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We present a reduced-order surrogate model of gravitational waveforms from nonspinning binary
black hole systems with comparable to large mass-ratio configurations. This surrogate model,
BHPTNRSur1dq1e4, is trained on waveform data generated by point-particle black hole perturbation
theory (ppBHPT) with mass ratios varying from 2.5 to 10,000. BHPTNRSur1dq1e4 extends an earlier
waveform model, EMRISur1dq1e4, by using an updated transition-to-plunge model, covering longer
durations up to 30;500m1 (wherem1 is the mass of the primary black hole), includes several more spherical
harmonic modes up to l ¼ 10, and calibrates subdominant modes to numerical relativity (NR) data. In the
comparable mass-ratio regime, including mass ratios as low as 2.5, the gravitational waveforms generated
through ppBHPT agree surprisingly well with those from NR after this simple calibration step. We also
compare our model to recent SXS and RIT NR simulations at mass ratios ranging from 15 to 32, and find
the dominant quadrupolar modes agree to better than ≈10−3. We expect our model to be useful to study
intermediate-mass-ratio binary systems in current and future gravitational-wave detectors.

DOI: 10.1103/PhysRevD.106.104025

I. INTRODUCTION

Detection of gravitational waves (GWs) [1,2] from the
coalescence of binary compact objects offer a new window
to study black holes and fundamental physics. Most
of the GW signals detected so far by the LIGO/Virgo
collaboration are consistent with binary black holes
(BBHs), with mass ratio q ¼ m1=m2 ≤ 10.1 Another inter-
esting source of GWs are intermediate mass ratio inspirals
(IMRIs) comprised of an intermediate-mass black hole
(IMBH, mass ∼ 102–104 M⊙) [3–5] and a solar-mass black
hole (mass ∼ 3–20 M⊙). The resulting binaries will have a

mass ratio in the range 10 ≤ q ≤ 104. The existence of
IMBHs on the low-end of this mass range has been
confirmed by the detection of GW190521 [5], and electro-
magnetic evidence continues to mount indicating the likely
existence of these objects across their possible mass range
[5]. IMRIs are expected to form in dense globular clusters
and galactic nuclei [6,7]. While these binaries are a prime
source for future-generation detectors such as LISA [8],
Cosmic Explorer (CE) or the Einstein Telescope (ET)
[9,10], current detectors may also be able to detect
IMRIs as their sensitivity improves. In particular, IMRIs
with total mass < 2000 M⊙ may be detected by the current
generation of detectors [11] while future space-based
missions, [12,13] such as LISA will observe heavier
binaries. LISA is also expected to detect GW signals from
extreme mass ratio inspirals (EMRIs) (having a mass ratio

*tislam@umassd.edu
1We use the convention q ¼ m1=m2, where m1 and m2 are the

masses of the component black holes, with m1 ≥ m2.
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q≳ 105) that consists of a stellar-mass black hole paired
with a supermassive black hole [9,10].
Detection of GWs from IMRIs would shed light on

many issues in both astrophysics and fundamental physics
[9,10,13]. IMRIs may form in dense globular clusters
or galactic nuclei through multiple possible formation
channels. Detection and parameter inference with IMRIs
[14–17] will help us probe formation channels and the
evolutionary pathway to supermassive black holes [18]. As
these systems form in dense environments, GW signals
from IMRIs may carry an imprint of its surrounding
environment and are ideal sources to investigate possible
environmental effects [9,19–25]. IMRI signals could also
be used to test the nature of gravity in an unexplored strong-
field regime [26–32], complementing tests of general
relativity (GR) performed with GW events detected so
far [33].
Carrying out accurate parameter inference and per-

forming fundamental physics analysis with IMRI GW
signals will require multimodal waveform models that are
fast and reliable [34]. While numerical relativity (NR)
provides the most accurate waveforms from BBH merg-
ers, it takes weeks to months to generate a single
waveform, making them unfit to be directly used in
multiquery studies. The availability of a large number of
NR simulations in the comparable mass regime, however,
has paved the way to build either NR-based reduced-
order surrogate models [35–40] or calibrated phenom-
enological or effective-one-body (EOB) models [41–49]
to NR. Only a few of these models [50], however, are
tested or calibrated in the intermediate mass ratio regime,
where only a few NR simulations are available [51–54].
In lieu of NR-based calibration, some EOB models [55]
have been tuned to results from point particle black hole
perturbation theory (ppBHPT), which provides an accu-
rate waveform model as q → ∞. Due to computational
cost, ppBHPT waveform models also cannot be directly
used in multiquery data analysis. This has been partly
overcome by developing “kludge” models [56–59] that
are fast and capture the qualitative features of an EMRI
waveform in the inspiral regime using approximations for
the amplitudes and phases. Recently Refs. [60,61] have
introduced gravitational self-force-based waveform mod-
els that are as fast to compute as kludge models by using
a combination of reduced order methods, deep-learning
techniques and hardware acceleration. Also relevant is
Ref. [62], which presents a fully relativistic second-order
self-force model that can generate first-principles inspiral
waveforms in milliseconds, at least for the case of
quasicircular inspiral of nonspinning black holes.
To begin addressing these issues, Ref. [63] built a proof-

of-principle ppBHPT surrogate model EMRISur1dq1e4
for nonspinning binaries that extends from mass ratio
q ¼ 3 to q ¼ 10,000 and covers ∼13;500m1 in duration.
The model’s dominant mode has been tuned to NR in the

comparable mass ratio regime (q ≤ 10), and it was
shown that after this simple calibration step the
ppBHPT and NR waveforms agreed to better than
≈1% at mass ratios q≳ 8. These initial encouraging
results suggest that suitably calibrated ppBHPT wave-
form data could provide for an accurate model of
gravitational waves from IMRI systems. The agreement
between NR and ppBHPT (with radiative corrections to
the orbit) after a simple rescaling [63] is a surprising
observation on its own.
In this paper, we describe more fully the methods we

have used to build EMRISur1dq1e4 as well as making
numerous important improvements to the underlying
model. The updated version of our surrogate model—
which we call BHPTNRSur1dq1e4—is ∼30;500m1 in
duration and covers all phases of the system’s evolution
from inspiral through plunge and ringdown—making it
suitable to be used in a wider range of data analysis studies.
It features a total of 50 important higher order modes up to
l ¼ 10 thereby permitting studies to quantify the effect of
higher order modes in GW signals. Furthermore, by
applying a simple calibration, we find the NR-calibrated
ppBHPTwaveforms agree remarkably well with NR for all
of the higher order modes up to l ¼ 5 in the comparable
mass ratio regime.
The rest of the paper is organized as follows. Section II

describes our method for computing ppBHPT waveforms
by solving the Teukolsky equation. We describe the
surrogate-modelling framework, calibration to NR, and
assess model accuracy in Sec. III. Section IV provides a
more detailed comparison between ppBHPT waveforms
and NR data in the comparable and intermediate mass ratio
regime with a focus on subdominant modes and new SXS
and RIT simulations at mass ratios greater than 10. Finally,
we outline future directions in Sec. V.

