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We consider the well-posedness of the initial value problem for Einstein-Maxwell theory modified by
higher derivative effective field theory corrections. Field redefinitions can be used to bring the leading
parity-symmetric 4-derivative corrections to a form which gives second order equations of motion. We
show that a recently introduced “modified harmonic” gauge condition can be used to obtain a formulation
of these theories which admits a well-posed initial value problem when the higher derivative corrections to
the equations of motion are small.
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I. INTRODUCTION

The only known fundamental fields for which the
classical approximation is useful are the gravitational
and electromagnetic fields. To an excellent approximation
these are described by conventional Einstein-Maxwell
theory but it is known that this theory will be modified
by higher order effective field theory (EFT) corrections. For
example, such corrections arise from quantum electrody-
namics (QED). In this paper we will consider the initial
value problem for Einstein-Maxwell theory with the lead-
ing order EFT corrections.
In EFT we write the action as an expansion involving

terms with increasing numbers of derivatives1:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
ð−2Λþ RÞ

−
1

4
FμνFμν þ L4 þ L6 þ…

�
ð1Þ

where F ¼ dA with Aμ the vector potential and the scalar
Ln is a polynomial in derivatives of the fields, where each
term contains a total of n derivatives of the fields ðgμν; AρÞ.
For example L4 contains terms such as R2, RμνRμν

and ðFμνFμνÞ2.
If we truncate the above theory by discarding terms with

six or more derivatives then the resulting 4-derivative
theory describes the leading EFT corrections to conven-
tional Einstein-Maxwell theory. However, L4 gives terms in
the equations of motion containing third or fourth

derivatives of the fields ðgμν; AρÞ. This is problematic for
two reasons. First, the mathematical properties of the
equations of motion are very sensitive to the terms with
the most derivatives. If these terms do not have a nice
algebraic structure then the initial value problem will not be
well posed. Second, even if these equations admit a well-
posed formulation, as is the case for 4-derivative correc-
tions to pure gravity in 4d [1], the higher order nature of the
equations of motion means that additional initial data are
required, which means that the equations describe spurious
(massive) degrees in addition to the two fields present in
the EFT.
One way around these problems is to treat the higher

derivative terms perturbatively, i.e., construct solutions as
expansions in the coefficients of the higher derivative
terms. However, there are situations where such expan-
sions exhibit secular growth, leading perturbation theory
to break down in a situation when EFT should remain
valid [2]. If a formulation of the equations could be found
that admits a well-posed initial value problem then
we would not be restricted to constructing solutions
perturbatively.
To make progress, we exploit the fact that in EFT, the

higher derivative terms in the Lagrangian are not unique,
but can be adjusted order by order in using field redefi-
nitions. This enables one to freely adjust the coefficients of
terms in the Lagrangian that are proportional to equations
of motion. For example, in the case of pure gravity,
the coefficients of the terms R2 and RμνRμν can be adjusted
by a field redefinition of the form gμν → gμν þ d1Rμν þ
d2Rgμν þ � � � with suitable choices of d1, d2. This can be
used to make L4 proportional to the Euler density (of the
Gauss-Bonnet invariant). In 4d this term is topological, i.e.,
it does not affect the equations of motion, and so this shows
that one can eliminate 4-derivative corrections in 4d pure
gravity.
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1Dimensional analysis suggests that this should be viewed as a

double expansion ordered by increasing number of Fμν factors,
and increasing number of derivatives.
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Similarly, in Einstein-Maxwell theory, field redefinitions
can be used to bring L4 to the form (neglecting topological
terms)

L4 ¼ c1X2 þ c2Y2 þ c3RμνρσF̃μνF̃ρσ þ c4XY

þ c5RμνρσFμνF̃ρσ ð2Þ

where

F̃μν ¼
1

2
ϵμνρσFρσ ð3Þ

and

X ¼ FμνFμν Y ¼ FμνF̃μν ð4Þ

The terms with coefficients c1, c2, and c3 are symmetric
under space-time orientation reversal (i.e., under parity or
time-reversal) whereas the terms with coefficients c4 and c5
break this symmetry. In the parity-symmetric case, the
above form of the Lagrangian can be determined from
results in [3]. Reference [4] discusses the parity violating
terms (for a more general class of theories).
It is well known that c1, c2, c3 receive contributions from

