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The mode stability of the Kerr black hole in four dimensions was demonstrated by Whiting in 1989,
by separating the Teukolsky equation that describes gravitational perturbations and then transforming
the radial and angular equations in such a way that the problem can be reformulated as a wave equation in
an auxiliary spacetime in which the proof of stability is greatly simplified, owing to the absence of an
ergoregion. As a preliminary step towards extending these ideas to higher-dimensional black holes, we
study the mode stability of the massless scalar wave equation in the five-dimensional black hole solutions
of Einstein gravity and supergravity. We show how the wave equation can again be mapped into one in an
auxiliary spacetime in which there is no ergoregion, allowing us to give a proof of the mode stability of the
solutions of the scalar wave equation.
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I. INTRODUCTION

Establishing results on the stability of black hole
solutions has been a major activity in the general relativity
community for many years. This is especially subtle, and
also important, in the case of stationary rotating black
holes. Many different approaches have been followed, but
one of the most fruitful has involved finding an integral
transformation that maps the difficult analysis in the
original variables into a considerably simpler analysis in
the transformed variables. The idea was first developed
in [1], where it was employed to establish the mode
stability of the Kerr black hole [1]. The technique has
been developed further in recent years, and found

application in studies such as the global stability of black
holes (see, for example, [2,3]), the stability of extremal
black holes [4], and mode stability on the real frequency
axis [5,6].
Establishing the mode stability of the Kerr black hole

involved studying the properties of the mode functions in
the separation of variables for the Teukolsky equation,
which provides a gauge-invariant description of the per-
turbations around the Kerr background. In [1] the gener-
alized Teukolsky equation with a spin parameter s was
studied, with s ¼ �2 corresponding to the actual case of
interest in which the equation describes the gravitational
perturbations themselves. The case s ¼ 0 corresponds to
the massless scalar wave equation (the massless Klein-
Gordon equation), while the s ¼ �1 case governs gauge-
invariant components of the Maxwell field.
The techniques for analyzing the Teukolsky equation for

spin s that were developed in [1] were broadly similar for
all s, and in fact the essential features associated with
the stability of the solutions could already be seen in the
s ¼ 0 case. This is a useful observation because if one
looks at more complicated situations than black holes in
pure Einstein gravity, such as black holes in Einstein-
Maxwell theory or in supergravity, the analog of the
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Teukolsky analysis has not been implemented. In the
absence of a gauge-invariant treatment of the perturbations
of the black holes in these more complicated situations, one
can at least study the analog of s ¼ 0 Teukolsky equation,
that is, the massless scalar wave equation in the black hole
background. One may hope that this can provide a “proxy”
for the full analysis, and that establishing stability results
for the solutions of the massless wave equation may be
indicative of what one might find in a more elaborate and
complete perturbative analysis. This approach was adopted
in [7], where the techniques of [1] were applied to the study
of the mode stability for solutions of the massless scalar
wave equation in the background of a class of four-
dimensional supergravity black holes carrying four inde-
pendent electric charges [8,9].
In this paper, we extend some of the four-dimensional

techniques for mode-stability analysis that were developed
in [1] to the case of five dimensions. Even in the pure
Einstein case, the analog of the four-dimensional
Teukolsky analysis is unknown. The stumbling block is
that the four-dimensional analysis depended heavily upon
the use of the Newman-Penrose formalism, and no particu-
larly useful extension of this to five or higher dimensions has
been constructed.1 Thus for now, our approach will mirror
the one that can be followed for more complicated theories
in four dimensions, namely, we shall focus attention on
establishing stability results for solutions of the five-
dimensional massless scalar wave equation. This already

allows us to develop a rather nontrivial generalization of the
techniques that were employed in four dimensions, and it
reveals ways in which the integral transformation that
allows us to establish mode-stability results is substantially
different from the one in four dimensions.
We shall describe in the subsequent sections how one can

establish mode-stability results for solutions of the massless
wave equation in the background of the five-dimensional
Myers-Perry rotating black hole [11], and also in the
background of general 3-charge rotating black holes in
the five-dimensional STU supergravity theory [12].

II. MASSLESS SCALAR WAVE EQUATION IN
FIVE-DIMENSIONAL BLACK HOLE

BACKGROUND

A. Five-dimensional Myers-Perry black hole

The natural generalization of the four-dimensional rotat-
ing Kerr [13] black hole to higher spacetime dimensions is
provided by the Myers-Perry black hole solutions [11].
These vacuum solutions of the D-dimensional Einstein
equations are characterized by their mass M and by
½ðD − 1Þ=2�-independent angular momenta, reflecting the
fact that independent rotations can occur in each orthogonal
spatial 2-plane. In this paper we shall be concerned
specifically with the example of the five-dimensional
rotating black hole. Its metric is given by [11]

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕ − bcos2θdψÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2 þ sin2θ

ρ2
½adt − ðr2 þ a2Þdϕ�2 þ cos2θ

ρ2
½bdt − ðr2 þ b2Þdψ �2

þ 1

r2ρ2
½abdt − bðr2 þ a2Þsin2θdϕ − aðr2 þ b2Þcos2θdψ �2; ð2:1Þ

where

Δ ¼ ðr2 þ a2Þðr2 þ b2Þ
r2

− 2M;

ρ2 ¼ r2 þ a2cos2θ þ b2sin2θ: ð2:2Þ

Here, a and b are the two independent rotation parameters,
with ϕ and ψ being the two associated azimuthal angles
(each with period 2π). The latitude coordinate θ ranges over
0 ≤ θ ≤ 1

2
π.

