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Tolman VII (TVII) is an analytical model for the nonrotating perfect fluid sphere with a simple quadratic
density profile where its value is zero at the surface and a finite critical density value at the center.
Therefore, compared to another analytical model like the constant density star, TVII is more realistic.
Except for the dominant energy condition (DEC), which is violated in the region near the star’s center, the
TVII satisfies all energy conditions. However, the causal condition is also violated for C > 0.26, and the
maximum compactness of the TVII is restricted, i.e., Cmax ≈ 0.38. Here, we investigate the impacts of
nonlocal gravity on the properties of the star of TVII within the range of the compactness of an
ultracompact star (0.33 ≤ C ≤ 0.44). This nonlocal gravity version of TVII (NGTVII) is parametrized by
the nonlocal parameters (β̃) and the compactness (C). We have found that NGTVII can reach Cmax ¼ 0.43
with β̃max ¼ 3 which is significantly more compact than TVII. The nonlocal density and pressure profile
differs from the TVII, depending on the stars’ compactness and nonlocal parameter. We have also found
that for the relatively small value of β̃ and the compactness, i.e., C ≲ 0.31, the causality condition and the
DEC are not violated. We have also found that the NGTVII’s effective potential in the interior can be larger
and deeper than that of the TVII model, indicating the deceleration of the echo time. Moreover, using the
effective potential of NGTVII, the quasinormal mode and gravitational echo are calculated using Bohr-
Sommerfeld fitting and solving the time-dependent Reggae-Wheeler equation. We can infer that the
NGVTII with the maximum compactness and nonlocal parameter values enables the existence of the
ultracompact star with more trapped modes.
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I. INTRODUCTION

As a classic theory, general relativity (GR) passed almost
all precision tests on broad energy scales. However, from a
theoretical view GR faces two main problems. The first is
the occurrence of singularity in cosmology and black hole
(BH). Second, this theory is nonrenormalizable when we
quantize with the standard method. Furthermore, the
presence of singularities in BHs, not only in GR but also
in most of the modified gravity theories formulated
classically. A resolution of this issue most likely requires
considering the quantum effects. However, the quantum
field on the BH background breaks the unitarity property of
quantum theory [1,2]. Note that the nonlocality of space-
time might resolve this problem (see Ref. [3,4] and the
references therein). The basic argument of these inevitable
procedures occurs because spacetime, in the Planck scale,
slowly shifts its nature to the cutoff in the ultraviolet regime
(short wavelength). Therefore, all of the extensive studies
of quantum gravity, such as noncommutative geometry

[5–20] and the generalized uncertainty principle [21–32]
employ the idea of the fundamental length and seem
nonlocal in the conventional sense. Moreover, most of
the nonlocal gravity theory has already been studied in the
physics of BHs [33–41]. Some of the references improved
the solution by adding some corrections in the nonlocal
action with an entire function, Að□Þ. In [33] the author
obtained the BH solution using a noncommutative black
hole (NCBH) with the entire function of the order 1=2 and
generalized uncertainty principle (GUP) with the entire
function of the order lower than 1=2. Studies revealed that
the BH with the nonlocal contribution enables the existence
of static and vacuum BH with
(1) Regular properties at the center,
(2) Zero remnant value in the Hawking temperature,
(3) Positive heat capacity.

Therefore, we can infer that nonlocal gravity could be a
good candidate for curing the conventional defect of
classical gravity at the Planck scale.
Compact objects can be classified based on their com-

pactness C≡M=R. For BHs C ¼ 1=2. White dwarfs and
neutron stars have compactness C < 1=3. The third set of
compact objects are objects with compactness ranging
between 4=9 < C < 1=2. These exotic compact objects
violate the Buchdahl limit. As denoted by ultracompact
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stars in this work, are the fourth kind of compact object
with a compactness ranging between 1=3 < C < 4=9.
These stars do not violate the Buchdahl limit but they
possess a photon sphere; the photon sphere is the unstable
circular null geodesic of the external Schwarzchild space-
time metric. Note that when objects have a photon sphere
that manifested from a compact binary merger process, the
postmerger ringdown waveform could be initially identical
to the one of a BH with modifications encoded in
subsequent pulses of gravitational wave known as gravi-
tational echos [42]. Please see a review of the classification
and the properties of compact objects in Ref. [4] and the
references therein. Therefore, exploring nonlocality’s effect
on ultracompact stars is intriguing.
GR and its alternative theory have extensively studied

the exact solution for the static fluid star. Despite the
increasing total number of the exact solutions [43], only
several subsets of them can be matched with the physical
condition. Most of the solutions represent the pathologies
from the mathematical point of view, or do not satisfy the
causality and the energy condition. One well-known
example of the exact solutions is the constant density star
(CDS) and the TVII star. The CDS model allows the star to
have an incompressible fluid with a nonzero density in the
star’s interior and the pressure, which drops from its center
to zero at the boundary. Despite the straightforward metric,
the infinite speed of sound makes the matter content inside
the star superluminal. However, this solution provides a
clear prophecy about the maximum possible compactness
in the Buchdal limit [44] i.e., C ≤ 4=9 (Please see also the
discussion related to bound in ultracompact objects in
Ref. [45] and for the anisotropic version in Ref. [46].). TVII
was proposed by Tolman [47] where he developed a
general method to obtain the static spherically-symmetric
Einstein equations with matter fluid sources. The purpose
of this method is to obtain the gravitational equilibrium
with a perfect fluids solution easily and open up several
exact solution possibilities to explore the interior model of
the star. This method accommodates eight exact solutions
for the metric functions, matter density, and fluid pressure.
Among the eight solutions, the first three are well known,
i.e., The Einstein universe, The Schwarzschild-de Sitter
solution, and the Schwarzschild interior, whereas the other
four are somewhat unphysical. The TVII model is one of
the interesting solutions of this kind because the model is
physically quite acceptable [48–53]. TVII is an analytical
model with a simple quadratic function on the density
profile. The profile becomes zero at the surface and haas
nonzero finite values in the center. The pressure profile also
shows similar behavior. This model satisfies all energy
conditions except the dominant energy condition (DEC). It
has been reported that the TVII model has a maximum
compactness, Cmax ¼ 0.38 and DEC can be satisfied up to
photon sphere compactness i.e., Cps ¼ 0.33 [54,55].
Moreover, the sound of speed near the center, csjr→0, in

the TVII model allows the subluminal condition only for
the compactness quite far below Cps.
Gravitational perturbation of compact stars provides

information on echo time, effective potential, quasinormal
mode (QNM), and the gravitational echo signal. These
quantities becomes crucial and relevant in the gravitational-
wave era because they could experimentally be observed.
The gravitational-wave modes due to perturbation can be
classified into two distinct families, i.e., the axial and the
polar modes. In this work, we focus only on the oscillation
of the axial mode obtained by solving the Regge-Wheeler
equation. For the TVII model, the axial mode has exten-
sively been studied in Refs. [56–61]. It was shown that the
compactness below Cps can still have a w-mode. The axial
and polar modes as well as the QNM of neutron stars (NS)
within the TVII model are explored in detail in Ref. [62].
On the other hand, it was shown in Ref. [63] for the static
case and in Ref. [64] for the rotating case that the Tolman
VIIs effective potential of NS obtained from the null
geodesics with Rmin=M ¼ 2.59 can trap gravitational
waves or neutrinos. At the same time, there has been an
extensive study on nonradial oscillations within the TVII
model. The most exciting of the axial mode oscillations is
the trapped mode. This mode does not have a Newtonian
counterpart [65], and its mode increases when the star is
already in the ultracompact region. Thus, related to the
damping time, we can imply that the more compact the star
is, the slower the damping is because the gravitational
waves are trapped inside the effective potential barrier.
In this paper we investigate the impact of including

