated
normal sequences for each value of s, m, and L̄ using a
greedy approach.
To obtain C0, we use Eq. (21) with five unknown terms,

C0→4 and construct an intermediate dataset containing the
fit values for C0 for each value of s, m, and L̄. We then do
linear fitting to find C0 as a function of s, m, and L̄. In this
case, based on the expansion for 0AlmðcÞ,3 we expect that
C0 will have at most quadratic terms in these variables and
must include s in each term. Including symmetry argu-
ments, we can deduce that C0 must include only terms
involving s and s2. From linear fitting using Mathematica,
we find that

C0 ¼ 4sðs − 1Þ: ð22Þ

The exact fit values depend on exactly what subset of data
are used in the linear fitting. The results we display below
will all be obtained from limiting the fit to s ≤ 4, jmj ≤ 4,
and L̄ ≤ 8. Including more data in the fit tends to slightly
increase the uncertainty in each coefficient, but not sig-
nificantly, and the resulting fit functions agree very well
with all datasets. The results from Mathematica include a
best linear fit to each term along with a constant term which
should be consistent with zero. The results for fitting the
real part of C0 are displayed in Table I. The imaginary part
of C0 is consistent with 0 as expected, and we see that the
coefficients in front of the s and s2 terms are consistent with
integer values.
Having determined the value for C0, we repeat the full

fitting process but we include the determined value of C0 in
our fitting function Eq. (21). The unknowns in our fitting
function are now C1→5, where now C5 is included in the fit
since C0 has been determined. We found that it is important
to keep several terms in the expansion beyond the term we

FIG. 7. The real and imaginary components of

2S12;2ðx;−100iÞ ¼ 2S̄11;2ðx;−100iÞ. In the c → 0 limit the se-
quence of solutions corresponds to a value of L ¼ 10. As such,
one would expect to see ten real zero-crossings in the inner
region. Here we see nine zero crossings. We account for this by
noting that L̄ ¼ L − 2N12;2 ¼ 9, since there exists an anomalous

sequence 2Ŝ32ðx; cÞ.

2For example, if the first anomalous eigensolution occurred for
l ¼ 2, then sN2m ¼ 0 and sN3m ¼ 1. 3We note that for s ¼ 0, 0AlmðcÞ ¼ 0ĀlmðcÞ.
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are trying to determine, in this case, C1. Tables II and III
show the final results for the linear fits for the real and
imaginary parts of C1. Again, we find that the possible

nonvanishing coefficients are consistent with integer values
and the combined result is

C1 ¼ −16ið2L̄þ 1þ 2imÞs2: ð23Þ

The remaining two coefficients, C2 and C3 are found by
a similar procedure. For C2, we replace C0 and C1 in
Eq. (21) with the fit values given in Eqs. (22) and (23) and
fit all sequences to Eq. (21) keeping the remaining terms
out to C6. The fits for C2 are then used to find a functional
form for C2. Inserting this into Eq. (21) and keeping terms
out to C7, we fit all sequences again and use the results to
find a functional form for C3. With each successive order in
the expansion, our ability to accurately fit for the coef-
ficients diminishes, but we are confident in our results out
to C3. Tables IV–VII display the results of the linear fits for
C2 and C3. In both cases, we find that the possible
nonvanishing coefficients are consistent with integer values
and the combined results are

C2 ¼ −32½6L̄ðL̄þ 1Þ − 4m2 − 2s2 þ 3

þ 8ið2L̄þ 1Þm�s2 ð24Þ

C3 ¼ 16i

�
ð2L̄þ 1Þð37L̄ðL̄þ 1Þ þ 51 − 120m2 − 64s2Þ

þ 16i

�
21L̄ðL̄þ 1Þ − 2m2 − 4s2 þ 19

2

�
m

�
s2: ð25Þ

In full, we can write the asymptotic expansion of

sĀlmðcÞ for normal sequences in the prolate case where
c ¼ −ijcj (negative imaginary values) as

sĀlmðcÞ ¼ icð2L̄þ 1Þ − 1

4
½2L̄ðL̄þ 1Þ − 4m2 − 4sðs − 1Þ þ 3� þ i

16c
½ð2L̄þ 1ÞðL̄ðL̄þ 1Þ − 8m2 − 16s2 þ 3Þ − 32ims2�

þ 1

64c2
½5ðL̄ðL̄þ 1ÞðL̄ðL̄þ 1Þ þ 7Þ þ 3Þ − 48ð2L̄ðL̄þ 1Þ þ 1Þm2 − 32ð6L̄ðL̄þ 1Þ − 4m2 − 2s2 þ 3Þs2

− 256ið2L̄þ 1Þms2� − i
256c3

��
1

4
ð2L̄þ 1ÞðL̄ðL̄þ 1Þð33L̄ðL̄þ 1Þ þ 415Þ þ 453Þ

− 8ð2L̄þ 1Þð37L̄ðL̄þ 1Þ þ 51Þðm2 þ 2s2Þ þ 32ð2L̄þ 1Þðm4 þ 60m2s2 þ 32s4Þ
�

− 256i

�
21L̄ðL̄þ 1Þ − 2m2 − 4s2 þ 19

2

�
ms2

�
þOðc−4Þ: ð26Þ

As with the oblate expansion in Eq. (6), the prolate
asymptotic expansion for normal sequences given in
Eq. (26) cannot be expressed in a way that is valid for
both positive and negative imaginary values of c. The form
of C0, along with the fact that all subsequent coefficients

include only even powers of s guarantees that Eq. (3d) is
satisfied. Together, Eqs. (3e) and (3f) demand, when c is
imaginary, that the Re½sĀlmðcÞ� must include only even
powers of m and the Im½sĀlmðcÞ� must include only odd
powers of m. Equation (26) satisfies these conditions.

TABLE I. Linear fit results for the real part of C0. The first
column lists each term in the linear function, the second column
displays the linear fit value for the constant multiplying each
term, and the third column displays the uncertainty in the fit. We
see that the constant term in the fit is consistent with 0 resulting in
a fit of C0 ¼ 4sðs − 1Þ.

Estimate σ

1 −8.15 × 10−9 5.8 × 10−8

s −3.99999991 6.8 × 10−8

s2 3.99999995 1.6 × 10−8

TABLE II. Linear fit results for the real part of C1. See the
caption for Table I for details. We see that Re½C1� ¼ 32ms2.

Estimate σ

1 3.64 × 10−6 1.7 × 10−6

ms2 31.99999906 7.6 × 10−8

TABLE III. Linear fit results for the imaginary part of C1.
See the caption for Table I for details. We see that Im½C1� ¼
−16ð2L̄þ 1Þs2.

Estimate σ

1 −7.28 × 10−7 1.8 × 10−6

s2 −16.00000162 3.2 × 10−7

L̄s2 −31.99999932 5.9 × 10−8
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Furthermore, most of the individual terms in Eq. (26) could
be written in a way that satisfies Eqs. (3e) and (3f)
individually by using jcj for all of the terms which are
real when evaluated for imaginary values of c. For the

imaginary terms, those that involve odd powers of c obey
Eqs. (3e) and (3f). But, any imaginary term at even powers
of c will violate Eqs. (3e) and (3f) individually, and we see
no way to reexpress such terms in a way that preserves
these symmetries.
Finally, to demonstrate the fidelity of the asymptotic

fitting function given in Eq. (26), we show in Fig. 8 plots of
the residuals obtained by subtracting Eq. (26) from the
corresponding numerical data. Four examples are displayed
corresponding to the ðm; sÞ pairs of ð1;−2Þ, (2,2), ð−5; 3Þ,
and (15,18). In each case, the absolute values of the residual
for the first 16 normal sequences versus jcj are shown in a
log-log plot. In the asymptotic regime at large values of jcj,
we find the slope of each line is very close to −4. This is
consistent with the fact that the fitting function in Eq. (26)
is only defined through Oðc−3Þ and demonstrates that the
fitting function is correct through this order for a wide
range of values for s, m, and L̄.

E. Anomalous sequences

The remainder of this section is devoted to exploring
the behavior of the anomalous eigensolutions. Our inves-
tigation of the anomalous eigenvalue sequences was
primarily driven by two goals. The first was to try to
determine a method to predict which sequences would

TABLE IV. Linear fit results for the real part of C2.
See the caption for Table I for details. We see that
Re½C2� ¼ −32ð6L̄ðL̄þ 1Þ − 4m2 − 2s2 þ 3Þs2.

Estimate σ

1 −0.00009615 0.00011
s2 −95.99968481 0.000047
L̄s2 −192.00006712 0.000011
s4 63.99998780 2.6 × 10−6

m2s2 127.99998708 1.4 × 10−6

L̄2s2 −191.99999233 1.4 × 10−6

TABLE V. Linear fit results for the imaginary part of C2.
See the caption for Table I for details. We see that
Im½C2� ¼ −256ð2L̄þ 1Þms2.

Estimate σ

1 −0.00030416 0.00013
ms2 −256.00008151 0.000011
L̄ms2 −511.99996086 2.3 × 10−6

TABLE VI. Linear fit results for the real part of C3. See the
caption for Table I for details. We see that Re½C3� ¼
−256ð21L̄ðL̄þ 1Þ − 2m2 − 4s2 þ 19

2
Þms2.