B. Massless scalar wave equation

Our focus will be the investigation of solutions of the
massless scalar wave equation□Ψ ¼ 0 in the Myers-Perry
background, with the goal of establishing that modes with

time dependence e−iωt that are ingoing on the future
horizon and outgoing at future null infinity cannot have
a frequency ω with a positive imaginary part. In other
words, we seek to show that there cannot exist spatially
regular modes that would give rise to instabilities growing
exponentially in time.
One can define new radial and latitude coordinates x̃

and y by writing

x̃ ¼ r2; y ¼ cos2θ: ð2:3Þ

Using these, we have

ffiffiffiffiffiffi
−g

p ¼ x̃þ a2yþ b2ð1 − yÞ
4

; ð2:4Þ

and defining the quantity Gμν ≡ ffiffiffiffiffiffi−gp
gμν, we have1However, see [10].
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G00 ¼ −
ðx̃þ 2M þ b2Þ

4
−
M2x̃
D

þ ðb2 − a2Þy
4

;

G01 ¼ G02 ¼ 0; G03 ¼ −
aMðx̃þ b2Þ

2D
;

G04 ¼ −
bMðx̃þ a2Þ

2D
;

G11 ¼ x̃2 þ ða2 þ b2 − 2MÞx̃þ a2b2;

G12 ¼ G13 ¼ G14 ¼ 0;

G22 ¼ yð1 − yÞ; G23 ¼ G24 ¼ 0;

G33 ¼ ðb2 − a2Þx̃þ b2ðb2 − a2 − 2MÞ
4D

þ 1

4ð1 − yÞ ;

G34 ¼ −
abM
2D

;

G44 ¼ ða2 − b2Þx̃þ a2ða2 − b2 − 2MÞ
4D

þ 1

4y
; ð2:5Þ

where

D ¼ ðx̃þ a2Þðx̃þ b2Þ − 2Mx̃: ð2:6Þ

It can be shown [14] that the massless scalar wave equation
□Ψ ¼ 0, which may be written as ∂μðGμν

∂νΨÞ ¼ 0, is
separable.
We can obtain the separated x̃ and y equations in

Schrödinger form by writing2

Ψ ¼ e−iωtþimϕþinψRðx̃ÞSðyÞ; ð2:7Þ

and then defining

Rðx̃Þ ¼ Xðx̃Þffiffiffiffi
D

p ; SðyÞ ¼ YðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp : ð2:8Þ

This gives the separated equations

X00

X
þUx̃ −

σ

D
¼ 0;

Y 00

Y
þ Uy þ

σ

yð1 − yÞ ¼ 0: ð2:9Þ

It is convenient now to make a further change of the
radial variable. Defining ϵþ and ϵ− by

2M−ðaþbÞ2¼2Mϵ2þ; 2M−ða−bÞ2¼2Mϵ2−; ð2:10Þ

a further coordinate transformation from x̃ to x given by

x̃ ¼ 2Mϵþϵ−xþ
1

2
Mðϵþ − ϵ−Þ2; ð2:11Þ

implies that D, defined in Eq. (2.6), becomes

D ¼ 4M2ϵ2þϵ2−xðx − 1Þ: ð2:12Þ

The outer horizon r ¼ rþ is located at x ¼ 1, and the inner
horizon r ¼ r− at x ¼ 0. The region where r goes to
infinity corresponds to x goes to infinity.
In terms of the variable x, we can now write the radial

equation in the form

X00

X
þ κ þ Λ

x
þ κ − Λ

x − 1
þ

1
4
− β2

x2
þ

1
4
− γ2

ðx − 1Þ2 ¼ 0; ð2:13Þ

finding

κ ¼ 1

4
Mϵþϵ−ω2;

β ¼ i

4
ffiffiffiffiffiffiffi
2M

p
�
2Mω − ðaþ bÞðmþ nÞ

ϵþ
−
2Mω − ða − bÞðm − nÞ

ϵ−

�
;

γ ¼ i

4
ffiffiffiffiffiffiffi
2M

p
�
2Mω − ðaþ bÞðmþ nÞ

ϵþ
þ 2Mω − ða − bÞðm − nÞ

ϵ−

�
;

Λ ¼ σ þ 1

2
−
3

4
Mω2 þ 1

8
ða2 − b2Þω2 þ ½2Mω − ðaþ bÞðmþ nÞ�2

16Mϵ2þ
þ ½2Mω − ða − bÞðm − nÞ�2

16Mϵ2−
: ð2:14Þ

In the angular direction, the equation for Y in (2.9) is of the form

Y 00

Y
þ κ̂ þ Λ̂

y
þ κ̂ − Λ̂

y − 1
þ

1
4
− β̂2

y2
þ

1
4
− γ̂2

ðy − 1Þ2 ¼ 0; ð2:15Þ

2For the separated form of the equations before casting them in the Schrödinger form, see [14]. There the separation was already
performed for the 5d STU black holes [12].
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with