nonlocality to the TVII model using the nonlocal form
shown in Ref. [33]. There are many discussions on the
impact of nonlocality on black hole properties. This work
focuses on the impact of nonlocality in ultracompact
objects based on a fluid ideal. It means that the interior
of the corresponding ultracompact star equation of state is
assumed to be perfect fluid. Therefore, the equation of state
should satisfy the well-known energy conditions (strong
energy condition, dominant energy condition, weak energy
condition, and null energy condition). Therefore, the
maximum compactness for a given equation of state is
expected only to be less than the Buchdal limit value;
CBL ¼ 4=9 [4]. So the condition with C > CBL makes the
pressure as well as the tensor metric infinite in this picture.
In addition, TVII [52] is a perfect fluid, analytic model.
This model is more realistic than constant density star
model. However, the price we must pay is the existence of
the constraint compactness, Cmax ¼ 0.38. So it is still
intriguing to obtain the best model of the star to smear
the TVII to be a good candidate and, perhaps, reach wider
compactness until near the Buchdal limit value. The latter is
the main motivation of this work. On the other hand,
considerable attention has been devoted to studying the
black hole mimicker objects [66–68]; one of this kind is a
gravastar [69]. This object allows us to explore the
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compactness higher than the Buchdal limit. However, the
violation of the strong and dominant energy conditions can
not be avoided in this model. Since our object still clings
firmly to the perfect fluid assumption and does not exhibit
the black hole mimicker objects, the novel solution is valid
only in the range of the ultracompact region below the
Buchdal limit.
We suspect that the nonlocality makes the star’s com-

pactness higher. Therefore, we could study the ultracom-
pact stars within the TVII model. Consequently, the
analysis of the echo time, QNM, and the gravitational
echo in the ultracompact region become more viable to
explore within this model. We note that embedding the
nonlocal effect into a compact object has been an intriguing
problem in astrophysics. Note that the ultracompact object
with two potential barriers modeled by two Dirac delta
potentials endowed in the nonlocal scalar field reveals that
the echoes in that object can be amplified [70]. It was also
shown in Ref. [71] that the quark and neutron stars within
the nonlocal gravity (with positive coefficient) enable the
existence of the highest maximum mass compared to GR
limit counterpart. Please see also Refs. [72–76] for detailed
discussion of the nonlocal impacts on the stars.
This paper is structured as follows: In Sec. II we briefly

review the TVII model. In Sec. III we discuss nonlocal
gravity impacts in the TVIII model, the analytic density,
and the numerical profile of the pressure, and the metric
eνðrÞ. Before we discuss the perturbation of the star and the
related properties, we check the validity of the solution and
the parameters presented in Sec. IV; the physically allowed
nonlocal parameter β̃ and the compactness C are discussed.
Section V provides calculation results for gravitational
perturbation in the axial case. Hence, QNM and the
gravitational echo are discussed. In Sec. VI, we conclude
the discussion. We also present some calculations detailed
in the Appendix. We use the geometrized units throughout
the paper.

II. TOLMAN VII MODEL

To begin with, we will briefly review the TVII model.
The metric used to describe nonrotating and spherically-
symmetric objects is [47,52,53]

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2; ð1Þ

where the tt and rr components are a function of r, and
dΩ2 ¼ dθ2 þ sin2 θdφ2 is a two-sphere element. The
matter in the interior of the object within ideal fluid
approximation takes following form

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð2Þ

where ρ and p are the energy density and the pressure,
respectively, whereas uμ is the four-velocity. From the

Einstein field equation, Gμν ¼ 8πTμν, we can have the
following equations

m0 ¼ 4πr2ρ; ð3Þ

e−λ
�
ν0

r
þ 1

r2

�
¼ 8πp; ð4Þ

�
e−λ − 1

r2

�0
þ
�
e−λν0

2r

�0
þ e−ðλþνÞ

�
eνν0

2r

�0
¼ 0: ð5Þ

Note that the prime symbol 0 denotes d=dr and
e−λ ≡ 1–2mðrÞ=r. In the Tolman VII model, the corre-
sponding energy density profile is defined in a simple
quadratic form which can be written as

ρðrÞ≡ ρc½1 − ðr=RÞ2�; ð6Þ

where ρc is the energy density value at the object’s center and
R is a stellar radius. From these equations, we can obtain a
complete solutionof themetric inside the starwithin theTVII
model. Putting the density profile into Eq. (3) and integrating
it with the appropriate choices of boundary conditions in
r ¼ R gives us the mass profile of this model as

mTVIIðrÞ ¼ 4πρc

�
r3

3
−

r5

5R2

�
; ð7Þ

and hence, the explicit value of ρc can be obtained by using
the condition thatM ≡mðRÞ. The result isρc ¼ 15M=8πR3.
Then, we can obtain the metric in the rr component as

e−λTVIIðrÞ ¼ 1 −
8π

15
ρcr2

�
5 −

3r2

R2

�
: ð8Þ

This result can be used to get the ν function by substituting
the latter equation into Eq. (5). The result reads

eνTVIIðrÞ ¼ C1;TVII cos2½ϕTVIIðrÞ�; ð9Þ

where

ϕTVIIðrÞ ¼ C2;TVII −
1

2
log

���� r
2

R2
−
5

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5e−λTVII

8πρcR2

s ����: ð10Þ

The C1;TVII and C2;TVII are defined as

C1;TVII ≡ 1 −
5C
3
; ð11Þ

C2;TVII ≡ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
3ð1 − 2CÞ

s �
þ 1

2
log

���� 16þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C
3C

r ����;
ð12Þ
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where the compactness C≡M=R. These integration con-
stants are determined from the boundary condition in r ¼ R;
bymatching the exterior solutionwith the zero pressurevalue
at the object’s surface. As we mentioned earlier, the allowed
maximum compactness (based on the finiteness of the
pressure and the metric) for the TVII model is restricted
until Cmax ≈ 0.38 [54].

