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The quest for distinguishing black holes from horizonless compact objects using gravitational wave
signals from coalescing compact binaries can be helped by utilizing the phenomenon of tidal heating,
which leaves its imprint on the binary waveforms through the horizon parameters. These parameters,
defined as H1 and H2 with H1;2 ∈ ½0; 1� for the two compact objects, are combined with the binary
components’ masses and spins to form two new parameters, Heff5 and Heff8, to minimize their covariances
in parameter estimation studies. In this work, we investigate the effects of tidal heating on gravitational
waves to probe the observability of these effective parameters. We use a post-Newtonian waveform that
includes the phase contribution due to tidal heating as a function of Heff5 and Heff8, and we examine their
1σ measurement errors as well as the covariances between them mainly using the Fisher matrix approach.
Since this approach works well for high signal-to-noise ratios, we focus primarily on the third-generation
(3G) gravitational wave detectors Einstein Telescope and Cosmic Explorer and use the second-generation
(2G) detector network of LIGO (Hanford, Livingston) and Virgo for comparison. We study how the errors
vary with the binaries’ total mass, mass ratio, luminosity distance, and component spins. We find that the
regions in the total binary mass where measurements of Heff5 and Heff8 are most precise are ∼20–30 M⊙
for LIGO-Virgo and ∼50–80 M⊙ for the 3G detectors. Higher component spins allow more precise
measurements of Heff5 and Heff8. For a binary situated at 200 Mpc with component masses 12 M⊙ and
18 M⊙, equal spins χ1 ¼ χ2 ¼ 0.8, and Heff5 ¼ 0.6, Heff8 ¼ 12, the 1σ errors in these two parameters are
∼0.01 and ∼0.04, respectively, in 3G detectors. These estimates suggest that precise measurements of the
horizon parameters are possible in third-generation detectors, making tidal heating a potential tool to
identify the presence or absence of horizons in coalescing compact binaries. We substantiate our results
from Fisher studies with a set of Bayesian simulations.

DOI: 10.1103/PhysRevD.106.104032

I. INTRODUCTION

The detection of gravitational waves (GWs) from the
coalescence of numerous compact binaries by LIGO [1]
and Virgo [2] has opened up a new era of astronomy [3,4].
Their observations have motivated a series of tests of
general relativity (GR) [5,6]. The components of the
binaries observed by LIGO and Virgo are mainly inferred
to be either black holes (BHs) or neutron stars (NSs), which
is primarily based on the measurements of component

masses, population models, and the tidal deformability of
NSs [7]. The merger of two NSs was observed in the event
GW170817 [8], and possibly also GW190425 [9]. More
recently, confirmed detections of events GW200105 and
GW200115 [10] were made where one of the components
is believed to be a BH, and the other an NS. However, for
the heavier LIGO-Virgo binaries [3], it remains to be
conclusively proven whether their components are, in fact,
BHs of GR or not.
Indeed, there are various types of exotic compact objects

(ECOs) [11–13] proposed that are claimed to mimic BHs in
these binaries. However, incorrect inferences about their
true nature can have far-reaching implications, such as on
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population models of compact objects. In the future, the
proposed third-generation ground-based GW detectors,
Einstein Telescope [14] and Cosmic Explorer [15], are
expected to have an order of magnitude better sensitivity
compared to current ones in estimating the source param-
eters, which should enable us to probe the nature of these
objects more accurately. Multiple models of ECOs have
been proposed, including Planck-scale modifications of BH
horizons [16,17], gravastars, [18], and boson stars [19],
among others. Building separate models for each of these
exotic objects is a hard problem, and accurate measure-
ments of their properties are not yet possible with the
current detectors. So, a more practical approach would be
to devise tests that are generic and model independent, and
are based on our understanding of binary black hole (BBH)
dynamics.
One way to probe the presence of ECOs against BHs is

to understand the possible ways in which the characteristics
of these objects can differ from those of BHs, and that can
be confirmed or ruled out by introducing appropriate free
parameters in the gravitational waveform. In order to
develop such model-independent tests of BH mimickers,
it is important to identify the properties that are unique to
BHs, and investigate their imprints on the gravitational
waveform so that we can measure them from observations.
Several tests have been proposed to probe whether the

compact objects in a binary are BHs or ECOs. One of them is
using echoes to distinguish the remnants of binary merger
from BHs, which has initiated rigorous modeling and the
search for those features in GW data [12,20–32]. The
construction of waveforms for binary ECOs has also begun
[33,34].Measurements of tidal deformability (TD) [7,35–37]
and spin-induced multipole moments [38–45] from the late
inspiral phase can also be used to test the presence of BHs.
The nature of the compact objects can be probed with GWs
emitted due to superradiant instability as well [46,47].
Due to their causal structure, BHs in GR are perfect

absorbers that behave as dissipative systems [48–51]. A
significant feature of a BH is its horizon, which is a null
surface and a “one-way membrane” that does not allow
energy to escape outward. In a binary, aBHexperiences tidal
interactions from its companion. These tidal effects cause
changes in theirmass, angularmomentum, and horizon area.
This phenomenon is called tidal heating (TH) [52–54]. If the
BH is nonspinning, then energy and angular momentum can
only flow into the BH. However, spinning BHs can transfer
their rotational energy from the ergoregion out into the orbit
due to tidal interactionswith their binary companion. Energy
exchange via TH backreacts on the binary’s evolution,
resulting in a shift in the phase of the GWs emitted by
the system. The effect of TH on objects such as NSs or
horizonless ECOs is comparatively much less due to their
lack of a horizon. So, a careful measurement of this phase
shift can be used in principle to distinguish BHs from
horizonless compact objects [36,39,55–63].

