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We study the effects of explicit spacetime-symmetry breaking on primordial tensor fluctuations using an
effective-field theory for Lorentz/CPT violation. We find that the graviton is still massless, but that the
propagation speed of tensor modes is modified, and we obtain a constraint on the coefficient determining
the symmetry breaking on the order of 10−15 from the recent measurements of the speed of gravity. Due to
the symmetry breaking, the de-Sitter phase is modified, and during this inflationary epoch, the power
spectrum assumes a slow oscillation around the general-relativity limit; further, we find that the primordial
tensor power spectrum retains its scale invariance, but that the amplitude is modified. We also find that the
modes which become subhorizon during radiation domination acquire a phase shift proportional to the
coefficient for Lorentz violation.
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I. INTRODUCTION

The recent detection of gravitational waves (GW’s) by
the LIGO and Virgo collaboration not only confirmed yet
another prediction of general relativity, but opened a
completely new window to the universe. GW’s can now
be used to study black holes and neutron stars unlike any
other probe, and can also put bounds on the mass of the
graviton and the “speed of gravity” when combined with
electromagnetic observations. Different mechanisms for
generating GW’s lie in the early universe, where a number
of different processes may create primordial GW’s
(PGW’s); indeed, the existence of PGW’s is an important
prediction of the inflationary model of the early universe
[1,2]. Even prior to inflation, the existence of PGW’s have
been shown to appear in Big Bounce models [3]. Post-
inflation, early universe mechanisms such as BBN nucleo-
synthesis, phase transitions [4,5], cosmic pre/reheating
[6,7], and cosmic defects [8,9] can all give rise to
PGW’s, as can other scenarios such as the merging of
primordial black holes [10,11] or the presence of extra
fields and broken spacetime symmetries in the early
universe.
Most early universe mechanisms are expected to produce

exceedingly weak PGW’s; for example, in the slow-roll
scenario, the energy density of PGW’s are expected to be
approximately ΩGWðfÞ ≈ 10−15 for many orders of mag-
nitude in the frequency f. Such a low value is unlikely to be
accessible by ground-based observatories, but may be

observable by future space-based detectors, for example
ALIA, BBO, and DECIGO [12,13]. It may be possible,
however, to generate observable signals within models
beyond standard inflation and cosmology [14,15]. Any
detection of a stochastic background of primordial gravi-
tational waves would have profound implications for our
understanding of the early universe, as they may give
insight into processes at very early times, probing further
than the recombination era (redshift z ≈ 1100) and the
release of the CMB [1,16–18].
Since the early universe lends itself well to the study of

fundamental physics, it is also a promising testing ground
for spacetime symmetries; indeed, it has been suggested
that local Lorentz invariance may no longer be an exact
symmetry in a fundamental, unified theory of physics
[19,20]. In fact, several approaches to quantum gravity
predict or allow for the breaking of exact Lorentz/CPT
symmetry [20–23]. Since local Lorentz invariance is a
fundamental ingredient of both general relativity and
particle physics, stating that any local experiment is
independent of both orientations and velocities, performing
precision tests of Lorentz symmetry itself is an excellent
way to test for new physics.
These above considerations has lead to a large research

effort in the testing of spacetime symmetries using a
generalized effective-field theory framework, making it
possible to combining results from very different experi-
ments, even across Standard Model sectors [24–26].
For linearized gravity, limits exist from Solar-System tests
[27–29], short-range gravity [30–32], pulsar tests [33,34],
gravitational waves [35–38], and many more. The results in*nilssonnilsalbin@gmail.com
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the exact (nonlinearized) regime are less exhaustive at
present, and have only just begun to be explored; the effects
of exact spacetime-symmetry breaking have been studied in
for example inflation [39], black holes [40], cosmology
[41], and others [42–45]. A complete list of all available
Lorentz and CPT violation constraints within this frame-
work can be found in [46].
There is a clear distinction between spontaneous and

explicit symmetry breaking: with spontaneous breaking, all
the canonical relations, such as the Noether identities and
Euler-Lagrange equations still hold. In contrast, in the case
of explicit breaking, the terms breaking the symmetry
appear in the Lagrangian as nondynamical background
tensors which have preferred spacetime directions. These
tensors do not obey equations of motion, and the notion of
being “on shell” cannot be applied to them. This creates
conflicts with the Bianchi identities and energy momentum
conservation, often imposing such severe constraints that
the theory cannot survive; however, there are scenarios in
which explicit spacetime-symmetry breaking can be made
to fit with all the requirements imposed by Einstein’s
equations and the notions of Riemannian geometry [47]. It
also bears mentioning that when using a Stuckelberg
approach to explicit breaking, the extra degrees of freedom
takes on the same form as the massless Nambu-Goldstone
excitations present in the case of spontaneous symmetry
breaking, as noted in [47].
The purpose of the present paper is to study the