II. WAVEFORM DATA USING
PERTURBATION THEORY

We generate the surrogate-model training data using
point-particle black hole perturbation theory (ppBHPT).
First, we compute the trajectory taken by the point-particle
and then we use that trajectory to compute the gravitational
wave emission. The next three subsections summarize the
equations and algorithms for accomplishing this.

A. Numerically solving the Teukolsky equation

In the ppBHPT framework, the smaller black hole is
modeled as a point-particle with no internal structure and a
mass of m2, moving in the spacetime of the larger Kerr
black hole with mass m1 and spin angular momentum per
unit mass a. Here, we provide an executive summary of this
framework and refer to Refs. [64–67] for additional details.
Gravitational radiation is computed by first numerically

solving the Teukolsky equation
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sourced by the moving particle, where Δ ¼ r2 − 2m1rþ
a2 and s is the “spin weight” of the field. The s ¼ −2 case
for Ψ describes the radiative degrees of freedom of the
gravitational field, the Weyl scalar ψ4, in the radiation zone,
and is directly related to the Weyl curvature scalar as
Ψ ¼ ðr − ia cos θÞ4ψ4. The source term T in Eq. (1) for the
smaller compact object m2 is related to the energy-
momentum tensor Tαβ of a point particle. The Weyl scalar
ψ4 can then be integrated twice at future null infinity Iþ to
find the two polarization states hþ and h× of the transverse-
traceless metric perturbations,

ψ4 ¼
1

2

�
∂
2hþ
∂t2

− i
∂
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The complex gravitational wave strain

hþðt; θ;ϕ; qÞ − ih×ðt; θ;ϕ; qÞ

¼
X∞
l¼2

Xl
m¼−l

hlmðt; qÞ−2Ylmðθ;ϕÞ; ð3Þ

can be formed from the two polarization states, which is
subsequently decomposed into a basis of spin-weighted
spherical harmonics −2Ylm. We build models for the
harmonic modes hlmðt;qÞ.
Once the trajectory of the perturbing compact body is

fully specified (cf. Sec. II B), we solve the inhomogeneous
Teukolsky equation in the time-domain while feeding the
trajectory information into the particle source-term of the
equation [64–68]. This involves a four step procedure:
(i) rewriting the Teukolsky equation using compactified
hyperboloidal coordinates (Eq. (1) is shown using standard
Boyer-Lindquist coordinates) that allow us to extract the
gravitational waveform directly at null infinity while also
solving the issue of unphysical reflections from the
artificial boundary of the finite computational domain;
(ii) obtaining a set of (2þ 1) dimensional PDEs by using
the axisymmetry of the background Kerr space-time, and
separating the dependence on azimuthal coordinate;
(iii) recasting these equations into a first-order, hyperbolic
PDE system; and finally (iv) implementing a high-order
WENO (3,5) finite-difference scheme with Shu-Osher (3,3)

time-stepping [68]. The point-particle source term on the
right-hand-side of the Teukolsky equation requires some
specialized techniques for a finite-difference numerical
implementation [64,65]. We set the spin of the central
black hole to a value slightly away from zero, a=m1 ¼ 10−8

for technical reasons.2 Our numerical evolution scheme
is implemented using OpenCL/CUDA-based GPGPU-
computing which allows for very long duration and high-
accuracy computations within a reasonable time-frame.
Numerical errors in the phase and amplitude are typically
on the scale of a small fraction of a percent [63,69].

B. Trajectory model

The particle’s motion is characterized by three distinct
regimes—an initial adiabatic inspiral, a late-stage geodesic
plunge into the horizon, and a transition regime between
those two.
During the initial adiabatic inspiral, the particle follows a

sequence of geodesic orbits driven by radiative energy and
angular momentum losses. The flux radiated to null infinity
and through the event horizon are computed by solving the
frequency-domain Teukolsky equation [70–73] using the
open-source code GREMLINEQ [74,75] from the Black Hole
Perturbation Toolkit [76]. The inspiral trajectory is then
extended to include a plunge geodesic and a smooth
transition region following a procedure similar to one
proposed by Ori-Thorne [77]. We compute the transition
between initial inspiral and the plunge using a generalized
Ori-Thorne algorithm [78,79] (hereafter, the “GOT” algo-
rithm). The GOT algorithm uses a parametrization of
strong-field Kerr orbits based on Mino time, which sepa-
rates the radial and polar motions of Kerr black hole orbits.
It also introduces a correction that smooths a rather sharp
discontinuity in the evolution of an inspiral’s integrals of
motion as presented in the original Ori-Thorne model.
Detailed discussion of this point is given in Sec. IVA 2 of
Ref. [79]. The use of Mino time is not so critical for our
analysis since the separation of radial and polar motions is
not an issue for equatorial orbits, but smoothing of the
integrals of the motion is of great importance. Note that we
use “Model 2” from Ref. [79] for this smoothing.
Our trajectory model does not include the effects of the

conservative or second-order self-force [80], although once
these post-adiabatic corrections are known they could be
easily incorporated to improve the accuracy of the inspi-
ral’s phase.

C. Waveform smoothing

At low mass ratios, the GOT transition trajectory
produces small nonphysical oscillations in high-order
modes of the waveforms. Because the GOT algorithm is