To quantify this effect, two “horizon parameters,”H1 and
H2, were introduced in a recent study [64] whose utility we
will study further in characterizing compact objects. These
parameters take the value of 1 when the objects are BHs,
and 0 ≤H1; H2 < 1 for other compact objects. The phase
shift in GWs due to TH will depend on these parameters.
Their accurate measurement, in turn, will indicate the
presence or absence of BHs in a binary. It turns out that
the covariance of these two parameters is generally finite.
We therefore find two other related parameters that are
mostly statistically independent. Even then, some cova-
riances between the new parameters can arise due to
waveform systematics, nonstationary detector noise, etc.
Parameter estimation (PE) exercises for real GW signals
widely use Bayesian approaches [64,65], which is a robust
method, but computationally expensive. Fisher studies [66]
can provide reliable estimates for the errors and uncertain-
ties in measuring the source parameters of GW signals with
high signal-to-noise ratios, and they are much faster and
less expensive. In the current work, we will primarily use
the latter approach for estimating the errors, and we will
explore Bayesian simulations to corroborate the results.
A compact binary coalescence (CBC) consists of three

major phases—inspiral, merger, and ringdown. One can
model the inspiral phase using post-Newtonian (PN)
formalism, whereas numerical relativity (NR) simulations
are needed to model the merger regime [67]. In order to
study the ringdown part of the dynamics, one may use BH
perturbation theory techniques [68] or NR. Tidal heating is
relevant in the inspiral and is more significant for a binary
when the components are closer together so that their tidal
interactions are stronger. In the PN regime, TH can be
incorporated into the gravitational waveform by adding the
phase shift due to this effect into a PN approximant in the
time or frequency domain.
In Sec. II, we will review the basic framework of tidal

heating, describing the waveform parametrization chosen
for this work. Section III will summarize the concepts of the
Fisher matrix analysis, discussing various relevant aspects
of it, and the corresponding results will be presented in
Sec. IV. In Sec. V, we will present results from Bayesian
simulations to check the consistency of our analyses. In
Sec. VI, we will discuss the covariances between the
relevant parameters and possibilities of improving the
results by diagonalizing the Fisher matrix. We will sum-
marize the results in Sec. VII and discuss the relevance of
this work to future studies.
Throughout the article, we will use geometric units,

assuming G ¼ c ¼ 1, except when calculating physical
quantities.

II. THEORY OF TIDAL HEATING AND
WAVEFORM PARAMETRIZATION

The PN formalism [69] describes the gravitational wave-
form emitted by a stellar-mass compact binary in its early
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inspiral phase. In this formalism, the evolution of the orbital
phase ΨðtÞ of a compact binary is computed as a per-
turbative expansion in a small parameter, typically taken
to be the characteristic velocity v ¼ ðπMfÞ1=3. Here M is
the total mass of the binary, and f is the instantaneous
GW frequency. This analytical procedure demands v ≪ 1,
which makes it useful in the early inspiral phase of a CBC.
For building a proper PN waveform, one begins with the
gravitational waveform from an inspiraling pair of point
particles (PPs). Extra terms are added based on the nature of
the binary components. If a component has a finite size
and inner structure—e.g., an NS—then tidal deformability
plays an important role [70]. If there is a BH involved, then
the effect of its horizon has to be considered. This is where
tidal heating comes into play.
An electrically neutral spinning black hole, called a Kerr

black hole (KBH) in GR parlance, is stationary when it is
isolated. On the other hand, when a KBH is a member of a
binary, it feels its companion’s tidal field, which acts as a
nonaxisymmetric perturbation [52]. This perturbation
causes changes in the mass, spin, and horizon area of
the KBH over time [71]. Since the KBH experiences the
tidal field of its orbiting companion, it absorbs (emits)
energy from (into) the orbit. The absorption part is present
in nonspinning BHs as well. Additionally, for a KBH, the
difference between the spin frequency and the angular
frequency of the tidal field causes the spin to slow down,
which in turn makes the KBH lose its rotational energy. The
slowing down of a rotating BH due to the gravitational
dissipation produced by exterior mass is analogous to the
slowing down of a rotating planet by viscous dissipation
due to tides raised by an exterior moon that increases its
internal thermal content—a phenomenon known as tidal
heating. Due to this similarity, the energy and angular
momentum flux in BBHs is also termed tidal heating [72].
The gravitational waveform for a specific binary will

include contributions from these factors depending on its
components. For a generic binary, we can write the
frequency domain strain h̃ðfÞ as

h̃ðfÞ ¼ ÃðfÞeiðΨPPþΨTDþΨTHÞ; ð1Þ

where ÃðfÞ is the frequency-dependent amplitude. The
phase terms—ΨPP;ΨTD, and ΨTH—arise from the point-
particle approximation, tidal deformability, and tidal heat-
ing, respectively.
Since GW absorption is negligible for matter [73], TH

can be a way to discern the existence of horizons [36,39].
Reference [39] introduced the horizon parameter H for
extreme mass-ratio inspirals (EMRIs) for this purpose. In
Ref. [64], the authors extended this to a more general case,
introducing horizon parameters for both objects as H1 and
H2. Strictly speaking, these two parameters denote the
fraction of the flux due to TH in any binary compared to
that in a BBH, and they take values H1;2 ∈ ½0; 1�.

In the case of circular orbits, the flux of energy at the
horizon can be expressed as a PN expansion [50,51,71,74–
77]. Since TH implies the presence of a horizon, the TH
energy flux due to each component has to be multiplied
with the corresponding Hi.
Let us consider a compact binary with individual masses

m1 and m2, dimensionless spins χ1 and χ2, total mass
M ¼ m1 þm2, and mass ratio q ¼ m1=m2, with m1 ≥ m2.
In the case of partial absorption, one has 0 < Hi < 1. Then
the absorbed flux can be expressed as [64]

−
dE
dt

¼ 32

5
ν2

v15

4

X2
i¼1

Hi

�
mi

M

�
3

ð1þ 3χ2i Þ

×

�
−ðL̂ · ŜiÞχi þ 2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2i

q �
mi

M
v3
�
; ð2Þ

where ν ¼ m1m2=M2 is the symmetric mass ratio, v is the
characteristic velocity, and Ŝi and L̂ are the unit vectors
along the directions of the ith object’s spin and the orbital
angular momentum, respectively.
There are a few things to note from this expression. This

is the expression for the rate of energy absorption by the
compact object. For a spinless binary—i.e., χ1 ¼ χ2 ¼ 0—
the right-hand side survives, meaning that tidal heating is
still possible, but in that case it is always positive, which
means that the energy flux can only be inward and not
outward (which is expected for nonspinning BHs). The
presence of the term −ðL̂ · ŜiÞχi contributes to the loss of
energy by the BH, which means that energy is being
transferred to the orbit. Also, we note that for antialigned
spins, where (L̂ · Ŝi) is negative, energy extraction from the
BH is not possible.
The horizon parameters H1;2 appear in the GW phase in

terms that also include the masses and spins. This makes
them degenerate with those parameters, in that it is more
practical to measure the following effective observable
parameters instead of H1;2:

