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We solve the Einstein-Maxwell-Klein-Gordon system of equations and derive a compact, static axially
symmetric magnetized object which is electrically neutral and made of two complex massive-charged
scalar fields. We describe several properties of such solution, including the torus form of the matter density
and the expected dipolar distribution of the magnetic field, with some peculiar features in the central
regions. The solution shows no divergencies in any of the field and metric functions. A discussion is
presented on a case where the gravitational and magnetic fields in the external region are similar to those of
neutron stars.
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I. INTRODUCTION

Boson stars are self-gravitating solitons made up of
complex scalar field. This objects are interesting for various
reasons. They serve as simple models for compact objects
in the interplay of field theory and general relativity and are
also interesting on their own since they possess important
dynamical properties that allow to study them in hypo-
thetical strong-gravity astrophysical scenarios, for example,
in the gravitational waveform research; see e.g., [1].
Bosonic stars have applications also as black hole mimi-
ckers [2,3] and, more generally, scalar fields are relevant in
cosmology as quintessence [4], ultralight dark matter [5–7]
and as a source of inflation [8].
Static and stationary single field configurations have

been presented in the literature in the past years (for reviews
see Refs. [9–11]), for instance, the free and massive
bosonic field solution of the Einstein-Klein-Gordon equa-
tions in spherical symmetry [12] can be generalized
gauging the global Uð1Þ symmetry, which leads to the
charged version of boson stars [13]. Rotating generaliza-
tions of boson stars were obtained in [14] within the
Einstein-Klein-Gordon setup and in the Einstein-Klein-
Gordon-Maxwell extension, the charged rotating one [15].
In these models the coupling constant parameter is freely
specifiable, however, in order to obtain equilibrium sol-
utions, the value of the coupling parameter ranges from
zero up to a critical value [13,15].
Staying within the complex, massive, free scalar field

case there are two more characterizations that can be found
in the literature up to the present time; these are the
multipolar boson stars [16], which are static nonspherical
configurations with similar morphologies to the probability
density of atomic orbitals and the multifield (l-) boson
stars [17–19], in which the Uð1Þ symmetry is generalized

by considering a UðNÞ symmetry. Of particular interest in
this paper is the toroidal static boson star of [19], which can
be understood as the superposition of two contrarotating
solutions that give rise to a static equilibrium configuration.
The rotating charged boson stars share some properties

with the uncharged rotating case, such as the toroidal shape
and with the charged (electrostatic) case, such as the critical
value of the coupling constant. As one would expect the
charged and rotating general solutions include electric
charge and magnetic dipole moment with the particularity
that the magnetic moment is nonzero only if the electric
charge is nonzero, therefore obtaining solutions where both
electric and magnetic fields are present in the local inertial
frame of zero angular momentum. Until now, no electri-
cally neutral and magnetized self-gravitating bosonic stars
have been constructed, which might be relevant models in
the study of strong gravity and magnetic fields phenomena.
Magnetic fields play an important role in many astro-

physical scenarios. Some of the relativistic applications
involve compact, electrically neutral objects and strong
magnetic fields where their self-gravitation must be taken
into account. Fully relativistic and self-consistent models of
neutron stars with magnetic fields where first presented in
[20] (see also e.g., [21,22] for poloidal and [23–25] for
toroidal magnetic fields). These are numerical solutions of
the Einstein-Maxwell-Euler system in axial symmetry
which can possess angular momentum and total electric
charge. Even the globally neutral and static cases are
deformed by the effect of the magnetic field, changing
in consequence the global properties of the equilibrium
configurations.
The purpose of this paper is to construct and study

magnetostatic solutions of boson stars with zero total
electric charge. To do so we obtain a generalization of
the toroidal static boson stars by coupling the scalar fields
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to the electromagnetic field, we shall show that the gauge
coupling parameter can exceed the critical value obtained
for the electrostatic boson stars. In Sec. II we present the
action for the model, the ansatz for the fields and the
conserved quantities. Then, in Sec. III we describe the
numerical procedure and the construct sequence of sol-
utions with different values of the coupling parameter,
discussing the physical properties of the configurations.
The magnetic field for the constructed solutions and a
comparison with strongly magnetized neutron stars is
presented Sec. IV. We conclude our paper and give some
perspectives of future works in Sec. V. In the Appendix we
give the complete set of elliptic partial differential equa-
tions of our model together with explicit expressions for the
3þ 1 decomposition of the energy momentum tensor. We
work with c ¼ G ¼ 1 and the metric signature is taken to
be ð−;þ;þ;þÞ.

II. MODEL

A single electrically charged scalar field in spherical
symmetry allows to construct charged boson stars, which
are static solutions that give rise to an electric field as
measured by an observer at rest [13]. Even the rotating
generalization of this configurations, which also generate a
magnetic field, possess an electric field that does not vanish
[15]. There are no immediate simple models consisting of
one scalar field that give rise to magnetostatic self-
gravitating solutions, however the multifield approach
leads to a natural way of obtaining such boson stars.
On the other hand, although fully relativistic neutron

stars with magnetic fields have been constructed, all the
solutions (to the best of our knowledge) have been obtained
using the free current assumption, i.e., electromagnetic
sources Jμ independent to the fluid movement. This means
in particular that in the (magneto)static solutions the fluid is
at rest while the spatial components of the electric current
are nonzero. This is a limiting assumption, and as pointed
out in [22], in principle the currents should be derived from
a microscopic model which “would require a multifluid
approach to model the movements of free protons and
electrons”.
For boson stars, in the Einstein-Klein-Gordon-Maxwell

framework, the free current assumption cannot be made
since the electric current is determined by the scalar fields,
however the multifield approach is feasible. In our
approach globally neutral configurations are constructed
by superposition of two contrarotating “thick current
loops” made of charged scalar fields.
The general framework in which magnetized boson stars

are constructed consists of two self-gravitating complex
scalar fields minimally coupled to the electromagnetic four-
potential with coupling constants of opposite sign. In this
section we summarize the basic equations needed to
construct the solutions and the conserved quantities that
will be useful in the analysis.