III. NONLOCAL GRAVITY WITH TOLMAN VII
(NGTVII) MODEL

In this section we construct TVII under nonlocal gravity.
The nonlocality in the gravity sector can be mapped into the
nonlocality in the matter sector. In this work, we use the
action proposed in Ref. [33]. This nonlocality model has
been used recently to study the impact of nonlocality in a
black hole (BH) [34–37]. The action is [33]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
RðxÞ þ Smatter; ð13Þ

where the ordinary Ricci tensor, R, is embedded through
the following form

RðxÞ ¼
Z

d4y
ffiffiffiffiffiffi
−g

p
A2ðx − yÞRðyÞ; ð14Þ

and the bilocal distribution is defined by

A2ðx − yÞ≡A2ð□xÞδð4Þðx − yÞ: ð15Þ

Here, the operator Að□xÞ ¼ gμν∇μ∇ν, is dimensionless
d’Alembertian operator. We can obtained the Einstein field
equation (EFE) by varying the action in Eq. (13) with
respect to the metric tensor gμν and neglecting the surface
term related to the variation of the d’Alembertian. The
nonlocal EFE reads

A2ð□Þ
�
Rμν −

1

2
gμνR

�
¼ 8πTμν: ð16Þ

The bi-local operator works on the gravity sector. However,
the EFE can be written in the following form

Rμν −
1

2
gμνR ¼ 8πT μν; ð17Þ

where T μν ≡A−2ð□ÞTμν. It is allowed since A has a
unique and well-defined inverse [33]. Now, the action (13)
can be represented in two possible ways; Eq. (16) denotes
the nonlocal geometry coupled to the ordinary matter,
whereas Eq. (17) denotes the ordinary local gravity coupled
to the generalized matter. The two forms are equivalent
[33]. In the entire calculation in this paper, we use Eq. (17)
as the representation of nonlocal EFE to be solved because
this option is easier to handle. The nonlocal effect appears

in the matter sector, and hence, the tensor energy-
momentum presented in Eq. (2) is modified into

T μν ¼ ðρ̃þ p̃Þuμuν þ p̃gμν; ð18Þ

and the three component of Gμν ¼ 8πT μν together with the
r component from the continuity equation and ansatz (1)
yield

e−λ
�
λ0

r
−
1

r

�
þ 1

r2
¼ 8πρ̃; ð19Þ

e−λ
�
1

r2
þ ν0

r

�
−

1

r2
¼ 8πp̃; ð20Þ

e−λ

4

�
2ν00 þ ν02 − ν0λ0 þ 2ν0

r
−
2λ0

r

�
¼ 8πp̃; ð21Þ

p̃0 ¼ −
1

2
ðp̃þ ρ̃Þν0: ð22Þ

This EFE for the isotropic perfect fluid leads us to three
ordinary differential equations for the matter variables, ρ̃
and p̃, and the two metric variables, ν and λ. These relations
give us the Tolman-Oppenheimer-Volkof (TOV) equation
as shown in Eq. (22). To evaluate it step by step, we employ
the r component of the metric tensor to give a simple
expression for mass when the generalized density, ρ̃, are
known. Next, following the Tolman idea to manipulate the
components of the EFE in Eqs. (20) and (21), the set of
field equations reduces to second-order differential equa-
tion for metric ν, which already appeared in Eq. (5). Next,
with the aid of e−λ, Eq. (19) turns out into

m0 ¼ 4πr2ρ̃: ð23Þ
Our next task is to obtain the modified nonlocal density

profile. We start with the definition of the density itself as

ρ̃ ¼ A−2ð□Þρ ¼ 1

ð2πÞ3
Z

∞

0

dse−sð1þβp2Þ
Z

d3pρðpÞeix⃗:p⃗;

ð24Þ

ρ̃ ¼ 1

2
ffiffiffi
β

p
x

�Z
x

0

dx0x0ρðx0Þe−
xffiffi
β

p
�
e

x0ffiffi
β

p
− e

− x0ffiffi
β

p
�

þ
Z

R

x
dx0x0ρðx0Þe−

x0ffiffi
β

p
�
e

xffiffi
β

p
− e

− xffiffi
β

p
��

: ð25Þ

After some algebra, we finally obtain the close form
expression for the modified nonlocal density. The calcu-
lation detail can be seen in the Appendix. While in general
we can put this modified nonlocal density into any model,
in this work we use it only for the case of the TVII model.
Changing variables and inserting the model into Eq. (25)
gives
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ρ̃ðrÞ ¼ ρ̃ce
−rþRffiffi

β
p
�� ffiffiffi

β
p
r

þ 3β

rR
þ 3β

3
2

rR2

�
ðe

2rffiffi
β

p
− 1Þ − e

rþRffiffi
β

p
�
r2

R2
þ 6β

R2
− 1

��
: ð26Þ

The modified nonlocal density profile is characterized by its stellar radius R, nonlocal parameter β as well as the energy
density value at the center. In order to get the expression for ρc, we demand the same condition as used in the standard TVII
model, and the result reads

ρ̃c ¼
15CR3β−5=2e

2Rffiffi
β

p

60π
�

Rffiffi
β

p þ 1
	�

3þ R2

β þ 3Rffiffi
β

p
	
þ 4πe

2Rffiffi
β

p �
−45þ 2R5

β5=2
− 15R3

β3=2
þ 30R2

β

	 : ð27Þ

As expected, the ρ̃c form is constituted from the compactness, stellar radius, and the nonlocal parameter. When β is small,
the energy density profile and its value in the center are smoothly transformed into the ordinary ones. After this step, the
mass profile mðrÞ could be obtained by integrating Eq. (3). Note that based on the physical consideration, we also demand
that the mass function must vanish at the core. To this end, we obtain the mass profile as

mNGTVIIðrÞ ¼
4πe−

rþR
β ρ̃cβ

5=2

15R2



15

�
3þ R2

β
þ 3Rffiffiffi

β
p

��
e2r=

ffiffi
β

p �
rffiffiffi
β

p − 1

�
þ rffiffiffi

β
p þ 1

�
−
r3e

rþRffiffi
β

p

β3=2

�
30þ 3r2

β
−
5R2

β

��
; ð28Þ

Furthermore, with the nonlocal mass and the density
profiles in hand, we are ready to solve the second-order
differential equation for metric ν. When we discussed TVII
model, all the solutions we obtained were straightforward
or analytical. Different cases appear when we consider a
nonlocal effect where the solution for Eq. (5) cannot solve it
analytically anymore. Hence, we try to solve those equa-
tions, i.e., Eqs. (5) and (22) numerically usingMathematica
package. The solution for gtt as well as the pressure
depends on how we treat the nonlocal parameter β and
the compactness C. In the next section we will present the
range of allowed values of parameter ðβ; CÞ and also depict
the plot related to the allowed parameter.

IV. IMPACTS OF NONLOCALITY ON THE
EQUATION OF STATE PREDICTED

BY TVII MODEL

In this section we discuss the numerical solution com-
pared with the ordinary TVII model in detail. As explained
earlier, the nonlocal contribution makes the differential
equation no longer analytic. Hence, we must employ the
suitable value for the compactness and the nonlocal
parameter, respectively. In TVII model, the maximum
compactness is Cmax ¼ 0.38. On the other hand, the
NGTVII model has a nonlocal parameter in Eq. (5).
Therefore, we could play with those parameters to obtain
a relatively larger maximum compactness, Cmax. The
detailed numerical step and result will be presented below.