Heff5 ≡
X2
i¼1

Hi

�
mi

M

�
3

ðL̂ · ŜiÞχið3χi2 þ 1Þ; ð3aÞ

Heff8 ≡ 4πHeff5 þ
X2
i¼1

Hi

�
mi

M

�
4

ð3χi2 þ 1Þ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χi

2

q
þ 1

�
: ð3bÞ

These are analogous to the effective spin parameter χeff that
was introduced [78,79] for characterizing spinning com-
pact binary waveforms, where a combination of the spin
parameters was introduced as a new parameter that can be
measured more precisely. The subscripts here denote the
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fact that Heff5 and Heff8 appear in the GW phase in the
2.5 PN and 4 PN orders, respectively.
If the system is a BBH, as long as any one of the

components has a finite spin, both Heff5 and Heff8 will be
nonzero. On the other hand, when both the components of a
BBH have vanishing spins, one has Heff5 → 0, but
Heff8 ≠ 0. Therefore, in the low-spin limit, Heff8 acts as
the discriminator for the presence or absence of horizons. A
horizonless binary with negligible tidal heating (e.g., a
binary neutron star) would have both Heff5 and Heff8
vanish, regardless of their spin values.
Next, we examine the phase contribution in the gravi-

tational waveforms due to TH. This has been calculated in
Ref. [64] from Refs. [80,81] to be

ΨTH ¼ 3

128ν

�
1

v

�
5
�
−
10

9
v5Heff5ð3 logðvÞ þ 1Þ

−
5

168
v7Heff5ð952νþ 995Þ

þ 5

9
v8ð3 logðvÞ − 1Þð−4Heff8 þHeff5ΨSOÞ

�
; ð4Þ

where the “spin-orbit” term ΨSO is given by

ΨSO ¼ ðL̂ · Ŝ1Þχ1m1ð73m1 þ 45m2Þ þ 1 ↔ 2

3M2

¼ 73

3ð1þ qÞ2 fq
2ðL̂ · Ŝ1Þχ1 þ ðL̂ · Ŝ2Þχ2g

þ 15q
ð1þ qÞ2 fðL̂ · Ŝ1Þχ1 þ ðL̂ · Ŝ2Þχ2g: ð5Þ

Equation (4) gives the total phase contribution in the
gravitational waveforms due to TH. We can rewrite this
expression in a compact form by identifying the depend-
ence of individual terms on v as

ΨTH ¼ ½C0 þ C1 logðvÞ þ C2v2 þ C3v3

þ C4v3 logðvÞ�Heff5

þ ½D3v3 þD4v3 logðvÞ�Heff8; ð6Þ

where the coefficientsCi (i ¼ 0, 1, 2, 3, 4) andDi (i ¼ 3, 4)
are functions of the symmetric mass ratio ν, and C3, C4 also
include ΨSO. The term C0Heff5 is independent of v, and
thus independent of f. Therefore, this term can be absorbed
into the phase of coalescence ϕc, which is also independent
of f. The terms C3v3Heff5 and D3v3Heff8 have v3 depend-
ence, so they are ∝ f. These terms can be absorbed into the
time of coalescence tc, which appears in the total GW phase
as 2πftc, and is ∝ f as well. For these reasons, we discard
these three terms from ΨTH, equivalently redefining ϕc
and tc.
We are then left with the terms containing C1, C2, C4,

and D4, which give us the GW phase due to tidal heating,

ΨTH ¼ 3

128ν

�
−
10

3
Heff5 logðvÞ

−
5

168
v2Heff5ð952νþ 995Þ

þ 5

3
v3 logðvÞð−4Heff8 þHeff5ΨSOÞ

�
; ð7Þ

using their expressions from Eq. (4). We will use this
expression for ΨTH here for our analyses. Throughout the
paper, we only consider spins aligned with the orbital
angular momentum, so that L̂ · Ŝ1 ¼ L̂ · Ŝ2 ¼ 1 in Eq. (5).
Next, we need the PN approximant, to which we will add

this phase in order to obtain the complete PN waveform
with TH included. For this purpose, we consider the
TaylorF2 approximant [82] up to 3.5 PN order (∼v2),
constructed under the “stationary phase approximation”
(SPA) [83]. Since PN expansions fail near the merger phase
due to violations of the slow motion and weak gravity
conditions, we have to truncate the waveform at some point
where the binary is still away from the merger. A general
choice for such a cutoff frequency is the binary’s innermost
stable circular orbit (ISCO), which marks the “end” of the
inspiral phase. For a binary of KBHs, location of the ISCO
depends on the spin alignment as well as the component
masses and spins. In the case of aligned spins, the ISCO for
a KBH is closer to the center of mass of the binary than that
of a Schwarzschild BH of the same mass. In our work, we
consider the upper cutoff frequency to be the GW fre-
quency at the ISCO, corresponding to the final BH formed
after merger, given by (ignoring cosmological redshift) [84]

fISCO ¼ Ω̂ISCOðχfÞ
πMf

: ð8Þ

Here, Ω̂ISCOðχÞ ¼ MKerrΩISCO is the dimensionless angular
frequency for a circular equatorial orbit around a KBH with
massMKerr and spin χ [85]. For the upper cutoff frequency,
we chooseMKerr ¼ Mf and χ ¼ χf, the final mass and spin
of the merger remnant BH, which are obtained by using
fitting formulas from NR simulations [86]. Explicit expres-
sions for Ω̂ISCO and Mf, χf in terms of initial masses and
spins are mentioned in Appendix C of Ref. [84].

III. BASICS OF THE FISHERMATRIX APPROACH

In this work, we mainly focus on Fisher matrix analysis
[66,83,87,88] for the estimation of errors in the measure-
ment of the horizon parameters in the third-generation
detectors Einstein Telescope [14] and Cosmic Explorer
[15,89,90]. In this section, we will briefly summarize the
basic concepts of the Fisher matrix approach for parameter
estimation.
A GW signal in the time domain, as emitted by a

coalescing compact binary, can be decomposed into two
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polarization states, hþðt;ΘGWÞ and h⨯ðt;ΘGWÞ, where the
parameter vector ΘGW contains information about the
source. For a BBH in PP approximation, ΘGW ≡ fm1; m2;
χ1;χ2; DL; ι; tc;ϕcg, where m1, m2 are companion masses,
χ1;χ2 are their dimensionless spin vectors, DL is the
luminosity distance of the binary, ι is the inclination angle
of its orbital plane with respect to the line of sight, and tc
and ϕc are the time and phase of coalescence, respectively.
We extend this set by including the two parameters
fHeff5; Heff8g, defined in Eq. (3), to incorporate TH. The
GW strain in the frequency domain as measured by a
detector, HðfÞ, depends on ΘGW, the location of the
detector, and three more extrinsic source parameters
fα; δ;ψg, which denote right ascension, declination and
polarization angle, respectively.