consequences of explicit spacetime-symmetry breaking
on the dynamics of primordial gravitational waves. By
building upon previously obtained results [41], we explore
a simple case of explicit spacetime-symmetry breaking in
the context of the early Universe.
This paper is composed as follows: In Sec. II we set up

the model and present cosmological solutions and con-
servation equations at the background level. In Sec. III, we
carry out the perturbative analysis and find the equations
of motion for the tensor modes, as well as solve the
Mukhanov-Sasaki equation and find the expression for the
power spectrum. We discuss our results and put them into
context in Sec. IV. Throughout this paper, we use units in
which c ¼ ℏ ¼ 1, and the metric signature ð−;þ;þ;þÞ.
We use Greek letters μ; ν; α; � � � as spacetime indices and
mid-alphabet Latin letters i; j; k; � � � as spatial indices.

II. THEORETICAL SETUP

Restricting to mass-dimension d ≤ 4, we write the
Lagrangian as

L ∼ Rþ ðkRÞαβμνRαβμν; ð1Þ

where Rαβμν is the Riemann tensor and ðkRÞαβμν are the
coefficients for Lorentz violation. ðkRÞαβμν can be decom-
posed into a scalar, trace-free, and trace part:

kR → −uRþ sμνT RðTÞ
μν þ tαβμνWαβμν. Here RðTÞ

μν is the
trace-free Ricci tensor, and Wαβμν is the Weyl tensor.
The coefficients u, sμνT , tαβμν break local particle Lorentz
and diffeomorphism symmetry, and do not carry dynamics
in the explicit-breaking case (note that u can be absorbed (if
we assume it is constant) by a redefinition of the gravi-
tational constant, and is thus unobservable. We may also
move it to the matter sector). Therefore, u, sμν, tαβμν are not
solutions to the equations of motion and instead act as
objects with prior geometry. This is in contrast to the case
of spontaneous symmetry breaking, when the coefficients
for Lorentz violation are vacuum expectation values of
underlying dynamical fields obeying equations of motion,
and are accompanied by both Nambu-Goldstone modes
and massive modes; in this case, the action is invariant
under particle diffeomorphisms [47,48].
Since the u-term in the above decomposition can always

be reincorporated as the trace-part of the coefficient sμνT , we
rewrite the coefficient kR ¼ sμνRμν þ tαβμνWαβμν, where sμν
is no longer trace-free. This is the object we will use in the
entirety of the paper.
We take as our starting point the decomposition of a

4-dimensional globally hyperbolic manifold M into con-
stant-time spatial hypersurfaces Σt endowed with a timelike
normal vector nμnμ ¼ −1. Using the Arnowitt-Deser-
Misner description [49], the spatial metric takes the form
γμν ¼ gμν þ nμnν (which also acts as the projection oper-
ator from M → Σt), after which the full metric can be
written as

ds2 ¼ −ðα2 − βiβjÞdt2 þ 2βjdtdj þ γijdxidxj; ð2Þ

where α is the lapse function, βj is the shift vector, and γij is
the spatial metric. Considering now the case where only the
coefficient sμν is nonzero, we arrive at the following ADM
Lagrange density [35]

L ¼ LGR þ ffiffiffiffiffiffi
−g

p ½sμνRμν − nαnβsαβðKμνKμν − K2Þ
þ 2sαβKαδKβ

δ þ KμνLnsμν − KLnðnμnνsμνÞ
þ 2Kðsμνnμaν þDλðsμνnμγνλÞÞ − 2Kλ

κDλðsμνnμγνκÞ
þ aκDλðsμνγμλγνκÞ − aλDλðsμνnμnνÞ�; ð3Þ

where Rμν is the three-dimensional Ricci tensor, D is
the covariant derivative on the spatial hypersurface, and
aμ ¼ nν∇νnμ is the ADM acceleration. The extrinsic
curvature is defined as Kμν ¼ −∇μnν − nμaν, but can also
be expressed through the Lie derivative of the spatial metric
along the normal vector as Kμν ¼ − 1