A. Allowed parameter and the causal condition

The second order differential equation presented in
Eq. (5) can be solved numerically by setting

ν ¼ ν1; ν0 ¼ ν2; and ν00 ¼ ν02: ð29Þ

Substituting these definitions into Eq. (5) and followed by
inserting the value of β and C with suitable boundary
conditions that fit the exterior solution, we obtained the
metric function νðrÞ in a numerical data form. Next we
substitute the νðrÞ function into the TOV equation (22) to
obtain the nonlocal pressure profile. However, in general,
we already have a complete metric solution with the density
and the pressure, describing NGTVII. Since the nonlocal
parameter and the compactness mainly characterize the
solution, we investigate the allowed parameter to have an
existing solution for NGTVII’s star. Besides, the causality
condition is crucial for a physically acceptable star since,
according to the initial observer, the cause and its conse-
quence are separated in the timelike region. Hence, the
object with a higher light speed violates the causality
principle. The causal condition in the isotropic generalized
perfect fluid can be compactly expressed as

0 ≤ cs ≤ 1; ð30Þ

where cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp̃=dρ̃

p
. This condition implies that the speed

of sound, the cs profile, must be positive and lay in the
subluminal range of Eq. (30), for otherwise cs becomes
superluminal. A typical trend of the speed of sound as a
function of r of certain gravitation objects is similar to the
pressure profile, i.e., drops at the near-surface and reaches
the maximum in the center. Hence we only focus on the
region near the center, csr→0, and varied numerically with
the compactness and the nonlocal parameter β̃. Note
that β̃≡ β=102.
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The allowed parameter and the causal condition are
depicted in Fig. 1. On its top panel we plot the relationship
between the compactness and the nonlocal parameter.
Standard TVII model compactness can be obtained by
setting the nonlocal parameter β̃ close to zero. However, for
β̃ ¼ 10−12 the result is already identical with β̃≡ 0. It can
be observed from this figure that when we shift β into a
higher value, the compactness increases. Therefore, we
could infer that the nonlocality of the matter sector enables
the existence of a more compact star than that predicted by
its TVII model counterpart. Thus, we focus on the β̃max ¼ 3
with the maximum compactness Cmax ¼ 0.43. On the other
hand, the middle and the bottom panels in Fig. 1 represent
the speed of sound as a function of compactness with fixed
nonlocal parameter β̃ and a function of β̃ with fixed
compactness, respectively. The middle panel shows that
for compactness value near the Cps, the ultracompact stars
within NGTVII model can admit the causal condition
ðcs < 1Þ only for a certain small β̃ values. For example,
this condition is satisfy for the case of β̃ ¼ 0.11. It is
reported [54] that the speed of sound near the center for
TVII admits the causal condition when1 C ≲ 0.26. Thus,
comparing our result we can infer that the nonlocal effect
for a small value of β̃ enables the existence of an equation
of state (EOS) that satisfies the subluminal condition in
higher compactness than that of the local TVII model. In
the bottom panel, we plot the speed of sound near the center
as a function of β̃ with different compactness. it is evident
that cs, tends to have near-constant value when the nonlocal
parameter, β̃, were shifted to higher value. When C ¼ 0.37,
the star also tends to have a superluminal condition in all β̃
values. From this benchmark, it is without doubt that the
ultracompact star with Cmax and β̃max in the NGTVII model
also cannot satisfy the causal condition. Despite the
limitation, we can infer that the nonlocal effect allows
the ultracompact stars to satisfy the sub-luminal conditions
with compactness close to Cps, which is higher than that of
Tolman VII counterpart [54].
From these considerations, we extract two values in

order to analyze other properties of the NGTVII, including
the effective potential, quasinormal mode and the gravita-
tional echo. The maximum, Cmax ¼ 0.43 with β̃max ¼ 3 as
well as the parameter admiting the physical condition, C ¼
0.31 with β̃ ¼ 0.11. The results are compared to that of
TVII with Cmax ¼ 0.38.

B. Energy condition

The physically acceptable density profile and the pres-
sure should satisfy the energy conditions. Therefore, it is
crucial to check whether the equation of state of ultra-
compact stars within the NGTVII model satisfies the

FIG. 1. [Top panel] Compactness maximum Cmax as a function
of nonlocal parameter β̃. [Middle panel] Speed of sound near
center as a function of compactness. [Bottom panel] and nonlocal
parameter, respectively. Note that β̃≡ β=102. 1This information can be found in the Figs. [7–8] in [54].
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energy condition or not. The energy conditions can be
categorized into four types, i.e., strong energy condition
(SEC), weak energy condition (WEC), dominant energy
condition (DEC), and null energy condition (NEC). These
conditions can be expressed mathematically as

SEC∶ ρ̃þ p̃ ≥ 0; ρ̃þ 3p̃ ≥ 0; ð31Þ

DEC∶ ρ̃ ≥ jp̃j; ð32Þ

WEC∶ ρ̃ ≥ 0; ρ̃þ p̃ ≥ 0; ð33Þ

NEC∶ ρ̃þ p̃ ≥ 0: ð34Þ

This paper also assumes that the matter’s nonlocal pressure
is isotropic. From these equations, the SEC denotes the
strong repulsion of gravity, and the summation of the
nonlocal density and the nonlocal pressure should be
positive. The DEC denotes that the nonlocal density should
be higher than the nonlocal pressure. The WEC and NEC
are relatively similar. However, the WEC needs additional
requirements that the nonlocal density should be posi-
tive also.
We present the pressure and density combination profiles

in the top, middle, and bottom panels of Fig. 3 for the
parameter variations shown in the figures. The trend of
shapes of the profiles in the top and middle panels are
pressurelike profiles. The NEC and WEC are satisfied by
the models’ equation of state. Since we have a positive
value for the density and the pressure. The SEC is also
satisfied because ρ̃þ 3p̃ is greater than ρ̃þ p̃. The DEC
presented in the bottom panel means that the subtraction
between density and the absolute pressure must be positive.
In the figure it is evident that the differences become
negative in the near the center region (black line and the
TVII model). This evidence indicates the violation of the
DEC in this region.
In the TVII model, the ρ − jpj profile drops moderately

to zero at the surface, whereas, in the NGTVII, the profile
drops to some finite value. It happens because they have
different density profiles. We have found that the non-
locality effect in NGTVIII cannot be fully remedied, but
this issue can be reduced if the compactness is less than the
maximum compactness value. According to the causal
condition, compactness near the photon sphere with small β̃
admits the causal condition and is depicted as a blue dashed
line in Fig. 2. The ρ̃ − jp̃j is positive at all interior regions of
the NGTVII’s star. Thus, the DEC is fully fulfilled and
higher than TVII counterpart [55].