A. The noise power spectral density

The ability of a GW detector to measure the GW strain
depends on its sensitivity, which in turn depends on the
power spectral density (PSD) of its noise, nðtÞ, and its
autocorrelation [91] κ ¼ nðt1Þnðt2Þ, where the overbar
denotes an average over noise realizations. Assuming that
the noise is stationary and Gaussian with zero mean, which
means κ only depends on the time difference t0 ¼ t1 − t2,
the PSD of the noise (in the frequency domain) can be
written as

SnðfÞ ¼
1

2

Z
∞

−∞
dt0κðt0Þei2πft0 ; with f > 0: ð9Þ

This function denotes the detector sensitivity at different
frequencies.

B. The signal-to-noise ratio

The set of all possible detector responses in the fre-
quency or time domain forms a vector space. In the
frequency domain, let us call this space V. We can define,
on this space, a noise-weighted scalar product of two
detector responses HðfÞ; GðfÞ ∈ V as [92]

hHjGi ¼ 2

Z
∞

0

df
H�ðfÞGðfÞ þ G�ðfÞHðfÞ

SnðfÞ
: ð10Þ

Equipped with this definition, we can define the signal-to-
noise ratio (SNR) ρ for a given GW signal H as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hHjHi

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
∞

0

df
jHðfÞj2
SnðfÞ

s
; ð11Þ

where SnðfÞ contains information about the sensitivity of
the chosen detector. The SNR of a signal characterizes its
loudness over a given noise profile.
It is important to mention here that in practical situations,

like in this study, we will not cover the entire frequency

region (0 to∞), because detectors typically have sensitivity
only within a finite frequency band, and the signal band is
also finite. So, Eq. (11) will be replaced by

ρ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
fmax

fmin

df
jHðfÞj2
SnðfÞ

s
: ð12Þ

Here, fmin will be determined by the detector band’s lower
frequency cutoff, and fmax will correspond to the ISCO
[Eq. (8)].

C. The Fisher information matrix

The detector output SðfÞ in the frequency domain is
related to the GW strain HðfÞ and the noise NðfÞ as
SðfÞ ¼ HðfÞ þ NðfÞ. Since we have assumed a Gaussian
profile for the noise, we can write the probability function
for NðfÞ [91] as

pðΘÞ ¼ p0ðΘÞe−1
2
hNjNi

¼ p0ðΘÞe−1
2
hS−HðΘÞjS−HðΘÞi; ð13Þ

where Θ is the parameter vector and p0 is the prior on these
parameters.
Let us denote EðΘÞ ¼ hS −HðΘÞjS −HðΘÞi, and

expand this quantity around the “true” value (Θ�) of the
parameters:

EðΘÞ ¼ EðΘ�Þ þ 1

2

∂
2E

∂Θi∂Θj

				
Θ¼Θ�

ΔΘiΔΘj þ � � � ; ð14Þ

where ΔΘ ¼ ðΘ − Θ�Þ, and we use Einstein summation
convention over repeated indices. Also, using the expres-
sion for EðΘÞ, we can write

∂
2EðΘÞ
∂Θi∂Θj

¼ 2h∂Θi
HðΘÞj∂Θj

HðΘÞi þ h∂Θi
∂Θj

HðΘÞjNi

≈ 2h∂Θi
HðΘÞj∂Θj

HðΘÞi; ð15Þ

where in the second step we have assumed that the SNR
value is high enough for the first-order derivatives of H to
dominate over the second-order ones [83].
We now define the Fisher information matrix Γ, the

elements of which are given as

Γij ¼ h∂Θi
HðΘÞj∂Θj

HðΘÞi: ð16Þ
Using this in Eq. (15), and assuming that ΔΘ is small, we
can infer from Eq. (13) that

pðΘÞ ∝ exp

�
−
1

2
ΓijΔΘiΔΘj

�
: ð17Þ

The inverse of the Fisher matrix is the covariance matrix,
C ¼ Γ−1. Along the diagonal ofC, one gets the variances of
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the concerned parameters, from which one can get the 1σ
errors in those parameters as σΘi

¼ ffiffiffiffiffiffi
Cii

p
. The off-diagonal

elements are the covariances between the parameters,
defined as

Cij ¼ covðΘi;ΘjÞ ¼ ðΘi − Θ̄iÞðΘj − Θ̄jÞ; ð18Þ

where the bar denotes mean value. For i ¼ j, one gets

Cii ¼ ðΘi − Θ̄iÞ2, called the “variance” of the distribution
of Θi, which is the square of its standard deviation σΘi

.
For the Fisher matrix approach to work, not only does the

SNR need to be high, but the matrix also has to be well
conditioned [91]. This criterion is quantified by the con-
dition number, which is defined as the ratio of the largest
and the smallest eigenvalues of the matrix. If this quantity is
too large, then the inversion of Γ is not trustworthy. Here,
we have ensured that it is well within the numerical
precision available for our computations [93].

IV. RESULTS OF FISHER ANALYSES

In this section, we will apply the Fisher matrix approach
to estimate the errors in the TH parameters in the three-
detector network comprising the Advanced LIGO [94] and
Advanced Virgo [95] detectors, and the proposed third-
generation detectors Einstein Telescope (ET) [14] and
Cosmic Explorer (CE) [15]. We have used the package
GWBENCH [91] for our Fisher matrix calculations.1 In order
to estimate the errors in certain parameters using this
approach, we first inject a gravitational waveform into
the relevant detector, and then use Eq. (16) to calculate the
Fisher matrix Γ and the covariance matrix by inverting it.
As mentioned in Sec. II, in this work we take TaylorF2 as
the PN approximant and incorporate in it the phase
contribution (ΨTH) due to TH, given by Eq. (7).
In our study, we estimate the projected errors in five

parameters, Θ≡ fMc; ν; DL;Heff5; Heff8g, where Mc is
the chirp mass defined as Mc ¼ ðm1m2Þ3=5=M1=5. When
we discuss the variation of the errors with component spins
in Sec. IV B 3, we extend the parameter space with the two
component spins χ1, χ2. For the lower cutoff frequencies,
we have used 10 Hz (4 Hz) for LIGO-Virgo (ET, CE), and
the upper cutoff frequencies are determined by the spin-
dependent ISCO frequencies given by Eq. (8).
From Eq. (3), we see thatHeff5 andHeff8 are functions of

the component masses only through the ratios m1=M ¼
q=ð1þ qÞ and m2=M ¼ 1=ð1þ qÞ, both of which have
values always lying between 0 and 1. Also, −1 ≤ χi ≤ 1.
This enables one to define ranges in the values of these two
parameters that can occur physically, for all possible values
of q. These turn out to be approximately [64]