A. Field equations

We consider two massive complex scalar fields,Φð1Þ and
Φð2Þ, minimally coupled to the Einsteinian gravity and to
the electromagnetic field,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
R −

1

2

X2
j¼1

ðgμνðDðjÞ
μ ΦðjÞÞðDðjÞ

ν ΦðjÞÞ�

þ μ2jΦðjÞj2Þ −
1

4μ0
FμνFμν

�
; ð1Þ

where Fμν ¼ ∂μAμ − ∂νAμ is the Faraday tensor and the

covariant derivative operators, Dð1Þ
μ ¼ ∇μ þ iqAμ and

Dð2Þ
μ ¼ ∇μ − iqAμ couple both scalar fields with Aμ.

Notice that we have chosen equal mass terms for both
scalar fields and opposite signs for the electromagnetic
coupling constants (boson charges). The scalar fields
interact with each other indirectly, through gravity and
the electromagnetic field.
Variation of Eq. (1), with respect to the different fields

leads to the Euler-Lagrange equations of the model (see
e.g., [26]). Variation with respect to gμν leads to

Rμν −
1

2
Rgμν ¼ 8πTμν; ð2aÞ

Tμν ¼ Tð1Þ
μν þ Tð2Þ

μν þ ðTEMÞμν; ð2bÞ

TðjÞ
μν ≔

1

2
ðDðjÞ

μ ΦðjÞÞðDðjÞ
ν ΦðjÞÞ� þ

1

2
ðDðjÞ

ν ΦðjÞÞðDðjÞ
μ ΦðjÞÞ�

−
1

2
gμνðgαβðDðjÞ

α ΦðjÞÞðDðjÞ
β ΦðjÞÞ� þ μ2jΦðjÞj2Þ; ð2cÞ

ðTEMÞμν ≔
1

μ0
FμσFνλgσλ −

1

4μ0
gμνFαβFαβ: ð2dÞ

The equation for the fields Φð1Þ and Φð2Þ are the Klein-
Gordon equations,

gμνDðjÞ
ν DðjÞ

μ ΦðjÞ ¼ μ2ΦðjÞ: ð3Þ

Variation with respect to Aμ leads to the Maxwell
equations with source the charged scalar fields which
define a current four-vector Jμ,

∇νFμν ¼ μ0Jμ ≔ μ0ðqjμ1 − qjμ2Þ; ð4aÞ

jμi ≔
igμν

2
ðΦðiÞ�D

ðiÞ
ν ΦðiÞ −ΦðiÞðDðiÞ

ν ΦðiÞÞ�Þ; ð4bÞ

here Jμ is the (total) electromagnetic current.

B. Global quantities

The spacetime we will consider in this work is stationary
(static) and axisymmetric. Komar expressions allow to
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calculate global quantities for each of this isometries; if ξ is
the Killing vector associated with stationarity, Σt is a
spacelike surface and nμ the unit vector normal to this
hypersurface, then the quantity,

M ¼ 1

4π

Z
Σt

RμνnμξνdV; ð5Þ

defines the Komar mass. Similarly, if χ is the Killing vector
associated with the axial symmetry, the quantity

J ¼ 1

8π

Z
Σt

Rμνnμχν: ð6Þ

gives the angular momentum of the spacetime.
The quantities jμ1 and jμ2 defined in Eq. (4) are Noether

density currents (∇μjμ ¼ 0) which arise from the invariance
of Eq. (1) under the Uð1Þ gauge transformation of Φð1Þ and
Φð2Þ. It follows that integration of the projection onto nμ of
this currents over Σt leads to the conserved particle
numbers

N 1¼
Z
Σt

jμ1nμdV; N 2¼
Z
Σt

jμ2nμdV; N ≔N 1þN 2:

ð7Þ
In the rotating boson stars, it was shown [14,27,28] that

the angular momentum J takes values that are integer
multiples of the particle number, J ¼ mN , with m the
winding number (defined below) of the scalar field ansatz,
this result is also valid in the charged rotating case [15].
However, in the magnetized solutions obtained in this work
this relation does not hold since they are by construction
J ¼ 0 static, as will be argued in the next section.
The associated total electric charge, related to the sources

at the Maxwell equation is given by Q ¼ R
Σt
JμnμdV ¼

qðN 1 −N 2Þ. In the single field static and rotating charged
boson stars the total charge of the system is related to the
particle number by Q ¼ qN and it was obtained [13] that
Q coincides with the asymptotic value extracted from the
electric potential and matches the exterior Reissner-
Nordström solution. Again, the relation Q ¼ qN is not
valid for our case because, as we will see bellow, the
obtained solutions satisfy Q ¼ 0.