QED effects. In flat spacetime, at energies well below the
electron mass m, QED predicts corrections to Maxwell
theory described by the Euler-Heisenberg EFT which has
specific values for c1 and c2 proportional to α2=m4 where α
is the fine-structure constant. In curved spacetime, the term
with coefficient c3 also arises from “integrating out” the
electron in this way, with c3 ∝ α=m2 [5].
The nice thing about using field redefinitions to write L4

as above is that all of the terms except for the last one give
rise to second order equations of motion (for the c3 term
this follows from [6]). In particular, if we restrict to a theory
with c5 ¼ 0 (e.g., a parity symmetric theory) then the
equations of motion are second order and we can hope that
the theory admits a well-posed initial value problem.
If we ignore gravity and just consider the 4-derivative

corrections to Maxwell theory (the terms quadratic in X, Y)
then it can be shown that the equations of motion can be
written as a first order symmetric hyperbolic system for
Fμν, which ensures a well-posed initial value problem [7].
This result holds only when the 4-derivative corrections are
small, i.e., within the regime of validity of EFT.
With dynamical gravity, well-posedness is much more

complicated. There are no gauge-invariant observables for
gravity so any formulation of the equations requires a
choice of gauge. By “formulation” we mean a choice of
gauge plus a way of gauge-fixing the equations. Even for
the 2-derivative vacuum Einstein equation it is well-known
that many formulations do not give a well-posed initial
value problem (the same is true for the Maxwell equations
viewed as equations for Aμ). For example, the Arnowitt-
Deser-Misner (ADM) formulation of the Einstein equation

is only weakly hyperbolic [8], which is not enough to
ensure a well-posed initial value problem. Choquet-Bruhat
[9] was the first to show that a well-posed formulation
existed by proving the harmonic gauge formulation met this
criteria. There are also modifications of the ADM formu-
lation, such as the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation [10,11], that are strongly hyperbolic
[12,13] and therefore do admit a well-posed initial value
problem.
Even if one considers a formulation of the equations

ofmotion that gives awell-posed initial value problem for 2-
derivative Einstein-Maxwell theory, there is no guarantee
that well-posedness will persist when one deforms the
theory to include 4-derivative corrections, no matter how
small. This has been seen in recent work on the EFT of
gravity coupled to a scalar field. In this EFT, one considers
gravity minimally coupled to the scalar field and then
extends this 2-derivative theory by including 4-derivative
corrections. Field redefinitions can be used to write (parity
symmetric) 4-derivative terms in a form that gives second
order equations of motion. The simplest strongly hyperbolic
formulation of the 2-derivative theory is based on harmonic
gauge. However, if one includes 4-derivative corrections
then this formulation is only weakly hyperbolic, even for
arbitrarily small 4-derivative terms, so the initial value
problem is not well posed [14,15].2 Note that this problem
is not apparent when equations are linearized around a
Minkowski background, or even around some nontrivial
backgrounds (e.g., a static spherically symmetric black
hole). But it is apparent when the equations are linearized
around a generic weakly curved background [14,15].
Fortunately it has been shown that there exists a

deformation of the harmonic gauge formulation that does
give strongly hyperbolic equations when the 4-derivative
terms are small [17,18]. This smallness requirement is not a
concern because it is also required for the validity of EFT
(if higher derivative terms are not small then a “UV”
description of the physics would be necessary3). This
“modified harmonic gauge” formulation gives a well-posed
initial value problem for the gravity-scalar EFT in 4d, as
well as for the EFT of pure gravity in higher dimensions
(where the Euler density is not topological).
In this paper we will consider the theory (2) with c5 ¼ 0,

which describes Einstein-Maxwell theory with the leading

2This EFT is a Horndeski theory, i.e., a diffeomorphism
invariant scalar-tensor theory with second order equations of
motion. Strongly hyperbolic BSSN-like formulations have been
found for a certain subset of Horndeski theories [16] but this
subset does not include the EFT we are discussing.

3Requiring that the EFT arises from a consistent UV theory
may impose restrictions on the coupling constants of the theory.
However, the result of [17,18] demonstrates that no such
restrictions arise from the requirement that the theory admits a
well-posed initial value problem within the regime of validity of
EFT. We will see that the same is true for the class of theories
considered in this paper.
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(parity-symmetric) higher derivative EFT corrections. The
similarity with the Einstein-scalar case strongly suggests
that a conventional harmonic/Lorenz gauge formulation
of this theory will be only weakly hyperbolic even when the
4-derivative terms are small.4 However, we can adapt the
modified harmonic gauge formulation to this EFT. We will
show that the resulting equations are strongly hyperbolic
when the 4-derivative terms are small, and therefore this
formulation admits a well-posed initial value problem when
it is within the regime of validity of EFT. Our results apply
also to the larger class of (c5 ¼ 0) theories obtained by
replacing the terms quadratic in X, Y with an arbitrary
smooth function fðX; YÞ satisfying fð0; 0Þ ¼ fXð0; 0Þ ¼
fYð0; 0Þ ¼ 0. This includes, for example, the Born-Infeld
Lagrangian for nonlinear electrodynamics.
This paper is organized as follows. In Sec. II we review

briefly the notion of strong hyperbolicity. In Sec. III we
describe the modified harmonic gauge formulation and
determine the principal symbol of the equations of motion.
In Sec. IV we prove that these equations are strongly
hyperbolic following arguments very close to those of [18].
In Sec. V we make a few concluding remarks.