−4 ≤Heff5 ≤ 4 and − 46.3≲Heff8 ≲ 54.3: ð19Þ

Even though wewill treatHeff5 andHeff8 as free parameters
here, we have to keep in mind that this is the physical range
of values they can have.

A. LIGO & Virgo

Figure 1 shows the variation of 1σ errors with the total
binary mass in the noise spectrum of the three-detector
network of LIGO (Hanford, Livingston) and Virgo. The y
axes report the 1σ errors in Heff5 [Fig. 1(a)] and Heff8
[Fig. 1(b)], denoted by ΔHeff5 and ΔHeff8, respectively. In
our analysis, we have used the most recent design sensi-
tivity curves of Advanced LIGO [96] and Advanced Virgo
[97] detectors. Binaries in the range of total mass

FIG. 1. Error values in the TH parameters (a)Heff5 and (b)Heff8
as a function of total mass, when measured by the three-detector
network of LIGO (Hanford, Livingston) and Virgo. The mass
ratio (q) has been varied from 1.5 to 3, yielding different curves.
We consider aligned spins here, so that L̂ · Ŝi ¼ 1. The values
Heff5 ¼ 0.6, Heff8 ¼ 12, DL ¼ 200 Mpc, and χ1 ¼ χ2 ¼ 0.8
have been selected.

1The codes used can be found at https://github.com/
Samanwaya1301/gwbench.
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10 M⊙–100M⊙ have been considered, situated at a dis-
tance of 200 Mpc. The errors initially fall with total binary
mass in the range M < 30 M⊙, and we find that there is a
region around 30 M⊙ where the errors are minimum.
Thereafter, the errors rise rapidly with increasing M. An
increase in M causes the SNR to rise, which provides a
better estimation for Heff5; Heff8. This causes the dip in the
errors for M ¼ 10 M⊙–30M⊙. Further increase in M
shrinks the signal band. This is because it lowers the value
of the ISCO frequency while fmin remains fixed. This
interplay between the SNR and the effective frequency
interval creates an optimal region, which turns out to be
about 30 M⊙–40M⊙. We also note that the exact minima
in the errors are slightly different for Heff5 (∼40 M⊙) and
Heff8 (∼30 M⊙).
Heff5 and Heff8 for binaries with more asymmetric

masses appear to be more precisely measurable. This is
expected, because mass asymmetry lowers the value of the
symmetric mass ratio ν, and the TH phase has a prefactor of
1=ν [see Eq. (7)], making the phase contribution due to TH
higher for more asymmetric masses, consequently adding
more GW cycles into the signal band. For a binary at

200 Mpc with M ¼ 30 M⊙ and q ¼ 1.5, Fisher estimates
show an error value of ∼0.4ð1.2Þ for Heff5ðHeff8Þ, which
amounts to a relative percentage error of ∼67%ð10%Þ. In
LIGO, then, the detection of a so-called golden binary at a
distance ≤50 Mpc will make it possible to estimate these
TH parameters with better than 17% precision.

B. Third-generation detectors

The proposed third-generation (3G) GW detectors,
Einstein Telescope (ET) and Cosmic Explorer (CE), will
have a higher sensitivity than current detectors, which will
result in a higher SNR for CBCs. This makes Fisher error
projections quite trustworthy. In this section, we explore the
measurement precision of Heff5; Heff8 for ET and CE. In
addition to the variations of the errors withM, we will also
look at the variations with luminosity distance DL and the
spin values χ1;2.
For our study, we have used the sensitivity curves

for the ET-D configuration [98] of the Einstein Telescope
and the 40-km-long CE configuration [99,100] of Cosmic
Explorer, optimized for the low frequencies of CBCs.

FIG. 2. Errors in Heff5 (top row) andHeff8 (bottom row) as a function of total massM, when measured by the Einstein Telescope (first
column) and Cosmic Explorer (second column). Injection parameters are the same as in Fig. 1.
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1. Dependence on the total binary mass

Figure 2 shows the variation of errors with total
mass. As expected, the errors are smaller compared
to LIGO-Virgo, due to the high SNR values. In 3G
detectors (Fig. 3), typically SNR ∼Oð103Þ; whereas in
LIGO-Virgo, SNR ∼Oð102Þ for the chosen parameter
space. Also, SNR increases more rapidly with M at ET
and CE than in LIGO-Virgo, making the rise in errors
due to the shortening of the frequency range much slower
after M ∼ 60 M⊙, as seen from Fig. 2. Comparing
Figs. 1 and 2, we confirm that the precision of measure-
ment in 3G detectors has substantial improvement over
LIGO-Virgo.
For binaries with M ≳ 60 M⊙ and q ¼ 1.5, estimations

of Heff5 and Heff8 can be made with 1σ errors ΔHeff5 ∼
0.008 (1.2%) and ΔHeff8 ∼ 0.02 (0.22%), respectively, for
BBHs at a distance of 200 Mpc. The error values fall as
more component mass asymmetry is introduced. However,
for binaries with low masses, we see that this trend is
reversed for Heff5, as seen in Figs. 2(a) and 2(b) for
M ¼ 10 M⊙. We also note that the variation in the error
values with changing q is less pronounced at ET and CE
than with LIGO-Virgo.

2. Dependence on the luminosity distance

Figure 4 shows the variation of errors with luminosity
distance DL. We keep the total mass fixed at M ¼ 30 M⊙.
In this case, only the fall in SNR with increasing distance
affects the errors. As expected, the errors rise linearly with
DL, with the slope being greater for more symmetric
masses. From Fig. 4, we see that for binaries as far as
1 Gpc away, the 1σ error for Heff5 is ∼0.06 (10%) for BH
binaries with q ¼ 3, whereas for Heff8 it is ∼0.2 (1.6%).
Owing to the linear variation in errors, the presence of

horizons for all the sources within this range can be tested
with linearly increasing precision.