2
Lnγμν. The GR part is

obtained as

LGR ¼ ffiffiffiffiffiffi
−g

p ½Rþ KαβKαβ − K2 − 2∇αðnαK þ aαÞ�; ð4Þ

where the last term is taken to vanish on the boundary.
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We continue along the lines of [35] and introduce the
(significant) simplification where only one component of
the tensor sμν is nonvanishing, i.e.

sμν ¼

0
BBB@

s00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; ð5Þ

using this, the Lagrangian (3) reduces to

L ¼ α
ffiffiffi
γ

p
2κ

�
Rþ

�
1 −

s00
α2

�
ðKijKij − K2Þ þ 2

α2
s00aiai

K

�
2

α4
s00ð _α − αβiaiÞ −

1

α3
ð_s00 − βi∂is00Þ

�

−
1

α2
ai∂is00

�
: ð6Þ

We will use the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric, which reads

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2 sin θ2dϕ2

�
;

ð7Þ

where aðtÞ is the cosmic scale factor and k denotes spatial
curvature, with k ¼ fþ1; 0;−1g represents a closed, flat,
and open universe, respectively. We use this metric to
derive all background quantities, but we later reduce the
equations to the flat (k ¼ 0) case.
We now proceed to restrict the coordinate dependence

of s00 by requiring that it is a constant within the constant-
time spatial hypersurfaces Σt, ∂is00 ¼ 0. This partial
derivative is related to the contracted Bianchi identities
for sμν [24]

∇μðTsÞμν ¼
1

2
Rμλ∇νsμλ −∇μðRμλsλνÞ; ð8Þ

where ðTsÞμν is the stress-energy tensor for sμν, which is
related to the stress-energy tensor for matter ðTMÞμν as
∇μðTsÞμν ¼ −κ∇μðTMÞμν. For matter, we add the usual
perfect fluid for a homogeneous and isotropic Universe
ðTMÞμν ¼ diagð−ρ; p; p; pÞ, where ρ and p are the energy
density and pressure, respectively, which are related
through the equation of state and the barotropic index w
as p ¼ wρ. Decomposing Eq. (8) into ADM form, it can be
shown1 that

∇μðTsÞμj ∝ ∂js00; ð9Þ

and by imposing ∂js00 ¼ 0 in the present coordinates, we
satisfy part of the contracted Bianchi identities, and we
need only treat the component∇μðTÞμ0 further. The sμν and
matter parts are

∇μðTsÞμ0 ¼
ä
a

�
3

2
_s00 þ 6s00

_a
a

�
þ 3s00

a
…

a
;

∇μðTMÞμ0 ¼ −_ρ − 3
_a
a
ðρþ pÞ; ð10Þ

which have been derived by plugging in the metric (7). It
should be noted that energy-momentum conservation of
this form is an assumption, and should be interpreted as a
choice of model.
We find the Friedmann equations in [41], where we

performed a Legendre transformation H ¼ πij _γij þ πα _α −
L and derived the Friedmann equations directly from the
canonical momenta and their derivatives. Bearing in mind
that the 3D curvature scalar is R ¼ 6k=a2, the background
Friedmann equations read

�
_a
a

�
2

ð1 − s00Þ ¼
ρ

3
−

k
a2

− s00
ä
a
þ _a
a
_s00
2

ð11Þ
�
ä
a
þ 1

2

�
_a
a

�
2
�
ð1 − s00Þ ¼ −

p
2
−

k
2a2

þ _a
a
_s00 þ

1

4
̈s00;

ð12Þ

which can be shown to be consistent with Eq. (10). Note
that we only consider the flat (k ¼ 0) case, but we write out
the Friedmann equations for the general case for complete-
ness. Also, we will not impose separate conservation of
ðTsÞμν and ðTMÞμν, and instead consider the conservation of
the stress-energy tensor as a whole, i.e.

∇μ½ðTsÞμ0 þ ðTMÞμ0� ¼ 0; ð13Þ

which in general leads to a modified continuity equation for
matter fields of the form _ρþ 3Hfðw; s00Þρ ¼ 0, where
H ¼ _a=a is the Hubble parameter. In the special case where
_s00 ¼ 0, the evolution of radiation (w ¼ 1=3) and the
cosmological constant (w ¼ −1) are modified, while the
other matter fields (baryonic matter and curvature) are
untouched. The adherence to Eqs. (9) and (13) ensures
compatibility with the contracted Bianchi identities.

