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We investigate the Hamilton-Jacobi equation of a probe particle moving on d-dimensional generalized
Lense-Thirring metric. This spacetime is different from the slowly rotating Myers-Perry black hole at
second order in rotation parameters. We show that the dynamics of the probe particle along the timelike
geodesic of the generalized Lense-Thirring spacetime is superintegrable and has more constants of motion
with respect to the same dynamics on Myers-Perry black hole. We also discuss the second rank Killing
tensors associated with the generalized Lense-Thirring metric.
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I. INTRODUCTION

The spacetime outside a slowly rotating massive object is
described by the Lense-Thirring metric [1]. This metric is
also given by the slow rotation limit of a Kerr black hole
to first order in rotation parameter. Hence, this metric is
an approximate solution to the field equation of the pure
Einstein theory. Another description for this spacetime
is that it appears as the asymptotic (large r) behavior
of the Kerr metric. Since stationary, this spacetime does
not follow the four-dimensional uniqueness theorem.
Therefore, different rotating objects can be described by
the Lense-Thirring metric asymptotically. So, we can
appropriately add a coordinate-dependent term of second
order in the rotation parameter to the metric which makes
the analysis of the new metric simpler [2,3]. Although
this change gives a different spacetime, it still satisfies
Einstein’s equation to the first order in a rotation parameter.
This spacetime inherits the rich symmetry structure from

the Kerr black hole. The study of geodesic equations on
Lense-Thirring spacetime shows that the dynamics of the
probe particle along the timelike geodesic is integrable [3]
and one constant of motion is associated with the nontrivial
Killing tensor of the second rank. This is similar to the
Carter constant [4] for the probe particle dynamics on a
Kerr black hole.
The Killing tensors of rank-n which satisfy the following

equation,

∇fμKν1���νng ¼ 0; ð1Þ

are the generators of some symmetry actions on the phase
space of the probe particle of the curved spacetime, as the

generalization of the Killing vectors. However, the projec-
tion of their action on the configuration space is null,
unlike the action of Killing vectors. In this sense, they
are associated with hidden symmetries. There are some
cases in which the second rank Killing tensor of the
d-dimensional spacetime, Kab, is written as the “square”
of a Killing-Yano tensor, Y, of rank (d − 2), i.e.,

K ¼ Y · Y; ∇ðμYνÞν1���νd−3 ¼ 0: ð2Þ

Here (·) means the contraction of the (d − 3) number of the
indices. In such cases, the integrability of the Klein-Gordon
equation is guaranteed by the integrability of the geodesic
equation. Then, the Killing-Yano tensor, Y, can be written
as the Hodge dual of a second rank closed conformal
Killing tensor h,

Y ¼ ⋆h; ð3Þ

the so-called principal tensor [5]. This can be locally given
by a 1-form potential b through

h ¼ db: ð4Þ

The existence of principal tensor h plays a crucial role in
the integrability of other probes like a Maxwell field on the
curved spacetime which entails hidden symmetries [6–11]
(see [12] for recent review).
The generalization of the four-dimensional Lense-

Thirring metric has been studied by adding a Maxwell
field, cosmological constant, or by going to the higher
dimensions [13]. This study shows that in higher dimen-
sions some new hidden symmetries emerge as a result of
the slow rotation limit.*s.sadeghian@umz.ac.ir
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In the present work, we start with a brief review of the
derivation of d-dimensional generalized Lense-Thirring
spacetime from the slowly rotating Myers-Perry black
hole. Then, we develop the hidden symmetry study in
[13] by investigating the Hamilton-Jacobi equation of the
probe particle. We show that this equation is separable in an
appropriate coordinate system. Using the separation con-
stants, we read the associated Killing tensors of the
generalized Lense-Thirring spacetime in d ¼ 2mþ 1þ ϵ
dimensions. The remarkable property of this dynamics is
that a UðmÞ symmetry emerges on the t; r ¼ constant
subspace. Therefore, in addition to the mentioned separa-
tion constant, there are more independent constants asso-
ciated with the second rank Casimirs of this UðmÞ
symmetry which renders the dynamics superintegrable.
We present the explicit form of the associated second rank
Killing tensors and discuss how their number is restricted
by the phase space dimension of the probe particle moving
along the timelike geodesic.