3. Dependence on the spins

Measurements of Heff5; Heff8 are expected to depend on
the spins of the binary components χ1, χ2 due to the
presence of the spin-orbit term ΨSO [Eq. (5)] and the fact
that the upper cutoff frequency fISCO depends on the
component spins [Eq. (8)]. Figure 5 shows contours of
the error values in Heff5 and Heff8 with the ET and CE
detectors when the dimensionless (aligned) spins χ1, χ2
are varied from 0 to 1. ΔHeff5 and ΔHeff8 contours are
shown in the plots in the left and the right columns,
respectively. The parameter space considered for this
analysis is Θ≡ fMc; η; DL; χ1; χ2; Heff5; Heff8g. We dem-
onstrate the spin dependence of the errors for the total
binary mass M ¼ 40 M⊙ and two values of the mass ratio,
q ¼ 1.1 (top panels) and q ¼ 3 (bottom panels). Let us
consider one of these binaries in CE, with q ¼ 1.1 and low
values of component spins, χ1 ¼ χ2 ¼ 0.2. For the seven-
dimensional parameter space mentioned above, the errors
inHeff5 (Heff8) are ∼0.4 (3), which amounts to a percentage
error of ∼67% (25%) for this binary. The contours have
lower error values as they approach the point χ1 ¼ χ2 ¼ 1,
indicating that the errors decrease with increasing spins.
This can be attributed to the fact that fISCO increases with
χ1 and/or χ2, making the effective frequency range larger,
consequently adding more GW cycles in the frequency
band. We note here that the values of the parameters
themselves increase with the (aligned) spins substantially
[Eq. (3); see Figs. 1 and 2 of Ref. [64]), implying that for
highly spinning compact objects, one can apply more
stringent constraints.

V. COMPARISON WITH BAYESIAN ANALYSES

We carry out Bayesian parameter estimation with Bilby
[101] to compare the results with those from the Fisher
analyses. For each of the detector networks (LIGO-Virgo,
ET, CE), we choose one point from the region of the
parameter space that is expected to produce the best results
according to the Fisher studies above. This is partly to
ensure the robustness of the best estimates found by the
latter method. Although these regions are different for
LIGO-Virgo and 3G detectors, as noted earlier, we choose
the same values of total mass (M ¼ 40 M⊙) and mass ratio
(q ¼ 3) for all three detector networks for the sake of
comparison. We first inject TaylorF2 waveforms with the
TH phase, then run the parameter estimation to obtain
posteriors from the simulations. The starting frequency is
10 Hz (4 Hz) for LIGO-Virgo (ET, CE), and the upper
cutoff frequency is taken to be the corresponding ISCO
frequency.
In Table I, we list the distribution and ranges of priors

used for the chosen parameter space.

FIG. 3. Variation of SNR with the total massM in LIGO-Virgo,
ET, and CE, as calculated from Eq. (12). We consider binaries at
DL ¼ 200 Mpc with mass ratio q ¼ 1.5.
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Figure 6 shows the corner plots generated from the
posteriors for the three detector networks: LIGO-Virgo
[Fig. 6(a)], ET [Fig. 6(b)], and CE [Fig. 6(c)]. As expected,
the estimations ofHeff5 andHeff8 are much better in ETand
CE than in LIGO-Virgo, with the errors broadly agreeing
with their Fisher counterparts for similar systems studied
in Figs. 1(a), 2(a), and 2(b) for Heff5, and Figs. 1(b), 2(c),
and 2(d) forHeff8. The two-dimensional covariance plots in
the Bayesian posteriors highlight the contours of the 1σ, 2σ,
and 3σ confidence levels from the smallest to the largest
ones, respectively. In some cases [e.g., Fig. 6(a)], thin trails
of points are seen in the plots, which are sampled beyond
the 3σ confidence level.

FIG. 4. Errors inHeff5 (top row) andHeff8 (bottom row) as a function of luminosity distance, when measured by the Einstein Telescope
(first column) and Cosmic Explorer (second column). Along the x axis,DL varies from 100 Mpc to 1 Gpc. Other parameters are fixed at
Heff5 ¼ 0.6, Heff8 ¼ 12, M ¼ 30 M⊙, and χ1 ¼ χ2 ¼ 0.8.

FIG. 5. Variation of errors inHeff5 (left column) andHeff8 (right
column) at ET (solid lines) and CE (dashed lines) with dimen-
sionless spins. χ1 and χ2 are varied from 0 to 1 along the x and
y axes, respectively. The total binary mass isM ¼ 40 M⊙, and the
mass ratios are q ¼ 1.1 (top panels) and q ¼ 3 (bottom panels).
We consider optimally oriented binaries at DL ¼ 200 Mpc, with
Heff5 ¼ 0.6 and Heff8 ¼ 12.

TABLE I. Choice of priors for the Bayesian posteriors pre-
sented in Fig. 6.

Parameter Distribution Range Units

Chirp mass (Mc) Uniform (10, 20) M⊙
Symmetric mass ratio (ν) Uniform (0.01, 0.25) � � �
Luminosity distance (DL) Uniform (100, 500) Mpc
Heff5 Uniform (−4, 4) � � �
Heff8 Uniform (−20, 20) � � �
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We choose a fourth point for the LIGO-Virgo network,
which is significantly close—at DL ¼ 50 Mpc, with all the
other parameters the same as in Fig. 6(a). The prior for the
luminosity distance is taken to be uniform in the range
(10, 100)Mpc. All the other parameters have the same priors

as in Table I. Figure 7 shows the corresponding posterior
plot. Comparing the two, we see the expected improvement
in accuracy and precision, arising from the binary being
4 times closer. The errors in this case are ∼11.7%ð∼4.7%Þ
for Heff5ðHeff8Þ for a BBH.