Estimate σ

1 −0.01117050 0.0058
ms2 −2431.99572667 0.0013
L̄ms2 −5376.00498626 0.00038
L̄2ms2 −5375.99915279 0.000046
m3s2 511.99997465 0.000055
ms4 1023.99994750 0.000072

TABLE VII. Linear fit results for the imaginary part of C3. See
the caption for Table I for details. We see that Im½C3� ¼ 16ð2L̄þ
1Þð37L̄ðL̄þ 1Þ þ 51Þs2 − 32ð2L̄þ 1Þð60m2s2 þ 32s4Þ.

Estimate σ

1 0.00355322 0.014
s2 816.02922552 0.0084
L̄s2 2223.98136420 0.0035
L̄2s2 1776.00111392 0.00095
L̄3s2 1183.99999057 0.000078
m2s2 −1920.00184852 0.00031
L̄m2s2 −3839.99902142 0.000065
s4 −1024.00117837 0.00052
L̄s4 −2047.99938243 0.00010

FIG. 8. Log-log plots of the magnitude of the difference
between the normal asymptotic fitting function of Eq. (26) and
corresponding numerically computed values of sAlmð−ijcjÞ
versus jcj. The ðm; sÞ pairs of ð1;−2Þ, (2,2), ð−5; 3Þ, and
(18,15) are each displayed in a separate plot showing the first
16 normal sequences. For large values of jcj the slope of each line
is approximately −4.
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exhibit anomalous behavior after transitioning to the
asymptotic regime. The second goal was to try to find a
power-series expansion in c for these anomalous sequen-
ces, similar to Eq. (26). We will show below, the behavior
of the anomalous sequences is sufficiently complex that we
have not been able to fully achieve either goal. We hope that
the results we have uncovered will inspire future analytical
work that may further illuminate these very unusual
sequences.

1. Overview of anomalous datasets

As described in Sec. III C, we examined each of our
prolate sequences to determine which exhibited general
anomalous behavior as defined by Eq. (19). Out of all
15,376 prolate sequences we constructed, 775 of the
sequences were anomalous. Appendix A contains tables
listing details for all of the 103 anomalous sequences from
the high-resolution data for 0 ≤ m ≤ 10 and 0 ≤ s ≤ 10.
Figure 9 displays a scatter plot in fm; s; Lg showing
sequences which are anomalous. Recall that for the labels
fm; s; Lg, whilem and s are fixed parameters in Eq. (2), the
L label is simply a convenient choice with no unique
definition. In the limit that c → 0, L simply labels the
infinite set of solutions in order of increasing value of
sAlmð0Þ [see Eq. (4)] where l and L are related by Eq. (8).

Most of the anomalous sequences we have obtained with
m, s ≥ 0 are represented within the plot, but a small number
with large values of L are omitted.
A careful inspection of Fig. 9 shows that there exists a

region of fm; s; Lg space which is densely filled with
anomalous sequences. In this dense region, for given values
of m and s, the first few contiguous values of L
are anomalous implying that L ¼ sNlm. For example, for
m ¼ 9 and s ¼ 10, we have found four anomalous sequen-
ces occurring at L ¼ f0; 1; 3; 78g (see Table X). For this
case, the first two sequences are anomalous so that 10N10;9 ¼
0 and 10N11;9 ¼ 1. In general, for L ¼ 0, a bounded area A
defined by 11jsj ≥ 7jmj þ 9 and jsj ≤ 10jmj − 24 contains
all sequences which are anomalous with L ¼ 0. We caution
that these limits are empirically obtained and are only
known to apply for jmj ≤ 20 and jsj ≤ 20. For L ≥ 0,
we define a region D which is bounded by two addi-
tional planes: 14L ≤ 11jsj − 7jmj − 10 and 25L ≤ 9jmj−
2jsj − 15. This regions is displayed in light gray in Fig. 9 and
contains nearly all of the anomalous sequences with con-
tiguous values ofL. If we consider only positive values ofm
and s no larger than 20, then D contains 435 points.
Unfortunately, D does not perfectly define the set of points
which are contiguously anomalous. There are 441 anoma-
lous points for which L ¼ sNlm. These are displayed in
Fig. 9 as 427 black dots withinD, and 14 blue cubes which
lie outside D. Note that these 14 anomalous sequences are
captured by the additional condition specified above spe-
cifically for L ¼ 0. In addition, there are eight values of
fm; s; Lg that lie within D but do not correspond to
anomalous sequences. These are displayed as the eight
red tetrahedra in Fig. 9. These eight points are listed in
Table VIII. The light green dots in Fig. 9 represent most of
the remaining 243 anomalous sequences for which
sNlm ≠ L. Figure 10 includes the boundaries of the area
A in the L ¼ 0 plane of Fig. 9. The shaded region in this
figure, which lies mostly withinA, is the intersection of the
region D with the L ¼ 0 plane. It is advantageous to omit
the small number of anomalous sequences from regionD in
the L ¼ 0 plane because expanding the region to include
them dramatically increases the number of points within D
which are not anomalous. Together, the area A, region D,

FIG. 9. Combinations of m, s, and L which yield anomalous
sequences. The black dots and blue cubes designate sequences
which have L ¼ sNlm and are contiguous as described in the text.
The gray region displays the densely filled regionD as defined by
L ≥ 0, 14L ≤ 11jsj − 7jmj − 10, and 25L ≤ 9jmj − 2jsj − 15.
The red tetrahedra denote the eight points within D that are not
anomalous. Finally, the light green dots outside of D denote the
remaining noncontiguous anomalous sequences. See Sec. III E 1
for additional details.

TABLE VIII. Points with the region D and with jmj ≤ 20 and
jsj ≤ 20 which do not correspond to anomalous sequences.

jmj jsj L

11 16 2
11 17 2
14 17 3
14 18 3
15 13 2
17 13 1
17 19 4
18 15 2
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and the points in Table VIII provide a complete description
for which of the first few contiguous sequences are anoma-
lous for givenvalues ofm and s. Unfortunately, the locations
of the remaining noncontiguous anomalous sequences
which occur at L ≠ sNlm are not so easy to predict. As
shown by the black dots in Fig. 11 they appear at values of
L > 0 for values ofm and s that can be outside of the areaA
defined for L ¼ 0. The black dots in Fig. 11 may not be
complete since we have only explored a limited range of L.
The light red and blue symbols in Fig. 11 represent locations
we could expect additional noncontiguous anomalous
sequences to exist, but which are not present in our limited
dataset. Why we expect anomalous sequences in these
locations will be discussed in Sec. III E 3.

2. Asymptotic form for the anomalous eigenvalues

We initially recognized the presence of the anomalous
asymptotic sequences of eigenvalues by the fact that they
grow as jcj2 rather than linearly in jcj. This behavior is
similar to that in Eq. (6) for the oblate sequences where c is
real. We find in fact that, with two small redefinitions,
Eq. (6) fits all of the anomalous sequences well up to
Oðc−1Þ if we simply insert a purely imaginary value of c.
Interestingly, for some anomalous sequences such as the
s ¼ m ¼ 4 sequence with L ¼ 0, Eq. (6) fits well up

Oðc−5Þ which is the first undefined term in the analytic
expansion. On the other hand, the s ¼ m ¼ 4 sequence
with L ¼ 28 disagrees with the analytic expansion
at Oðc−1Þ and the s ¼ m ¼ 3 anomalous sequence with
L ¼ 0 disagrees with the analytic expansion at Oðc−3Þ.
In order for Eq. (6) to apply to the anomalous asymptotic

prolate sequences, we must let L → L̂ ¼ sNlm in a similar
way in which we redefined L → L̄ for the normal asymp-
totic prolate sequences. We must further modify sqlm for
the cases when m < 0 by defining sqlm → −sqlð−mÞ for
m < 0. Finally, we have only found anomalous sequences
for the cases when l < max ðslm; −slmÞ in Eq. (7). This
means that we can replace the definition of sqlm with a
greatly simplified version,

sq̂lm ¼
�
signðmÞð2L̂þ jjmj − jsjj − jsj þ 1Þ m ≠ 0

2L̂þ 1 m ¼ 0
:

ð27Þ

We now define the base fitting function, in the asymptotic
regime, for the anomalous prolate eigenvalue sequences as
Eq. (6) with sqlm → sq̂lm, and denote it as sÂlmðcÞ. We

0 5 10 15 20
m0

5

10

15

20
s

FIG. 10. The black dots represent anomalous sequences for
which L ¼ sNlm ¼ 0. The gray region illustrates the intersection
of region D (see Fig. 9) with L ¼ 0. The dashed and dotted black
lines represent the boundaries of an area defined respectively by
0 ≤ 11jsj − 7jmj − 9 and 0 ≤ 10jmj − jsj − 24 within which all
points are anomalous with L ¼ sNlm ¼ 0. This area is defined as
A in the text. The points outside of the gray region are the
sequences denoted by blue squares in Fig. 9.
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FIG. 11. The black dots, light red squares, and light blue circles
represent values of jmj and jsj at which at least one anomalous
sequence with L ≠ sNlm could exist. The black dots represent
locations where at least one such anomalous sequence has been
found within our limited dataset. The light red squares represent
locations where type-1 anomalous sequences could exist, but are
not present in our limited dataset. The light blue circles represent
locations where type-3 anomalous sequences should exist, but are
not present in our limited dataset. The dashed and dotted black
lines represent the boundaries of the area A defined in the text
(see also the caption for Fig. 10).
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also find that, because sq̂lm ¼ −sq̂lð−mÞ, our base fitting
function satisfies all of the fundamental symmetries out-
lined in Eqs. (3d), (3e), and (3f), and thus is valid for both
positive and negative imaginary values of c. Following the
approach for the asymptotic normal eigensolutions, we
redefine all asymptotic anomalous eigensolutions in terms
of the hatted quantities sÂlmðcÞ, sŜlmðcÞ, sq̂lm, and L̂; and
the values of l for all hatted quantities is computed using
Eq. (8) with L replaced by L̂.
Figure 12 illustrates the degree to which the base fitting

function for the anomalous sequences, sÂlmðcÞ, agrees
with the numerical data in the asymptotic regime. Here we
plot the magnitude of the residual obtained by taking the
difference between the anomalous base fitting function and
the corresponding numerical values for sÂlmðcÞ. Each plot
in the figure shows all of the anomalous sequences
for a particular ðm; sÞ pair. In the upper left plot we
show the residuals for the two anomalous sequences
with m ¼ s ¼ 4. As mentioned above, the sequence with
L ¼ L̂ ¼ 0 has a slope of −5 in this plot showing that the
entire fitting function through Oðc−4Þ agrees with the
numerical data. However, the sequence with L ¼ 28