II. GENERALIZED LENSE-THIRRING METRIC

A. In four dimensions

Expanding the Kerr metric in rotation parameter (a),
while keeping mass parameter finite, we have an approxi-
mate solution of the Einstein theory up to order Oða2Þ:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ 2asin2θðfðrÞ − 1Þdtdϕ

þ r2sin2θdϕ2 þ r2dθ2 þOða2Þ; ð5Þ

where the metric function fðrÞ is given by

fðrÞ ¼ 1 −
2M
r

: ð6Þ

TheKilling tensor of the approximate solution is given by

K ¼ 2a∂t∂ϕ þ
1

sin2θ
ð∂ϕÞ2 þ ð∂θÞ2 þOða2Þ: ð7Þ

The first term is trivial in the sense that it is the tensor
product of two Killing vectors, ∂t and ∂ϕ. The spherical
symmetry can be seen in the slow rotation limit (a → 0) as
the second and third term of the above Killing tensor is the
metric on a 2-sphere. Based on (4), the associated principal
tensor is generated by

2b ¼ r2dt − ar2sin2θdϕþOða2Þ: ð8Þ

Adding a term of order a2 to the metric to complete the
square of the t − ϕ part of the line element, we get the
following metric:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2sin2θ

�
dϕþ aðfðrÞ − 1Þ

r2
dt

�
2

þ r2dθ2; ð9Þ

where the function fðrÞ is given by (6). This is also a
solution to the Einstein’s equations to the linear order in a.
The advantage of adding the Oða2Þ term to the metric is
that its analysis is easier than the one in (5) [2,3,13]. Also,
the truncation of the Killing tensor in (7) satisfies the exact
Killing tensor equation.

B. In higher dimensions

We start from the rotating Myers-Perry black hole [14] in
d ¼ 2mþ 1 dimensions,

ds2 ¼ −dt2 þ
Xm
i¼1

ðr2 þ a2i Þðdμ2i þ μ2i dϕ
2
i Þ þ

ΠF
Π− 2Mr2

dr2

þ 2Mr2

ΠF

�
dtþ

Xm
i¼1

aiμ2i dϕi

�
2

; ð10Þ

where μi are azimuthal coordinates, restricted byP
m
i¼1 μ

2
i ¼ 1. Here, M and ai are the mass and rotation

parameter, respectively and the metric functions F and Π
are defined through

Π ¼
Ym
i¼1

ðr2 þ a2i Þ; F ¼ 1 −
Xm
i¼1

a2i μ
2
i

r2 þ a2i
: ð11Þ

The isometries of this spacetime are generated by ∂t and
∂ϕi

. This metric also admits the principal tensor generated
by the following potential [5]:

2b ¼
�
r2 þ

Xm
i¼1

a2i μ
2
i

�
dtþ

Xm
i¼1

aiμ2i ðr2 þ a2i Þdϕi: ð12Þ

Taking the slow rotation limit to linear order, we have

ds2 ¼ −
�
1 −

2M
r2m−2

�
dt2 þ r2

Xm
i¼1

ðdμ2i þ μ2i dϕ
2
i Þ

þ dr2

1 − 2M=r2m−2 þ
4M
r2m−2

Xm
i¼1

aiμ2i dϕidt

þOða2i Þ: ð13Þ

The same procedure as in the four-dimensional case leads
to the generalized Lense-Thirring metric in d¼2mþ1þϵ
dimensions [13],
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ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
Xm
i¼1

μ2i

�
dϕi þ

2Mai
r2mþϵ dt

�
2

þ r2
Xmþϵ

i¼1

dμ2i ; ð14Þ

where ϵ ¼ 0, 1 for odd/even spacetime dimensions, respec-
tively. The metric function fðrÞ is given by

fðrÞ ¼ 1 −
2M

r2m−2þϵ : ð15Þ

The restriction on μi coordinates is

Xmþϵ

i¼1

μ2i ¼ 1; ð16Þ

which hints at the spherical symmetry on a submanifold
spanned by μi. The Killing vectors of this spacetime are ∂t
and ∂ϕi

. Later, we discuss the hidden symmetries associated
with the Killing tensors of the above metric.
Just like its four-dimensional counterpart, the metric

introduced in (14) is an approximate solution to the
Einstein’s equations to the linear order in ai.