2For example, to avoid a change in the definition of the
coordinates from Kerr to Schwarzschild.
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designed for the regime q ≫ 1, it is not surprising that
some pathologies enter at low mass ratios. These non-
physical oscillations are results of a small jump in the
acceleration of the point-particle as it exits the adiabatic
inspiral and also when it begins the plunge. It is interesting,
however, that these oscillations are more apparent in our
data for modes with l ≠ m. It is also worth noting that the
oscillations are larger in amplitude when we use Model 1
from Ref. [79] for smoothing the evolution of the integrals
of motion.
In Fig. 1 (upper panel), we show the unphysical

oscillations in the scaled amplitudes in one of the repre-
sentative modes ðl; mÞ ¼ ð5; 4Þ for increasing values of the
mass ratios. It is clear that while q ≤ 10 shows unphysical
oscillations in the transition regime, these features vanish
for high mass ratio simulations. At lower mass ratios we
remove these unwanted oscillations by using a “smooth-
ening” procedure [63]. To smooth the data, we (i) first
remove the unphysical oscillatory portion of the waveform
that we mention above, (ii) then use the rest of the

waveform data to construct a polynomial fit of degree 7,
and finally (iii) evaluate the polynomial to obtain smoother
data in the problematic regions. The lower panel of Fig. 1
shows the rescaled ðl; mÞ ¼ ð5; 4Þ amplitude for q ¼ 2.5
before and after the ‘smoothing’. A similar smoothing
procedure is applied to the phase data. Our surrogate model
is trained on—and for validation purposes, compared to—
these smoothed waveform data.
To quantify the amount by which our smoothing pro-

cedure has modified the waveform, we compute a relative
L2-norm difference between the smoothed and original
data. Normalized L2-norm between two functions h1ðtÞ and
h2ðtÞ is defined as a time-domain overlap integral with
white-noise:

E½h1; h2� ¼
1

2

P
ðl;mÞ

R t2
t1 jh1ðtÞ − h2ðtÞj2dtP

ðl;mÞ
R t2
t1 jh1ðtÞj2dt

; ð4Þ

Here, t1 and t2 denote the start and end of the waveform
data respectively whereas h1 and h2 denote the smoothed
and original data respectively. We find that the differences
between the smoothed and original data for each mode is on
average 8 × 10−5 with a maximum 5 × 10−4. To compute
errors for individual modes, we restrict the sum in Eq. (4) to
only the mode of interest.

III. SURROGATE MODELING

In this section, we briefly describe the framework used to
build the surrogate model. Our framework is constructed
using a combination of methodologies proposed in earlier
works [35,81,82].

A. Building the surrogate

a. Training data: To train the model, we collect a total of
41 ppBHPT waveforms by numerically solving the inho-
mogeneous Teukolsky equation at different values of the
mass ratio q. These values of q have been chosen in such a
way that it populates the mass ratio axis from q ¼ 2.5 to
q ¼ 10;000 in a logarithmic scale (green circles in Fig. 2).
For each value of q, we then extract the harmonic modes,
hl;mðt; qÞ. Note that we only model m > 0 modes as the
negativemmodes are computed from the positivemmodes
using the symmetry of the nonprecessing system under
reflections about the orbital plane: hl;−m ¼ ð−1Þlhl;m�.
b. Data alignment: We first determine the peak of each

waveform τpeak to be the time when the quadrature sum,

AtotðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l;m

jhl;mðτÞj2
s

; ð5Þ

reaches its maximum. Here the summation is taken over all
the modes being modeled. In order to construct smooth
parametric fits for the surrogate model, we align all the

FIG. 1. At mass ratios q≲ 10 the generalized Ori-Thorne
transition trajectory causes small, nonphysical oscillations in
some of the l ≠ m modes. The raw ppBHPT waveform ampli-
tudes are shown for one of the representative modes ðl; mÞ ¼
ð5; 4Þ for increasing value of the mass ratio q (upper panel) and
one example waveform after performing the smoothing pro-
cedure (lower panel) described in Sec. II C.
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waveforms such that their peaks occur at the same time.
This is done by choosing a new time coordinate,

t ¼ τ − τpeak; ð6Þ
such that AtotðtÞ for each waveform peaks at t ¼ 0. Next,
we use cubic splines to interpolate the real and imaginary
parts of the waveform modes onto a common time grid
of [−30500m1, 115m1] with a uniform time spacing of
dt ¼ 0.1m1. Once all the waveforms are interpolated onto a
common time grid, we perform a rotation about the z-axis
such that at the start of the waveform ϕ22 ¼ 0 and
ϕ21 ∈ ½−π; 0�, where ϕ22 and ϕ21 are the phases of the
complex (2,2) and (2,2) modes, respectively. These pre-
processing steps are necessary to ensure a smooth depend-
ence of the training-set waveforms on mass ratio.
c. Data decomposition:After time and phase alignments,

we decompose the inertial frame waveform modes into
waveform data pieces that are slowly varying functions of
time and are therefore simpler tomodel.We employ different
decomposition strategy for the quadrupolar mode and the
higher-order modes. The complex (2,2) waveform mode,

h22 ¼ A22e−iϕ22 ; ð7Þ

is decomposed into an amplitude,A22, andphase,ϕ22. For the
higher order modes, we first apply a time-dependent rotation
given by the instantaneous orbital phaseϕorb to transform the
waveform into a co-orbital frame:

hClm ¼ hlmeimϕorb ; ð8Þ

where hClm represents the complex modes in the co-orbital
frame and the orbital phase is taken to be

ϕorb ≡ ϕ22

2
: ð9Þ

We then use the real and imaginary parts of hClm as our
waveform data pieces for the nonquadrupole modes. To
summarize, the full set of waveform data pieceswemodel is
as follows: A22, ϕ22 for the (2,2) mode, and real and
imaginary parts of hClm for the 24 higher order modes
with m > 0.
d. Empirical interpolants: The next step is to construct

an empirical interpolant (EI) in time using a greedy
algorithm that picks the most representative time nodes
[81,83–85]. The number of the time (or EI) nodes for each
data piece is equal to the number of basis functions used.
The empirical interpolant gives a compact representation
for each data piece (and hence the full waveform) in the
training set by permitting the full time-series to be
reconstructed through a significantly sparser sampling
defined by the EI nodes. We choose 7 basis functions
for A22 and ϕ22. For higher order modes, we use 13 basis
functions for the real and imaginary parts if l ≤ 5.
Otherwise, 16 basis functions are used. We inspect the
basis functions visually to ensure they are free from noise.
Furthermore, unlike recently built surrogate models [38],
we put no restriction on the location of EI nodes as we did
not find this to improve our model.
e. Parameteric fits: The final surrogate-building step is

to construct parametric fits for each data piece at each of the
EI nodes over the one-dimensional parameter space defined
by q. Following Ref. [63], we fit the data-pieces using
second degree interpolating splines (with smoothing factor

FIG. 2. ppBHPT waveform data points used in training
BHPTNRSur1dq1e4 (green circles). We also show points used
in calibrating the ppBHPT waveforms to NR (blue squares) and
data points used in validating NR calibration against high mass
ratio NR simulation (red and cyan triangles).

TABLE I. Overview of the EMRISur1dq1e4 and BHPTNRSur1dq1e4 models. Both models used the
smoothing procedure described in Sec. II C.