(L̂ ¼ 1) has an asymptotic slope of −1. This shows that
the at Oðc−1Þ the fitting function does not fully account for
the behavior seen in the numerical data. If we look
separately at the real and imaginary parts of the residual
we see that there is error in both components. This is
interesting since, for purely imaginary c, Eq. (6a) suggests
that the contributions at each order in c should be either real
or imaginary. We find this to be true in both the base fitting
function and the numerical data until we reach the order at
which the base fitting function fails to work. At this order,
the numerical data now have both real and imaginary parts.
For example, Fig. 13 shows separately the real and imagi-
nary parts of the residuals for the two anomalous sequences
for m ¼ s ¼ 4. Equation (6) says that the term at Oðc−1Þ
should be purely imaginary. For the anomalous sequences
with m ¼ s ¼ 4, the numerical solution for the L ¼ L̂ ¼ 0

sequences is purely imaginary atOðc−1Þ, while the numeri-
cal data for the L ¼ 28 (L̂ ¼ 1) sequence includes a non-
vanishing real part at Oðc−1Þ. Similarly, at Oðc−5Þ, Eq. (6)
suggests that the fitting function should again be purely
imaginary. But, the residual for both the real and imaginary
parts of the L ¼ L̂ ¼ 0 sequence are nonvanishing at this
order. In all cases, we find that the slope of the magnitude of
the numerical residual is either −1, −3, or −5.
Examining the behavior of the residual between the

numerical data and the anomalous base fitting function for
all of the anomalous sequences reveals a clear pattern. In
Tables IX and X in Appendix A, the column labeled by n
designates the slope of the magnitude of the residual in a
log-log plot and thus the order in c at which the numerical
data deviates from the behavior of the anomalous base
fitting function. We find this behavior to be governed by the
leading order behavior of the imaginary part of the
separation constant sÂlmðcÞ.

FIG. 12. Log-log plots of the magnitude of the difference
between the anomalous asymptotic base fitting function of Eq. (6)
with sqlm replaced by sq̂lm as given in Eq. (27) and correspond-
ing numerically computed values of sÂlmð−ijcjÞ versus jcj. The
ðm; sÞ pairs of (4,4), ð−5; 10Þ, (7,7), and (9,10) are each displayed
in a separate plot showing all known anomalous sequences. The
asymptotic slope for the residual of 4Â5;4ð−ijcjÞ is −1. The
asymptotic slopes for 10Â11ð−5Þð−ijcjÞ, 7Â9;7ð−ijcjÞ, and

10Â13;9ð−ijcjÞ are −3. The asymptotic slopes for all remaining
anomalous sequences are −5.

FIG. 13. Log-log plots of the magnitudes of the real and
imaginary parts of the difference between the anomalous asymp-
totic base fitting function of Eq. (6) with sqlm replaced by sq̂lm as
given in Eq. (27) and corresponding numerically computed
values of sÂlmð−ijcjÞ versus jcj for the case of m ¼ s ¼ 4.
The asymptotic slopes of both the real and imaginary parts of the
residuals of 4Â5;4ð−ijcjÞ are −1, while the asymptotic slopes of
both the real and imaginary parts for 4Â44ð−ijcjÞ are −5.
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For the oblate case with purely imaginary values of c, the
leading order behavior in the imaginary part of sÂlmðcÞ
[see Eq. (6a)] is at linear order in c. The coefficient of this
term is 2sq̂lm. Tables IX and X include a column labeled by
2sq̂ljmj þ 1 which lists the value of this combination.4

We note that when n ≥ −3 it agrees with 2sq̂ljmj þ 1.
Whenever n ¼ −5, we also find that 2sq̂ljmj þ 1 ≤ −5.
Because the base fitting function only extends to Oðc−4Þ
we cannot expect to find n < −5. We conjecture that
2sq̂ljmj þ 1 should correctly give the order in c at which
the anomalous base fitting function deviates from the true
asymptotic behavior of the anomalous sequences.
Further evidence supporting this conjecture can be

found by examining the real and imaginary parts of the
residual. Tables IX and X include a column labeled by
fRe½n�; Im½n�g where Re½n� and Im½n� designates the slope
of the real and imaginary parts of the residual in a
log-log plot and thus the order in c at which the real
and imaginary parts of the numerical data deviate from the
behavior of the anomalous base fitting function. When
n ¼ 2sq̂ljmj þ 1 ≥ −5, we find that both Re½n� ¼ n and
Im½n� ¼ n. This further illustrates the point made previ-
ously that when anomalous asymptotic sequences deviate
from the base fitting function at order n, the true fitting
function should gain a term at OðcnÞ that is in general
complex. Looking at all of the sequences for which
2sq̂ljmj þ 1 ≤ −7 we find that Re½n� ¼ −6. This suggests
that, for these sequences, if the base fitting function were
known atOðc−5Þ, this term would agree with the numerical
data. There is one exception seen in Table X in the case
with m ¼ 9, s ¼ 10, L̂ ¼ 2 for which Re½n� ≈ −7. This
case could represent a special case where the term at
Oðc−6Þ is very small or could simply be due to the
difficulty in extracting the power-law falloff of the envelope
of a highly oscillatory function.
Because a true fitting function for the prolate anomalous

separation constant would necessarily be different for
different values of 2sq̂ljmj þ 1, we now define a type for
each anomalous sequence based on the value of 2sq̂ljmj þ 1

for that sequence. So, all sequences with 2sq̂ljmj þ 1 ¼ −1
are designated as type-1 anomalous sequences. All sequen-
ces with 2sq̂ljmj þ 1 ¼ −3 are designated as type-3 anoma-
lous sequences, and so on.

3. Predicting the existence of anomalous sequences

For given values of m and s, we can predict with
reasonable, but not absolute confidence, whether or not
anomalous sequences will exist, and also how many
anomalous sequences should exist. Anomalous sequences

should exist whenever 2sq̂ljmj þ 1 < 0. The first such

anomalous sequence will be labeled L̂ ¼ 0 and so will
have a value of l ¼ maxðjmj; jsjÞ and the smallest (most
negative) value of 2sq̂ljmj þ 1. The next anomalous

sequence, if it exists, will have L̂ ¼ 1 and 2sq̂ljmj þ 1 will
increases by 4. Additional anomalous sequences should
exist with L̂ increasing until the set of anomalous sequen-
ces terminates with 2sq̂ljmj þ 1 ¼ −3 or −1.
Figure 11 helps to illustrate, in part, why we do not claim

to be able to predict with certainty the existence of
anomalous sequences for given m and s. The red squares
in Fig. 11 represent the locations where type-1 anomalous
sequences could exist but have not been found within our
set of numerical sequences. Each of these missing sequen-
ces correspond to the largest value of L̂ for each given m
and s where they may exist and more importantly may
correspond to a very large value of L. As discussed in
Sec. III B 1, for most values of m and s, we only
constructed sequences up to L ∼ 15. In only a few cases
did we construct sequences out to L ∼ 150. Because of this,
these missing sequences may simply be due to the fact that
we did not extend our search to large enough L to find
them. The blue circles in Fig. 11 represent the locations
where type-3 anomalous sequences could exist but have not
been found within our set of numerical sequences. Because
the anomalous type decreases by 4 as we increase L̂ for
givenm and s, the type-3 anomalous sequences correspond
to the largest value of L̂ for each given m and s where blue
circles are displayed. And, as with the missing type-1
sequences, these missing sequences may simply be due to
the fact that we did not extend our search to large enough L
to find them.
Figure 14 presents an example for m ¼ 9 and s ¼ 10 in

which the type-3 anomalous sequence with L̂ ¼ 3 was not
found in the original dataset, but was found at L ¼ 78 in a
dataset that includes many additional values of L. Figure 14
also illustrates why we should not be surprised that
anomalous sequences do not exist for 2sq̂ljmj þ 1 > −1.
Anomalous sequences arise when two neighboring eigen-
values become nearly degenerate. As we have seen, they do
not actually become degenerate, but the real part of the
eigenvalues deflect while the imaginary parts cross as
illustrated in Fig. 5. The crossing of the imaginary parts
does not occur in the neighborhood of the sequences with
2sq̂ljmj þ 1 > −1. In Fig. 14, the anomalous sequence that

could correspond to L̂ ¼ 4 has 2sq̂ljmj þ 1 ¼ 1 and the
asymptotic slope of the imaginary part of the eigenvalue is
zero. Potential anomalous sequences with even larger
values of 2sq̂ljmj þ 1 yield asymptotic slopes for the
imaginary parts of the eigenvalues which are negative.
There is an additional level of uncertainty as to the

existence of at least some type-1 sequences. Figure 15 is
similar to Fig. 14 but presents the case ofm ¼ s ¼ 6. In this