II. STRONG HYPERBOLICITY

A full overview of strong hyperbolicity and how it relates
to well-posedness is given in [18]. A summary is provided
here for context.
Consider a second order PDE for a set of fields uI ,

I ¼ 1;…; N. In our case we will have uI ¼ ðgμν; AρÞ, and
so N ¼ 10þ 4 ¼ 14 (10 for the independent components
of a 4 × 4 symmetric matrix and 4 for the components of a
4-vector). Assume that initial data is prescribed on some
surface Σ. We pick a coordinate system ðx0; xiÞ with Σ the
surface x0 ¼ 0. The equations that we will consider are not
quasilinear (linear in second derivatives) however they are
linear in ∂0∂0u, i.e., the equations can be written in the form

AIJðx;u;∂μu;∂0∂iu;∂i∂juÞ∂20uJ ¼ FIðx;u;∂μu;∂0∂iu;∂i∂juÞ
ð5Þ

Initial data must be chosen such that the slice x0 ¼ 0 is
noncharacteristic, meaning that AIJ is invertible there. The
principal symbol PðξÞIJ is a N × N matrix which deter-
mines the coefficients of the second-derivative terms when
the equations of motion are linearized around a background
(see Appendix for details). ξμ is an arbitrary covector.
PðξÞIJ is quadratic in ξμ and so we can write it in the
following form

PðξÞIJ ¼ ξ20A
IJ þ ξ0BðξiÞIJ þ CðξiÞIJ ð6Þ

Here AIJ is the same as in (5) by the definition of PðξÞIJ.
The N by N matrices AIJ, BIJ and CIJ have additional
suppressed arguments ðx; u; ∂μu; ∂0∂iu; ∂i∂juÞ but not
∂0∂0u by the linearity condition.
We now define the matrix

MðξiÞ ¼
�

0 I

−A−1C −A−1B

�
: ð7Þ

Let ξi be unit with respect to some smooth Riemannian
metric Gij on surfaces of constant x0. Then the system of
equations (5) is strongly hyperbolic if for any such ξi, there
exists a positive definite matrix KðξiÞ that depends
smoothly on ξi and its other suppressed arguments
ðx; u; ∂μu; ∂0∂iu; ∂i∂juÞ such that

KM ¼ M†K ð8Þ

and there exists a positive constant λ such that

λ−1I < K < λI ð9Þ

KðξÞ is called the “symmetrizer.”
There is a theorem proved in Chapter 5 of [19] that if a

first order system can be written in the form

∂0uJ ¼ BJðx; u; ∂iuÞ; ð10Þ

then well-posedness of its Cauchy problem follows from
the system being strongly hyperbolic (for an appropriate
definition of strong hyperbolicity for first order systems),
assuming appropriate regularity of initial data. Now, [18]
explains a construction for reducing second order systems
of the form (5) to a first order system of the form (10) in
such a way that strong hyperbolicity of the second order
system implies strong hyperbolicity of the first order
system, provided M is invertible. Hence, we can prove
the Cauchy problem is well-posed by proving strong
hyperbolicity of our second order system.
The condition that M be invertible is necessary for the

reduction to a first order system used in [18]. It will be
shown to be invertible for our Einstein-Maxwell EFT
under certain conditions, as discussed at the end of
Sec. IV B.