κ̂ ¼ −
1

8
ða2 − b2Þω2; β̂ ¼ n

2
; γ̂ ¼ m

2

Λ̂ ¼ 1

2
þ σ −

ðm2 þ n2Þ
4

þ ða2 − b2Þω2

8
: ð2:16Þ

C. Transforming the radial equation

We start with the radial equation given by Eq. (2.13),
with the constants given in (2.14). Next, introduce a new
function fðxÞ, related to XðxÞ by

XðxÞ ¼ x
1
2
−ϵ1βðx − 1Þ12−ϵ2γfðxÞ; ð2:17Þ

where ϵ21 ¼ ϵ22 ¼ 1. The function f therefore satisfies

½xðx − 1Þ∂2x þ ðbxþ cÞ∂x þ dxþ e�fðxÞ ¼ 0; ð2:18Þ

with

b¼2ð1−ϵ1β−ϵ2γÞ; c¼−1þ2ϵ1β;

d¼2κ; e¼1

2
−κ−ϵ1β−ϵ2γþ2ϵ1ϵ2βγ−Λ: ð2:19Þ

Next, we make an integral transform to a new radial
variable hðzÞ, by defining

hðzÞ ¼ e−α̃zeν̃=zz1þγ̃

Z
∞

1

e2α̃xzfðxÞdx: ð2:20Þ

Now, multiplying Eq. (2.18) by e2α̃xz and integrating gives,
after integration by parts,

0 ¼ Bþ
Z

∞

1

½4α̃2xðx − 1Þz2 þ 2α̃ð4x − bx − 2 − cÞz

þ dxþ 2 − bþ e�fðxÞdx; ð2:21Þ

where B is the boundary term:

B ¼ ½e2α̃xzxðx − 1Þ∂xf − ∂xðe2α̃xzxðx − 1ÞÞf
þ e2α̃xzðbxþ cÞf�∞1 : ð2:22Þ

Note that Eq. (2.21) can be written as

0 ¼ Bþ
Z

∞

1

fðxÞOzðe2α̃xzÞdx; ð2:23Þ

where

Oz ¼ z2∂2z þ
�
4z − 2α̃z2 − bzþ d

2α̃

�
∂z

þ 2 − 2α̃cz − 4α̃z − bþ e: ð2:24Þ

It can then be seen that provided the boundary term B
vanishes, a question to which we shall return later,
then hðzÞ defined in Eq. (2.20) satisfies
Ozðeα̃ze−ν̃=zz−1−γ̃hðzÞÞ ¼ 0, and thus

�
∂
2
z − α̃2 þ 2α̃ κ̃

z
þ Λ̃
z2

þ 2γ̃ ν̃

z3
−
ν̃2

z4

�
hðzÞ ¼ 0; ð2:25Þ

where the constants are chosen so that

κ̃ ¼ −ϵ1β þ ϵ2γ; Λ̃ ¼ 1

2
− β2 − γ2 − Λ;

γ̃ ¼ ϵ1β þ ϵ2γ; ν̃ ¼ −
κ

2α̃
: ð2:26Þ

The constant α̃ is arbitrary at this stage [it really just sets
the scale of the new radial variable z that is introduced in
Eq. (2.20)]. We shall find it convenient to define it to be

α̃ ¼ i
ffiffiffiffiffi
M

p
ϵ−ω

2
ffiffiffi
2

p : ð2:27Þ

D. Behavior of unstable modes

If they existed, unstable modes would be solutions
that were purely outgoing at I and purely ingoing at the
horizonH, that is, asymptotically, they would have support
only at Iþ and Hþ. We are interested in establishing the
nonexistence of unstable modes arising from frequencies
in the upper half of the complex ω plane, that is for
ω ¼ ω0 þ iω1, with ω1 > 0, since these would grow
exponentially in the future. Thus, near Iþ, we must have

Ψ ∼ exp−iωðt − r�Þ; as ft; r�g → ∞; ð2:28Þ

and, near Hþ, we must have

Ψ ∼ exp−iωðtþ r�Þ; as f−t; r�g → −∞: ð2:29Þ

From the definition of the r� coordinate in Eq. (A1), it can
be seen that in terms of the radial coordinate x introduced in
Eq. (2.11), we shall have asymptotically

Near I∶ r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mϵþϵ−

p
x
1
2 þOðx−1=2Þ; ð2:30Þ

NearH∶ r� ¼
ffiffiffiffiffi
M

p ðϵþ þ ϵ−Þ
2

ffiffiffi
2

p
ϵþϵ−

logðx − 1Þ þOðx − 1Þ:

ð2:31Þ

From the radial equation (2.13), it can be seen that near
the horizon x ¼ 1, the solutions will have the form
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XðxÞ ¼ ðx − 1Þ12�γFð1Þ
� ðx − 1Þ; ð2:32Þ

where the functions Fð1Þ
� ðx − 1Þ are analytic around x ¼ 1,

with Fð1Þ
� ð0Þ a nonzero constant. As noted above, an

unstable mode would have ω dependence of the form
e−iωr� near H, and hence from (2.31) and (2.14) it would
correspond to the minus-sign choice in Eq. (2.32). Thus,
for an unstable mode Xum, we must have the near-horizon
behavior:

NearH∶ XumðxÞ ¼ ðx − 1Þ12−γFð1Þ
− ðx − 1Þ: ð2:33Þ

In the asymptotic region near x ¼ ∞, it can be seen from
the radial equation (2.13) that the asymptotic form of the
solutions will be

XðxÞ ¼ x
1
4e�2i

ffiffiffiffi
2κ

p ffiffi
x

p
Fð∞Þ
�

�
1ffiffiffi
x

p
�
; ð2:34Þ

with the functions Fð∞Þ
� ð 1ffiffi

x
p Þ being asymptotic series with

Fð∞Þ
� ð0Þ a nonzero constant. Now, as we saw, an unstable

mode would correspond to having a ω dependence of the
form eiωr� near infinity, and so from (2.30) and (2.14) it
would correspond to the plus-sign choice in Eq. (2.34).
Thus, for an unstable mode XumðxÞ, we must have the
asymptotic behavior

Near I∶ XumðxÞ ¼ x
1
4e2i

ffiffiffiffi
2κ

p ffiffi
x

p
Fð∞Þ
þ

�
1ffiffiffi
x

p
�
: ð2:35Þ

Before going on, we point out that infinitely many modes
with these analytic properties do exist with ω1, the
imaginary part of ω, being < 0. These modes decay
exponentially in time, have been extensively studied [15],
and are known as the quasinormal modes which, taken
together, uniquely characterize a black hole spacetime to
which they correspond.
We turn now to the behavior of the transformed radial

function hðzÞ, defined by Eq. (2.20). In particular, we
shall be concerned with the behavior in the coordinate
range 0 ≤ z ≤ ∞.
Near z ¼ 0, it can be seen from Eq. (2.25) that the

leading-order behavior of the solutions will be

hðzÞ ¼ e�ν̃=zz1�γ̃Gð0Þ
� ðzÞ; ð2:36Þ

where Gð0Þ
� ðzÞ are analytic functions with Gð0Þ

� ð0Þ being
nonzero constants. It is evident from (2.20) that at z ¼ 0 the
integrand for an unstable mode is just an analytic function
of x, and so the leading-order behavior of hðzÞ near z ¼ 0

will be given by the prefactor functions eν̃=zz1þγ̃ . In other
words, the unstable mode corresponds to the plus-sign
choice in Eq. (2.36):

Near z ¼ 0∶ humðzÞ ¼ eν̃=zz1þγ̃Gð0Þ
þ ðzÞ; ð2:37Þ

As a check, we see from Eqs. (2.14), (2.26) and (2.27) that

ν̃ ¼ i
ffiffiffiffiffi
M

p
ϵþω

2
ffiffiffi
2

p ; ð2:38Þ

whose real part is negative when ω has a positive imaginary
part, thus implying that humðzÞ in Eq. (2.37) is finite, and
goes to zero, as z goes to zero. [This justifies the sign
choice in the definition of α̃ in Eq. (2.27).]
It can be seen from Eq. (2.25) that near z ¼ ∞, the

function hðzÞ has the behavior

hðzÞ ¼ e�α̃zz∓κ̃Gð∞Þ
�

�
1

z

�
; ð2:39Þ

where the functions Gð∞Þ
� ð1zÞ are asymptotic in z−1 with

Gð∞Þ
� ð0Þ being nonvanishing constants. In the expression

(2.20) the leading behavior of hðzÞ near z ¼ ∞ is governed
by the behavior of fðxÞ near x ¼ 1. Using the previously
determined behavior of XðxÞ, and hence fðxÞ, for an
unstable mode we see that the integrand in Eq. (2.20)
has the behavior

Z
∞

1

e2α̃xzfðxÞdx

¼ e2α̃z
Z

∞

1

e2α̃ðx−1Þzðx − 1Þðϵ2−1Þγð1þOðx − 1ÞÞdx:

ð2:40Þ

Substituting v ¼ −2α̃ðx − 1Þz, we then have

Z
∞

1

e2α̃xzfðxÞdx ∝ e2α̃zz−1þγð1−ϵ2Þ

×
Z

∞

0

e−vvðϵ2−1Þγ
�
1þO

�
v
z

��
dv: ð2:41Þ

Combining with the prefactor we then see, provided

ϵ2 ¼ −1; ð2:42Þ

that

hðzÞ ∝ eþα̃zyγ̃þð1−ϵ2Þγ
�
1þO

�
1

z

��

∼ eα̃zz−κ̃: ð2:43Þ

Thus, for an unstable mode, the plus-sign choice in
Eq. (2.39) is selected:
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Near z ¼ ∞∶ humðzÞ ¼ eα̃zz−κ̃Gð∞Þ
þ

�
1

z

�
: ð2:44Þ

As a check, we note that if ω has a positive imaginary part,
α̃, given in Eq. (2.27), will have a negative real part, and so
humðzÞ will be finite as z goes to infinity. [This motivated
the sign choice in the definition of α̃ in Eq. (2.27).]
It is now straightforward to check, using the asymptotic

properties of the radial functions for unstable modes
established in this section, that the boundary term given
in Eq. (2.22) will vanish for any unstable mode. Thus, we
have established that there is a one-to-one mapping
between exponentially unstable modes in the original
untransformed radial function XðxÞ and exponentially
unstable modes in the radial function hðzÞ obtained by
means of the integral transform (2.20). The final steps in the
proof of the mode stability will be presented in the next
section; this will entail establishing for the transformed
radial equation that there cannot exist any exponentially
unstable modes.