FIG. 6. Posterior plots from Bayesian parameter estimation. Injection parameters are M ¼ 40 M⊙, q ¼ 3, DL ¼ 200 Mpc,
χ1 ¼ χ2 ¼ 0.8, Heff5 ¼ 0.6, and Heff8 ¼ 12. The solid red lines denote the injected values of the corresponding parameters, and
the green dashed lines show the standard deviations [for panels (b) and (c), 14.65 is to be added to the tick labels of Mc, which is
mentioned below the x axes of the subplots). The priors chosen for these simulations are listed in Table I.
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VI. PRINCIPAL COMPONENT ANALYSIS

So far, we have considered the diagonal elements of the
error covariance matrix C, which are the variances. In this
section, we will consider the covariances between Heff5
and Heff8, which are the off-diagonal elements of C.
DiagonalizingCwill yield its eigenvalues and eigenvectors.
The eigenvectors will provide the new coordinates (i.e.,
horizon parameters) that have a vanishing covariance, and
the eigenvalues will correspond to the errors in those new
coordinates. Keeping this in mind, we choose a particular
waveform as a “target” waveform, with which we calculate
the matches (defined below) of several neighboring “tem-
plate” waveforms. If we make a contour plot of these match
values, we get ellipses—with their principal axes along the
eigenvectors ofC. SinceC ¼ Γ−1, the eigenvectors ofC and
Γ are the same, and their eigenvalues are related by
λi ¼ 1=αi, where λiðαiÞ are the eigenvalues of ΓðCÞ.
In this quest, we take the manifold V of dimensionality

to be the same as that of Θ, with every point on V
corresponding to a template waveform. The distance
between two templates on V corresponding to the param-
eter vectors Θ and ðΘþ ΔΘÞ can be calculated as [102]

jhðΘþ ΔΘÞ − hðΘÞj2
¼ hhðΘþ ΔΘÞ − hðΘÞjhðΘþ ΔΘÞ − hðΘÞi

¼


∂h
∂Θi

				 ∂h
∂Θj

�
ΔΘiΔΘj

¼ ΓijΔΘiΔΘj: ð20Þ

The match (M), also known as the overlap function
[87,103], between two template waveforms hðΘÞ and
hðΘþ ΔΘÞ can be defined as the inner product between
them,maximized over the extrinsic parameters tc andϕc [87]:

M ¼ max
tc;ϕc

hhðΘþ ΔΘÞjhðΘÞi: ð21Þ

If all the templates hðΘÞ on V are normalized to
ĥðΘÞ by ĥðΘÞ¼hðΘÞ=hhðΘÞjhðΘÞi, so that hĥðΘÞjĥðΘÞi ¼
1 ∀ ĥðΘÞ ∈ V, then the maximum value of M can be 1,
which corresponds to ΔΘ ¼ 0. Then, one can define the
mismatch between two templates ĥðΘÞ and ĥðΘþ ΔΘÞ as
1 −M, which geometrically denotes the “distance”
between them on the manifold V. One can relate them,
using Eq. (20), as

1 −M ¼ ΓðnÞ
ij ΔΘiΔΘj: ð22Þ

Here, ΓðnÞ
ij is the Fisher matrix for normalized templates

½ĥðΘÞ�, related to the Fisher matrix for un-normalized
templates (hðΘÞ) as

Γij ¼


∂h
∂Θi

				 ∂h
∂Θj

�

¼ hhjhi


∂ĥ
∂Θi

				 ∂ĥ
∂Θj

�

¼ ρ2ΓðnÞ
ij : ð23Þ

The last expression follows from the fact that
ffiffiffiffiffiffiffiffiffiffiffihh∣hip

is the
SNR ρ, given by Eq. (12). Equation (22) motivates one to
define a metric gij on V to express the distance between two
templates ĥðΘÞ and ĥðΘþ ΔΘÞ as gijΔΘiΔΘj, and iden-
tify the relation of the metric with the Fisher matrix

as gij ¼ ΓðnÞ
ij ¼ ð1=ρ2ÞΓij.

In our analysis, we consider a 2D manifold with only
Heff5 and Heff8 as parameters, which is a submanifold of V
with all the other parameters fixed. On this submanifold,
Eq. (22) can be expanded as

1 −M ¼ ΓðnÞ
00 ðHeff5 −H�

eff5Þ2 þ ΓðnÞ
11 ðHeff8 −H�

eff8Þ2

þ 2ΓðnÞ
01 ðHeff5 −H�

eff5ÞðHeff8 −H�
eff8Þ; ð24Þ

with H�
eff5ðH�

eff8Þ being the value of Heff5ðHeff8Þ corre-
sponding to the target waveform. Thereby, the contours of
constant values of M represent ellipses in the space of
Heff5 and Heff8, centered at ðH�

eff5; H
�
eff8Þ, given that the

Fisher matrix components are constant. For a Fisher matrix
with only Heff5 and Heff8 as parameters, none of its
components depends on the values of Heff5 or Heff8.
This implies that the metric is flat on this submanifold,
and the contours of constant M are all perfect ellipses.

FIG. 7. Bayesian posterior plot in LIGO-Virgo with M¼
40M⊙, q¼ 3, DL ¼ 50 Mpc, χ1 ¼ χ2 ¼ 0.8, Heff5 ¼ 0.6,
Heff8 ¼ 12.
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If we diagonalize Γ, then in the eigencoordinates, all the
covariances will vanish. Let us call the corresponding
eigenvectors ðX; YÞ, known as the principal components
[104]. Then, the equation of the ellipses with respect to the
eigencoordinates ðX; YÞ with corresponding eigenvalues
(λ1, λ2) becomes

λ1ðX − X�Þ2 þ λ2ðY − Y�Þ2 ¼ ð1 −MÞ: ð25Þ

These ellipses are centered at ðX�; Y�Þ and have principal
axes (a, b) given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −MÞ=λ1

p
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −MÞ=λ2

p
: ð26Þ

Figure 8 shows such ellipses in the sensitivity of
Advanced LIGO and Virgo for a target waveform with
source parameters H�

eff5 ¼ 0.6, H�
eff8 ¼ 12. Figures 9(a)

and 9(b) show similar ellipses in ET and CE, respectively.
We show eight different plots for a combination of different
values of the total mass and mass ratio. Since Γ is a
symmetric matrix, its eigenvectors, lying along the dotted
lines shown in the plots, are orthogonal to each other.
Covariances between the two parameters cause the

ellipses to tilt, with higher tilt angles implying higher
covariances between Heff5 and Heff8. In Fig. 10, we show
the variation of the tilt angles (θ) between the x − y