III. HAMILTON-JACOBI EQUATION
OF THE PROBE PARTICLE

For the case of ϵ ¼ 0, the restriction (16) is written as

Xm−1

I¼1

μ2I þ μ2m ¼ 1: ð17Þ

We solve this for μm and rewrite the metric (14) in terms of
μI with I ∈ f1;…; m − 1g. Then, the Hamilton-Jacobi
equation for the probe particle,

−m2
0 ¼ gabpapb; ð18Þ

moving on this background metric is given by

−m2
0 ¼ −fðrÞ−1

�
pt −

Xm
i¼1

2Mai
r2m

pϕi

�
þ fðrÞp2

r

þ r−2
�Xm−1

I;J¼1

hIJpμIpμJ þ
Xm
i¼1

μ−2i p2
ϕi

�
; ð19Þ

where

hIJ ¼ δIJ − μIμJ: ð20Þ

Since the metric is stationary and axisymmetric along ϕi,
the energy and angular momentum of the point particle on

this background metric are conserved and pt, pϕi
’s are

some constants. If we define

UðrÞ≡ fðrÞ−1
�
pt −

Xm
i¼1

2Mai
r2m

pϕi

�
− fðrÞp2

r ; ð21Þ

then the ðt; r;ϕiÞ part of Eq. (19) separates from the rest,

r2ðUðrÞ −m2
0Þ ¼ C; ð22Þ

by introducing a separation constant C. The μi-dependent
part of Eq. (19) is

�
1 −

Xm−1

K¼1

μ2K

� Xm−1

I;J¼1

ðp2
μI − μIμJpμIpμJ þ μ−2I p2

ϕI
Þ

þ
Xm−1

I¼1

Cμ2I ¼ C − p2
ϕm
: ð23Þ

Obviously, this equation is not separable in μI
coordinates. Then, we change to θi coordinates in which
the equation (23) is separable,

μm ¼ cosðθmÞ; μI ¼ x̂I sinðθmÞ; ð24Þ

where x̂I is constrained by

Xm−1

I¼1

x̂2I ¼ 1: ð25Þ

To solve this, we introduce another θ coordinate, θm−1 and
so on. Therefore, we need m − 2 number of θi ’s (with
i ∈ f3; mg) which ranges in ½0; π� plus one azimuthal angle
θ2 ¼ ϕ̃ ∈ ½0; 2π�. In this coordinate, the θi part of Eq. (18)
becomes separable,

p2
θi
þ p2

ϕi

cos θi2
þ Kði−1Þ
sin θi2

¼ KðiÞ; i ∈ f2; mg; ð26Þ

where KðiÞ are some separation constants and Kð1Þ ¼ p2
ϕ1
.

We note that KðmÞ is nothing but the separation constant C,
introduced in (22) for the radial part. Up to here, the
existence of (m − 1) number ofKðiÞ ’s, in addition tom0, pt,
pi, makes the dynamics along the geodesic integrable.
However, there are more constants of motion associated
with the generators of UðmÞ symmetry which will be
discussed in the next section (these are similar to the hidden
constants of motion introduced in [15,16]).

IV. HIDDEN SYMMETRIES
AND KILLING TENSORS

Using the recursion relation between the constants KðiÞ’s
in Eq. (26), we read the related Killing tensors,
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Kab
ðkÞ∂a∂b ¼ ∂

2
θk
þ ∂

2
ϕk

ðcosθkÞ2
þ
�Yk−2

l¼0

sinθk−l

�−2

∂
2
ϕ1

þ
Xk−3
q¼0

�Yq
l¼0

sinθk−l

�−2�
∂
2
ϕk−q−1

þ
∂
2
ϕk−q−1

ðcosθk−q−1Þ2
�
;