Model Plunge model Available positive modes ðl; mÞ Waveform length NR-Calibration

EMRISur1dq1e4 Ori-Thorne [77] ð2; f1; 2gÞ, ð3; f1; 2; 3gÞ 13500m1 (2,2)
ð4; f2; 3; 4gÞ, ð5; f3; 4; 5gÞ

BHPTNRSur1dq1e4 Generalized ð2; f1; 2gÞ, ð3; f1; 2; 3gÞ 30500m1 ð2; f1; 2gÞ
Ori-Thorne [78,79] ð4; f2; 3; 4gÞ, ð5; f3; 4; 5gÞ ð3; f1; 2; 3gÞ

ð6; f4; 5; 6gÞ, ð7; f5; 6; 7gÞ ð4; f2; 3; 4gÞ
ð8; f6; 7; 8gÞ, ð9; f7; 8; 9gÞ (5, 5)

ð10; f8; 9gÞ
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s ¼ 0.0005) after performing a logarithmic transformation
of q [38,86].

B. Evaluating the surrogate

To generate the BHPTNRSur1dq1e4 surrogate model
waveforms, we provide mass ratio q as input. We then
evaluate the parametric fits for each waveform data pieces
at each EI node at the requested value of q. Next, the
empirical interpolant is used to reconstruct the surrogate
prediction of the waveform data pieces as a dense time-
series. We evaluate the surrogate models for the amplitude
and phase of the (2,2) mode and combine them to get the
complex strain as hS22 ¼ AS

22e
−iϕS

22 . For the nonquadrupole
modes, we first evaluate the surrogate models for the real
and imaginary parts of the co-orbital frame waveform data
pieces hC;Slm ≈ hClm and treat it as hClm. Finally, we use
Eqs. (7), (8), and (9) to obtain the surrogate prediction for
the inertial frame strain hSl;m for these modes. The full
surrogate, hS, is then written

hSðt; θ;ϕ; qÞ ¼
X
l;m

hSl;mðt; qÞ−2Ylmðθ;ϕÞ; ð10Þ

where hSl;m is the surrogate model prediction for each
harmonic mode.

C. Surrogate errors

In this section we assess the accuracy of
BHPTNRSur1dq1e4 by performing some of the tests
described in Ref. [37] using the relative L2-type norm
defined in Eq. (4). In our case, ppBHPTwaveforms used in
training are already aligned in time and phase, and the
surrogate is expected to reproduce this alignment.
Therefore, we compute the time-domain error E without
any further time/phase shifts.
To assess the surrogate model’s error, we compute three

different types of errors. First, we build the surrogate using
all 41 ppBHPT training waveforms and calculate the
training error between the training waveform and surrogate
prediction. This checks whether the surrogate model can
accurately reproduce the training waveforms.
Next we perform a leave-one-out cross-validation study.

In this study, we hold out one ppBHPTwaveform from the
training set and build a trial surrogate from the remaining
40 ppBHPT waveforms. We then evaluate the trial surro-
gate at the mass ratio corresponding to the held out data,
and compare its prediction with the held-out ppBHPT
waveform. We refer to these errors as validation errors.
Validation errors represent conservative error estimates for
the surrogate model’s generalization error against ppBHPT.
Since we have 41 ppBHPT waveforms, we build 41 trial
surrogates for each error study and assess the model’s
ability to predict new waveforms it was not trained on. For
boundary cases (i.e., for q ¼ 2.5 and q ¼ 10,000), the test

surrogate predictions are effectively extrapolation and
therefore yield uninformative errors. We exclude these
points from Fig. 3.
We compare both of these errors to the numerical

truncation error of the Teukolsky solver used to produce
the ppBHPT training data. We refer to these errors as
ppBHPT numerical errors.

FIG. 3. Validation errors, computed as E½hlm; hlmS �, for the indi-
vidual modes in our surrogate model as a function of mass ratio q.
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In Fig. 3, we report the individual-mode validation errors
for BHPTNRSur1dq1e4 as a function of mass ratio q. We
find that the errors are mostly ≤ 10−3 for modes up to
l ¼ 3, ≤ 10−2 for modes with 4 ≤ l ≤ 6 and ≤ 10−1 for
modes with 7 ≤ l ≤ 10. We further note in Fig. 3 that the

highest errors in each mode corresponds to the same value
of q. We also find that the zigzag structure of errors in Fig. 3
is a result of the chosen q values in the parameter space
(blue circles in Fig. 2). We model the data pieces as a
logarithmic function of q. However, the mass ratio values

FIG. 4. Time-domain errors E, defined in Eq. (4), for individual modes considered in BHPTNRSur1dq1e4. For comparison, we show
both training (black solid lines) and validation (orange-red dashed lines) errors.
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are not spaced uniformly in logarithmic scale. This results
in repetitive patches of dense and sparsely spaced data
points. Modeling errors are smaller (larger) around the
dense patches (sparsely spaced patches).
Despite the problematic parameter-sampling strategy, the

final model should be sufficiently accurate for many data
analysis studies in the large-mass ratio regime (cf. Figs. 10
and 13 for more details). In Fig. 4 we provide a mode-by-
mode comparison of the training and validation errors. For
many of the modes considered in our model, both error
measurements are consistent. For some of the modes, and
especially for modes with l ≥ 8, the larger validation errors
indicate overfitting. Note that the high-error tails seen in
Fig. 4 comes from the smallest and highest mass ratio
boundaries.
Finally, in Fig. 5, we compare validation error and the

ppBHPT Teukolsky solver’s numerical error for a select
number of modes for two representative cases: q ¼ 4 (blue
data) and q ¼ 4000 (red data). We compute ppBHPT
numerical errors by comparing ppBHPT waveforms of
different resolution. We find that validation errors are
around one order of magnitude larger than ppBHPT
numerical errors across all modes.

D. Calibrating ppBHPT to numerical relativity
in the comparable mass regime

In the previous subsections, we have built a surrogate
model for gravitational waveforms computed within the
ppBHPT framework. These waveforms faithfully approxi-
mate the physically correct ones only in the limit q → ∞. In
order to construct an accurate model at moderate to large

mass ratios, we introduce model calibration parameters and
set their values by comparing to NR. These parameters
modify each mode’s amplitude and phase in a simple way
and have the correct behavior in the limit of q → ∞.
Before discussing the particulars of our calibration

procedure, its important to consider how one should
compare NR and ppBHPT waveforms. For example, both
ppBHPT and NR frameworks express dimensioned quan-
tities in terms of a freely specifiable mass scale, which is
not the same in the two frameworks. For ppBHPT this scale
is selected to be the background black hole spacetime’s
mass parameter, while in NR it is the sum of the
Christodoulou masses of each black hole [87,88]. Our
Teukolsky solver sets the background black hole’s mass to
m1 ¼ 1 (the ppBHPT’s mass scale), while the corresponding
NR simulation for nonspinning black holes sets the total
mass to m1 þm2 ¼ 1 (the NR simulation’s mass scale). So
before comparing, we should adjust the ppBHPT’s mass-
scale to use the NR convention of total mass, which in the
ppBHPT’s simulation would be m1 þm2 ¼ 1þ 1=q. This
line of reasoning suggests that the ppBHPT modes should
be adjusted according to the formula hlmðtÞ → βhlmðtβÞ
before comparing to NR, where β ¼ 1=ð1þ 1=qÞ. This
straightforward identification works well when comparing
post-Newtonian and NR waveforms [87] in the comparable
mass ratio regime. In Ref. [63], it was found that (i) the naive
value of β accounts for much of the discrepancy between NR
and ppBHPTwaveforms and (ii) additional model improve-
ments can be obtained by solving an optimization problem
for its value.