4We note that −2jsq̂lmj þ 1 will also agree with the slope of
the residual for anomalous prolate solutions. However, the value
of the combination given in the text can also server as discrimi-
nant for whether a given sequence can be anomalous.
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example, a type-1 anomalous sequence could be present but
has not been found. When the type-1 sequence was not
found in the original dataset, we searched again keeping the
first 157 sequences but again found no type-1 anomalous
sequence. In Fig. 15, the dashed line represents the
asymptotic behavior of the imaginary part of the separation
constant for a type-1 sequences. Interestingly, we see that
the slope of this line seems to be the same as the sequence
of peaks in the first 155 normal sequences shown as faint
curves in the figure. A general feature is that an anomalous
sequence seems to transition to asymptotic anomalous
behavior near the value of jcj where the imaginary part
of the base anomalous fitting function would exceed the
peak of the imaginary part of the full normal sequence. We
see in Fig. 14 that this is not a precise condition. But,
clearly the slope of the line connecting the peaks of the
imaginary parts of the normal sequences has a smaller slope
than the slope of the type-3 anomalous sequence, and the
transition to asymptotic anomalous behavior occurs near
the point where the dashed line representing the type-3
asymptotic behavior intersects the line connecting the
peaks of the normal sequences. In Fig. 15, it is clear that
the dashed line is nowhere near to crossing the line
connecting the peaks of the normal sequences.
The discussion above may provide insight into why the

transition to anomalous behavior occurs, but it does not
provide a way to predict whether or not a certain set of

sequences will contain any specific anomalous sequence.
The peaks in the imaginary part of the normal sequences is
a feature of the transition to asymptotic normal behavior
and cannot be predicted simply from the normal prolate
asymptotic fitting function of Eq. (26). Finding these
peaks requires constructing the full numerical sequences
and would also directly find the anomalous sequences if
they existed within the set of L values being tracked.
Unfortunately, the time required to accurately track sequen-
ces increases rapidly with the number of sequences being
tracked.
An alternative approach for determining the existence of

anomalous sequences is illustrated in Fig. 16. Instead of
constructing sequences of solutions as a function of jcj, we
simply explore the behavior of a set of eigenvalues for
given m and s to see if we can determine if any of the solu-
tions are anomalous. In Fig. 16, we consider m ¼ s ¼ 4
for the case of c ¼ −200i. The upper plot in the figure
displays Re½4Al4ðcÞ� verses L with the red triangles
representing the numerical solutions, and the black circles
the corresponding values based on the prolate asymptotic
fitting function Eq. (26). The numerical eigenvalues are
sorted based on their real part. The horizontal dashed lines
represent the values of the real part of the base asymptotic
anomalous fitting function for each value of L̂ which has
2sq̂ljmj þ 1 < 0. Since we cannot assign a value of L to

FIG. 14. Imaginary part of 10Al9ð−ijcjÞ. The labeled curves are
the four anomalous sequences. The faint curves are the first 100
normal sequences. The dashed lines show the base anomalous
asymptotic fitting function for the first 6 values of L̂ plotted over
the limited range of 50 ≤ jcj ≤ 150. The last 2, with 2sq̂ljmj þ
1 ¼ 1 and 5, do not correspond to valid anomalous sequences.

FIG. 15. Imaginary part of 6Al6ð−ijcjÞ. The labeled curves are
the two anomalous sequences. The faint curves are the first 155
normal sequences. The dashed line shows the base anomalous
asymptotic fitting function for L̂ ¼ 2 which corresponds to
2sq̂ljmj þ 1 ¼ −1. This line could correspond to an anomalous
sequence, but there is no evidence for this for L < 157.
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each L̂, these values are plotted as horizontal lines. And,
because the real parts of the asymptotic eigenvalues quickly
become nearly degenerate, the individual lines appear as
one line in this plot. The lower plot in the figure shows
similar information for the imaginary part of the eigenval-
ues. The main difference is that the imaginary parts of the
asymptotic anomalous fitting function for each value of L̂
are no longer nearly degenerate.
In the plot for Im½4Al4ðcÞ� in Fig. 16, we can clearly see

that the two anomalous sequences are present. These are the
two expected sequences with L̂ ¼ 0 (2sq̂ljmj þ 1 ¼ −5)
and L̂ ¼ 1 (2sq̂ljmj þ 1 ¼ −1). Because we have con-
structed full sequences for m ¼ s ¼ 4, we know that the
L̂ ¼ 0 anomalous eigenvalue is part of the L ¼ 0 sequen-
ces, but it appears at the 124th position in the sorted list of
eigenvalues when c ¼ −200i. Similarly, the L̂ ¼ 1 anoma-
lous eigenvalue is part of the L ¼ 28 sequence, but it
appears at the 125th position. It is a general feature of the
anomalous eigenvalues that their position rapidly shifts in

the sorted list of eigenvalues as jcj increases because the
leading order behavior grows as jcj2. Figure 17 is similar to
Fig. 16 except that we are further into the asymptotic
regime with c ¼ −300i. Now, the two anomalous eigen-
values occur at the 188th and 189th positions. In Fig. 17,
we also show some eigenvalue solutions which are not
spectrally converged. Given the size of the matrix used to
numerically construct these eigenvalues, those eigenvalues
starting just below the 250th sorted location are not
accurately determined which can easily be seen in the plot
for Im½4Al4ðcÞ�.
Figure 15 presented the example ofm ¼ s ¼ 6 for which

the expected L̂ ¼ 2 anomalous sequence was not found
within L < 157. Using this alternative method, we can
explore larger values of L to see if the L̂ ¼ 2 anomalous
sequence is present without the need to construct an
extremely large set of full sequences. Figure 18 explores
the eigenvalues for 6Al6ðcÞ at c ¼ −200i, −300i, −400i,
and −600i. At each value of c, we clearly see the
anomalous eigenvalues associated with L̂ ¼ 0 and 1. In
the plot for Im½6Al6ðcÞ� at c ¼ −200i, it appears that there
is agreement between the numerical eigenvalue at L ¼ 125,

FIG. 16. The real and imaginary parts of 4Al4ðcÞ at c ¼ −200i
for the first 180 eigenvalues when sorted by the value of the real
part. In these plots, L represents the sorted position at c ¼ −200i.
The black circles are computed using the asymptotic prolate fit in
Eq. (26) with L̄ ¼ L, and the red triangles are the numerically
computed values. The base asymptotic anomalous fit for L̂ ¼ 0
and 1 are displayed as dashed lines since their position in the list
of eigenvalues cannot be predicted.

FIG. 17. The real and imaginary parts of 4Al4ðcÞ at c ¼ −300i
for the first 280 eigenvalues when sorted by the value of the real
part. See Fig. 16 for additional information. In this figure,
eigenvalues are plotted beyond L ¼ 250 where numerical errors
are significant as can easily be seen in the plot of the
imaginary part.
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and the L̂ ¼ 2 anomalous eigenvalue, but this is just
coincidence as can be verified by Fig. 15. Moreover, as
we let jcj increase, we see the location of the numerical
eigenvalue closest to the L̂ ¼ 2 anomalous eigenvalue
shifts position relative the L̂ ¼ 0 and 1 eigenvalues. At
c ¼ −600i, we see that there is still no clear evidence for an
L̂ ¼ 2 anomalous sequences out as far as L ¼ 378.

4. Behavior of the anomalous eigenfunctions

Together, Figs. 5 and 18 clearly illustrate the way in
which the locations of anomalous sequences, within the
ordered list of eigensolutions, move through the normal
sequences as jcj increases. Let us consider the behavior of
the L̂ ¼ 0 eigenfunction for the case of m ¼ s ¼ 2.
Figure 19 plots the real part of the eigenfunctions corre-
sponding to the 62nd, 63rd, and 64th sorted eigenvalues
when c ¼ −100i. The eigenfunction in the top plot
corresponds to a normal sequence with L̄ ¼ 61 and
L ¼ 62. The eigenfunction in the bottom plot corresponds
to the next normal sequence with L̄ ¼ 62 and L ¼ 63.
Between them is the eigenfunction corresponding to the
lone anomalous sequence form ¼ s ¼ 2 having L̂ ¼ 0 and
L ¼ 1. The imaginary part of the anomalous eigenfunction
can also be seen in Fig. 6. It is worth noting that the normal
eigenfunctions with L ¼ 62 and L ¼ 63 do not yet display
the expected behavior for solutions that are in the asymp-
totic regime. The transition to asymptotic behavior for a
normal sequence is just beginning at the value of cwhere an
anomalous eigenvalue passes a given normal eigenvalue.
We will discuss this point in more detail in Sec. IV.
Figure 20 displays the real part of the same eigenfunctions

FIG. 18. The real and imaginary parts of 6Al6ðcÞ. The real part
is plotted for c ¼ −200i while the imaginary part is plotted for
c ¼ −200i, −300i, −400i, and −600i. See Fig. 16 for additional
information. The base asymptotic anomalous fit for L̂ ¼ 0, 1 and
2 are displayed as dashed lines. However, the numerical solutions
only indicate anomalous sequences for L̂ ¼ 0 and 1. FIG. 19. The real part of the 3 consecutive eigenvector

solutions 2S64;2ðx; cÞ, 2S32ðx; cÞ, and 2S65;2ðx; cÞ at c ¼ −100i.
When eigenvalues are sorted by the real part of sAlmðcÞ, these
three eigenvectors correspond to 62nd, 63rd, and 64th eigenvalues.