C. Static axisymmetric spacetime
and ansatz for the fields

In coordinates adapted to the Killing fields, where
ξ ¼ ∂=∂t and χ ¼ ∂=∂φ, the general static and axially
symmetric line element we will consider is in the Lewis-
Papetrou form,

gμνdxμdxν ¼ −e2F0dt2 þ e2F1ðdr2 þ r2dθ2Þ
þ e2F2r2sin2θdφ2; ð8Þ

where the metric functions F0, F1, and F2 depend only on
the coordinates r and θ. We have used the same line
element as the one in Ref. [19], where the toroidal static
boson star is constructed, however, the gtφ term usually
written as the function wðr; θÞ or wðr; θÞ=r, is not included
in (8) because we are looking for static configurations with
zero total angular momentum J, and in this case it can be
seen [29,30] that w ¼ 0 if and only if the spacetime is static.
The contribution of the scalar fields in the energy-

momentum tensor, Tð1Þ
μν , T

ð2Þ
μν will be consistently indepen-

dent of t and φ if for the scalar fields we use the following
ansatz, which is similar to the one used for rotating,
multifield, multifrequency boson stars and even for
chains [31],

Φð1Þ ¼ ϕðr; θÞeiωt−imφ; Φð2Þ ¼ ϕðr; θÞeiωtþimφ: ð9Þ

Here m is and integer called winding number. Moreover,
the opposite sign of this parameter for each field in Eq. (9)
can be interpreted as having contra-rotating scalar fields
distributions. It is not difficult to obtain that with this

election of winding numbers, Tð1Þ
tφ ¼ −Tð2Þ

tφ , consistent with
the Einstein tensor componentGtφ being zero for the metric
in Eq. (8).
Again, analyzing the components of the Einstein

ensor we can elucidate the anzatz for the field Aμ. Two
possibilities for the electromagnetic four-potential are
compatible with the spacetime at hand; the purely poloidal
(Ar ¼ Aθ ¼ 0) and the purely toroidal (At ¼ Aφ ¼ 0)
magnetic fields1 [23,24], however only the first possibility
can be realized given the ansatz (9) chosen for the scalar
fields since only the Jφ source of the Maxwell equations is
nonzero,2 which additionally implies that At ¼ constant,
therefore we adopt

Aμdxμ ¼ Cðr; θÞdφ: ð10Þ

The resulting number density currents, given in
Eqs. (A11) and (A11), imply Q ¼ 0 since Jμnμ ¼ 0.

III. NUMERICAL SOLUTIONS

A. Boundary conditions and numerical method

In order to construct magnetostatic solutions of boson
stars, the Einstein-Klein-Gordon-Maxwell system is
solved. This means solving for the five functions
fϕ; C; F0; F1; F2g and the unknown parameter ω, imposing
the appropriate symmetries and boundary conditions. The
full elliptic system of coupled partial differential equations
(PDEs) in r and θ is given in the Appendix.

1In both cases, the circularity property of spacetime is not
broken and the metric tensor takes the form (8).

2In the single field charged rotating star, also the Jt component
is nonzero, in our case however jt1 ¼ jt2, see the Appendix.
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First, we impose even parity with respect to reflections at
the equatorial plane of the five unknown functions which in
particular implies that derivatives with respect to θ at θ ¼
π=2 vanish and also that the required integration domain
reduces to 0 ≤ θ ≤ π=2, 0 ≤ r < ∞.
Asymptotic flatness implies that the following outer

boundary conditions must be imposed,

ϕjr→∞ ¼ 0; Cjr→∞ ¼ 0;

F0jr→∞ ¼ 0; F1jr→∞ ¼ 0; F2jr→∞ ¼ 0: ð11Þ

Also the condition ω < μ is necessary in order to have
ϕjr→∞ ¼ 0. Regularity of the solution at the origin and on
the symmetry axis require,

ϕjr¼0 ¼ 0; Cjr¼0 ¼ 0;

∂rF0jr¼0 ¼ 0; ∂rF1jr¼0 ¼ 0; ∂rF2jr¼0 ¼ 0;

F1jr¼0 ¼ F2jr¼0: ð12Þ

ϕjθ¼0;π ¼ 0; Cjθ¼0;π ¼ 0;

∂θF0jθ¼0;π ¼ 0; ∂θF1jθ¼0;π ¼ 0; ∂θF2jθ¼0;π ¼ 0;

F1jθ¼0;π ¼ F2jθ¼0;π: ð13Þ

The regularity conditions for ϕ for the case m ¼ 0 are
different from those of the previous expressions, however
this case reduce to the widely studied spherical, non-
rotating, neutral boson star, and will not be addressed in
this manuscript except for comparison.
The nonlinear PDEs are solved numerically using the

spectral solver KADATH [32,33] which implements a
Newton-Raphson iteration. This library, which has been
successfully applied to solve a wide variety of PDEs in
theoretical physics and in particular in relativity, was also
used in the construction of rotating boson stars [27].
Chebyshev polynomials have been used in the spectral

method as basis functions for the expansions of the five
unknown functions. The spatial domain is divided into
eight spherical shells with boundaries located at
r ¼ f2; 4; 8; 16; 32; 64; 128g. The regularity conditions in
Eqs. (12) and (13) are either imposed by the spectral basis3

for a given function on the corresponding domain, or
checked that they hold up to numerical accuracy. On the
other hand the outer boundary conditions in Eq. (11) are
imposed “exactly” (without the need of a cutoff radius)
given the compactification of the radial variable at the
outermost spherical shell.
An initial guess for the functions is required in order to

start the iteration. For each value ofm this needs to be done
only once. The expressions

N≔ eF0 ¼ 1− ð1−N0Þe−r2=r20 ; F1 ¼F2 ¼ 0; C¼ 0;

ð14Þ

also used in [35], and

ϕ ¼ ϕ0ðr sin θÞme−ðx2=2þ2z2Þm=r2
0 ð15Þ

with x ¼ r sin θ, z ¼ r cos θ, proposed in Ref. [27], have
proven to be good guesses given a certain choice of ϕ0, r0
fixing the coupling constant q ¼ 0, and the lapse at r ¼ 0,
N0 ≈ 0.95. The last condition prevents convergence to the
trivial ϕ ¼ 0 solution and also leads to a Newtonian
configuration (ω ∼ μ). Once the first solution is obtained
the rest of the solutions are obtained by varying N0 and
increasing q by small steps.
In addition to the Komar expression on Eq. (5), the ADM

mass definition can be used to obtain the total mass of the
star. Both quantities should coincide given the stationarity
of the spacetime we are considering [30], therefore the
difference between the ADM and the Komar masses can be
used as an indicator of the numerical accuracy and provide
an estimation of the numerical error of the solution. An
expression for the ADM mass suitable for our case is the
expression [30],

M ¼ −
1

8π
lim
S→∞

I
S

�
∂

∂r
ðF1 þF2Þ þ

F2 −F1

r

�
r2 sin θdθdφ;

ð16Þ

where the limit indicates integration over a sphere S of
radius r → ∞.
One can also verify that the value of the unknown

frequency ω converge exponentially to a finite value with
the number of collocation points. This error indicator has
been used together with the relative difference of the ADM
and Komar masses to monitor accuracy along the sequence
of numerical solutions and to carry out convergence tests
of the solutions with increasing number of spectral
coefficients.