C. Solution

We calculate the density of TVII and NGTVII models
analytically. The results are depicted in the top panel of
Fig. 3 with the parameter variations shown in the box. The

FIG. 2. The top, middle, and bottom figures represent the
pressure and density combination profiles related to energy
conditions for some parameter variations. The black solid
line represents the density and the nonlocal pressure when
β̃max with Cmax ¼ 0.43. The blue dashed line represents the
appropriate choices of C and β̃ that fit with the physical
condition (cs < 1). The green and magenta (dashed and dot-
dashed) lines denote the one of TVII model with β̃ ¼ 10−12 with
Cmax ¼ 0.38.
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black line represents the maximum parameter that NGTVII
have, β̃max ¼ 3 with Cmax ¼ 0.43. The blue dashed line
denotes the parameter that fits with the physical condition
(cs < 1) with C ¼ 0.31 and β̃ ¼ 0.11. The green dashed
line denotes the TVII model with β̃ ¼ 10−12 and
Cmax ¼ 0.38, and the magenta dotted-dashed line represents
the TVII model solution. For the TVII model, the ultra-
compact equation of motion tends to have a finite value
density at the center and smoothly drop to zero at the star’s
surface. The inclusion of nonlocality in the model modifies
the surface properties of the stars. The density profile of
NGTVII has a finite density value at the surface. We also
ensure that our result reduces to the well-known TVII
model result when we limit the β̃ closer to zero.
We also have plotted the nonlocal pressure to r in the

middle panel of Fig. 3. We have found that the general trend
of the corresponding pressure profiles is physically proper
up to certain maximal values of β and C. However, for
particular values of β and compactness C larger than the
corresponding maximum values, the νðrÞ and p̃ profiles
become infinite near the center. Therefore, the pressure
profiles become unphysical in this region. The plots in the
middle panel of Fig. 3 are the same at the near surface since
we employ the same boundary condition p̃ðRÞ ¼ 0.
However, if we move to the region closer to the center,
we have center pressure p̃c. It is also shown from the figure
that the pc abruptly increases, and it becomes larger than
the one of TVII when the compactness increases until it is
closer to maximum compactness (with β̃max). In the bottom
panel, the metric eν profile is plotted in Fig. 3 and
calculated with different compactness and nonlocality
parameter values. The black line (NGTVII) and the
green/magenta line (TVII) coincide from near the center,
and they split as the radius becomes large. The metric of the
NGTVII model, which admits the physical condition (blue
dashed line), yields a larger metric value than that of the
TVII model.
To this end, we have systematically explored the equa-

tion of state predicted by the NGTVII model numerically
with the appropriate boundary condition. We can infer that
the range of the compactness can increase until Cmax ¼ 0.43
with β̃max ¼ 3. Up to these parameter values, we inves-
tigated the modified nonlocal density, pressure, energy
condition, and speed of sound and compared them to those
of the TVII model. We have found that the ultracompact
star within these models (Cmax and β̃max) does not satisfy the
causal condition. Note that this violation also appears in the
well-known constant density star and Tolman VII model.
The CDS has an incompressible energy density. However,
the nonlocality of NGTVII model allows us admit the
causal condition and the DEC when the nonlocal parameter
is small with the compactness near Cps.

FIG. 3. [Top panel] Generalized energy density as a function
of stellar radius. [Middle panel] Nonlocal pressure profile as a
function of r. [Bottom panel] e2ν metric profile as a function of
r. The black line represent maximum parameter, β̃max ¼ 3
with Cmax ¼ 0.43. The blue dashed line denotes the physical
condition (cs < 1) with C ¼ 0.31 and β̃ ¼ 0.11. The green
dashed line denotes the TVII model with β̃ ¼ 10−12 and
Cmax ¼ 0.38, and the magenta dotted-dashed line represents
the TVII model solution. In this figure, we can show that the
small nonlocal parameter and the pure TVII model always
coincide.
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V. PERTURBATION OF THE STARS

It is well known that the production of the gravitational
wave echo due to the ringdown of the photon sphere’s
unstable orbit could be observed for the ultracompact
objects with compactness between 0.33 ≤ C ≤ 0.44. The
TVII model is valuable for describing ultracompact objects
since the TVII model has an analytic energy density that is
finite in the center and has zero value at the surface.
However, we need to note that several authors reported that
the validity of the TVII model to describe the ultracompact
objects is restricted only until Cmax ≈ 0.38 because it has
divergent pressure and gtt metric in this limit. This limit is
still larger than the photon sphere limit, i.e., Cps ¼ 0.33. In
the previous section we presented the Einstein field
equation and the numerical method to calculate the proper-
ties of ultracompact stars within the NGTVII model. With
some choices of nonlocal parameters, we can shift the
compactness cutoff to larger than the TVII model. Here, we
discuss the QNM and gravitational echo of ultracompact
objects within the NGTVII model. First, we construct
the gravitational waves by employing the perturbation into
the Einstein field equation of the NGTVII model using the
general ansatz for perturbation proposed by Chandrasekar
[77] to obtain the wave equation. After that, we discuss the
effective potential, the corresponding implications on
QNM, and the gravitational echo.

A. Regge-Wheeler equation and effective potential

It can be shown that we can obtain (from Einstein’s field
equations) the several forms of nonzero Ricci tensors from
a perturbed metric that can be evaluated and expressed
them as following differential equations [77]

ðe3ψ−ν−μ2−μ3Q23Þ;θ þe3ψ−ν−μ2þμ3Q02;0 ¼ 0;

ðe3ψ−ν−μ2−μ3Q23Þ;r −e3ψ−νþμ2−μ3Q03;0 ¼ 0;

where QAB ¼ qA;B − qB;A and QA0 ¼ qA;0 − ω;A ð2; 3Þ:
ð35Þ

With the aid of these two latter equations, we can obtain

½e−3ψþνþμ2−μ3ðe3ψþν−μ2−μ3Q23Þ;3 �;3
þ ½e−3ψþνþμ2þμ3ðe3ψþν−μ2−μ3Q23Þ;2 �;2¼ Q23;0;0: ð36Þ

Equation (36) can be separated by expanding the function
in terms of Gegenbauer function CαnðθÞ, that satisfiying
following differential equation

�
d
dθ

sin2αθ
d
dθ

þ nðnþ 2αÞsin2αθ
�
CαnðθÞ ¼ 0: ð37Þ

Using the separable equation defined as

e3ψþν−μ2−μ3Q23 ¼ rΨðrÞC−3=2lþ2 ðθÞ;

and introducing
dr�
dr

¼ e−νþμ2 ; ð38Þ

the tortoise radial coordinate, Eq. (36) can be reduced to the
time-dependent wave equation in r� as

�
∂
2

∂t2
−

∂
2

∂r2�
þ VðrÞ

�
Ψðr�; tÞ ¼ 0; ð39Þ

where the effective radial potential is

VðrÞ ¼ eν

r3
½lðlþ 1Þrþ 4πr3ðρ̃ − p̃Þ − 6m̃ðrÞ�: ð40Þ

Note that we obtain the Regge-Wheeler equation with the
pressure, density, and mass defined in a nonlocal manner.
The second-order partial differential equation described
above was endowed with three essential physical ingre-
dients, i.e., the effective potential, complex eigenvalue, and
the time-dependence eigenfunction. Therefore, first, we
want to analyze the effective potential behavior. Inside the
star, we use the effective interior potential, whereas outside
the star, we use the exterior. In Fig. 4 we show the effective
potential as the function of the radius. The detailed
information about the plots is explained in the figure
caption of Fig. 4. Here, we consider TVII and NGTVII
models to be in the compactness range of ultracompact
objects i.e., 0.33 ≤ C ≤ 0.44. The star’s surface is located at
R < 3M, and the exterior solution has a barrier at R ≈ 3M.
This is where the unstable circular null geodesics or light
ring occurs. A perturbed star’s effective potential enables
the infinite potential value to exist at the center since the
presence of the centrifugal contribution. From the figure we
can infer that the effective potential of the ultracompact star
allows the presence of the well between the light ring and
the center. The TVII and NGTVII effective potentials also
possess a second light ring at the minimum of the effective
potential. Since it has a positive value of the second
derivative of the potential, the second light ring should
be stable. It can be reported that the nonlocal contribution
with Cmax makes the interior potential deeper than the
TVII’s potential. When we shift the attention to the blue
dashed line, it exhibits a tiny well in the star’s interior.
Hence, this parameter makes the quasinormal mode hard to
excite, and the axial modes are not resonant. The bottom
panel’s effective potential with the higher l increases the
barrier.
However, it is convenient to discuss the effective