ð27Þ

for 3 ≤ k ≤ m and

Kð2Þ ¼ ∂
2
θ2
þ cos θ2−2∂2ϕ2

þ sin θ2−2∂2ϕ1
: ð28Þ

Furthermore, the generalized Lense-Thirring metric (14)
admits some additional Killing tensors associated with the
mentioned UðmÞ symmetry. To write them explicitly, we
first introduce coordinates xi, yi in which the mentioned
UðmÞ symmetry is more clear as in [16],

xi ¼ μi cosðϕiÞ; yi ¼ μi sinðϕiÞ: ð29Þ

Here, i runs from 1 to (m − 1). If one writes the reduced
metric on ðμi − ϕiÞ subspace in complex coordinates
zj ¼ xj þ iyj,

ds2jt;r¼const ¼ dμ2i þ μ2i dϕ
2
i ¼ dzidz̄i; ð30Þ

then the UðmÞ symmetry manifests.
The second rank Casimir of the UðmÞ symmetry, Iij, is

given by

Iij ¼ −
1

4
ðξ2ij þ ρ2ijÞ; ði < jÞ ð31Þ

in which the vector fields ξij and ρij are defined by

ξij ≡ xi
∂

∂xj
− xj

∂

∂xi
þ yi

∂

∂yj
− yj

∂

∂yi
;

ρij ≡ xi
∂

∂yj
− yj

∂

∂xi
þ xj

∂

∂yi
− yi

∂

∂xj
: ð32Þ

The vector ρij is symmetric under the exchange of i, j and
ξij is antisymmetric under this exchange. As ξij does not
contribute to the diagonal components of Iij, it simplifies
considerably. A simple algebra shows that Iii is the trivial
Killing tensor since Iii ¼ ∂ϕi

∂ϕi
(there is no summation on

the repeated indices). Therefore, the nontrivial Killing
tensors in μi basis are given by

−4Iij ¼ ðμi∂μj − μj∂μiÞ2 þ
�
μj
μi
∂ϕi

þ μi
μj

∂ϕj

�
2

; ð33Þ

for i < j. However, all of the Iij components (when i < j)
do not lead to functionally independent constants of motion
for the Hamilton-Jacobi equation. In [16], it has been
shown that the constants associated with Iij not only

includes (m − 1) number of KðiÞ but also it contains
(m − 2) number of new independent constants of motion
constructed out of Iði−1Þi. The explicit form of Iði−1Þi in θi
coordinates is given by

Iði−1Þi¼
�
sinθi−1 cotθi

∂

∂θi−1
− cosθi−1

∂

∂θi

�
2

þ
�
cosθi−1 tanθi

∂

∂ϕi
þ cotθi
cosθi−1

∂

∂ϕi−1

�
2

; ð34Þ

where i ∈ f2; mg. One can explicitly check that it satisfies
the Killing tensor equation (1).

V. DISCUSSION

In this work, we studied the Hamilton-Jacobi equation of
the probe particle on the generalized Lense-Thirring metric
in d ¼ 2mþ 1 dimensions. This metric is the solution to
the pure Einstein theory to the linear order in the rotation
parameter ai. It would be interesting to analyze the
geodesic of the extended Lense-Thirring as the solution
to the other theories such as Einstein-Maxwell-Lambda to
the first order in rotation parameter [13,17,18].
We observed that the dynamics of the probe particle

along the timelike geodesic of the generalized Lense-
Thirring spacetime in d-dimensions is superintegrable.
For a system with (m − 1) degrees of freedom, it is
maximally superintegrable if it has a 2ðm − 1Þ − 1 number
of independent constants of motion. This is the case for the
reduced phase space related to the independent μi’s as
(m − 1) number of KðiÞ ’s and (m − 2) number of constants
associated with Iiði−1Þ’s renders the dynamics maximally
superintegrable.
Regarding the principal tensor (h), one idea is to start

from the principal tensor associated with a Myers-Perry
black hole (12) and take the slow rotation limit which gives

h ¼ db; b ¼ r2

2

�
dtþ

Xm
i¼1

aiμ2i dϕi

�
; ð35Þ

to linear order in ai. A straightforward calculation shows
that the Killing tensor associated with (35) in the slow
rotation limit is