III. PERTURBATIONS

We consider tensor perturbations around a flat FLRW
geometry described by the line element

ds2 ¼ −dt2 þ aðtÞðδij þ hijðt;xÞÞdxidxj; ð14Þ

where hijðt;xÞ is a transverse and traceless spatial tensor
perturbation ðhii ¼ ∂

ihij ¼ 0Þ. Note that this gauge freedom1See [41] for a detailed derivation.
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still remains, since the choice of sμν only leads to a breaking
of timelike particle diffeomorphisms. From the background
line element (2), we identify the ADM lapse and shift as
α ¼ 1, βi ¼ 0. We now perturb the Lagrangian (6) to
second order in hij and find the equation of motion of the
perturbation as in [50]; after some simplification, the
quadratic action can be written as

δ2S ¼ 1

4

Z
dtd3xa½a2ð1 − s00Þ _hij _hij − ∂khij∂khij�; ð15Þ

where an overdot denotes differentiation with respect to
cosmic time t. It is important to note that no time
derivatives of s00 appear at second order in perturbation,
but do show up at the background level2 (zeroth order),
which was already noted in [35]. It is also worth pointing
out here that s00 needs to be smaller than unity at all times,
to avoid the appearance of tachyonic ghost modes. The
Euler-Lagrange equation for hij reads

ḧij þ
�
3H −

_s00
1 − s00

�
_hij −

1

a2ð1 − s00Þ
∇2hij ¼ 0; ð16Þ

where ∇2 is the Laplace operator. We now introduce the
canonical Fourier-space decomposition of the tensor per-
turbations as

hijðt;xÞ ¼
X
λ

Z
d3k

ð2πÞ3=2 ϵ
λ
ijðkÞhkðtÞeik·x; ð17Þ

where ϵλij are the symmetric polarization tensors obeying

ϵijλ ϵ
λ0
ij ¼ 2δλ

λ0δð3Þðk − k0Þ, and λ ¼ fþ;×g represents the
two propagating polarization modes. In this way, the
equation of motion for the Fourier modes becomes

ḧk þ
�
3H −

_s00
1 − s00

�
_hk þ k2

a2ð1 − s00Þ
hk ¼ 0 ; ð18Þ

which flows smoothly to GR in the limit s00 → 0. Before
proceeding, we check that hk is a constant outside the
horizon (k ≪ aH); here, we can neglect the third term of
Eq. (18) (under the important provision that s00 ≪ 1 at all
times, as mentioned above) and form

ḧk
_hk

≈
_s00

1 − s00
− 3H; ð19Þ

which has the general solution

hkðtÞ ¼ ξ1 þ ξ2

Z
t

1

dt0

ð1 − s00ðt0ÞÞaðt0Þ3
: ð20Þ

The integral part is a decaying mode, which can be
neglected (as long as k ≪ aH holds for a sufficiently long
time), and we can use as as our initial condition
hk → const. on superhorizon scales.
For phenomenological purposes, we also refer to a

general formula for gravitational-wave propagation (with
zero anisotropic stress) from an effective field theory (using
again cosmic time t) as [51,52]

ḧk þ ð3þAÞH _hk þ
�
c2T

k2

a2
þmg

�
hk ¼ 0; ð21Þ

where cT is the propagation speed of the tensor modes,
A ¼ H−1ðd lnM2

Pl=dtÞ is the Planck mass run rate, and mg

is the graviton mass. In what follows, we will be able to
relate A and mg with s00 and its derivatives; without
simplifying further, we can immediately read off

c2T ¼ 1

1 − s00
; mg ¼ 0

d lnM2
Pl

dt
¼ −

_s00
1 − s00

; ð22Þ

both of which show the correct GR limit for s00 → 0. The
speed of the tensor modes is not constant, despite a nonzero
graviton mass, which suggests some kind of birefringent or
spacetime-foambehavior, accompanied by amodified phase
velocity due to the nonzero spacetime-symmetry breaking.3

Currently, the best constraint on the “speed of gravity”
comes from the LIGO/Virgo event GW170817 with asso-
ciated EM-counterpart GRB170817A, which yielded the
constraint −3 × 10−15 < cT − 1 < þ7 × 10−16. From this
constraint we immediately get the following bound

−6 × 10−15 < s00 < 1.4 × 10−15;

which is similar to other SME bounds from gravitational
waves [46]. The phenomenology of a running Planck mass
has been considered in [54,55], and also in scalar-tensor type
models such as Einstein-Aether, where it was found that the
amplitude of the matter power spectrum is reduced, as
compared to the CMB power spectrum; moreover, since the
Planck mass influence the amplitude of gravitational waves,
the cosmological distance measures will be affected, as
measured through gravitational-wave detections [55]. Since
a varying Planck mass implies a varying Newton’s constant,

2If one also considers perturbations of s00, the first-order
Lagrangian is no longer zero, and extra terms appear at second
order.