III. MODES IN THE TRANSFORMED SPACETIME

A. Combining angular and transformed
radial equations

The constant σ that was introduced in the original
process of separating variables is present in the transformed

radial equation (2.25) through the quantity Λ [see
Eqs. (2.14) and (2.26)] and in the angular equation (2.15)
through the quantity Λ̂ [see Eq. (2.16)]. It follows therefore
that if we form the combination

z2

hðzÞ ∂
2
zhðzÞ þ

yð1 − yÞ
YðyÞ ∂

2
yYðyÞ ð3:1Þ

and make use of Eqs. (2.25) and (2.15), then we shall obtain
an equation in which all the σ dependence has canceled.
This equation can in fact be interpreted as the result of
performing a separation of variables in which we write

Ψðt; z; y;ϕ;ψÞ ¼ hðzÞYðyÞe−iωteimϕeinψ : ð3:2Þ

We postpone writing the full “unseparated” equation for
now, and just focus on the terms proportional to ω2. (That
is, the −∂tt terms in the full five-dimensional wave
equation.) Together with the terms involving the radial
and angular derivatives, these are

z2∂2z þ yð1 − yÞ∂2y þ
ϵ2þMω2

8z2
þ ϵ2−Mz2ω2

8
þ ½−ϵ1ðϵ− − ϵþÞ − ϵ2ðϵ− þ ϵþÞ�Mω2

4ϵ−z

þ ½ϵ1ðϵ− − ϵþÞ − ϵ2ðϵ− þ ϵþÞ�Mzω2

4ϵþ
þ 3

4
Mω2 −

1

8
ða2 − b2Þð1 − 2yÞω2 þ rest: ð3:3Þ

Since

ϵþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðaþ bÞ2
2M

r
; ϵ− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ða − bÞ2
2M

r
; ð3:4Þ

[see Eqs. (2.10)], and we always assume a and b are non-
negative, it follows that ϵ− ≥ ϵþ. Consequently, all the ω2

terms in Eq. (3.3) will be non-negative, provided that we
choose the sign of ϵ2 to be

ϵ2 ¼ −1: ð3:5Þ

Note that the necessity for this choice of sign was already
seen in the previous section, in Eq. (2.42). The choice of
sign for ϵ1 is undetermined by these considerations. We
shall, for definiteness, make the choice

ϵ1 ¼ −1: ð3:6Þ

For the remaining ω2 terms, namely with coefficient

3

4
M −

1

8
ða2 − b2Þð1 − 2yÞ; ð3:7Þ

we note that the range of the angular coordinate is
0 ≤ y ≤ 1, and so −1 ≤ 1–2y ≤ 1. We also have that

ðaþ bÞ2 ≤ 2M; ð3:8Þ

[see Eq. (3.4)], and so we have a2−b2¼ðaþbÞða−bÞ≤
ðaþbÞ2≤2M. Thus, the remaining terms (3.7) contribut-
ing to ω2 terms in (3.3) are always positive.
In summary, we have seen that the overall coefficient

of ω2 in Eq. (3.3) is always positive, implying that in
the transformed metric g̃μν obtained by the process of
unseparating variables, ∂

∂t is always timelike outside the
horizon.
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We now present the complete result for the combination of the radial and angular equations. With ϵ1 ¼ ϵ2 ¼ −1 as
discussed above we obtain

�
z2∂2z þ yð1 − yÞ∂2y −

�ðaþ bÞ
4z

þ ða − bÞz
4

�
mω −

�ðaþ bÞ
4z

−
ða − bÞz

4

�
nω

þ
�
ϵ2þM
8z2

þ ϵ2−Mz2

8
þM
2z

þMz
2

þ 3

4
M −

1

8
ða2 − b2Þð1 − 2yÞ

�
ω2 −

m2

4ð1 − yÞ −
n2

4y
þ 1

4yð1 − yÞ
�
Ψ ¼ 0: ð3:9Þ

Using the replacements

ω → i∂t; m → −i∂ϕ; n → −i∂ψ ð3:10Þ

we can read off the components g̃μν of an inverse metric in a
transformed spacetime, such that Eq. (3.9) can be written as

g̃μν∂μ∂νΨþ 1

4yð1 − yÞΨ ¼ 0; ð3:11Þ

with

g̃zz ¼ z2; g̃yy ¼ yð1 − yÞ; g̃ϕϕ ¼ 1

4ð1 − yÞ ; g̃ψψ ¼ 1

4y
;

g̃tϕ ¼ −
ðaþ bÞ

8z
−
ða − bÞz

8
; g̃tψ ¼ −

ðaþ bÞ
8z

þ ða − bÞz
8

;

g̃tt ¼ −
�
ϵ2þM
8z2

þ ϵ2−Mz2

8
þM
2z

þMz
2

þ 3

4
M −

1

8
ða2 − b2Þð1 − 2yÞ

�
: ð3:12Þ

We may find a suitable conformal factor Ω2 and a
redefined wave function Φ such that the D’Alembertian of
Φ in a rescaled metric ĝμν ¼ Ω2g̃μν gives rise to Eq. (3.11).
We define