2S32ðx; cÞ ¼ 2Ŝ22ðx; cÞ corresponds to an anomalous sequence
with L ¼ 1ðL̂ ¼ 0Þ, while 2S64;2ðx; cÞ ¼ 2S̄63;2ðx; cÞ and

2S65;2ðx; cÞ ¼ 2S̄64;2ðx; cÞ correspond to normal sequences with
L ¼ 62ðL̄ ¼ 61Þ and 63ðL̄ ¼ 62Þ. At this large value of L, the
normal sequences are not yet in the asymptotic regime.
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as in Fig. 19, but for c ¼ −300i instead of c ¼ −100i. The
eigenfunctions for the two normal sequences corresponding
to L ¼ 62 and L ¼ 63 are now clearly showing the
behavior expected of an eigensolution in the asymptotic
regime. The anomalous eigensolution corresponding to
L ¼ 1 has now shifted to being the 190th eigenvalue,
and it is clear that the number of real zero crossings has
increased dramatically. At c ¼ −100i, the real part of the
anomalous eigenfunction has 63 real zero crossings. At
c ¼ −300i, the real part of the anomalous eigenfunction
has 190 real zero crossings. We find a clear pattern that, as
we increase jcj and move along an anomalous sequence,
the associated anomalous eigenfunction gains an additional
real zero crossing each time its eigenvalue moves past a
normal eigenvalue.
The transition to anomalous asymptotic behavior for an

anomalous sequence is just beginning at the value of c along
the sequencewhere the real part of the anomalous eigenvalue
first deflects away from a neighboring normal eigenvalue
and then crosses subsequent normal eigenvalues as can be
seen in Fig. 5. As seen in Figs. 19 and 20, the asymptotic
form of an anomalous eigenfunction takes on an approxi-
mately constant envelope modulating some number of

oscillations where the number of oscillations increases as
we move to larger values of jcj. However, the shape of the
envelope depends on the specific values of m, s, and L̂.
Figure 21 shows a representative set of anomalous eigen-
functions for the case when m ¼ s ¼ 2 → 7 and L̂ ¼ 0.
Figure 22 shows a representative set of anomalous eigen-
functions for the case when m ¼ s ¼ 4 → 7 and L̂ ¼ 1.
Figure 23 shows a representative anomalous eigenfunction

FIG. 20. The real part of the three eigenvector solutions

2S64;2ðx; cÞ, 2S65;2ðx; cÞ, and 2S32ðx; cÞ at c ¼ −300i. These
are eigenvectors along the same three sequences as in Fig. 19
but further into the asymptotic regime. 2S32ðx; cÞ ¼ 2Ŝ22ðx; cÞ
corresponds to an anomalous sequence with L ¼ 1ðL̂ ¼ 0Þ, but it
now corresponds to the 190th eigenvalue. The normal sequences

2S64;2ðx; cÞ ¼ 2S̄63;2ðx; cÞ and 2S65;2ðx; cÞ ¼ 2S̄64;2ðx; cÞ corre-
spond to the 62nd and 63rd eigenvalues and are now in the
asymptotic regime.

FIG. 21. The real part of the L̂ ¼ 0 eigenvector solutions

sŜlmðx; cÞ with s ¼ m ¼ 2 → 7 and c ¼ −200i. The anomalous
type of each increases by 2 from type-1 for m ¼ s ¼ 2 to type-11
for m ¼ s ¼ 7.

FIG. 22. The real part of the L̂ ¼ 1 eigenvector solutions

sŜlmðx; cÞ with s ¼ m ¼ 4 → 7 and c ¼ −200i. The anomalous
type of each increases by 2 from type-1 for m ¼ s ¼ 4 to type-7
for m ¼ s ¼ 7.

FIG. 23. The real part of the L̂ ¼ 2 eigenvector solution

7Ŝ97ðx; cÞ at c ¼ −200i. This solution is type-3 anomalous. A
type-1 anomalous solution might exist as 6Ŝ86ðx; cÞ but was not
found after searching as far out as L ¼ 378.
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for the casewhenm ¼ s ¼ 7 and L̂ ¼ 2. And finally, Fig. 24
shows a set of representative anomalous eigenfunctions for
the case when m ¼ 9 and s ¼ 10 and L̂ ¼ 0 → 3.

IV. CONCLUSION

In this paper, we have explored the results of a thorough
numerical investigation of solutions to the angular
Teukolsky equation, Eq. (2), for purely imaginary values
of the oblateness parameter c. Our initial goal was to use
these numerical solutions to construct an analytic expres-
sion for the eigenvalues sAlmðcÞ of the angular Teukolsky
equation (also referred to as the separation constant), in the
limit of large imaginary values for c, the so-called prolate
asymptotic limit. Only limited success toward this goal had
been achieved previously using purely analytic techniques
(see Ref. [10] and references therein). Our numerical
solutions, however, revealed that the prolate asymptotic
limit actually exhibits two distinctly different asymptotic
behaviors.
To explore the prolate asymptotic limit, we constructed

sequences of solutions parametrized by the magnitude of c.
A family of sequences is labeled by the values of the spin-
weight s, and azimuthal indexmwhich, along with c, fix the
free parameters of the angular Teukolsky equation.
The resulting eigenvalue problemhas an infinity of solutions
usually parametrized by the harmonic index l. In the
spherical limit, c → 0, the eigenfunctions are simply the
spin-weighted spherical functions which are proportional to
theWigner-d functions sSlmðx ¼ cos θ; 0Þ ∝ dlmð−sÞðθÞ, and
the eigenvalues are simply sAlmð0Þ ¼ lðlþ 1Þ − sðsþ 1Þ.
For fixed values ofm and s, each purely imaginary value of c
yields a nondegenerate set of eigenvalues which forms a
smooth sequence parametrized by c.
As jcj gets large, we found that the sequences exhibit two

distinctly different leading-order asymptotic behaviors. We
labeled one type of behavior as “normal” because it
followed the leading order behavior of linear growth in
jcj of the eigenvalue predicted in Ref. [10] for the prolate
asymptotic limit. Using our high-accuracy numerical solu-
tions for the eigenvalues, we were able to construct the
analytic form for four additional terms in the normal prolate

asymptotic expansion for the eigenvalues. The full
expression for sĀlmðcÞ is given in Eq. (26), where
the overbar denotes the result as applying to normal
sequences. The index l labeling sĀlmðcÞ is computed as
l ¼ L̄þmaxðjmj; jsjÞ, with L̄ appearing in Eq. (26) and
also being associated with the number of zero crossings of
the real part of the associated eigenfunction sS̄lmðx; cÞ.
As described in Sec. II D, there will be L̄ real zero crossing
of the eigenfunction within the inner region defined
by jxj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L̄þ 1Þ=jcj

p
.

In the spherical limit, c → 0, the real eigenfunctions
sSlmðx; 0Þ also have L zero crossings, where l ¼
Lþmaxðjmj; jsjÞ. We can denote the eigenvalue and
eigenfunction for any normal sequence in terms of the l
index from the spherical limit via sAlmðcÞ and sSlmðx; cÞ,
or in terms of the l index from the normal prolate
asymptotic limit via sĀlmðcÞ and sS̄lmðx; cÞ. It is tempting
to assume that the value of the eigenvalue index l in these
two notations is the same for a given sequence, but they
can be different. The reason for this difference is that
some sequences exhibit an anomalous behavior as they
approach the prolate asymptotic limit, with the eigenvalue
growing as jcj2 as opposed to the linear growth of normal
sequences.
For fixed values of m and s, there exists a countably

infinite set of eigensolution sequences indexed by l. In all
cases, most of the sequences have normal behavior in the
prolate asymptotic limit. For many ðm; sÞ pairs, all of the
sequences have normal behavior. But, as shown in
Tables IX and X, there are also many ðm; sÞ pairs for
which a finite set of the sequences have anomalous prolate
asymptotic behavior. The presence of even one anomalous
sequence within a set of sequences with fixed ðm; sÞ means
that the number of real zero crossing of the eigenfunction
will be different in the spherical and asymptotic limits for
most sequences. That is, the values of L and L̄ will be
different for most sequences. In fact, if we examine the
number of real zero crossings along x of sSlmðx; cÞ as we
vary c along a normal sequence, the number of crossings
will change regardless of the presence of anomalous
sequences. This is because of the behavior of the eigen-
function in the normal prolate asymptotic limit. As review
in Sec. II D, there are L̄ real zero crossings in the inner
region. But there will also be some predictable number of
real zero crossings in the outer regions. This is clearly
illustrated for 2S33ðx; cÞ in Figs. 2 and 3. In Fig. 2 with
c ¼ −100i, the solution is well within the asymptotic limit,
and the two additional zero crossings in the outer regions
are exponentially suppressed though still detectable. In
Fig. 3 with c ¼ −10i, the solution is still in the transition
region between spherical and asymptotic behavior, and we
see two real zero crossing for a case where L ¼ L̄ ¼ 0.
The behavior just described above presents something of