1. Previous calibration of EMRISur1dq1e4

Motivated by the mass scaling argument given above,
Ref. [63] proposed modifying the ppBHPT waveforms
according to the formula

hl;mβ ðt; qÞ ¼ βhl;mðtβ; qÞ; ð11Þ
where β was set by minimizing the difference

min
β

R jh22β ðt; qÞ − h22NRðt; qÞj2dtR jh22NRðt; qÞj2dt
; ð12Þ

between ppBHPT waveforms and nonspinning NR surro-
gate model [35] trained on SXS simulation data [88–90]
for the (2,2) harmonic mode and mass ratios 3 ≤ q ≤ 10.
The integral appearing in Eq. (12) was evaluated from
−2;750 M to 100 M (where M is the total mass of
the binary), the duration of the NR surrogate model
[35]. The data βðνÞ was then fit to a degree 4 polynomial
in the symmetric mass ν ¼ q=ð1þ qÞ2. The resulting
function is shown as a dashed cyan line in Fig. 6.
While the calibration choices and techniques of Ref. [63]

yielded surprisingly good agreement with NR, a number
of deficiencies have been identified. These include (i) the
NR surrogate model [35] was built before center-of-mass

FIG. 5. Validation errors (solid lines) and ppBHPT numerical
errors (dashed lines) of select modes for two representative cases:
q ¼ 4 (blue circles) and q ¼ 4000 (red squares).

TOUSIF ISLAM et al. PHYS. REV. D 106, 104025 (2022)

104025-8



(CoM) corrected waveform data was available and so the
model inherited undesirable features due to CoM drifts,
(ii) the NR surrogate model [35] only included about 15
orbits before merger, and it was later found that the
calibration parameter deduced on this short interval does
not work adequately well on longer time intervals, and
(iii) it should be expected that, due to the point-particle
approximation, the higher mode amplitudes computed
within the ppBHPT framework will be overestimated as
compared to NR.

2. Calibration of BHPTNRSur1dq1e4

To overcome the limitations of the previous calibration
method discussed in Sec. III D 1, we present an updated set

of choices that provide improvements over the original
method. Instead of calibrating BHPTNRSur1dq1e4 data
directly to NR data, we use the NRHybSur3dq8 model
[38]—a surrogate model for hybridized nonprecessing NR
waveforms with the early inspiral waveform obtained using
both PN and EOB waveforms. This model was trained on
center-of-mass (CoM) corrected waveform data and is
much longer in duration, thereby removing two of the
three key limitations mentioned in Sec. III D 1.
To calibrate ppBHPTwaveforms, we propose modifying

the BHPTNRSur1dq1e4 model according to the formula

hl;mS;αl;β
ðt; qÞ ¼ αlh

l;m
S ðtβ; qÞ; ð13Þ

where αl and β are obtained by minimizing the dif-
ference between NRHybSur3dq8 and rescaled ppBHPT
waveforms

min
αl;β

R jhl;mS;αl;β
ðt;qÞ − hl;mNRHybðt;qÞj2dtR jhl;mNRHybðt; qÞj2dt

; ð14Þ

between our model BHPTNRSur1dq1e4 and hybridized
NR surrogate waveform NRHybSur3dq8 in its non-
spinning limit for individual modes over the time
window. The integral appearing in Eq. (14) is evaluated
from −5000 M to 115 M, which corresponds to the
portion of the surrogate model described by NR simu-
lations (i.e., after hybridization). The motivation for the
new parameters αl can be seen as a correction to the
point-particle approximation in the comparable mass
regime i.e., it accounts for the larger relative size of the
smaller black hole. We allow for l-dependent values of α
while keeping β fixed for all modes. By numerical compu-
tation we have checked that there is essentially no m-
dependence αlm ≈ αl on these amplitude corrections, which
can also be motivated by noting that under rotations the
harmonic modes mix in m but not l.
To obtain values for β we minimize the cost function (14)

using the (2,2) mode, while to find best-fit αl values we use

FIG. 6. Scaling parameters αlðqÞ and βðqÞ as a function of
mass ratio q. These parameters are obtained by minimizing the
errors between ppBHPT and hybridized NR waveforms. In both
panels, the dashed maroon line refers to a naive value of α ¼
β ¼ 1=ð1þ 1=qÞ set by including the mass the of smaller black
hole as part of the background spacetime. We also show the
scaling used in the previous model EMRISur1dq1e4 as a
dashed cyan line in both panels.

TABLE II. Fitting coefficients for αl parameters as defined in Eq. (15).

l Al
α Bl

α Cl
α Dl

α

2 −1.330� 0.007 2.720� 0.116 −5.904� 0.556 5.548� 0.833
3 −3.067� 0.017 6.244� 0.265 −9.944� 1.261 6.437� 1.894
4 −3.909� 0.032 9.431� 0.498 −14.734� 2.367 9.744� 3.556
5 −4.509� 0.102 4.751� 1.554 21.959� 7.381 −52.350� 11.085

TABLE III. Fitting coefficients for β parameters as defined in
Eq. (16).