Φðt; z; y;ϕ;ψÞ ¼ 1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp Ψðt; z; y;ϕ;ψÞ; ð3:13Þ

and, noting from (3.12) that we have

ffiffiffiffiffiffi
−ĝ

p
¼ 8

ffiffiffi
2

p
Ω5ffiffiffiffiffi

M
p ð1þ zÞ2 ; ð3:14Þ

it can be seen that if we choose Ω so that

Ω3 ¼ ð1þ zÞ2 ffiffiffiffiffi
M

p

8
ffiffiffi
2

p ; ð3:15Þ

then the transformed Eq. (3.11) is equivalent to the
following equation for Φ in the ĝμν metric:

∂μð
ffiffiffiffiffiffi
−ĝ

p
ĝμν∂νΦÞ ¼ 0: ð3:16Þ

This can be derived from the Lagrangian:

L ¼ −
1

2

ffiffiffiffiffiffi
−ĝ

p
ĝμν∂μΦ̄∂νΦ: ð3:17Þ

From the resulting energy-momentum tensor

Tμν ¼ ∂ðμΦ̄∂νÞΦ −
1

2
ĝμνĝρσ∂ρΦ̄∂σΦ; ð3:18Þ

we may construct a conserved current Jμ ¼ −KνTμ
ν, where

K ¼ ∂

∂t is the time-translation Killing vector. This gives rise
to a conserved energy

E ¼
Z ffiffiffiffiffiffi

−ĝ
p

J0d4x; ð3:19Þ

with

J0 ¼ −ĝtρ∂ðρΦ̄∂tÞΦþ 1

2
ĝρσ∂ρΦ̄∂σΦ

¼ −
1

2
ĝttj∂tΦj2 þ 1

2
ĝzzj∂zΦj2 þ 1

2
ĝyyj∂yΦj2

þ 1

2
ĝϕϕj∂ϕΦj2 þ 1

2
ĝψψ j∂ψΦj2: ð3:20Þ

The integrand in the energy integral (3.19) is therefore
given by
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ffiffiffiffiffiffi
−ĝ

p
J0 ¼ 1

2z2

�
Pj∂tΦj2 þ z2j∂zΦj2 þ yð1 − yÞj∂yΦj2

þ 1

4ð1 − yÞ j∂ϕΦj2 þ 1

4y
j∂ψΦj2

�
; ð3:21Þ

where

P¼ ϵ2þM
8z2

þ ϵ2−Mz2

8
þM
2z

þMz
2

þ 3

4
M−

1

8
ða2−b2Þð1− 2yÞ:

ð3:22Þ
The four-dimensional integration in Eq. (3.19) is over the

coordinates of the 3-sphere (with the ranges 0 ≤ y ≤ 1,
0 ≤ ϕ < 2π, 0 ≤ ψ < 2π), and over the transformed radial
variable z. This ranges over 0 ≤ z ≤ ∞, and as we
discussed in Sec. II. 4 the transformed radial function
hðzÞ for any putative unstable mode goes rapidly to zero
at z ¼ 0 [see Eq. (2.37)], and it goes rapidly to zero at
z ¼ ∞ [see Eq. (2.44)], ensuring the convergence of the
integrals of all the terms in Eq. (3.19).
From Eqs. (3.4) we have ja2 − b2j ≤ 2M, and since y lies

in the interval 0 ≤ y ≤ 1, it follows that the quantity P
satisfies P ≥ 0. Since every term in the energy integral
(3.19) is integrable for any putative unstable mode, and
each contribution is non-negative, it follows in particular
that the integral of the 1

2z2 Pj∂tΦj2 term is bounded from

above by the conserved energy E. Thus, Φ cannot grow
exponentially in time, and therefore there cannot in fact
exist any exponentially unstable modes.

IV. 3-CHARGE FIVE-DIMENSIONAL STU
SUPERGRAVITY BLACK HOLES

The 3-charge rotating black-hole solution in five-
dimensional STU supergravity was obtained in [12], by
using a solution-generating procedure. A convenient form
of the solution was given in [16]. With minor change of
notation, to achieve consistency with our present conven-
tions, the metric is given by

ds2 ¼ ðH1H2H3Þ1=3ðx̃þ ỹÞdŝ2; ð4:1Þ

where

dŝ2 ¼ −ΦðdtþAÞ2 þ ds24; ð4:2Þ

with

ds24 ¼
dx̃2

4X
þ dỹ2

4Y
þU

G

�
dχ −

Z
U
dσ

�
2

þ XY
U

dσ2: ð4:3Þ

The various functions above are given by3

X ¼ ðx̃þ a2Þðx̃þ b2Þ − 2Mx̃; Y ¼ −ða2 − ỹÞðb2 − ỹÞ;
G ¼ ðx̃þ ỹÞðx̃þ ỹ − 2MÞ; U ¼ ỹX − x̃Y; Z ¼ abðX þ YÞ;