B. Structure of the stars

One can use the code to solve for boson stars of several
types. The spectral code has been able to reproduce
sequences of solutions already presented in the literature
such as the single field static and the rotating miniboson
stars, as well as the multifield l-boson stars and the toroidal
static boson stars. In this section we present new solutions
that correspond to magnetostatic boson stars. These con-
figurations generalize the toroidal static boson stars, incor-
porating a new parameter, q, in addition to the frequency ω
and the winding number m.
Typical solutions for magnetized (q ≠ 0) boson stars are

presented in Fig. 1, where isocountours of the scalar field
function ϕ and the φ component of Aμ are plotted for

3Details on how this is implemented in terms of the Chebyshev
spectral basis in the innermost shell and on the symmetry axis for
similar problems can be found in [27] and [34].
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m ¼ 1. In the first place we can notice from the ϕ contours,
that the star has a toroidal structure just like the q ¼ 0 case,
secondly we observe from the isocontours of C, which can
be interpreted as the magnetic field lines (see Sec. IV), that
the expected poloidal magnetic field distribution preserves
as q increases, however, as we will show next in this
paragraph, near to the location of maximum ϕ a region of

constant C (zero magnetic field) is formed which grows in
size. This effects on the structure of the star and the
morphology of the magnetic field can be seen more clearly,
plotting the profiles of the scalar field and the electromag-
netic potential on the equatorial plane. This is done in Fig. 2
where we have plotted m − qC instead of C, to observe an
interesting property; above certain value of q (which in the

FIG. 1. Scalar field ϕ isocontours (left) and magnetic field lines (right) in a plane of constant φ with x ¼ r sin θ and z ¼ r cos θ for
m ¼ 1 and ω ¼ 0.96μ using different values of q.

FIG. 2. Profiles of ϕ and C at the equatorial plane for solutions with m ¼ 1 and ω ¼ 0.96μ. Left panel: Neutral (q ¼ 0). Center panel:
q ¼ 25. Right panel: q ¼ 140.
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ω ¼ 0.96μ case of Fig. 2 is at q ≈ 50, between the second
and third panel), the quantity qC approaches but never
exceeds m in a region that grows as q increases. In all
of the solutions presented in this paper we have obtained
CðrÞ < m=q for all r.

The sources of gravitational field are also enlightening
regarding the structure of the star as well as its global
properties, as we will see in the next section. Restricting to
the equatorial plane, θ ¼ π=2, the complete contributions of
the energymomentum tensor (see theAppendix) are given by

Ejθ¼π=2 ¼
�
ω2

e2F0
þ ðm − qCÞ2

e2F2r2

�
ϕ2 þ 1

e2F1

�
∂ϕ

∂r

�
2

þ μ2ϕ2 þ EB; ð17Þ

Srrjθ¼π=2 ¼
�
ω2

e2F0
−
ðm − qCÞ2
e2F2r2

�
ϕ2 þ 1

e2F1

�
∂ϕ

∂r

�
2

− μ2ϕ2 þ EB; ð18Þ

Sθθjθ¼π=2 ¼
�
ω2

e2F0
−
ðm − qCÞ2
e2F2r2

�
ϕ2 −

1

e2F1

�
∂ϕ

∂r

�
2

− μ2ϕ2 − EB; ð19Þ

Sφφjθ¼π=2 ¼
�
ω2

e2F0
þ ðm − qCÞ2

e2F2r2

�
ϕ2 −

1

e2F1

�
∂ϕ

∂r

�
2

− μ2ϕ2 þ EB; ð20Þ

where we have defined EB as the purely electromagnetic
contribution to the energy density (at the equatorial plane),

EB ≔
1

2r2e2F1þ2F2

�
∂C
∂r

�
2

: ð21Þ

Regarding the stress tensor components, which are
usually identified as components of the pressure, the
system is completely anisotropic even in the q ¼ 0 case,
where for instance the difference Sθθ − Sφφ ∝ ϕ2e−2F2=r2

is not zero, although suppressed by r2. In the left panel of
Fig. 3 we plot the sources of the q ¼ 0 case where in fact
the difference between Sθθ − Sφφ cannot be appreciated.
The middle and right panels of Fig. 3 show the magnetized
q ¼ 25 and q ¼ 140 cases respectively. Notice that the
extrema of Sφφ decrease in magnitude with respect to
the extrema of Sθθ and Srr. In particular near r ¼ 0, the
minimum of Sφφ increases due to the EB contribution. The
behavior of the pressure term Sφφ is relevant in the analysis
of the effect of q on global quantities, as for example the

magnetic dipole moment and the total mass. This will be
discussed in the next section.