III. SETUP OF INITIAL VALUE PROBLEM

A. Equations of motion

We shall consider a theory with action

S ¼ 1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
−2Λþ R −

1

4
FμνFμν

þ fðX; YÞ þ c3RμνρσF̃μνF̃ρσ

�
ð11Þ

4As the Einstein-scalar case, we expect that one can see this by
studying the theory linearized around a generic background
solution.
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where fð0; 0Þ ¼ fXð0; 0Þ ¼ fYð0; 0Þ ¼ 0. This includes
our (c5 ¼ 0) Einstein-Maxwell EFT, where we rescaled
the Maxwell field to scale out an onverall factor of 16πG.
The equations of motion result from varying S with respect
to Aμ and gμν. We define variations

Eμ ≡ −
16πGffiffiffiffiffiffi−gp δS

δAμ
; Eμν ≡ −

16πGffiffiffiffiffiffi−gp δS
δgμν

: ð12Þ

Explicitly these are given by

Eμν ¼ Λgμν þGμν þ 1

2

�
1

4
gμνFρσFρσ − FμρFν

ρ

�

−
1

2
gμνðf − Y∂YfÞ þ 2FμαFν

α∂Xf

−
1

2
c3gναδ

μλρσ
αβγδðFλτFβτRρσ

γδ þ∇δFλρ∇σFβγÞ ð13Þ

Eμ ¼ ∇νFμνð1 − 4∂XfÞ − 2∇νFαβð4FμνFαβ
∂
2
Xf þ 2ðFμνFγδϵ

αβγδ þ ϵμνρσFρσFαβÞ∂X∂Yf þ ϵμνρσϵαβγδFρσFγδ∂
2
YfÞ

þ c3δ
μνρσ
αβγδ∇νFαβRρσ

γδ: ð14Þ

Let nμ be a normal to the initial surface Σ. In our coordinate
chart we have nμ ∝ δ0μ. The antisymmetries of the gener-
alized Kronecker delta mean that nμEμ and nμEμν do not
contain any second x0 derivatives, and hence these are
constraint equations, as in conventional Einstein-Maxwell
theory. Furthermore, these antisymmetries also imply these
equations are linear in the second derivative with respect to
any one coordinate, and hence can be put in the form (5).
This will remain true when we include the gauge-fixing
terms described below.

B. Bianchi identities

The action S is invariant under diffeomorphisms and
electromagnetic gauge transformations. By considering an
infinitesimal diffeomorphism xμ → x̃μðxÞ ¼ xμ − ϵμðxÞ we
get the Bianchi identity

∇νEμν −
1

2
Fμ

νEν þ 1

2
Aμ∇νEν ¼ 0: ð15Þ

Furthermore, by considering a gauge transformation
Aμ → Aμ þ∇μχ we get

∇μEμ ¼ 0: ð16Þ

Hence we can rewrite (15) as

∇νEμν −
1

2
Fμ

νEν ¼ 0: ð17Þ

These equations hold for any field configuration. They will
allow us to prove the propagation of the modified harmonic
gauge condition. They will also have consequences for the
principal symbol discussed below.

C. Modified harmonic gauge

The “modified harmonic” gauge introduced in [18]
requires the introduction of two auxiliary metrics, g̃μν

and ĝμν. These are completely unphysical, introduced only
for purposes of fixing the gauge. Any index raising and
lowering is done using the physical metric as usual.
The only properties we require of the auxiliary metrics

are that the (cotangent space) null cones of g̃μν, ĝμν and gμν

are nested as shown in Fig. 1(a) in Supplemental Material
[20], with the null cone of gμν lying inside the null cone of
g̃μν, which lies inside the null cone of ĝμν.5 This nested
structure ensures that any covector that is causal with
respect to gμν is timelike with respect to g̃μν or ĝμν. This
implies that if Σ is spacelike with respect to gμν, then it is
also spacelike with respect to g̃μν and ĝμν. Reference [18]
provides examples for how to construct such auxiliary
metrics, such as g̃μν ¼ gμν − anμnν, ĝμν ¼ gμν − bnμnν

where nμ is the unit normal to surfaces of constant x0

and a, b are functions chosen to take values in a certain
range. In the tangent space, the null cones are also nested,
with the ordering reversed, as shown in Fig. 1(b) in
Supplemental Material [20].
Modified harmonic gauge is defined by6

Hμ ¼ H ¼ 0 ð18Þ

where

Hμ ≡ g̃ρσ∇ρ∇σxμ ð19Þ

H ≡ −g̃νσ∇σAν ð20Þ

and the gauge-fixed equations of motion are taken to be

Eμν
mhg ≡ Eμν þ P̂α

βμν
∂βHα ¼ 0 ð21Þ

5Reference [18] discusses alternative choices for the ordering
of the nested cones.