potential of the tortoise coordinate. The relation between
the coordinate and the radius is

r� ¼
Z

r

0

ffiffiffiffiffiffiffiffiffiffi
−
grr
gtt

r
dr; ð41Þ
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where gtt and grr are the metrics in the interior and the
exterior region of the star. Evaluating Eq. (41) numerically,
using the appropriate boundary condition, and matching
with the exterior tortoise coordinate, we obtain the plots
shown in Fig. 5. Figure 5 represents the relation betweem
r� and r for the cases Cmax ¼ 0.43with β̃max ¼ 3, C ¼ 0.31,
with β̃ ¼ 0.11, and TVII parameter. We can also see that the
value of the r�ð0Þ are finite and becomes higher when
compactness decrease. Furthermore, exterior region exhibit
the linear relation between r� and r.

With r� as a function of r in hand, we can obtain the
effective potential as a function of r� plots. Figure 6 shows
both interior and exterior region of effective potential as a
function of r�. One can see that the compactness gives us
information on how wide the interior potential in this figure
is, whereas by comparing the top and bottom panels, it can
be seen that the angular momentum l determines the height
of the potential barrier. The nonlocal EOS of NGTVII with
Cmax provides a wider and deeper potential than the TVII
potential. For the compactness admitting the causal con-
dition, the potential well rapidly disappears and does not
have a sufficient size of the well to produce a quasinormal
mode and gravitational echoes. We can also infer that all
horizonless ultracompact objects obtained in this work
satisfied the null energy condition. They possess an
unstable light ring. They also have a stable light ring
[78]. These signatures are important for the production of
gravitational echoes. In detail, the well of the potential is
related to echo time. The deeper the well, the longer it will
take for the echo to propagate through the interior of the
ultracompact star. When the value of the β parameter is
close to zero, the effective potential reduces to the well-
known TVII model. Moreover, the earlier studies [79,80]
revealed that the spectrum mode related to the potential
could contain three kinds of spacetime modes, i.e., the
trapped modes [81] that corresponds to the potential well
predicted by ultracompact stars, and the w modes [82] that
corresponds to the scattering on the top of the barrier, and
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[Bottom panel]. The black line represent maximum parameter,
β̃max ¼ 3 with Cmax ¼ 0.43. The blue dashed line denotes the
physical condition (cs < 1) with C ¼ 0.31 and β̃ ¼ 0.11. The
green dashed line denotes the TVII model with β̃ ¼ 10−12 and
Cmax ¼ 0.38, and the magenta dotted-dashed line represents the
TVII model solution.
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the wII mode [83] that corresponds to the extremely fast
damped mode. In the next subsection we discuss only the
mode crucial for ultracompact stars (axial part), i.e., the
trapped mode.

B. Echo time and quasinormal mode

Echo time defined as the time needed to waves propagate
from center to the photon sphere radius [84–86]. The echo
time can be written as

τecho ¼
Z

3M

0

ffiffiffiffiffiffiffiffiffiffi
−
grr
gtt

r
dr: ð42Þ

Since we have a numerical solution to the metric, it is
without a doubt that the result of the echo time has similar
behavior. We plot the echo time by varying the compact-
ness as in Fig. 7. As we can see from the figure, the constant
density star (CDS) case tends to have infinite echo time
near the Buchdal limit. In the TVII model, as described
with the green dashed line and magenta dot-dashed line, the
appearance of infinity τ is in a region far before the Buchdal
limit since it has limited compactness to have finite
pressure. The maximum compactness that star can reach
is Cmax ¼ 0.38. When we endowed the nonlocal effect, it is
shown that the value of echo time shifted to near the
Buchdal limit. It depends on the nonlocal parameter. In this
model, we can increase the compactness until Cmax ¼ 0.43
with β̃max ¼ 3. We can infer that the ultracompact star with
nonlocal matter can shift the compactness cutoff.
In the following, we investigate the impact of nonlocality

that, in the previous discussion, indeed affects the behavior
of the effective potential on QNM and gravitational echo
wave functions by solving the wave function differential
equation in Eq. (39). For the time-independent case,
Ψðr�; tÞ ¼ ψðrÞe−iωnt, Eq. (39) can be recast into

d2ψ
dr2�

þ ½ω2
n − VeffðrÞ�ψ ¼ 0; ð43Þ
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where the ωn is the QNM. The QNM, in general, is a
dissipative property of spacetime and plays a crucial role in
the form of gravitational wave echo when the stars reach the
final stage during a ringdown phase. While the star spans
these states, the unstable circular orbit traps the primary
signal. In order to obtain the mode, the complex eigenvalue
on the time-independent second differential equation shown
in Eq. (43) must be solved with the appropriate boundary
conditions. From the black hole point of view, since nothing
can escape from them, we must employ an inward spherical
boundary condition at the black hole horizon

Ψðr�; tÞ ≈ e−iωðtþr�Þ; r� → −∞ðr → 2MÞ: ð44Þ
We require a second boundary for the solution to be an
outward wave at spatial infinity

Ψðr�; tÞ ≈ e−iωðt−r�Þ; r� → ∞ðr → ∞Þ: ð45Þ

The case is somewhat different from the ultracompact or
compact stars’ point of view since they lack the black hole’s
event horizon. The first boundary condition in Eq. (44)
should be replaced by the regularity condition at the center,
whereas the second boundary condition in Eq. (45) is
unaltered. Therefore, we can implicitly infer that the
QNM spectrum for stars is disparate from the black hole.
In this paper, we follow Volkel and Kokkotas’s [87]
procedure to obtain the QNM mode using the Wentzel-
Kramers-Brillouin (WKB) approximation. In quantum
mechanics, the Bohr-Sommerfeld (BS) rule is a well-known
method to receive approximately for the energy spectrum,
En, of bound states in a potential. With the WKB theory, it is
probable to include higher-order correction of BS rule [88].
It means that the WKB approximation is the generalized of
BS rule [89]Z

x1

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En − VðxÞ

p
dx ¼ π

�
nþ 1

2

�
−
i
4
e
2i
R

x2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
En−VðxÞ

p
dx
;