C. Sequence of magnetic boson stars

For m ¼ 1, 2 we obtained a family of configurations by
means of slowly varying the parameters of the solution
starting from a Newtonian solution, as stated before. First,
we have verified that in the case q ¼ 0, m ¼ 1 we obtain
the known sequence of toroidal static boson stars [19].
Thereafter, starting from this set of solutions, we have
slowly increased the value of q, generating in this way
sequences of magnetized boson stars.
In Fig. 4, the global quantity M is shown vs the scalar

field frequency ω for m ¼ 1 and five chosen values for q.
Some interesting aspects arise from these solutions: firstly
the mass of the star decreases monotonically with q; this is
the opposite behavior to that obtained in models of neutron
stars with magnetic fields [20,21], where their structure
begins from spherical morphology at zero magnetic
field (for the static case), and flattens, increasing the

FIG. 3. Source terms at the equatorial plane for boson stars with m ¼ 1 and ω ¼ 0.96μ. Left panel: Neutral (q ¼ 0). Center panel:
q ¼ 25. Right panel: q ¼ 140.
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circumferential radius of the star, as the magnitude of the
magnetic fields increase, with a corresponding increase in
the mass of the star. The observed structure dependence on
q of the magnetized boson stars, is also opposite to the
corresponding dependence of charged boson stars as
discussed in the previous section. However, such observed
decrease on the size and total mass M as the coupling
constant q grows, is also observed in the magnetized Bose-
Einstein condensate stars [36].
The second aspect to consider about Fig. 4, regards

the existence of equilibrium configurations with
coupling constant q above the value qcrit ≈ 1=

ffiffiffi
2

p
.

Indeed, as reported in [15,37], that value was an upper
limit for stable charged and stable rotating-charged boson
stars. In our model without total charge, that limit is
overcome. This interesting result is related to the fact that
the Lorentz force,

fν ≔ FναJα ¼ −∇μðTEMÞμν; ð22Þ

points everywhere outwards for the charged miniboson
stars, while for the magnetostatic boson star it only points
outward near the origin and points inward outside the main
distribution of scalar field. Therefore, the nonrelativistic
argument regarding Coulomb repulsion vs gravitational
attraction does not apply here. Instead, it is the stress
anisotropy that ultimately determines the structure and
global properties of the star, as we will see below in relation
to the decrease in the total mass. Numerically we have
not obtained any limiting value for the parameter q,
the equations are difficult to solve for large values of the
coupling constant due to the resolution required at
the “edges of the plateau” that forms in the function C
(see the right panel of Fig. 2).

FIG. 4. Left panel: Frequency vs mass for them ¼ 1magnetostatic boson star solutions using different values of the coupling constant
q. Right panel: Binding energy M − μN for m ¼ 1.

FIG. 5. Sequence of solutions constant ω and increasing coupling q. Given qwe locate in the solution for the maximum of ϕ andC and
its location. Left panel: Maximum value of the scalar field with respect to the maximum value of the four potential function C for
sequence of solutions with m ¼ 1 and m ¼ 2 with ω ¼ 0.96μ. Right panel: Radius at which the maxima of ϕ and C is attained, as a
function of the coupling constant q.
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Anisotropic pressures are essential to obtain equilibrium
configurations with high compactness and large values for
the mass. In [35] (see [38] for recent discussion on fluid
anisotropic stars and [39] for shell-type configurations in
the Einstein-Vlasov system) it was shown that for l-boson
stars, small radial pressures and big tangential pressures are
related to an increase in the mass and radius of the star in a
way that resembles the forces on an arch. In our case, to
understand the decrease in size of the magnetic boson stars,
we start by noticing that the tangential pressure is com-
posed by two different contributions, Sθθ and Sφφ, which
act together with the radial pressure (and with the Lorentz
force in some region) against gravity in order to support the
configuration. The toroidal shape, which is made possible
by the Sφφ contribution, shrinks with increasing q (right
panel Fig. 5) given that the electromagnetic contribution to
the energy-momentum tensor in the region where the
scalar field concentrates, is bigger for Srr than for the
tangential components and in particular with respect to Sφφ,
as discussed in Sec. III B. Our results indicate that
this reduction in the size of the star is accompanied
by a reduction in the total mass that the boson star can
support.
Figure 5 shows properties of the scalar field, ϕ and of the

electromagnetic one, C vs q. More precisely, the figure
shows the maximum of the functions and the coordinate at
which the maximum is attained. From the right panel we
appreciate the decrease in size of the torus as a function of q
for fixed ω. In the left panel we see another important
property of the solutions: maxðCÞ reaches a maximum
value and then begins to decrease with q. As a conse-
quence, the magnetic dipole moment M which can be
obtained from the asymptotic behavior of the electromag-
netic potential Aμ,

Aμdxμ ∼
μ0
4π

M sin2θ
r

dφ; ð23Þ

reaches a maximum and decreases thereafter. This behavior
is shown in the right panel of Fig. 6 for the sequence of
m ¼ 1 solutions using four selected values of q and in the
same panel can be seen for fixed ω, m ¼ 1, 2 and several
values of q. One can note from these plots that larger values
for the maximum of M are obtained, closer to ω ¼ μ, as q
increases. In Table I we provide data of the maximum M
configuration for a sample of values for the coupling
constant. For the explored q ≫ 1 configurations, the
maximum of M increases more slowly, for example,
the q ¼ 200 case, with maxðMÞ ¼ 4.84, is not far from
the value obtained for the q ¼ 50 case, plotted in Fig. 6, so
the maximum dipole moment seems to tend asymptotically
to a finite value, however to establish with precision the
limit, it would be necessary to solve the equations in the
limiting case q → ∞, which is beyond the scope of
this paper.
Finally, we wonder about the possibility of determining

the magnetic dipole moment from the asymptotic behavior
of the metric functions. For example, in the charged
miniboson star, the total electric charge of the configuration
can be read off the grr component by comparing with the
Reissner-Nordström solution [13]. Some electrovacuum
exact solutions (in general relativity) for a mass endowed
with a magnetic dipole moment have been obtained in the
literature, as for example the Gutsunaev-Manko [40] and
Bonnor [41] two-parameter family of solutions. However,
analyzing our solutions, we obtain that they do not match
with neither of those metrics, for instance the lapse function
in all of the solutions that we generate has the asymptotic
behavior N2 ¼ 1–2M=rþ α=r2 þOð1=r3Þ, with α some
constant, while according to [40], the lapse of the