Aβ Bβ Cβ Dβ

−1.238� 0.003 1.596� 0.049 −1.776� 0.237 1.0577� 0.356
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l ¼ m modes (i.e. (2,2), (3,3), (4,4) and (5,5) modes). To
discover each calibration parameters’ q-dependence we
sample from q ¼ 3.0 to q ¼ 10.0 with an increment of 0.2,
giving a total of 36 data points. These data are then used to
fit αl and β to polynomials in 1=q:

αlðqÞ ¼ 1þ Al
α

q
þ Bl

α

q2
þ Cl

α

q3
þDl

α

q4
: ð15Þ

βðqÞ ¼ 1þ Al
β

q
þ Bl

β

q2
þ Cl

β

q3
þDl

β

q4
: ð16Þ

The order of the polynomial is chosen in the following way:
We first build fits for αl and β using degrees of polynomial
order in q−1 from one to four. Next, we select the fit order
that minimizes the leave-one-out cross-validation error. A
similar strategy has helped us identify that polynomials in
q−1 lead to more stable fits to the data than polynomials in
symmetric mass ratio ν. Values of the coefficients for the
final fits are given in Tables II and III for αl and β,
respectively.
Figure 6 shows the scaling parameters αl and β as a

function of mass ratio. We find that the l ¼ 2 calibration
parameters α2 and β closely match the analogous parameter
used to calibrate the EMRISur1dq1e4 model. For
higher order modes, αl becomes smaller, which we
interpret as a correction in the point-particle framework
to account for the extended size of the smaller black hole.
Overall, αl shows a monotonically increasing behavior
with q implying naive 1

1þq behavior will be recovered in
the larger q limit. While we are using a simple β
parameter for all modes, we have experimented with
having βl for different modes. However, this did not
appreciably change the final match between ppBHPT and
NR hybrid waveforms. Furthermore, individual βl take
almost the same values for different modes bolstering the
claim that β, used to scale the time-axis, is related to the
mass scaling and provides support for using one single β
for all modes.

IV. COMPARISON BETWEEN THE CALIBRATED
PPBHPT MODEL AND NR

A. Time domain error in the comparable mass regime

Figure 7 shows the time-domain error between the
calibrated BHPTNRSur1dq1e4 and NRHybSur3dq8
models. We show the error using all available
NRHybSur3dq8 modes3 as well as individual mode
errors. Our comparison includes both the entire waveform
over all inspiral-merger-ringdown (IMR) regimes (solid

lines) and inspiral-only errors (dashed lines), restricting the
waveform to t ≤ −50M.
In all cases, the differences before calibration are of

order unity, while the agreement between the calibrated
BHPTNRSur1dq1e4 and NR waveforms improves to E ∼
10−3 for ðl; mÞ ¼ ð2; 2Þ and E ∼ 10−2 for ðl; mÞ ¼ fð3; 3Þ;
ð4; 4Þ; ð5; 5Þg. Many of the l ≠ m modes have errors as
high as E ∼ 10−1 even after calibration (not shown).
We expect that in the merger and ringdown regimes, the

calibrated ppBHPT waveforms that match so well in the
inspiral will no longer serve as a faithful physical ansatz.
Instead, we expect the ringdown signal to be described by
perturbations of the remnant black hole whose mass and
spin only agree with the initial background solution in the
limit q → ∞. This expectation is confirmed in Fig. 7 as
we see nearly an order-of-magnitude increase in the IMR
error as compared to the inspiral-only error for mass ratios
less than q ≈ 5. By q ≈ 10, however, the NR-calibrated
BHPTNRSur1dq1e4 does a reasonably good job even in
the ringdown regime, which is also apparent in the bottom
panel of Fig. 9. This suggests that high-accuracy models
based on calibrated ppBHPT waveforms may require
special treatment in the merger-ringdown regime—which
is commonly employed in other waveform modeling efforts
—although at mass ratios beyond q ≈ 10 the current
approach already does a reasonably good job.
These results are shown in more detail for q ¼ 4,

where Fig. 8 shows four of the most important harmonic
modes before and after calibration. Before calibration the
BHPTNRSur1dq1e4 and NRHybSur3dq8 waveforms
differ visibly in both amplitude and phase evolution. The
calibrated ppBHPT and NRHybSur3dq8 waveforms,

FIG. 7. Time-domain error between the calibrated ppBHPT
waveforms and the NR hybrid surrogate model as a function of
mass ratio q. We show the errors computed over the full inspiral-
merger-ringdown regimes (solid lines) and inspiral-only errors
(dashed lines) restricting the waveform to t ≤ −50M. We show
errors for select modes [(2,2), (3,3), (4,4), and (5,5)] as well as for
the case including all available NRHybSur3dq8 modes includ-
ing l ≠ m (referred to as “All NRHybSur Modes”).

3The NRHybSur3dq8 model includes the following har-
monic modes: fl;mg ¼ fð2;1Þ; ð2;2Þ; ð3;1Þ; ð3;2Þ; ð3;3Þ; ð4;2Þ;
ð4;3Þ; ð4;4Þ; ð5;5Þg.

TOUSIF ISLAM et al. PHYS. REV. D 106, 104025 (2022)

104025-10



however, show surprisingly good agreement although some
differences remain in the merger-ringdown part.
We note that these calibration parameters have been

obtained by comparing the raw ppBHPT waveform to NR
over a time window ½−5000; 115�M that characterizes the
late insprial through ringdown. To test whether the scaling
works at earlier times too, we compare NRHybSur3dq8 to
the calibrated ppBHPT waveforms over the longest pos-
sible duration, which is 30;500m1 using the ppBHPT’s
mass scale. We show an example case in Fig. 9. We plot the
dominant (2,2) mode for both NRHybSur3dq8 (dashed
black line) and rescaled ppBHPT (solid red line) wave-
forms at q ¼ 8 in early inspiral as well as in the late inspiral
and merger-ringdown parts. The waveforms are nearly
indistinguishable for the entire duration, and we compute
the error to be EIMR ¼ 0.00086.

B. Frequency domain mismatch between
rescaled-ppBHPT surrogate and NR

In Fig. 10, we show the frequency-domain mismatch
between the calibrated ppBHPT surrogate waveforms and
NRHybSur3dq8waveforms as a function of total mass for

different mass ratios. Frequency domain mismatch between
two waveforms h1 and h2 is defined as:

hh1; h2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð17Þ

where h̃ðfÞ indicates the Fourier transform of the complex
strain hðtÞ, � indicates complex conjugation, Re indicates
the real part, and SnðfÞ is the one-sided power spectral
density of the Advanced LIGO detector at its design
sensitivity. We set fmin to be 20 Hz while fmax is set to
be 990 Hz. We note that BHPTNRSur1dq1e4 waveforms
are long enough for all of the mass ratio and total mass
configurations considered in Fig. 10, even the initial
instantaneous frequency of the (5,5) mode is below
20 Hz. Before transforming the time domain waveform
to the frequency domain, we first taper the time domain
waveform using a Planck window [91], and then zero-pad
to the nearest power of two. The tapering at the start of
the waveform is done over 1.5 cycles of the (2,2) mode.
The tapering at the end is done over the last 20M. The
mismatches are always optimized over shifts in time,

FIG. 8. Waveform difference between NRHybSur3dq8 (referred as “NRHybSur”) and ppBHPT waveforms before and after
calibration.We show the five different representative modes for q ¼ 4 to demonstrate the efficacy of the calibration used. Errors for the full
inspiral-merger-ringdownwaveform and only inspiral part are denoted by EIMR and EI respectively. Themass scale is denoted byMs, which
is either m1 (ppBHPT) or m1 þm2 (NR) on the left column or either m1β (calibrated ppBHPT) or m1 þm2 (NR) on the right column.
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polarization angle, and initial orbital phase. We find that as
the mass ratio increases, agreement between the calibrated
ppBHPT surrogate waveform and NRHybSur3dq8model
improves. For q ≥ 5, mismatches are below 0.01 (Fig. 10)
indicating at least an order of magnitude improvement over
our precursor EMRISur1dq1e4 model.