a problem if one is trying to classify some single

FIG. 24. The real part of the L̂ ¼ 0 → 3 eigenvector solution

10Ŝl9ðx; cÞ with s ≠ m and c ¼ −200i. The anomalous type of
each decreases by 4 from type-15 for L̂ ¼ 0 to type-3 for L̂ ¼ 3.
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eigensolution with known values ofm and s. If the solution
is in the transition region between spherical and asymptotic
behavior, then the value of the eigenvalue cannot be
compared to either asymptotic form, nor can the number
of real zero crossings of the eigenfunction be used as a
reliable discriminant. But, given a single eigensolution, that
solution can be extended toward either asymptotic limit and
classified once it is sufficiently close to either one. If it is
extended toward the spherical limit, then the value of L can
be determined either from sSlmðs; cÞ or sAlmðcÞ. If the
sequence is normal and it is extended toward the prolate
asymptotic limit, then the value of L̄ can be determined
either from sS̄lmðx; cÞ or sĀlmðcÞ. It is important to
emphasize that a given normal sequence can be denoted
either as the eigensolution pair ðsSlmðs; cÞ; sAlmðcÞÞ or as
ðsS̄lmðx; cÞ; sĀlmðcÞÞ for any value of c along the
sequence. But, the correspondence between these two
notations can only be known if the sequence has been
extended to both limits. In this case, we know both L, and L̄
for the given sequence and, by definition, the value of

sNlm ¼ L − L̄. Recall from Sec. III D that sNlm is the
number of anomalous eigensolutions for given m and s
with values of l smaller than l ¼ Lþmaxðjmj; jsjÞ.
The second type of asymptotic behavior seen in the

prolate solutions manifests in the eigenvalue as quadratic
growth, sAlmðcÞ ≈ jcj2. Generically, we have labeled
eigensolutions along such a sequence as “anomalous,”
but these sequences can be subcategorized as “type-N
anomalous” where N is an odd integer. This classification
is based entirely on the asymptotic behavior of the
eigenvalue. We find that the type-N anomalous prolate
asymptotic eigenvalue sÂlmðcÞ is equal to Eq. (6a), with
sqlm replaced by sq̂lm as defined in Eq. (27), up to but not
including terms of order c−N . In all cases, the term at order
c−N in Eq. (6a) should be purely imaginary for the prolate
case. However, we find numerically that the term at order
c−N for type-N anomalous prolate asymptotic sequences
also includes a real part. Moreover, the full behavior of the
term at order c−N seems to be a correction to the term from
the oblate case, given by Eq. (6b) for type-1 solutions and
by Eq. (6d) for type-3 solutions. Such a correction term
seems to behave somewhat as if it were proportional to the
exponential of a purely imaginary function of c, but we
have not been able to find a suitable form for this. Figure 13
shows an example of the behavior of the correction terms
for a type-1 anomalous sequence for m ¼ s ¼ 4. In this
figure, the lines labeled by L̂ ¼ 0 correspond to a type-5
sequence and the lines labeled by L̂ ¼ 1 correspond to the
type-1 sequence of interest. The L̂ ¼ 1 lines in this figure
clearly show that the corrections to Eq. (6b) are complex
and highly oscillatory while the magnitudes of both the real
and the imaginary parts decay on average like c−1. We
cannot separate out the correction term for the type-5
sequence seen in these plots because we do not have an

expression for the oblate sequence at order c−5. The upper-
left plot in Fig. 12 shows the magnitude of the type-1
correction term for the same m ¼ s ¼ 4 sequence, and we
can clearly see that the rapid oscillations vanish asymp-
totically. This nonoscillatory behavior for the magnitude of
the correction term seems to be generic and is the
foundation for our conjecture that the correction terms
are proportional to the exponential of a purely imaginary
function of c.
For any anomalous sequence, its type can be determined

easily as

N ≡ −2sq̂ljmj − 1: ð28Þ

In fact, numerical evidence shows that N ≥ 1 is a neces-
sary, but not sufficient condition for a sequence to be
anomalous. Without explicitly constructing any solution
sequences, given values of m and s, and taking values of
l ¼ L̂þmaxðjmj; jsjÞ for L̂ ≥ 0, any combination for
which N ≥ 1 is most likely type-N anomalous. As
discussed in Sec. III E 3, we have not been able to
determine whether certain sequences with N ≥ 1 are
missing from the set of anomalous sequences or if they
simply occur at a very large value of L. Here, it is perhaps
useful to remember that the value of l in sq̂ljmj used to

construct N is associated with L̂ which takes on consecu-
tive values for all of the anomalous sequences for given m
and s. The value of L is used to construct the l used in
sNlm which defines the position of each anomalous
sequence in the set of eigensolutions in the spherical limit
(c → 0). In summary, N ≤ 0 for L̂ ¼ 0 allows us to be
certain that no anomalous sequences are present for given
m and s. The number of values of L̂which yieldN ≥ 1, we
conjecture, gives us an upper limit on the number of
anomalous sequences for given m and s,

Nanom ≤ max ð⌈ðjsj − jjmj − jsjj − 1Þ=2⌉; 0Þ; ð29Þ

where ⌈x⌉ denotes the ceiling of x. While the number of
anomalous sequences is not guaranteed, our evidence
suggests that the minimum number is likely no more than
one less than the maximum.
The condition N ≥ 1 gives us insight into the possible

number of anomalous sequences for give m and s, but the
allowed values for N provide no information about the
value of sNlm for a given anomalous sequence. Recall that
for an anomalous sequence, sNlm ¼ L̂, explicitly relating
the values of L and L̂ for a specific anomalous sequence,
and thus specifying the location of the asymptotic sequence
in the spherical limit (c → 0). The only constraints on the
location of any prolate anomalous sequence within the set
of all prolate sequences have been obtained empirically for
the special cases where L ¼ L̂. By explicit construction, we
find that in the region A defined by L ¼ 0 and bound by
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11jsj ≥ 7jmj þ 9 and jsj ≤ 10jmj − 24, all sequences are
anomalous with L̄ ¼ 0 if jmj ≤ 20 and jsj ≤ 20. It may be
true for larger magnitudes of m and s, but we have no
analytic proof of this. Many additional anomalous sequen-
ces with L ¼ L̂ exist within the region D defined by L ≥ 1,
14L ≤ 11jsj − 7jmj − 10, and 25L ≤ 9jmj − 2jsj − 15.
Unfortunately, not all of the points within this region are
guaranteed to be anomalous. Within the limits of jmj ≤ 20
and jsj ≤ 20, we have found by explicit construction that
eight points in each quadrant are within D but are normal.
These eight points are listed in Table VIII. While sequences
with parameters within region D are not guaranteed to be
anomalous, of the known 8 know sequences that are
normal, five lie on one of the bounding planes and the
remaining three just within one of them. So, sequences with
parameters withinD are very likely to be anomalous unless
they lie on or adjacent to one of the bounding planes.
Using our high-accuracy numerical solutions to the

angular Teukolsky equation, we also explored the behavior
of the prolate anomalous eigenfunctions sŜlmðx; cÞ. Most
notable is that, in the asymptotic limit, these eigenfunctions
behave nothing like the eigenfunctions on normal sequen-
ces. In the asymptotic limit, the anomalous eigenfunctions
display a number of real zero crossings along x that is not
correlated with L̂, but instead rapidly increases as jcj
increases. And, while the number of real zero crossing
changes with c, the envelope modulating the oscillations
seems to be relatively insensitive to changes in c in the
asymptotic regime. The number of real zero crossings does
seem to be correlated with the anomalous eigenvalue’s
position in the list of all eigenvalues, when sorted by the
magnitude of the real part of the eigenvalue. As the real part
of each anomalous sequence’s eigenvalue grows as jcj2, it
quickly crosses successive normal sequences as jcj
increases as seen in Figs. 4 and 5.
The path of anomalous eigenvalue sequences through the

family of all eigenvalue sequences for given m and s also
seems to be correlated with the region of transition to
asymptotic behavior for both normal and anomalous
sequences. Figures 5 and 14 show that, for sequences with
L̂ > L, the value of c at which the real part of the
anomalous eigenvalue deflects from a normal sequence
mark the transition into prolate anomalous asymptotic
behavior. This value of c is very close to the point at
which the imaginary part of the anomalous eigenvalue
crosses near the peak of a normal sequence, giving further
support to this conjecture. It also seems that normal
sequences, for which the real part of the eigenvalue cross
that of a prolate anomalous sequence, seem to transition to
normal asymptotic behavior at values of jcj slightly larger
than the crossing point. As seen in Fig. 1, even when no
anomalous sequences are present for given m and s, it
seems that the transition to prolate normal asymptotic
behavior seems to be in the region where the real part
of the eigenvalue is comparable to jcj2.