FIG. 6. Left panel: Frequency vs magnetic dipole momentM for the m ¼ 1 magnetostatic boson star solutions using different values
of the coupling constant q. Right panel: Magnetic dipole momentM as a function of q for configurations with m ¼ 1 and m ¼ 2 and a
fixed value of ω.
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Gutsunaev-Manko metric goes as N2 ¼ 1–2M=r þ
Oð1=r3Þ. On the other hand, comparison with the
Bonnor solution, for which N2 ¼ 1–2M=rþM2=r2, could
seem to be a better alternative, however we obtain from the
analysis of our solutions that the coefficient α is a function
of both of M and M and in the M ¼ 0 case, it is not
proportional toM2. Therefore, the magnetic dipole moment
of the star cannot be obtained from the metric components
by comparison with any of the mentioned exact solutions,
allowing us to conclude that our solutions differ from those
two spacetimes.

IV. MAGNETIC FIELD

The electric and magnetic field as measured by an
observer whose four-velocity is nμ (Eulerian observer)
are given by the formulas Eμ ¼ Fμνnν and Bμ ¼
− 1

2
ϵμναβnνFαβ. where ϵ is the Levi-Civita tensor. For the

metric (8) and the electromagnetic four-potential (10), we
obtain Eμ ¼ 0 as expected and

Bμdxμ ¼
e−F2

sin θ

�
1

r2
∂C
∂θ

dr −
∂C
∂r

dθ

�
: ð24Þ

Some examples of Bi for configurations with m ¼ 1 are
given in Fig. 7. The distribution of the vector field resemble
that of the magnetic field around a finite size current loop.
For reference we also plot the isocontour of half the
maximum value of the energy density. Rotation of this
curve around the z axis generates a torus. The figure also
shows the region of zero magnetic field that forms in
configurations with high values of q, where m − qC ≈ 0,
see for instance the black line region withffiffiffiffiffiffiffiffiffi
BiBi

p
=ðμ ffiffiffiffiffi

μ0
p Þ < 10−6 inside the torus in the right panel

of Fig. 7.
We have seen in the previous section that as q get closer

to zero, the magnetic moment decreases and the maximum
values of ϕ and C are reached at larger radii. This explains
why some of the configurations with relative low values of
q, as for example the q ¼ 5 and q ¼ 25 cases (Fig. 7, left
and central panels), do not have the maximum of Bi at the

TABLE I. Maximum mass and magnetic dipole configurations.

q
ffiffiffiffiffi
μ0

p
μ2M ω=μ μM μ2N maxðϕÞ μrmaxðϕÞ

Maximum M
0.1 0.0418 0.905 1.048 1.077 0.0156 4.66
1 0.417 0.905 1.047 1.076 0.0156 4.66
5 1.93 0.911 1.015 1.041 0.0147 4.82

25 4.62 0.970 0.627 0.633 0.00492 9.08
50 5.06 0.990 0.363 0.363 0.00154 16.8

100 5.17 0.997 0.195 0.195 0.000454 30.1
200 4.84 0.999 0.084 0.085 0.000132 36.0

Maximum M
0 0 0.840 1.147 1.189 0.0290 2.76
0.1 0.0368 0.834 1.147 1.189 0.0303 2.65
1 0.366 0.834 1.146 1.188 0.0303 2.65
5 1.66 0.839 1.121 1.160 0.0296 2.69

25 2.46 0.848 0.960 0.989 0.0312 2.22
50 1.69 0.848 0.894 0.921 0.0337 1.85

FIG. 7. Magnetic field in a plane of constant φ for configurations with m ¼ 1 and ω ¼ 0.96μ, for the coupling constant with values
(from left to right) q ¼ 5, 25 and 140. The thick black line correspond to the density isocountour E ¼ 0.5 maxðEÞ. The color bar
indicates the norm of the quantity log10½Bi=ðμ ffiffiffiffiffi

μ0
p Þ� The radius of the circle is μr ¼ 32.
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center of the star but in a toroidal region around the center,
while other configurations as for instance the q ¼ 140 case
(Fig. 7, right panel), posses magnetic fields concentrated in
a central region with maximum along θ ¼ 0.
Until now it has not been required to specify the

value for the mass parameter of the scalar field given that
solutions with different μ are related to each other by
rescaling rules. In particular, we have used these rules to
construct dimensionless quantities (e.g., μr, ω=μ, μM,
Bμ=ðμ ffiffiffiffiffi

μ0
p Þ, etc.), used in the numerical implementa-

tion and in the results reported in previous sections. We
now proceed to recover units of different physical
quantities in order to compare magnetostatic boson stars
with magnetized neutron star solutions. Restoring c
and G, the dimensionless quantities related to the total
mass of the star and the norm of the magnetic field
(B2 ¼ BμBμ) are Gc−2μM and Gc−4B2=ðμ2μ0Þ. Further-
more, the product

I ≔
1

c4

ffiffiffiffiffiffi
G3

μ0

s
MB; ð25Þ

is dimensionless and, more importantly, do not rescale with
μ. Evaluating the magnetic field at the center of the star we
define Ic ¼ I jr¼0 and plot it along m ¼ 1 sequences
in Fig. 8.
For a neutron star with mass in the range 1.1 M⊙ ≲