A ¼ 2Mc1c2c3ðx̃þ ỹÞ
G

½ða2 þ b2 − ỹÞdσ − abdχ� − 2Ms1s2s3
x̃þ ỹ

ðabdσ − ỹdχÞ;

Φ ¼ G
ðx̃þ ỹÞ3H1H2H3

; Hi ¼ 1þ 2Ms2i
x̃þ ỹ

: i ¼ 1; 2; 3: ð4:4Þ

Here si ¼ sinh δi and ci ¼ cosh δi, where δi are the boost
parameters that correspond to turning on the three electric
charges. When δi ¼ 0, the metric reduces to the five-
dimensional Myers-Perry black hole.
The coordinates σ and χ are related to the standard

azimuthal angular coordinates ϕ and ψ (each with period
2π) by

σ ¼ aϕ − bψ
a2 − b2

; χ ¼ bϕ − aψ
a2 − b2

; ð4:5Þ

as can be seen from Eq. (15) in [16] after turning off the
gauge-coupling constant g. The standard radial and angular
coordinates r and θ are related to x̃ and ỹ by

x̃ ¼ r2; ỹ ¼ a2cos2θ þ b2sin2θ: ð4:6Þ

Thus, x̃ here is the same as x̃ in Eq. (2.6) of the uncharged
case. The coordinate ỹ is related to our coordinate
y ¼ cos2 θ by

ỹ ¼ ða2 − b2Þyþ b2: ð4:7Þ

Proceeding as in the earlier uncharged case, we may
separate variables and write the radial equation in the same
form as Eq. (2.13), and the angular equation in the same
form as Eq. (2.15). Only the expressions for the various κ,
Λ, β and γ coefficients will change when the charges are
turned on.
The coefficients κ, Λ, β and γ in the potential for the

radial equation, generalizing those in (2.14) for Myers-
Perry, are now given by

3There was one typo in [16]: a missing factor of ðx̃þ ỹÞ in the
first of the two terms in the expression for the 1-form A. This is
corrected here.
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κ ¼ 1

4
Mϵþϵ−ω2;

β ¼ i

4
ffiffiffiffiffiffiffi
2M

p
�
2ðΠc þ ΠsÞMω − ðaþ bÞðmþ nÞ

ϵþ
−
2ðΠc − ΠsÞMω − ða − bÞðm − nÞ

ϵ−

�
;

γ ¼ i

4
ffiffiffiffiffiffiffi
2M

p
�
2ðΠc þ ΠsÞMω − ðaþ bÞðmþ nÞ

ϵþ
þ 2ðΠc − ΠsÞMω − ða − bÞðm − nÞ

ϵ−

�

Λ ¼ σ þ 1

2
−
1

4
Mð3þ 2s21 þ 2s22 þ 2s23Þω2 þ 1

8
ða2 − b2Þω2

þ ½2ðΠc þ ΠsÞMω − ðaþ bÞðmþ nÞ�2
16Mϵ2þ

þ ½2ðΠc − ΠsÞMω − ða − bÞðm − nÞ�2
16Mϵ2−

: ð4:8Þ

Crucial properties that held previously in the uncharged
case continue to hold here. In particular, since

Πc þ Πs ≥ Πc − Πs ≥ 1; ð4:9Þ

together with the usual inequalities ϵþ ≤ ϵ− ≤ 1, it follows
that when ω has a positive imaginary part, the real parts of β
and γ will be negative.
For the angular equation, the hatted quantities κ̂, Λ̂, β̂ and

γ̂ are given by

κ̂ ¼ −
1

8
ða2 − b2Þω2; β̂ ¼ n

2
; γ̂ ¼ m

2

Λ̂ ¼ 1

2
þ σ −

ðm2 þ n2Þ
4

þ ða2 − b2Þω2

8
; ð4:10Þ

unchanged from the results (2.16) for the uncharged
black holes.
Following the same steps as we did previously for the

uncharged Myers-Perry black hole, we find that after
implementing the same integral transformation of the radial
equation as before, we again arrive at an “unseparated”
equation of the form (3.9), with the only difference being in
the coefficient of ω2:

�
z2∂2z þ yð1 − yÞ∂2y −

�ðaþ bÞ
4z

þ ða − bÞz
4

�
mω −

�ðaþ bÞ
4z

−
ða − bÞz

4

�
nω

þ
�
ϵ2þM
8z2

þ ϵ2−Mz2

8
þ ðΠc þ ΠsÞM

2z
þ ðΠc − ΠsÞMz

2
þ 1

4
M

�
3þ 2

X
i

s2i

�
−
1

8
ða2 − b2Þð1 − 2yÞ

�
ω2

−
m2

4ð1 − yÞ −
n2

4y
þ 1

4yð1 − yÞ
�
Ψ ¼ 0: ð4:11Þ

This correspondingly implies that the components of the tilded inverse metric g̃μν are unchanged except for g̃tt, which
becomes

g̃tt ¼ −
�
ϵ2þM
8z2

þ ϵ2−Mz2

8
þ ðΠc þ ΠsÞM

2z
þ ðΠc − ΠsÞMz

2
þ 1

4
M

�
3þ 2

X
i

s2i

�
−
1

8
ða2 − b2Þð1 − 2yÞ

�
: ð4:12Þ

Calculating the determinant, we now find that instead of Eq. (3.14) we have

ffiffiffiffiffiffi
−ĝ

p
¼ 8

ffiffiffi
2

p
eδ1þδ2þδ3Ω5ffiffiffiffiffi

M
p ½ðeδ1þδ2 þ eδ3zÞðeδ2þδ3 þ eδ1zÞðeδ1þδ3 þ eδ2zÞð1þ eδ1þδ2þδ3zÞ�−1

2: ð4:13Þ

Following the remaining steps of the previous discussion for the uncharged case, we find that the conserved energy is given
by integrating

ffiffiffiffiffiffi
−ĝ

p
J0 as in Eq. (3.21), with the function P now given not by Eq. (3.22) but instead