ð46Þ
where x0 and x1 are the classical turning point(s) determined
by the root of the integrand and also depend on the energy
spectrum. The second term in Eq. (46) is the additional term
described as the general one for the BS, where x2 is the third
classical turning point on the right side of the potential
barrier. For a detailed discussion of this procedure, please see
Ref. [87], especially Fig. 1 of this paper. This additional term
denotes an exponentially small imaginary part of the energy
spectrum, which measures the barrier penetrability. We can
simplify further by writing the energy spectrum into

En ¼ E0n þ iE1n, where E0n is the real part of the energy
whereas E1n is small imaginary energy. Substituting these
energy spectrums to the left-hand side of Eq. (46) and
matching with the real and imaginary part at the right-hand
side of Eq. (46). The results are

Z
x1ðE0nÞ

x0ðE0nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0n − VðxÞ

p
dx ¼ π

�
nþ 1

2

�
; ð47Þ

and

E1n ¼ −
1

2

�Z
x1ðE0nÞ

x0ðE0nÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0n − VðxÞp dx

�
−1

× e
2i
R

x2ðE0nÞ
x1ðE0nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0n−VðxÞ

p
dx
: ð48Þ

Furthermore, we use the well-known analytic fitting poten-
tial described below [87]

UQ¼U0þλ20ðx−xminÞ4 and UBW¼ U1

1þλ1ðx−xmaxÞ2
:

ð49Þ

Both functions above are called the quartic oscillator
potential and the Breit-Wigner potential. These two func-
tions depend on U0, U1, λ0, and λ1 parameters. Then, the
value of these parameters is matched with the true effective
potential (in tortoise coordinate). The variable U0 will be the
interior of the true potential, whereas the variable U1 is the
one for the maximum of the true potential. Next, λ1 can be
obtained by identifying V 00

max on the UBW function, which
can be written as λ1 ¼ −V 00

max=2Vmax. The last parameter, λ0,
is not obtained straightforwardly since the minimum does
not match the fitting function. The authors of Ref. [87]
demand that, for the CDS, the quartic oscillator must be
equal to the Regge-Wheeler equation at the surface.
Nevertheless, it does not mean we cannot use it for other
models. Therefore, in this paper, we use the Regge-Wheeler
equation at the surface for TVII and NGTVII models since
the effective potentials of both models are shown in Fig. 4
and Fig. 6 are CDS-like. However, we can start to evaluate
the energy spectrum by inserting both fitting functions into
Eqs. (47) and (48). The detailed calculation of this integral
can be seen in Ref. [87]. The solution reads

E0n ¼ U0 þ λ2=30

�
3π

4Kð−1Þ
�
nþ 1

2

��
4=3

; ð50Þ

E1n ¼ −
ffiffiffiffiffi
λ0

p ðE0n −U0Þ1=4
4Kð−1Þ Exp

�
4i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1 − E0n

λ1

s
E
�
isinh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1

E0n
− 1

s �
;

E0n

E0n − U1

��
; ð51Þ
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whereKðaÞ is the complete elliptic integral of the first kind
and Eða; bÞ denotes the elliptic integral of the second kind
[90]. The variable n shown in the Eq. (50) is the overtone
number. It is important to note that the expression in
Eq. (51) differs with the original one [87], because we use
Mathematica whereas the authors in Ref. [87] use the
Maple program, where the definitions of elliptic integrals of
both codes are different. Nevertheless, the numerical results
of both expressions are the same.2 Having the spectrum
energy in hand, we can match the energy with the complex
eigenvalue showed in Eq. (43) which can be written as,
ωn ¼

ffiffiffiffiffiffi
En

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0n þ iE1n

p
. Splitting the QNM into real

and imaginary forms brings us to fully analytic results for
all trapped modes in ultracompact stars. The mode can be
expressed into ω ¼ ωr þ iωi, where the real part describes
the normal mode of the oscillation and the imaginary part
describes the inverse of the damping time, τd. The final
result of the QNM is shown in Fig. 8. We plot the QNM,
−ωi vs ωr, with different l and compactness. All dots
(circle, square, diamond, triangle) in the plot represent the
overtone number. For TVII model with the aid of the BS
fitting procedure, the overtone number for l ¼ 2 exceed
n ∼ 23 and for l ¼ 3 we have n ∼ 36, whereas in the
NGTVII, the overtone number for the lowest mode is n ∼
50 and for l ¼ 3 is n ∼ 79. We can see that the NGTVII
model with both l ¼ 2 and l ¼ 3 can have more overtone
numbers than that of the TVII model. From this result, we
can also infer that the l ¼ 3mode allowed the ultracompact
star to have more trapped mode than the lowest mode

(l ¼ 2). On the other hand, for both l, the imaginary mode
increase as the compactness decrease (from NGTVII to
TVII). Therefore, we can infer that the horizonless ultra-
compact object with nonlocal matter allows the signal for the
axial oscillation to be damped longer than the TVII model.

C. Gravitational echoes

In the following, we numerically discuss the gravita-
tional echoes resulting from the perturbed ultracompact star
by solving the time-dependent partial differential equation
in Eq. (39). Since the differential operator in the equation
consists of the second order in t and second order in r�, the
form requires two conditions in the initial data and two
conditions at the boundary (at the center and spatial
infinity). The conditions are

I: Ψðr�; 0Þ ¼ 0;

II: Ψðrc�; tÞ ¼ 0;

III:
∂Ψðt; r�Þ

∂t

����
t¼0

¼ fðr�Þ;

IV:
∂Ψðr�; tÞ

∂r

����
r�→∞

¼ −
∂Ψðr�; tÞ

∂t

����
r�→∞

: ð52Þ

Conditions I and III are the initial data, whereas II and IV
are the boundary conditions. Both initial data denotes the
postmerger phase with an initial Gaussian pulse centered at

r� ¼ rg and with spread σ; fðr�Þ ¼ e−
ðr�−rgÞ2

σ2 [42,91].
Condition III is the condition for the star to be regular
at the center, where rc�ðrÞ ¼ r�ð0Þ. Lastly, condition IV
relates to outgoing waves at spatial infinity. After evalu-
ating numerically, the solution of the differential equation
depends on the time and tortoise radius, Ψðr�; tÞ. In this
discussion, we focus on the time evolution of the signal for
the TVII model and the nonlocal one. We investigate
further the analysis by depicting the gravitational echoes
in Fig. 9. The top picture is the NGTVII’s signal, while the
bottom is one of the TVII models. The plots use the same
models as those of effective potential analysis in Fig. 6. The
black line in the Fig. 6 represents the effective potential of
NGTVII model with Cmax ¼ 0.43 and β̃max ¼ 3. It is shown
that the well of the potential is wide, so the signal needs
more time to explore the interior. This physical meaning is
related to the gravitational echo’s plots shown in Fig. 9. As
we mentioned earlier, the compactness parameter admitting
the causal condition does not exhibit any well in the
interior, and thus we can say that the star cannot accom-
modate the gravitational echoes. It can be proven in the
middle panel of Fig. 9 that the behavior of the gravitational
echoes in t > 610 fluctuates and still have the same
pathology until we reach C ≈ 0.39 with β̃ ¼ 0.11. Above
this result, the well in the interior of the potential slowly
shifts to appear resulting the gravitational echoes. However,
it is less interesting since the choices of parameter make

FIG. 8. The QNM − ωi vs ωr with different l and the compact-
ness.