coordinate axes and the Heff5 −Heff8 axes with total mass
M, for q ¼ 4 and q ¼ 6. In LIGO-Virgo, the tilt angles vary
negligibly with M, but their values are higher compared to
the 3G detectors. In ET and CE, The tilts of the ellipses
increase slowly with M, implying that the covariances
between Heff5 and Heff8 are higher for higher-mass sys-
tems. We also note that CE shows a faster growth in the
covariances for higher-mass systems than ET. The effect of
q on the covariances appears to be different in LIGO-Virgo
than in ET and CE—in the former, they increase with
increasing q, but the latter two follow the opposite trend.
The small tilt angles of the eigencoordinates, especially in
3G detectors, imply negligible covariances between Heff5
and Heff8.
The measurability of a certain parameter can be inferred

from these ellipses by studying how closely spaced they are
along the direction of that parameter, which denotes how
rapidly the match values change with small displacements
along that direction. A rapid change of match values
implies that two different waveforms can be more easily
distinguished; consequently, the errors are smaller. Since
we are considering only normalized waveforms for this
analysis, effects of the SNR on the statistical errors are
absent here, in contrast to Sec. IV, where the results depend
largely on SNR. This enables us to study the variations of
the errors in the eigencoordinates in a SNR-independent
way. To demonstrate how the shapes of the ellipses vary

FIG. 8. Fisher ellipses in LIGO-Virgo with normalized templates, implying SNR ¼ 1. The spin values taken here are χ1 ¼ χ2 ¼ 0.8.
The “target waveform” corresponds to the intersection point of the eigenvector directions (the dotted black lines), which is Heff5 ¼ 0.6,
Heff8 ¼ 12. The first and second rows correspond to the mass ratios q ¼ 4 and q ¼ 6, respectively, and the four columns are for the total
mass values M ¼ 50 M⊙, 60 M⊙, 70 M⊙, and 80 M⊙ from left to right. Match values for different ellipses are shown in the common
legend at the upper-right corner.
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with total mass and mass ratio, in Fig. 11 we plot the
principal axes a and b of the ellipses, defined in Eq. (26),
for the match value M ¼ 0.99 (the red ellipses in Figs. 8
and 9). In this figure, only the 3G detectors are considered.

The ellipses get stretched out along the eigencoordinate
y (the semimajor axes) with increasing M, implying
that the error in that coordinate increases with M for
M > 60 M⊙. This follows the behavior of ΔHeff8, which

FIG. 9. Same as in Fig. 8, but in the detectors (a) ET and (b) CE.
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increases with M in this region [Figs. 2(c) and 2(d)].
Along the x direction (semiminor axes), sections of the
ellipses are smaller with increasing M, implying lesser
errors. Increasing q makes the ellipses more squeezed
along both x and y, implying better measurabilities in both
the eigencoordinates.
The covariance between two parameters is a measure of

the degeneracy between them. A vanishing covariance
between two parameters allows one to probe the depend-
ence of the model (in our case, the gravitational waveform)
on the parameters separately. This possibility is attained by
3G detectors with the introduction of more GW cycles in
the early inspiral, and the accompanying fact that these

parameters are much more precisely measurable than in
LIGO and Virgo. In the case of ETand CE, as we see, in the
considered region of the parameter space, the errors and the
covariances are not large enough for diagonalization to
make any significant difference.

VII. DISCUSSION AND CONCLUSIONS

We have explored how well one can measure the two
tidal heating parameters Heff5 and Heff8 with the future
ground-based GW detectors Einstein Telescope and
Cosmic Explorer, as well as in the second-generation
(2G) detectors Advanced LIGO and Advanced Virgo.
These parameters account for the flux of energy and
angular momentum into or out of a (spinning) BH, which
is different for other compact objects—even those that
mimic a BH. They appear at the 2.5 PN and 4 PN orders,
respectively, in the expression for the phase shift in the
gravitational waveform due to tidal heating. The prospect
of proper estimation of these parameters results in a viable
method for distinguishing BHs (in binaries) from other
compact objects that do not have horizons, but may
otherwise resemble them. We chose TaylorF2 as the PN
approximant and added the tidal-heating phase shift to it.
We primarily used the Fisher matrix approach for estimat-
ing the errors.
In 3G detectors, we showed that for a total binary mass

of M ≳ 50 M⊙, estimation of the aforementioned para-
meters is the most precise, whereas for 2G detectors there is
a specific region around 20 M⊙ ≲M ≲ 40M⊙ where we
expect the best results with the current waveform.
Increasing mass asymmetry results in lesser errors. The
errors rise linearly with the luminosity distance. In 3G
detectors, we can constrain Heff5 (Heff8) with a 1σ error
value of ∼0.05 (∼0.2) for a binary with M ¼ 30 M⊙,
q ¼ 1.5, Heff5 ¼ 0.6, Heff8 ¼ 12, at 1 Gpc distance. This
error value amounts to a relative percentage error of
approximately 8.3% (2%) for Heff5 (Heff8). In LIGO-
Virgo, the errors are higher (∼300% for Heff5, ∼50% for
Heff8), as expected, mainly due to the lower SNRs. The
measurements can be improved by using coherent mode
stacking, by which one can combine observations of N
number of GW events and effectively scale the SNR by a
factor of

ffiffiffiffi
N

p
[105,106]. Spins of the binary components

affect the measurabilities due to the spin-orbit term, and the
fact that the upper cutoff frequency used in this work is spin
dependent. Increasing spin makes the considered frequency
range wider, which in turn lowers the error values.
We have also demonstrated that in the sensitivity of 3G

detectors, covariances between these parameters are not
significant, meaning that we do not expect to improve the
results any further by introducing any new combination of
them by diagonalizing the covariance matrix. However, in
2G detectors, covariances are high enough for this method
to produce better results, and we show how we can define a

FIG. 10. Variation of the rotation angle of x − y coordinate axes
with respect to the Heff5 −Heff8 axes with M for q ¼ 4, 6 in
Figs. 8 and 9.

FIG. 11. Sections of theM ¼ 0.99 ellipses with their principal
axes in Fig. 9, plotted againstM for q ¼ 4 (red), q ¼ 6 (green) in
ET (square points) and CE (triangular points).
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new set of coordinates with fewer errors from the tilts of the
Fisher ellipses.
This work will be useful in future studies when more

complete and accurate tidal-heating waveforms are avail-
able that extend deeper into the merger phase. Our study
has identified the regions in the parameter space where one
can expect the best results in estimating the tidal heating
parameters. We have shown that these results are consistent
with Bayesian analyses.
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