The numerical solutions of the angular Teukolsky
equation in the prolate limit which we have examined in
this paper have provided substantial new insights into the
behavior of prolate solutions in general. We hope that these
insights and various conjectures will motivate and
aid future analytic studies. We also hope that the numeri-
cally determined asymptotic expansions for both the
normal and anomalous sequences will prove useful for
high-accuracy approximations to the SWSHs for use in
other works.
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APPENDIX A: TABLES OF ANOMALOUS
SEQUENCES

The presence of eigensolution sequences with anoma-
lous behavior complicates the task of matching prolate
sequences in the asymptotic regime with corresponding
sequences in the spherical limit. In the spherical limit, each
eigensolution is conveniently labeled by L ≥ 0 which gives
the number of zero crossings of the eigenfunction
sSlmðx; 0Þ and is related to the more commonly used
harmonic index l by Eq. (8), and the eigenvalues are
given by sAlmð0Þ ¼ lðlþ 1Þ − sðsþ 1Þ. Sequences of
eigensolutions, parameterized by c, smoothly connect
prolate solutions at c ¼ 0 to the asymptotic limit of large
jcj, where the eigensolutions can take on either normal or
anomalous behavior. Normal asymptotic solutions can also
be labeled by L̄ ¼ L − sNlm, and sNlm is the number of
anomalous eigensolutions that exist for m and s with
smaller values of l. Anomalous asymptotic solutions
can also be labeled by L̂ ¼ sNlm.
Tables IX and X explicitly list all of the anomalous

sequences we have found for jmj ≤ 10 and jsj ≤ 10. The
first two columns of each table list the values of jmj and jsj.
The third column in each table lists the harmonic index l as
defined in the spherical limit (c → 0) for that sequence.
These three indices are the most common set used to
specify eigensolutions in the spherical limit. The fourth
column in each table lists the value of L for the sequence as
given by Eq. (8). The fifth column in each table lists the
value of sNlm for the anomalous sequence labeled by the
common set of indices used in the spherical limit.
The sixth column lists the values of n which is the slope

of a log-log plot of the difference between the numerical
solution for the eigenvalue and the base prolate anomalous
fit given by Eq. (6a) with L replaced by L̂ ¼ sNlm and sqlm
replaces by sq̂lm as defined by Eq. (27). The value of n
gives the power in c at which the base prolate anomalous fit
requires correction. Because Eq. (6a) is only known to
order c−4, the minimum value is n ¼ −5. The seventh
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TABLE X. Sequences known to have anomalous behavior. m,
s, and l designate each sequence in terms if its behavior as c → 0.
L is the alternate labeling as defined by Eq. (8) and sNlm ¼ L̂ is
the number of anomalous sequences that exist for m and s with
smaller l. See the text in Appendix A for descriptions of the last
three columns of data.

jmj jsj l L sNlm n 2sq̂ljmj þ 1 fRe½n�; Im½n�g
7 5 10 3 0 −3 −3 f−3;−3g
7 6 7 0 0 −5 −7 f−6;−5g

15 8 1 −3 −3 f−3;−3g
7 7 7 0 0 −5 −11 f−6;−5g

8 1 1 −5 −7 f−6;−5g
23 16 2 −3 −3 f−3;−3g

7 8 8 0 0 −5 −11 f−6;−5g
9 1 1 −5 −7 f−6;−5g

31 23 2 −3 −3 f−3;−3g
7 9 9 0 0 −5 −11 f−6;−5g

10 1 1 −5 −7 f−6;−5g
41 32 2 −3 −3 f−3;−3g

7 10 10 0 0 −5 −11 f−6;−5g
11 1 1 −5 −7 f−6;−5g
53 43 2 −3 −3 f−3;−3g

8 6 8 0 0 −5 −5 f−5;−5g
8 7 8 0 0 −5 −9 f−6;−5g

10 2 1 −5 −5 f−5;−5g
8 8 8 0 0 −5 −13 f−6;−5g

9 1 1 −5 −9 f−6;−5g
13 5 2 −5 −5 f−5;−5g

8 9 9 0 0 −5 −13 f−6;−5g
10 1 1 −5 −9 f−6;−5g
16 7 2 −5 −5 f−5;−5g

8 10 10 0 0 −5 −13 f−6;−5g
11 1 1 −5 −9 f−6;−5g
19 9 2 −5 −5 f−5;−5g

9 6 17 8 0 −3 −3 f−3;−3g
9 7 9 0 0 −5 −7 f−6;−5g

29 20 1 −3 −3 f−3;−3g
9 8 9 0 0 −5 −11 f−6;−5g

10 1 1 −5 −7 f−6;−5g
44 35 2 −3 −3 f−3;−3g

9 9 9 0 0 −5 −15 f−6;−5g
10 1 1 −5 −11 f−6;−5g
12 3 2 −5 −7 f−6;−5g
64 55 3 −3 −3 f−3;−3g

9 10 10 0 0 −5 −15 f−6;−5g
11 1 1 −5 −11 f−6;−5g
13 3 2 −5 −7 f−7;−5g
88 78 3 −3 −3 f−3;−3g

10 7 11 1 0 −5 −5 f−5;−5g
10 8 10 0 0 −5 −9 f−6;−5g

15 5 1 −5 −5 f−5;−5g
10 9 10 0 0 −5 −13 f−6;−5g

11 1 1 −5 −9 f−6;−5g
20 10 2 −5 −5 f−5;−5g

10 10 10 0 0 −5 −17 f−6;−5g
11 1 1 −5 −13 f−6;−5g
12 2 2 −5 −9 f−6;−5g
25 15 3 −5 −5 f−5;−5g

TABLE IX. Sequences known to have anomalous behavior. m,
s, and l designate each sequence in terms if its behavior as c → 0.
L is the alternate labeling as defined by Eq. (8) and sNlm ¼ L̂ is
the number of anomalous sequences that exist for m and s with
smaller l. See the text in Appendix A for descriptions of the last
three columns of data.

jmj jsj l L sNlm n 2sq̂ljmj þ 1 fRe½n�; Im½n�g
2 2 3 1 0 −1 −1 f−1;−1g
2 3 6 3 0 −1 −1 f−1;−1g
2 4 9 5 0 −1 −1 f−1;−1g
2 5 13 8 0 −1 −1 f−1;−1g
2 6 18 12 0 −1 −1 f−1;−1g
2 7 23 16 0 −1 −1 f−1;−1g
3 3 3 0 0 −3 −3 f−3;−3g
3 4 4 0 0 −3 −3 f−3;−3g
3 5 5 0 0 −3 −3 f−3;−3g
3 6 6 0 0 −3 −3 f−3;−3g
3 7 8 1 0 −3 −3 f−3;−3g
3 8 9 1 0 −3 −3 f−3;−3g
3 9 10 1 0 −3 −3 f−3;−3g
3 10 12 2 0 −3 −3 f−3;−3g
4 3 13 9 0 −1 −1 f−1;−1g
4 4 4 0 0 −5 −5 f−5;−5g

32 28 1 −1 −1 f−1;−1g
4 5 5 0 0 −5 −5 f−5;−5g

60 55 1 −1 −1 f−1;−1g
4 6 6 0 0 −5 −5 f−5;−5g

99 93 1 −1 −1 f−1;−1g
4 7 7 0 0 −5 −5 f−5;−5g

143 136 1 −1 −1 f−1;−1g
4 8 8 0 0 −5 −5 f−5;−5g
4 9 9 0 0 −5 −5 f−5;−5g
4 10 10 0 0 −5 −5 f−5;−5g
5 4 5 0 0 −3 −3 f−3;−3g
5 5 5 0 0 −5 −7 f−6;−5g

8 3 1 −3 −3 f−3;−3g
5 6 6 0 0 −5 −7 f−6;−5g

11 5 1 −3 −3 f−3;−3g
5 7 7 0 0 −5 −7 f−6;−5g

14 7 1 −3 −3 f−3;−3g
5 8 8 0 0 −5 −7 f−6;−5g

18 10 1 −3 −3 f−3;−3g
5 9 9 0 0 −5 −7 f−6;−5g

22 13 1 −3 −3 f−3;−3g
5 10 10 0 0 −5 −7 f−6;−5g

27 17 1 −3 −3 f−3;−3g
6 4 43 37 0 −1 −1 f−1;−1g
6 5 6 0 0 −5 −5 f−5;−5g

118 112 1 −1 −1 f−1;−1g
6 6 6 0 0 −5 −9 f−6;−5g

7 1 1 −5 −5 f−5;−5g
6 7 7 0 0 −5 −9 f−6;−5g

8 1 1 −5 −5 f−5;−5g
6 8 8 0 0 −5 −9 f−6;−5g

10 2 1 −5 −5 f−5;−5g
6 9 9 0 0 −5 −9 f−6;−5g

12 3 1 −5 −5 f−5;−5g
6 10 10 0 0 −5 −9 f−6;−5g

14 4 1 −5 −5 f−5;−5g
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column lists our conjectured value, 2sq̂ljmj þ 1, for the
power in c at which the base prolate anomalous fit requires
correction. The negative of this conjectured value defines
the specific typeN ¼ −2sq̂ljmj − 1 of the given anomalous
sequence. Note that for 2sq̂ljmj þ 1 ≥ −5, there is agree-
ment with n.
The final column in each table lists separately the slopes

of log-log plots of the real and imaginary parts of the same
residual whose magnitude was plotted to obtain n. For
2sq̂ljmj þ 1 ≥ −5, the values of Re½n� and Im½n� should be
equal to n. For 2sq̂ljmj þ 1 ≤ −7, we expect the values
to be Re½n� ¼ −6 and Im½n� ¼ −5 because the real part of
the base prolate anomalous fit vanishes at order c−5. We
note one unusual value for the case jmj ¼ 9, jsj ¼ 10,
l ¼ 13, where Re½n� ¼ −7 and we should expect this to
be −6.5

The tables only give values for sNlm for anomalous
sequences. However, these values are all that is necessary to
specify sNlm for all values of l for givenm and s. For given
m and s, if there are no anomalous sequences, then sNlm ¼
0 for all l. For example 2Nl1 ¼ 0 for all l. For jmj ¼ 2 and
jsj ¼ 2, we have 2Nl2 ¼ 0 for l ≤ 3 while 2Nl2 ¼ 1 for
l > 3. As a final example, for jmj ¼ 10 and jsj ¼ 10, we
have 10Nl10 ¼ 0 for l ¼ 10, 10Nl10 ¼ 1 for l ¼ 11,

10Nl10 ¼ 2 for 12 ≤ l < 25, and 2Nl2 ¼ 3 for 25 ≤ l.
In this last example, we would expect that a fifth anomalous
sequence of type-1 exists with 2Nl2 ¼ 4 for some large
value of l. Unfortunately, finding anomalous sequences
with very large values of L is extremely expensive
computationally.6 The following sets of sequences may
be missing a type-1 anomalous sequence for the same
reason: ðjmj; jsjÞ∈fð4;8→10Þ;ð6;6→10Þ;ð8;6→10Þ;
ð10;7→10Þg.