M ≲ 2.1M⊙ and strong magnetic fields at the star’s pole
within the interval 109 T≲ Bpole ≲ 1011 T [42], the value
of the product of mass and magnetic field is between
10−7 ≲ Ipole ≲ 3 × 10−5. Internal magnetic fields in mag-
netars have been estimated according to simulations to be

as high as 1014 T.4 An extended range for I at the
center of strongly magnetized neutron stars would
be 10−7 ≲ Ic ≲ 3 × 10−2.
As can be appreciated from Fig. 8, some of the indivi-

dual configurations intersect with the interval 10−7≲
Ic ≲ 3 × 10−2, which means that it is possible to find a
value of μ such that Bc and M are within the range of
neutron stars. In particular some of the low mass solutions
obtained with q ¼ 1 are in this region, while typical,
compact solutions with q ¼ 1, 5, 25, and 50 might have
stronger magnetic fields (larger masses) than magnetars if
we assume similar values of the mass (magnetic fields) of
the boson stars to those of the neutron star models. In order
to perform a numerical application we restrict to the
configurations with q ¼ 1 and Mμ ¼ 0.7 and choose
M ¼ 1.5 M⊙. This fixes μðcℏÞ ¼ 1.8 × 10−10 eV which
in turn sets the magnitude of all other physical variables, for
instance the magnitude of the magnetic field at the center of
coordinates takes then the value of Bc ≈ 1 × 1014 T, which
is within the expected values of magnetic fields inside
magnetars. Furthermore, the size of this bosonic configu-
ration, which can be estimated from the size of the torus, is
of order rmaxðϕÞ ≈ 9 km, obtaining a compactness compa-
rable to those of neutron stars.

V. CONCLUSIONS

In the present work we have constructed magnetized
solutions of boson stars, which are static, axisymmetric,
everywhere regular and asymptotically flat solutions of the
Einstein-Maxwell-Klein-Gordon system characterized by
the mass parameter of the scalar field μ, the azimuthal
harmonic index (winding number) m and the coupling
constant q. The configurations consist of two contrarotating
oppositely charged tori, and we have seen that they give rise
to an electrically neutral current that generates a poloidal
magnetic field, according to the observer at rest.
Comparing with the q ¼ 0 case, which reduces to the

toroidal static boson stars found in [19], we obtained that
the electromagnetic field affects the structure of the star and
can noticeably change their mass and size. Similarly to
other boson star models, in the magnetostatic solutions
obtained in this work, a maximum mass configuration was
found for each q, and in all explored cases the sequence of
solutions contain a region of negative binding energy.
Regarding the electromagnetic part, the dipole magnetic
moment M has been obtained and an important difference
is noted with respect to the rotating charged boson star,
namely that the maximum M configuration does not
corresponds with the maximum mass configuration for

FIG. 8. Dimensionless quantity I defined in Eq. (25), evaluated
at r ¼ 0 for configurations with m ¼ 1 and different values of q.
The yellow region corresponds to the upper region of the interval
I at the center of strongly magnetized neutron stars (see the text
for details).

4Restricting to the Einstein-Maxwell-Euler self-consistent
models of neutron stars with equations of state independent of
the magnetic field, the maximum magnetic field Bc, which is
attained at the center of the star, is approximately only one order
of magnitude bigger than Bpole (see e.g., [20]).
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every q, and is shifted towards the zero mass solution
(ω ¼ μ).
We showed that regions of zero magnetic field form at

the inner part of the torus which grow in size as one
considers large enough values of the electromagnetic
coupling constant q. On the other hand, it has also been
found that the electromagnetic contribution to the sources
increases in relation to the scalar field corresponding
sources. For these reasons and since we have not found
any bound for q, it would be interesting to study in a future
work, the numerically challenging solutions with q ≫ 1
and also analyze the asymptotic limit q → ∞.
The magnetic field has been compared to that of strongly

magnetized neutron stars, obtaining that for similar values
of the total mass of the star, the inner magnetic field is
comparable to that of magnetars for q≲ 1 compact
configurations and greater, for larger values of q, making
our objects, besides being interesting by their own value,
faithful mimickers of neutron stars. Since toroidal static
boson stars with q ¼ 0 are known to be unstable we expect
that the obtained solutions (at least for small values of q)
remain unstable, however there is a stabilization (and
formation) mechanism for neutral multifield boson stars
[19] which might be applied to the charged scalar field case.
Starting from the conditions in which these magnetized
boson stars are stable, a mechanism for their formation
could be devised. Boson stars are useful entities in strong
gravity research, in particular in dynamical studies
and as toy models of more complex scenarios. In this
sense, the compactness and magnetic field magnitudes of
magnetostatic boson stars motivates the study of the
collapse and the consequent emission in both the gravita-
tional and electromagnetic channels. Such collapse dynam-
ics and multimessenger studies will be presented in
future works.
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APPENDIX: 3 + 1 DECOMPOSITION OF Tμν AND
THE ELLIPTIC SYSTEM OF PDEs

In terms of the energy-momentum tensor decomposed
into the 3þ 1 quantities,

E ¼ Tμνnμnν; Pα ¼ −nνTμνγ
ν
α; Sαβ ¼ Tμνγ

μ
αγνβ;

ðA1Þ

where nα ¼ ð1=N; 0; 0; 0Þ, γαβ ¼ δαβ þ nαnβ, and N ≔ eF0 ,
the Einstein equations can be written [27,43,44] as the
following system of elliptic equations for the metric
coefficients at Eq. (8),