C. Extrapolating the model to q → 1

Even though BHPTNRSur1dq1e4 is trained for
q ≥ 2.5, we find that the model can be extrapolated to
mass ratio q ¼ 1.2, although we advise caution with any
extrapolation. This is particularly exciting as our time-
domain Teukolsky solver struggles to generate wave-
forms below q ≈ 2.5. The model can therefore be used
to simulate ppBHPT waveforms for binaries with mass
ratios 1.2 ≤ q ≤ 2.5. Although, as can be anticipated
from Fig. 7, the calibrated BHPTNRSur1dq1e4 is not
a faithful approximation to GR as q → 1. Figure 11 shows

the dominant (2,2) mode of these two models evaluated
at q ¼ 1.2. At this mass ratio, we find the (2,2) mode
error of our model to be ∼0.026 for the full inspiral-
merger-ringdown waveform and ∼0.012 for inspiral-
only part.

FIG. 11. Comparison between the calibrated ppBHPT wave-
form and the hybridized NR surrogate model NRHybSur3dq8
(referred as “NRHybSur”) at q ¼ 1.2. We show the dominant
ðl; mÞ ¼ ð2; 2Þ mode. Errors for the full inspiral-merger-ring-
down waveform and inspiral-only part are denoted by EIMR and
EI, respectively.

FIG. 10. Frequency-domain mismatches between the rescaled-
ppBHPT surrogate waveforms and NRHybSur3dq8 model for
different mass ratios. The mismatches are shown as a function of
the binary total mass M at inclination ι ¼ 0.0 and orbital phase
φ ¼ 0, and are computed using the advanced LIGO design
sensitivity noise curve. We set the minimum (maximum) fre-
quency appearing in Eq. (17) to be 20 Hz (990 Hz). The dashed
horizontal line demarcates a mismatch of 0.01, a commonly used
threshold for sufficiently good model quality.

FIG. 9. Effectiveness of the calibration obtained from a
restricted time window ½−5000; 115�M over the entire length
of the waveform. Shown are the early inspiral (upper panel), late
inspiral (middle panel), and merger-ringdown (lower panel) parts
of the (2,2) mode for q ¼ 8. The hybridized NR surrogate model
NRHybSur3dq8 (referred as “NRHybSur”) and calibrated
ppBHPT waveforms are shown in black dashed and solid red,
respectively. EIMR is the L2 norm error computed over the entire
waveform.
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D. Numerical relativity in the intermediate
mass ratio regime

Due to a scarcity of NR data for intermediate-mass ratio
ranges, say from q ¼ 10 to q ¼ 104, it is difficult to perform
a detailed comparison between ppBHPTand NR data. Some
recent breakthroughs, however, have made it possible to
perform NR simulations for high mass ratio binaries. As we
are interested in nonspinning systems, we will consider both
SXS NR simulation data for q ¼ f15; 30g [53,54] and RIT
NR simulations for q ¼ f15; 32g [51].

1. Comparison against SXS NR data
at q = 15 and q = 30

We begin with a comparison between the calibrated
ppBHPT waveforms, coming from BHPTNRSur1dq1e4
model, and SXS NR data at mass ratio q ¼ 15. In Fig. 12,
we plot three representative modes. NR data is shown in red
solid lines whereas NR-calibrated ppBHPT waveforms are
plotted as black dashed lines. Note that we do not perform
any on-the-fly re-scaling for the ppBHPT waveform but
instead use results from Sec. III D 2. For comparison, we
also include the SEOBNRv4HM model. We find both
SEOBNRv4HM and BHPTNRSur1dq1e4 match NR very
well at q ¼ 15. For BHPTNRSur1dq1e4, full [inspiral-
only] waveform errors for (2,2), (3,3), and (4,4) modes are
0.00076 [0.00068], 0.0021 [0.0020], and 0.0054 [0.0047],
respectively. The SEOBNRv4HM shows a noticeable offset
from NR around merger and ringdown for the higher

modes, although both models deliver good accuracy over-
all, especially premerger.
When interpreting these errors it is important to note that,

from Fig. 5, it is clear that our model cannot achieve an
error E ≲ 0.001 due to numerical error in the un-calibrated
BHPTNRSur1dq1e4. As this value is consistent with
what we see in our comparisons with SXS data, it is not
clear if even better agreement with NR could be achieved
with higher-accuracy ppBHPT waveform training data. As
an additional check, we also perform an fαl; βg optimi-
zation between the raw ppBHPT and SXS NR data at
q ¼ 15. We find that the αl and β values obtained this way
match closely to values obtained from Eqs. (15) and (16),
and negligible improvement in errors observed. This
implies that the calibration carried out in the range 3.0 ≤
q ≤ 10.0 continues to work well at mass ratio 15.
Next, we compare calibrated-ppBHPTwaveforms against

the highest mass ratio SXS NR data at q ¼ 30. Figure 13
shows three representative modes for q ¼ 30 for both NR
(red solid lines) and calibrated-ppBHPT waveforms (black
dashed lines). We note that at q ¼ 30, β ≈ 0.961 while
1=ð1þ 1=qÞ ≈ 0.967, suggesting even an uncalibrated
ppBHPT waveform would work reasonably well. We find
for the 22 mode, the errors between calibrated-ppBHPT
and NR data are around ∼10−3 implying a good match. For
higher order modes, errors are still around ∼0.01. Further-
more, when we compare SEOBNRv4HM to NR data, we
find the full waveform errors to be similar to the
BHPTNRSur1dq1e4 for higher order modes whereas

FIG. 12. Waveform difference between the calibrated ppBHPT waveform (dashed black) and NR data (solid red) from the SXS
collaboration (simulation ID SXS:BBH:2304) for q ¼ 15. We show three different representative modes to demonstrate the efficacy of
our model. Errors for the full inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI respectively. For
comparison, we also show SEOBNRv4HM waveform modes (solid blue).
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around one order of magnitude better than the
BHPTNRSur1dq1e4 model for (2,2) mode.
Just as in the q ¼ 15 analysis, as an additional check of

our calibration parameters we perform a fresh fαl; βg

optimization between the raw ppBHPTand SXS NR data at
q ¼ 30. We find that while the αl and β values computed
this way are quite close to values obtained from Eqs. (15)
and (16), they provide a better match with NR data—with

FIG. 14. Waveform difference between the calibrated ppBHPTwaveform (black dashed) and NR data (solid red) from the RIT group
(simulation ID RIT:BBH:0792) for q ¼ 32. We show three different representative modes to demonstrate the efficacy of our model.
Errors for the full inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI respectively. For comparison, we
also show SEOBNRv4HM waveform modes (solid blue).