APPENDIX B: CORRECTING AND EXTENDING
THE OBLATE ASYMPTOTIC EXPANSION

The oblate asymptotic expansion obtained by Breuer
et al. [13] did not agree well with our oblate numerical
results. To correct and improve this expansion, we used the
same approach outline in Sec. III D for finding the prolate
normal asymptotic expansion to explicitly fit our numerical
data for the coefficients in the oblate asymptotic expansion.
As mentioned in Sec. III B 2, we modified the recurrence
relation of Eq. (17) to move the leading order −c2
asymptotic behavior from the eigenvalue to the matrix
coefficients. Removing this rapid growth in the eigenvalue
improved the accuracy of the numerical solutions. We then
fit the asymptotic expansion given in Eq. (6a) to obtain the
coefficients A1, A2, A3, and A4 given by Eqs. (6b)–(6e). We
also fit explicitly for the two terms that are linear and
constant in c within Eq. (6a).

The coefficients were obtained using a greedy algorithm,
first obtaining the form for the coefficient linear in c, then
obtaining the forms for each subsequent coefficient at
successively smaller powers of c. At each step, we fit
for the coefficients of the first four unknown terms in the
asymptotic expansion. Once each coefficient was deter-
mined, it was included in the asymptotic expansion before
fitting for the next coefficient. Fitting each coefficient is a
two-step process. First the value of the coefficient was
obtained at various values of m, s, and L by directly fitting
to the last 40 (largest values of jcj) data points from each of
the numerically generate oblate sequences described in
Sec. III B 2. In the second step, this set of data points
describing the coefficients as functions of m, s, and L was
fit to find the coefficient as an explicit function ofm, s, and
sqlm. It is necessary to fit each coefficient as a function of
sqlm as defined in Eqs. (7) and (8) because of the
complicated dependence of sqlm on m, s, and L.
Each coefficient was fit using data from all sequences

with values of jmj ≤ 10, jsj ≤ 10, and sqlm ≤ 14. The
results from fitting for the linear coefficient are displayed in
Table XI, and the results for the constant term are shown in
Table XII. Finally, the results for the coefficients A1→4 are
displayed respectively in Tables XIII–XVI.

TABLE XI. Oblate sequence linear fit results for the term linear
in c. The fit for the linear term is given in Eq. (6a).

Estimate σ

1 −5.0 × 10−9 3.7 × 10−10

q 2.00000000 4.0 × 10−11

TABLE XII. Oblate sequence linear fit results for twice the
constant term. The fit for the constant term is given in Eq. (6a).

Estimate σ

1 −1.00000010 8.2 × 10−9

s −2.00000000 1.0 × 10−9

m2 1.00000000 1.6 × 10−10

q2 −1.00000000 6.4 × 10−11

TABLE XIII. Oblate sequence linear fit results for 8A1. The fit
for A1 is given in Eq. (6b).

Estimate σ

1 4.0 × 10−6 5.6 × 10−7

q −1.00000178 1.1 × 10−7

q3 −0.99999998 4.6 × 10−10

m2q 1.00000000 9.3 × 10−10

ms2 1.99999999 1.6 × 10−9

qs2 1.99999999 1.1 × 10−9
5See Sec. III E 2 for additional discussion.
6See Sec. III E 3 for additional discussion.
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APPENDIX C: ADDITIONAL ANOMALOUS
FIGURES

This Appendix provides a few additional figures illus-
trating the behavior of the normal and anomalous sequen-
ces. Figures 25–28 include both the normal and anomalous
sequences for several cases not fully explored in the main
text. Figures 29 and 30 compare the behavior of the
anomalous sequences grouped by anomalous type.

TABLE XV. Oblate sequence linear fit results for 512A3. The fit
for A3 is given in Eq. (6d).

Estimate σ

1 −0.00217492 0.0015
q −36.99794124 0.00054
q3 −114.00010838 8.9 × 10−6

m2q 50.00005295 0.000013
ms2 52.00005913 0.000022
qs2 100.00008913 0.000019
q5 −32.99999885 4.6 × 10−8

m4q −13.00000037 1.0 × 10−7

ms4 −8.00000048 2.4 × 10−7

qs4 −8.00000093 2.1 × 10−7

m3s2 −4.00000025 1.7 × 10−7

q3s2 91.99999883 1.3 × 10−7

m2q3 45.99999958 9.2 × 10−8

m2qs2 35.99999887 3.7 × 10−7

mq2s2 131.99999783 2.7 × 10−7

TABLE XVI. Oblate sequence linear fit results for 1024A4. The
fit for A4 is given in Eq. (6e).

Estimate σ

1 −14.00498229 0.012
q2 −238.99817258 0.00084
s2 59.99902632 0.00087
m2 29.99967476 0.0012
q4 −340.00012316 0.000018
s4 −15.99998345 0.000012
m4 −18.00003108 0.000034
q2s2 460.00022510 0.000039
m2q2 230.00010283 0.000030
mqs2 372.00025561 0.000066
m2s2 40.00007593 0.000063
q6 −62.99999840 1.1 × 10−7

m6 2.00000051 2.9 × 10−7

q4s2 199.99999753 3.2 × 10−7

m2q4 99.99999905 2.4 × 10−7

mq3s2 291.99999484 7.5 × 10−7

m4q2 −39.00000077 2.8 × 10−7

q2s4 −48.00000368 6.5 × 10−7

m2q2s2 59.99999575 1.3 × 10−6

mqs4 −72.00000403 1.4 × 10−6

m3qs2 −36.00000207 1.1 × 10−6

m2s4 −24.00000103 1.0 × 10−6

m4s2 −4.00000064 6.9 × 10−7

TABLE XIV. Oblate sequence linear fit results for 64A2. The fit
for A2 is given in Eq. (6).

Estimate σ

1 −0.99974542 0.000076
m2 2.00001612 3.3 × 10−6

s2 4.00000290 1.63 × 10−6

q2 −10.00002405 1.4 × 10−6

m4 −1.00000013 3.1 × 10−8

q4 −4.99999977 5.8 × 10−9

m2s2 3.99999990 4.0 × 10−8

m2q2 5.99999992 1.6 × 10−8

q2s2 11.99999984 1.7 × 10−8

mqs2 15.99999979 2.7 × 10−8
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FIG. 25. Eigenvalue sequences for 4Al4ð−ijcjÞ. Note the unusual behavior of the L ¼ 0 and L ¼ 28 sequences which have quadratic
leading-order behavior for the real components and linear leading-order behavior for the imaginary components. The left plot includes
the sequences with 0 ≤ L ≤ 28, so the uppermost sequence is anomalous. The right plot includes 13 additional sequences to illustrate
the behavior of these sequences following the transition of the L ¼ 28 sequence to anomalous prolate asymptotic behavior.

FIG. 26. Eigenvalue sequences for 7Al5ð−ijcjÞ. Note the unusual behavior of the L ¼ 0 and L ¼ 7 sequences which have quadratic
leading-order behavior for the real components and linear leading-order behavior for the imaginary components. Like Fig. 25, this set of
sequences has two anomalous sequences with the first at L ¼ 0. In this case, however, the second anomalous sequence appears sooner,
and we can zoom in on a smaller region on the plots.
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FIG. 27. Eigenvalue sequences for 9Al10ð−ijcjÞ. Note the unusual behavior of the L ¼ 0, L ¼ 1, and L ¼ 10 sequences which have
quadratic leading-order behavior for the real components and linear leading-order behavior for the imaginary components. This case is
similar to Fig. 26 but include three anomalous sequences.

FIG. 28. Eigenvalue sequences for the real part of 10Al9ð−ijcjÞ. The behavior of the imaginary part can be seen in Fig. 14. Note the
unusual behavior of the L ¼ 0, L ¼ 1, L ¼ 3, and L ¼ 78 sequences which have quadratic leading-order behavior for the real
components. The left plot includes the sequences with 0 ≤ L ≤ 78, so the uppermost sequence is anomalous. The upper-right plot
focuses on the region of the plot were the L ¼ 28 anomalous sequence transitions to anomalous prolate asymptotic behavior. The lower-
right plot focuses on the behavior of the first three anomalous sequences.
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FIG. 29. Eigenvalue sequences for the real part of sAlmð−ijcjÞ showing only the real parts of anomalous sequences grouped by
anomalous type. Each plot includes all sequences of a given type found with 0 ≤ m ≤ 10 and 0 ≤ s ≤ 10. The upper-left plot displays
the type-1 anomalous sequences. Note that several additional sequences may exist, but may occur for such large values of L that we have
not found them. The upper-right plot displays the type-3 anomalous sequences. The lower-left and -right plots show, respectively the
plots for type-5 and type-7 anomalous sequences.
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FIG. 30. Eigenvalue sequences for the imaginary part of sAlmð−ijcjÞ showing only the imaginary parts of anomalous sequences
grouped by anomalous type. Each plot includes all sequences of a given type found with 0 ≤ m ≤ 10 and 0 ≤ s ≤ 10. The upper-left plot
displays the type-1 anomalous sequences. Note that several additional sequences may exist, but may occur for such large values of L that
we have not found them. The upper-right plot displays the type-3 anomalous sequences. The lower-left and -right plots show,
respectively the plots for type-5 and type-7 anomalous sequences.
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