Δ3F0 ¼ 4πe2F1ðEþ SÞ − ∂F0∂ðF0 þ F2Þ; ðA2aÞ

Δ2½ðNeF2 − 1Þr sin θ� ¼ 8πNe2F1þF2r sin θðSrr þ SθθÞ;
ðA2bÞ

Δ2 ðF1 þ F0Þ ¼ 8πe2F1Sφφ − ∂F0∂F0; ðA2cÞ

where

Δ3 ≔
∂
2

∂r2
þ 2

r
∂

∂r
þ 1

r2
∂
2

∂θ2
þ 1

r2 tan θ
∂

∂θ
; ðA3Þ

Δ2 ≔
∂
2

∂r2
þ 1

r
∂

∂r
þ 1

r2
∂
2

∂θ2
; ðA4Þ

∂f1∂f2 ≔
∂f1
∂r

∂f2
∂r

þ 1

r2
∂f1
∂θ

∂f2
∂θ

: ðA5Þ

The source terms using the ansatz in Eqs. (8), (9), and
(10) lead to the following expressions:

Eþ S ¼ 4

N2
ω2ϕ2 − 2μ2ϕ2 þ e−2ðF1þF2Þ

μ0r2sin2θ
∂C∂C; ðA6Þ

Srr þ Sθθ ¼ 2

�
ω2

N2
−
e−2F2ðm − qCÞ2

r2sin2θ

�
ϕ2 − 2μ2ϕ2; ðA7Þ

Sφφ ¼
�
ω2

N2
þ e−2F2ðm − qCÞ2

r2sin2θ

�
ϕ2 − e−2F1∂ϕ∂ϕ − μ2ϕ2

þ e−2ðF1þF2Þ

2μ0r2 sin2θ
∂C∂C: ðA8Þ

The two Klein Gordon Eq. (3), and the Maxwell Eq. (4),
reduce to

Δ3ϕ ¼ e2F1

�
μ2 −

ω2

N2

�
ϕ − ∂ϕ∂ðF0 þ F2Þ

þ e2F1−2F2
ðm − qCÞ2ϕ
r2 sin2 θ

; ðA9Þ
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ð2Δ2 − Δ3ÞC ¼ −∂C∂ðF0 − F2Þ − 2μ0qe2F1ðm − qCÞϕ2:

ðA10Þ

We have obtained the following number density currents,

jμ1 ¼
�
ω
ϕ2

N2
; 0; 0;

e−2F2ðm − qCÞϕ2

r2sin2 θ

�
; ðA11Þ

and

jμ2 ¼
�
ω
ϕ2

N2
; 0; 0;−

e−2F2ðm − qCÞϕ2

r2sin2θ

�
; ðA12Þ

which have been inserted in Eq. (4) to obtain Eq. (A10),
and corresponds to the nontrivial remaining Maxwell
equation, □Aφ − Rφ

φ ¼ −μ0Jφ.
Equations (A2), (A9), and (A10) make up the elliptic

system of PDEs for the model (1) using the ansatz
presented at Sec. II.
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A. Vajpeyi, R. Smith, C. Herdeiro, E. Radu, and S. H. W.
Leong, Phys. Rev. Lett. 126, 081101 (2021).

[2] F. S. Guzman and J. M. Rueda-Becerril, Phys. Rev. D 80,
084023 (2009).

[3] C. A. R.Herdeiro, A. M. Pombo, E.Radu, P. V. P. Cunha, and
N. Sanchis-Gual, J. Cosmol. Astropart. Phys. 04 (2021) 051.

[4] S. Tsujikawa,Classical QuantumGravity 30, 214003 (2013).
[5] A. Suárez, V. H. Robles, and T. Matos, Astrophys. Space

Sci. Proc. 38, 107 (2014).
[6] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev.

D 95, 043541 (2017).
[7] L. A. Ureña López, Front. Astron. Space Sci. 6, 47 (2019).
[8] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[9] S. L. Liebling and C. Palenzuela, Living Rev. Relativity 15,

6 (2012).
[10] L. Visinelli, Int. J. Mod. Phys. D 30, 2130006 (2021).
[11] Y. Shnir, arXiv:2204.06374.
[12] D. J. Kaup, Phys. Rev. 172, 1331 (1968).
[13] P. Jetzer and J. J. van der Bij, Phys. Lett. B 227, 341 (1989).
[14] S. Yoshida and Y. Eriguchi, Phys. Rev. D 56, 762 (1997).
[15] L. G. Collodel, B. Kleihaus, and J. Kunz, Phys. Rev. D 99,

104076 (2019).
[16] C. A. R. Herdeiro, J. Kunz, I. Perapechka, E. Radu, and Y.

Shnir, Phys. Lett. B 812, 136027 (2021).
[17] M. Alcubierre, J. Barranco, A. Bernal, J. C. Degollado, A.

Diez-Tejedor, M. Megevand, D. Nunez, and O. Sarbach,
Classical Quantum Gravity 35, 19LT01 (2018).

[18] V. Jaramillo, N. Sanchis-Gual, J. Barranco, A. Bernal, J. C.
Degollado, C. Herdeiro, and D. Núñez, Phys. Rev. D 101,
124020 (2020).

[19] N. Sanchis-Gual, F. Di Giovanni, C. Herdeiro, E. Radu, and
J. A. Font, Phys. Rev. Lett. 126, 241105 (2021).

[20] M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak,
Astron. Astrophys. 301, 757 (1995).

[21] C. Y. Cardall, M. Prakash, and J. M. Lattimer, Astrophys. J.
554, 322 (2001).

[22] D. Chatterjee, T. Elghozi, J. Novak, and M. Oertel, Mon.
Not. R. Astron. Soc. 447, 3785 (2015).

[23] A. Oron, Phys. Rev. D 66, 023006 (2002).
[24] K. Kiuchi and S. Yoshida, Phys. Rev. D 78, 044045 (2008).
[25] J. Frieben and L. Rezzolla, Mon. Not. R. Astron. Soc. 427,

3406 (2012).

[26] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2011).
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