3It should be noted that for constant s00, c2T can be expanded
around zero to resemble the “EFT-inspired ansatz” for c2T and the
“polynomial ansatz” for cT (i.e. no square) used in [53]; however,
care should be taken to avoid inconsistencies in perturbation
order.
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this will affect the Equivalence Principle, from which there
are stringent constraints on spacetime-symmetry breaking
[56], most notably from the MICROSCOPE mission which
has produced constraints on symmetry-breaking coefficients
on the order of 10−14 [57]. Other bounds on spacetime-
symmetry breaking from the speed of gravity exists, for
example in the context of linearized gravity [58]. There are
also bounds on gravitational birefringence and anisotropic
gravitational-dispersion from LIGO-Virgo-Kagra data
(GWTC-3 catalogue) on the order of 3.10 × 10−15 and
10−13, respectively [59].
We now proceed in solving Eq. (18) by setting s00 to be a

constant with respect to coordinate time t, after which we
derive the consequences using conformal time defined
through dt ¼ adη.4 Where necessary, we will specify the
functional dependence of s00, i.e. s00ðtÞ.
Restricting s00 to be a constant with respect to cosmic

time affects the dynamics at both the background and
perturbative level; the Friedmann equations can now be
written as

H2

H2
0

¼ Ω0
ma−3 þ Ω0

ra−4xr þΩ0
Λa

−xΛ þ Ω0
ka

−2; ð23Þ

where5 xr ¼ ð1 − 3
4
s00Þ=ð1 − 1

2
s00Þ and xΛ ¼ −3s00=ð1 −

5
2
s00Þ arise from the modified continuity equation
_ρþ 3 _a

a fðw; s00Þρ ¼ 0, where

fðw; s00Þ ¼
2ð1þ w − s00Þ
2þ s00ð3w − 2Þ : ð24Þ

In these equations, common factors of s00 have been
absorbed into the definition of the Ω’s, and no rescaling
of the time coordinate or the scale factor can fully eliminate
its effects. The full set of equations can be seen in
Appendix B. It is worth pointing out that since we do
not have a pure cosmological constant due to the modified
evolution, this sector behaves like dynamical dark energy
which evolves very slowly according to ρΛ ¼ ρ0Λa

−xΛ .
The equation of motion for the Fourier modes simpli-

fies to

ḧk þ 3H _hk þ k2

a2ð1 − s00Þ
hk ¼ 0; ð25Þ

where the friction term generated by _s00 now is absent, and
the only symmetry-breaking modification appears in the
background evolution H, as well as in the scaling of the
comoving wave number.

Now that we have established the consequences of
_s00 ¼ 0 on the equations of motion, we move to the
conformal time coordinate, after which Eq. (25) reads

h00k þ 2Hh0k þ k2

1 − s00
hk ¼ 0: ð26Þ

In order to facilitate solving this equation, we note that
since cosmological evolution is modified at the background
level, the standard expressions for H in de-Sitter and
radiation-domination eras are modified. From Eq. (23)
we find

HdS ¼ −
2

ð2 − xΛÞη
; HRD ¼ 1

ð2xr − 1Þη : ð27Þ

In matter domination (MD), the background evolution
remains the same, HMD ¼ 1=2η.
We now proceed to the power spectrum of the primordial

gravitational waves produced during the modified de-Sitter
phase; starting from the mode function of tensor perturba-
tions, we write down the quantum operator by introducing
creation and annihilation operators as