Kab
∂a∂b ¼ 2

Xm
i¼1

ai∂t∂ϕi
þ

Xm−1

I;J¼1

ðδIJ − μIμJÞ∂μI∂μJ

þ
Xm
i¼1

ð∂ϕi
Þ2

μ2i
; ð36Þ

in odd dimensions. Here, we imposed the restriction (16),
so that the indices of ∂μ runs from 1 to (m − 1). Therefore,
the second term is the metric on anm-sphere. Changing the
bound of summation in (35) does not yield a different result
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for the Killing tensor other than (36) to the linear order in
ai. An interesting question is, are the Killing tensors Iij
constructed of some principal tensors? We will come back
to this question in the future.
Finally, we note that the discussion in even dimensions is

very similar to the odd-dimensional case. To avoid repeti-
tion, we left the details in the Appendix.
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APPENDIX: GEODESIC EQUATION
IN EVEN DIMENSIONS

In even dimensions (ϵ ¼ 1), the restriction (16) reads

Xm
i¼1

μ2i þ ν2 ¼ 1; ðA1Þ

where, for convenience, we replaced μmþ1 by ν. This can be
solved for ν, then the metric reduces to

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
Xm
i¼1

μ2i

�
dϕi þ

2Mai
r2mþ1

dt
�

2

þ r2
Xm
i;j¼1

hijdμidμj; ðA2Þ

where the metric functions are

fðrÞ ¼ 1 −
2M
r2m−1 þ

r2

l2
; hij ¼ δij þ

μiμj
ν2

: ðA3Þ

The Hamilton-Jacobi equation of the probe particle on
this background metric is given by

−m2
0 ¼ −fðrÞ−1

�
pt −

Xm
i¼1

2Mai
r2mþ1

pϕi

�
þ fðrÞp2

r

þ r−2
�Xm

i;j¼1

hijpμipμj þ
Xm
i¼1

μ−2i p2
ϕi

�
; ðA4Þ

where hij ¼ δij − μiμj. Since the metric is stationary and
axisymmetric along ϕi’s the energy and angular momentum
of the point particle on this background metric are con-
served and pt, pϕi

’s are some constants. If we define

UðrÞ≡ fðrÞ−1
�
pt −

Xm
i¼1

2Mai
r2mþ1

pϕi

�
− fðrÞp2

r ; ðA5Þ

then the r-dependent part separates from the rest of
Eq. (A4) by introducing the separation constant C,

r2ðUðrÞ −m2
0Þ ¼ C: ðA6Þ

The μi part of Eq. (A4),

Xm
i;j¼1

ðp2
μi þ μiμjpμipμj þ μ−2i p2

ϕi
Þ ¼ C; ðA7Þ

is not separable in μi coordinates.
Then, we change the coordinates to θi coordinates,

ν¼ cosðθmþ1Þ; μi¼ x̂i sinðθmþ1Þ;
Xm
i¼1

x̂2i ¼ 1: ðA8Þ

In these coordinates, the θi part of the Hamilton-Jacobi
equation (18) is written as

p2
θi
þ p2

ϕi

cos θi2
þ Kði−1Þ
sin θi2

¼ KðiÞ; i ∈ f2; mþ 1g; ðA9Þ

with

pϕmþ1
¼ 0; Kð1Þ ¼ p2

ϕ1
: ðA10Þ

The Killing tensors related to these constants are

Kab
ðkÞ∂a∂b ¼ ∂

2
θk
þ ∂

2
ϕk

ðcos θkÞ2
þ
Xk−3
q¼0

�Yq
l¼0

sin θk−l

�−2
∂
2
θk−q−1

þ
Xk−3
q¼0

ðQq
l¼0 sin θk−lÞ−2

ðcos θk−q−1Þ2
∂
2
ϕk−q−1

þ
�Yk−2

l¼0

sin θk−l

�−2

∂
2
ϕ1
; ðA11Þ

where ð2 ≤ k ≤ mþ 1Þ while Kðmþ1Þ is equal to C which
appeared as the separation constant for the radial part,
in Eq. (A6).
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