2We thank S. Volkel for kindly confirming this issue.
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the sound of speed and DEC violated. However, from the
figures (top and bottom), we can also conclude that the
NGTVII’s gravitational echoes enable the existence of
ultracompact stars to have a longer propagation in the
interior than its TVII counterpart.

VI. CONCLUSION

In this work we systematically study the impact of
nonlocal gravity of the TVII model (NGTVII) on the
properties of the star for an ultracompact star with the
compactness range between 0.33 ≤ C ≤ 0.44. The NGTVII
model is parametrized by the nonlocal parameters β̃ and
compactness C. The calculations of the star properties
within this model can not be performed analytically any-
more. Therefore, we resort to numerical computation. We
also investigate the validity of the equation of state of this
model by checking its causality condition and its compat-
ibility with energy conditions. Furthermore, we also cal-
culate the echo time, the QNM, and the gravitational echo
predicted by this model.
The compactness and the nonlocal parameter characterize

the complete numerical solution, and thus we shall elaborate
in detail the allowed parameters for NGTVII star to exist.We
found that NGTVII can reach Cmax ¼ 0.43 with β̃max ¼ 3
which is significantly more compact than that of TVII with
Cmax ¼ 0.38. However, both maximum compactness does
not fit with the causal condition. We have also found that for
the relatively small value of β̃ and the compactness around,
i.e., C ≈ 0.31, the speed of sound in this star is subluminal.
Consequently, the violation of the DEC in the region near the
center is significantly reduced. It means we could use
NGTVII as an ultracompact star model. In contrast to the
one TVII model with zero density on the surface, the density
profile of NGTVII has a different shape and a nonzero value
at the surface. It means the density profile has a CDS-like
structure. The pressure profile is sensitive to the compactness
value. The values of the center pressure can be larger or
smaller than the TVII model, depending on the compactness
of the stars. However, it is worth noting that for the Cmax case,
the pressure near the star’s center is higher than that of the
TVII model.
The NGTVII’s star under axial perturbation turns into a

well-known Reggae-Wheeler equation describing three
main properties; the eigenfunction, the quasinormal mode,
and the effective potential. We also found that the
NGTVII’s effective potential can be larger and deeper than
that of TVII for Cmax case indicating the deceleration of the
echo time. The echo time’s figure shows decreasing value if
the C value is decreased and vice versa. Furthermore, if we
increase the β̃, the echo time will be infinite in larger
compactness. In the case β̃ ¼ 3, the echo time for C ¼ 0.43
is larger than that of TVII. Using the effective potential of
NGTVII, the QNM and gravitational echo are calculated

FIG. 9. Gravitational echoes with a different model and
compactness. [Top panel] Illustrates the solution with Cmax ¼
0.43 and β̃max ¼ 3, [Middle panel] Illustrates the solution with
C ¼ 0.31 and β̃ ¼ 0.11. [Bottom panel] Illustrates the TVII’s
gravitational echoes.
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using Bohr-Sommerfeld fitting and solving the time-
dependent Reggae-Wheeler equation. We have found that
for both l, the imaginary part of the mode increase as the
compactness decrease. Therefore, we can infer that the
ultracompact star of NGTVII allows the signal for the axial
oscillation to be damped longer than the TVII model.
Furthermore, we can infer that the NGVTII with the
maximum compactness and nonlocal parameter values
enables the existence of the ultracompact star with more
trapped modes than its TVII model counterpart.
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APPENDIX: DERIVATION
FOR INTEGRAL IN EQ. (24)

In this appendix we shall elaborate the detailed calcu-
lation for nonlocal effect coupled to the energy density, ρ.
We start with the Eq. (24) which can be written as

ρ̃ ¼ A−2ð□Þρ ¼ 1

ð2πÞ3
Z

∞

0

dse−sð1þβp2Þ
Z

d3pρðpÞeix⃗:p⃗:

ðA1Þ

With the aid of d3p ¼ p2dp sin θdθdϕ, we can stack the
above equation into

ρ̃ ¼ 1

2π2x

Z
∞

0

dse−s
Z

∞

0

dpp sinðxpÞe−sβp2

ρðpÞ: ðA2Þ

To evaluate further, we can employ the Hankel functions
and its Fourier transform as

ffiffiffi
k

p
FðkÞ ¼ ð2πÞ3=2

ffiffiffiffiffi
2

πk

r Z
∞

0

drr sinðkrÞFðrÞ; ðA3Þ

and the result reads

ρ̃ ¼ 1

2π2x

Z
∞

0

dse−s
Z

∞

0

dp
ffiffiffiffi
p

p
sinðxpÞe−sβp2

�
ð2πÞ3=2

ffiffiffiffiffiffi
2

πp

s Z
∞

0

dx0x0 sinðpx0Þρðx0Þ
�

¼ 2

πx

Z
∞

0

dse−s
Z

∞

0

dx0x0ρðx0Þ
Z

∞

0

dpe−sβp
2

sinðpx0Þ sinðpxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J

; ðA4Þ

where

J ¼
Z

∞

0

dpe−sβp
2

sinðpx0Þ sinðpxÞ;

¼ 1

4

ffiffiffiffiffi
π

sβ

r
½e−ðx−x0Þ2

4βs − e−
ðxþx0Þ2

4βs �: ðA5Þ

Substituting into Eq. (A4), we get

ρ̃ ¼ 1

2x
ffiffiffiffiffiffi
πβ

p
Z

∞

0

dx0x0ρðx0Þ
Z

∞

0

ds
e−sffiffiffi
s

p ½e−ðx−x0Þ2
4βs − e−

ðxþx0Þ2
4βs �;

¼ 1

2x
ffiffiffi
β

p
Z

∞

0

dx0x0ρðx0Þðe−
jx−x0 jffiffi

β
p

− e
−jxþx0 jffiffi

β
p Þ: ðA6Þ

Here, the infinity means the boundary of the star. We also
demand that the position should be positive, x; x0 ≥ 0.
Hence, we can evaluate the integral and the result is

ρ̃ ¼ 1

2
ffiffiffi
β

p
x

�Z
x

0

dx0x0ρðx0Þe−
xffiffi
β

p
�
e

x0ffiffi
β

p
− e

− x0ffiffi
β

p
�

þ
Z

R

x
dx0x0ρðx0Þe−

x0ffiffi
β

p
�
e

xffiffi
β

p
− e

− xffiffi
β

p
��

: ðA7Þ

With this equation in hand, we can obtain the final form of
the energy density profile. Changing the variable ðx; x0Þ →
ðr; r0Þ and substituting the Tolman VII density, ρðr0Þ ¼
ρc½1 − ðr0=RÞ2�, we will have

ρ̃ðrÞ ¼ ρ̃ce
−rþRffiffi

β
p
�� ffiffiffi

β
p
r

þ 3β

rR
þ 3β

3
2

rR2

�
ðe

2rffiffi
β

p
− 1Þ − e

rþRffiffi
β

p
�
r2

R2
þ 6β

R2
− 1

��
: ðA8Þ
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