ˆ̃hkðηÞ ¼ vkðηÞâk þ v�kðηÞâ†k; ð28Þ

where h̃k ¼ ahk, and the coefficients vkðηÞ satisfy the
associated Mukhanov-Sasaki equation, which reads

v00k þ
�

k
1 − s00

−
2

η2
γ

�
vk ¼ 0; ð29Þ

where we have introduced γ ¼ ð4 − xΛÞ=ð2 − xλÞ2 for
convenience. The general solutions to this equation are
shown in Appendix A. Note that we could have chosen to
rescale k as k̄2 ¼ k2=ð1 − s00Þ; however, since s00 appears
both at the background and perturbation level, there will be
a second modification appearing when evaluating a00=a.
These two (constant, but undetermined) scalings are
coupled though s00, and rescaling both terms independently
is therefore not possible. The two-point correlation function
reads [60]

h0jĥ†kĥkj0i ¼
16πG
a2

Z
∞

0

dk
k

k3

2π2
jvkj2; ð30Þ

from which the power spectrum can be defined6 as the
logarithmic derivative of the tensor modes

Δ2
hðη; kÞ≡ dh0jĥ†kĥkj0i

d ln k
¼ 16πG

a2
k3

2π2
jvkj2: ð31Þ

4It can be checked that the superhorizon initial condition holds
also in these coordinates.

5A summary and plot of all quantities depending on s00 can be
found in Appendix C.

6Several slightly different definitions of Δ2
h exist in

the literature; here, we adhere to that of [60], which also agrees
with the Planck definition.
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After some simplification, we arrive at the final expression
for the power spectrum, which reads

Δ2
hðη; kÞ ¼

16πG
2π2

H2ð2 − xΛÞ2γ2jAkðηÞj2 ; ð32Þ

where H ¼ _a=a is the Hubble parameter, which we have
taken as constant when deriving this result, and AkðηÞ reads

AkðηÞ ¼ e
2ikη
1−s00ð1þ eiπ

ffiffiffiffiffiffiffiffi
1þ8γ

p
Þ − ie

iπ
2

ffiffiffiffiffiffiffiffi
1þ8γ

p
; ð33Þ

which reduces to the well-known solution based on the
Bunch-Davies vacuum in the GR limit s00 → 0, γ → 1,
where the Wronskian normalization condition holds trivi-
ally.7 Therefore, the existence of a nonzero s00 breaks scale
invariance of the power spectrum for modes entering the
horizon before the end of inflation, i.e. for η < 0, and the
power spectrum takes on a slowly oscillatory behavior, as
can be seen in Fig. 1. For the primordial spectrum,
canonically defined exactly at the end of inflation
(η ¼ 0), we reobtain the expected scale invariance, but
the amplitude is modified through s00. Figure 2 shows the
behavior of the primordial power spectrum as a function of
s00. As can be seen in Fig. 2, the value of s00 strongly
affects the amplitude of the primordial tensor power
spectrum, but only at very large, likely unphysical values.
From the bound we obtained in Sec. III, js00j ∼ 10−15, the
deviation from the GR case is minuscule; even with a very
optimistic estimate of js00j ∼ 10−4, the deviation is on the
order of 10−4–10−5, as can be seen in the inset in Fig. 2(b).

A. Radiation domination

For completeness, we also briefly examine the behavior
of the Fourier modes for η > 0, i.e. during radiation
domination. In this case, the conformal Hubble parameter
is HRD as given in Eq. (27), and we solve Eq. (26) in the

same manner as for de Sitter in the previous section (the
general solution is shown in Appendix A). Figure 3 shows
the behavior of the normalized Fourier modes hk as a
function of kη: for GR (s00 → 0) we obtain the same
solution as in Fig. 7 of [61]; turning on s00 introduces a
phase shift in the amplitude (note that we have used very
large values of s00 in Fig. 3 in order to highlight this effect).

FIG. 1. The scale noninvariance in the power spectrum as induced by a nonzero s00.

(a)

(b)

FIG. 2. The behavior of the primordial power spectrum defined
at kη ¼ 0 as a function of s00: the primordial power spectrum
showing that three values of s00 give the same amplitude as in GR
(a), and (b) the primordial power spectrum zoomed in around
s00 ¼ 0.