FIG. 13. Waveform difference between the calibrated ppBHPT waveform (dashed black) and NR data (solid red) from the SXS
collaboration for q ¼ 30 [54]. We show three different representative modes to demonstrate the efficacy of our model. Errors for the full
inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI respectively. For comparison, we also show
SEOBNRv4HM waveform modes (solid blue).
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improving the (2,2) mode error by at least one order of
magnitude making it comparable to the (2,2) mode error of
SEOBNRv4HM. This suggests that relatively larger error for
calibrated-ppBHPT at q ¼ 30 when compared to NR data
than at q ¼ 15 is due to the error in extrapolating α and β
scaling much beyond the mass ratio range (3 ≤ q ≤ 10) it is
trained on. We expect this scaling to become more robust in
the future as more NR simulations become available
beyond q ¼ 10. We further note that the NR data at q ¼
30 is shorter in length (only ∼1800M long). Careful
comparison between ppBHPT and NR data in this regime
needs longer NR data. We leave that study for the future
when smoother and longer NR data will be available.
Nonetheless, that a reasonable match between these two
types of waveforms is obtained in this regime is a
promising sign.

2. Comparison against RIT NR data at q = 15 and q = 32

We now compare calibrated BHPTNRSur1dq1e4
against the publicly available RIT NR data at mass ratio
q ¼ 32. Figure 14 shows three representative modes for
both NR (red solid lines), calibrated BHPTNRSur1dq1e4
(black dashed lines), and SEOBNRv4HM (solid blue) at
q ¼ 32. We find that, for (2,2) mode, scaled ppBHPT
and SEOBNRv4HM yields an error of ∼0.01, and for
subdominant modes the calibrated BHPTNRSur1dq1e4
matches the NR data a bit more closely than the
SEOBNRv4HM model around merger and ringdown. It is
interesting to note that at q ¼ 30, both the calibrated

BHPTNRSur1dq1e4 and SEOBNRv4HM models pro-
vide at least one order of magnitude better match when
tested against the SXS NR data. This may imply some
systematic difference between SXS and RIT NR simula-
tions at high mass ratios. RIT simulations also show
evidence of residual eccentricity that introduces additional
small modulations in the waveform—potentially increasing
the disagreements. We have also compared the calibrated
BHPTNRSur1dq1e4 ppBHPT and SEOBNRv4HM mod-
els with the RIT NR data at q ¼ 15 (Fig. 15), but we
encountered issues similar to the q ¼ 32 case.

V. DISCUSSION AND CONCLUSION

In this paper, we have described more fully the methods
used to build EMRISur1dq1e4 (which was introduced
in a short letter [63]), a time-domain surrogate model of
waveforms obtained through numerically solving the
Teukolsky equation sourced by a test-particle with adia-
batic-driven inspiral. We apply point-particle black hole
perturbation theory (ppBHPT) framework to nonspinning
systemswithmass ratios fromq ¼ 2.5 toq ¼ 10;000.While
intermediate mass ratio systems (q > 10) are targets for our
model, we use ppBHPTwaveforms in the regime q < 10 to
(i) carry out comparisons between numerical relativity and
ppBHPTand (ii) calibrate the surrogate model to NR thereby
vastly improving the model’s accuracy.
We have also taken this opportunity to make numerous

important improvements to the underlying model. The
updated model, BHPTNRSur1dq1e4, is 30;500m1 in

FIG. 15. Waveform difference between the calibrated ppBHPTwaveform (black dashed) and NR data (solid red) from the RIT group
(simulation ID RIT:BBH:0373) for q ¼ 15. We show three different representative modes to demonstrate the efficacy of our model.
Errors for the full inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI, respectively. For comparison,
we also show SEOBNRv4HM waveform modes (solid blue).
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duration, making it suitable to be used in building tem-
plate banks for LIGO/Virgo data analysis at larger mass-
ratios, and also serve as a useful tool for mock data
analyses for future observatories. We also employ an
improved transition trajectory algorithm between early
inspiral and plunge [92]—thereby reducing nonphysical
jumps/oscillations in the waveforms (cf. Sec. II C). The
BHPTNRSur1dq1e4 model includes a total of 50
modes up to l ¼ 10, which is particularly important as
subdominant modes are expected to play an important
role in intermediate mass ratio systems [34,93–95].
Please see Table I for a complete summary of the
BHPTNRSur1dq1e4. This model is publicly available
as part of both the Black Hole Perturbation Toolkit [96] and
GWSurrogate [97].
We also perform a detailed comparison between

ppBHPT and NR waveforms in the comparable mass ratio
regime for all modes up to l ≤ 5. We find that after a
simple calibration step the ppBHPT waveforms yield
remarkable agreement with NR. The calibrated waveforms
are also compared against available SXS NR data at q ¼
f15; 30g and against RIT NR data at q ¼ f15; 32g, and are
found to give good agreement for many of the subdominant
modes even up through merger and ringdown. Furthermore,
by construction, the calibration parameters “turn off” as
q → ∞, so that the correct test-particle behavior is recov-
ered. Our results suggest that suitably calibrated ppBHPT

models may be used to generate accurate late inspiral,
merger, and ringdown waveforms in the q > 10 regime that
is especially challenging for NR. Future models should
include obvious extensions such as spin, effects of eccen-
tricity, and spin-orbit precession.
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Alejandro Bohé, Frequency-domain gravitational waves
from nonprecessing black-hole binaries. I. New numerical
waveforms and anatomy of the signal, Phys. Rev. D 93,
044006 (2016).

[47] Sebastian Khan, Sascha Husa, Mark Hannam, Frank Ohme,
Michael Pürrer, Xisco Jiménez Forteza, and Alejandro
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