P ¼ ϵ2þM
8z2

þ ϵ2−Mz2

8
þ ðΠc þ ΠsÞM

2z
þ ðΠc − ΠsÞMz

2
þ 1

4
M

�
3þ

X
i

2s2i

�
−
1

8
ða2 − b2Þð1 − 2yÞ: ð4:14Þ
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The same arguments that established that P was non-
negative in the uncharged case show that P ≥ 0 here also,
and hence again there cannot exist any unstable exponen-
tially growing modes.

V. DISCUSSION

It has become apparent that many of the equations
governing massless fields on black hole spacetimes are
of Heun type (in cases where the cosmological constant is
nonzero), or one of its many confluent variants, such as for
nonextreme Kerr [1], or the extreme case [4]. The differ-
ential equations we find for massless scalar fields in the
five-dimensional Myers-Perry black hole spacetime [see
(2.13) and (2.15)] are of yet another confluent Heun type.
That observation has allowed us to extend to this (and the
related STU) case the analysis originally applied to mass-
less fields of all spin in the Kerr spacetime [1]. Before our
present work, that analysis had also been extended: (i) by
using a different integration contour, to rule out unstable
modes on the real axis for the Kerr spacetime [6], (ii) by
considering a modified integral transform, to deal with the
extreme (jaj ¼ M) Kerr black hole [4], and (iii) by looking
carefully at more complicated examples, to establish the
absence of unstable modes for massless scalar fields in
STU spacetimes and all more specialized subcases [7].
Remarkably, the integral transform we have used here is,
effectively, an inverse of that developed for the extreme Kerr
spacetime [4]. In this context, it is also worth noting that
quite different techniques, stemming from Seiberg-Witten
theory (see, for example [17]), and based on the spectral
properties of the operators involved, have been used to
discuss both Kerr quasinormal modes [18] and Kerr–de
Sitter stability [19]. The relevance of such an approach to the
spacetimes we consider here is yet to be determined.

VI. CONCLUSION

We have shown that a massless scalar field has no
exponentially unstable modes in the five-dimensional

Myers-Perry black hole spacetime. We have also shown
that the same is true in the five-dimensional supergravity-
motivated STU spacetimes and, previously [7], that this
holds, too, for the four-dimensional STU spacetimes.
Together, these encompass a number of other special cases
which arise from restricting the parameters in these more
general examples. Although these results may serve as
suggestive for the behavior for fields of higher spin—in
particular, Maxwell fields and gravitational perturbations—
it would be useful to have some more direct indication,
perhaps by writing down (at least) the analog of the
Teukolsky equation in these more general cases. That task
currently remains for future work.
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APPENDIX: GLOBAL STRUCTURE OF THE
MYERS-PERRY BLACK HOLE

Defining a coordinate r� by the relation

dr� ¼
ðr2 þ a2Þðr2 þ b2Þdr

r2Δ
; ðA1Þ

we may introduce retarded coordinates ðu;ϕ−;ψ−Þ, where

du ¼ dt − dr�; dϕ− ¼ dϕ −
aðr2 þ b2Þdr

r2Δ
; dψ− ¼ dψ −

bðr2 þ a2Þdr
r2Δ

: ðA2Þ

In terms of these, the metric (2.1) then becomes

ds2 ¼ −du2 − 2drðdu − asin2θdϕ− − bcos2θdψ−Þ þ ρ2dθ2

þ 2M
ρ2

ðdu − asin2θdϕ− − bcos2θdψ−Þ2 þ ðr2 þ a2Þsin2θdϕ2
− þ ðr2 þ b2Þcos2θdψ2

−: ðA3Þ

This form of the metric is regular in the neighborhood of future null infinity.
We may also introduce advanced coordinates ðv;ϕþ;ψþÞ by

dv ¼ dtþ dr�; dϕþ ¼ dϕþ aðr2 þ b2Þdr
r2Δ

; dψþ ¼ dψ þ bðr2 þ a2Þdr
r2Δ

; ðA4Þ
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with respect to which the metric (2.1) becomes

ds2 ¼ −dv2 þ 2drðdv − asin2θdϕþ − bcos2θdψþÞ þ ρ2dθ2

þ 2M
ρ2

ðdv − asin2θdϕþ − bcos2θdψþÞ2 þ ðr2 þ a2Þsin2θdϕ2þ þ ðr2 þ b2Þcos2θdψ2þ: ðA5Þ

It can be seen from this form of the metric that it is regular as one crosses the future horizon.
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