7It can also easily be checked that the solution for vkðηÞ has the
correct GR limit.
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IV. DISCUSSION

In this paper we have considered tensor perturbations
around flat FLRW spacetime in the presence of a simple
case of explicitly spacetime-symmetry breaking terms. By
examining solutions to the equations of motion for the
Fourier modes and taking into account the fact that
spacetime-symmetry breaking alters the continuity equa-
tion, we have shown that this produces modified evolution
of the modes in both the de Sitter and radiation-domination
epochs. Using the current constraints on the speed of
gravity, we have found a constraint on the coefficient s00
on the order of 10−15, which is compatible with other
constraints from gravitational waves, although very few
constraints exist in the exact regime. After quantizing the
perturbations, we obtain solutions to the Mukhanov-Sasaki
equation in the form of a modified Bunch-Davies vacuum,
and calculate the primordial power spectrum which exhibits
a modified amplitude. By working in the extact regime, we
avoid issues with perturbation order in the case of several
small quantities; instead perturbation order and order of
symmetry breaking can be counted separately, in a similar
way as in [62]. The considerations in this paper constitute
some of the first results in the context of early Universe
physics within this framework.
In the future, generalizations beyond the case studied in

this paper may be considered for a more complete phe-
nomenological picture which includes quantization of the
tensor perturbations in the spontaneous-breaking case. It is
likely that this will provide constraints on spacetime-
symmetry breaking from the anisotropies in the CMB,
as well as observations with next-generation gravitational
wave detectors such as LISA.
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APPENDIX A: GENERAL SOLUTIONS

In the modified de Sitter phase, with Hubble parameter
HdS, Eq. (29) has the following solution

vk ¼ ξ1j

�
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8γ

p
− 1Þ; kη

�

þ ξ2y

�
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8γ

p
− 1Þ; kη

�
; ðA1Þ

where ξ1 and ξ2 are constants, and j, y are the spherical
Bessel functions of the first and second kind, respectively.
In radiation domination, using instead HRD and solving

for the Fourier modes in Eq. (26), we arrive at the following
general solution

hk ¼ ðkηÞ1=ð2ðs00−1ÞÞ
�
ζ1J

�
1

2ðs00 − 1Þ ;−
kηffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − s00
p

�

þ ζ2Y

�
1

2ðs00 − 1Þ ;−
kηffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − s00
p

��
; ðA2Þ

where ζ1 and ζ2 are constants, and J, Y are Bessel functions
of the first and second kind, respectively; these are related
to the spherical Bessel functions j and y [63].

APPENDIX B: BACKGROUND
EVOLUTION EQUATIONS

The full set of equations, when imposing ∇μðTsÞμν ¼ 0,
are the first and second Friedmann equations and the
continuity equation. From [41] we have for a flat universe
and constant s00

H2 ¼ ρ

3ð1 − 3
2
s00Þ

þ ps00
ð2 − 3s00Þð1 − s00Þ

ðB1Þ

ä
a
¼ −

ρþ 3p

6

�
1 − 3

2
s00

� ; ðB2Þ

where ρ and p is the energy density and pressure,
respectively, and a nonstandard pressure term appears in
the first Friedmann equation. We can rewrite these equa-
tions as

H2

H2
0

¼ Ω0
ma−3 þ Ω0

ra−4xr þΩ0
Λa

−xΛ ðB3Þ

and

FIG. 3. Behavior of the classical mode function hk during
radiation domination.
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ä
aH2

0

¼ −
1

2
Ω0

ma−3 −Ω0
r
2ð1 − s00Þ
2 − s00

a−4xr

þ Ω0
Λ
2ð1 − s00Þ
2 − 5s00

a−xΛ ; ðB4Þ

where the density parameters are defined as

ΩX ¼ ρ

3H2ð1 − 3
2
s00Þ

2þ ð3w − 2Þs00
2ð1 − s00Þ

ðB5Þ

and the continuity equation is modified as

_ρþ 3
_a
a
fðw; s00Þρ ¼ 0; fðw; s00Þ ¼

2ð1þ w − s00Þ
2þ s00ð3w − 2Þ :

ðB6Þ

APPENDIX C: s00-DEPENDENT QUANTITIES

Several auxiliary quantities which depend on s00 are
defined throughout the paper: to recap, they are

(i) cT ¼ 1=ð1 − s00Þ, the speed of tensor modes.

(ii) xΛ ¼ −3s00=ð1 − 5s00=2Þ, the modification to the
evolution of the cosmological constant.

(iii) xr ¼ ð1 − 3s00=4Þ=ð1 − s00=2Þ, the modification to
the evolution of the radiation density.

(iv) γ ¼ ð4 − xΛÞ=ð2 − xΛÞ2, the modification in the
Mukhanov-Sasaki equation (29).

The behavior of these functions with respect to s00 can be
seen in Fig. 4.
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