6It would be more accurate to refer to this as “modified
harmonic/Lorenz” gauge, since it modifies the harmonic gauge
condition on the metric and the Lorenz gauge condition on the
Maxwell field. However, we will stick with the shorter name.
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Eμ
mhg ≡ Eμ þ ĝμν∇νH ¼ 0 ð22Þ

where

P̂α
βμν ¼ δðμα ĝνÞβ −

1

2
δβαĝμν: ð23Þ

Standard harmonic/Lorenz gauge would result from choos-
ing ĝμν ¼ g̃μν ¼ gμν. However, the similarity with the
Einstein-scalar case [14,15] strongly suggests that this
would result in equations that are only weakly hyperbolic.
Note that the gauge fixing terms are linear in second

derivatives of gμν and Aρ, and hence Eqs. (21) and (22) can
still be put in the form (5). For standard 2-derivative
Einstein-Maxwell theory in modified harmonic gauge,
the matrix AIJ is invertible on surfaces of constant x0

provided the surfaces are spacelike (i.e., spacelike surfaces
are noncharacteristic). We will require that our initial data is
chosen such that AIJ is invertible, i.e., the surface x0 ¼ 0 is
noncharacteristic. By continuity (of detAIJ), this will
be the case for a spacelike initial surface if the initial data
is sufficiently weakly coupled, i.e., the higher derivative
terms are small compared to the 2-derivative terms.
By continuity, invertibility of AIJ will continue to hold
in a neighborhood of x0 ¼ 0. Hence, for weakly coupled
initial data, Eqs. (21) and (22) meet the prerequisites to
consider whether they are strongly hyperbolic. The notion
of weak coupling will be defined more precisely in
Sec. III F.

D. Propagation of gauge condition

We must show that a solution to the modified harmonic
gauge equations is also a solution to the original equations
of motion provided the initial data satisfies the constraint
equations and gauge conditions. We can imposeHμ ¼ 0 on
our initial data surface Σ, by choosing coordinates xμ as
argued in [18]. AdditionallyH ¼ 0 can be imposed on Σ by
gauge transformation of Aμ. The propagation of these
conditions follows from much the same argument as in
[18]. Suppose we have a solution to Eqs. (21) and (22) that
satisfies the constraint equations nμEμ ¼ 0 and nμEμν ¼ 0

on Σ. Then by taking the divergence of (22) and using the
Bianchi identity (16) we have

0 ¼ ∇μE
μ
mhg ¼ ĝμν∇μ∇νH þ ð∇μĝμνÞ∇νH ð24Þ

which is a linear wave equation for H with principal
symbol defined by ĝμν. We know that Σ is spacelike
with respect to ĝμν and hence this equation has a well-
posed initial value formulation. This means it has a
unique solution in D̂ðΣÞ (the domain of dependence
of Σ with respect to ĝμν) for given initial data H and
nμĝμν∂νH on Σ. But by the constraint equation nμEμ ¼ 0

we have

0 ¼ nμE
μ
mhg ¼ nμĝμν∂νH ð25Þ

and hence the initial data for H is trivial and the unique
solution is H ¼ 0. Similarly we can show Hμ ¼ 0 through-
out D̂ðΣÞ using the Bianchi identity (17) and the constraint
equation nμEμν ¼ 0, as explained in [18].
Therefore Eμ ¼ 0 and Eμν ¼ 0 in D̂ðΣÞ. But since the

causal cone of gμν lies inside that of ĝμν, we have DðΣÞ ⊂
D̂ðΣÞ where DðΣÞ is the domain of dependence with
respect to g. Hence, if the initial data satisfies the gauge
conditions and constraints then, within DðΣÞ, a solution to
the gauge fixed equations is also a solution to the equations
of motion arising from the original Lagrangian.

E. Principal symbol

The definition of the principal symbol is reviewed in the
Appendix. The principal symbol for our equations acts on a
vector of the form7

TI ¼ ðtμν; sρÞT ð26Þ

where tμν is symmetric. Indices I; J;… take values from 1
to 14. In geometric optics, TI describes the polarization of
high frequency gravitoelectromagnetic waves.
We label the blocks of the principal symbol8 as

PðξÞIJ ¼ PIJγδξγξδ ¼
�
PggðξÞμνρσ PgmðξÞμνρ
PmgðξÞμρσ PmmðξÞμρ

�
ð27Þ

where we have suppressed the dependence on
ðx; u; ∂μu; ∂0∂iu; ∂i∂juÞ. We decompose this into a part
P⋆ðξÞ coming from Eμ and Eμν, and a gauge fixing part
PGFðξÞ with

PðξÞIJ ¼ P⋆ðξÞIJ þ PGFðξÞIJ ð28Þ

P⋆ðξÞIJ ¼
�
Pgg⋆ðξÞμνρσ Pgm⋆ðξÞμνρ
Pmg⋆ðξÞμρσ Pmm⋆ðξÞμρ

�
ð29Þ

PGFðξÞIJ ¼
�
P̂α

γμνP̃αδρσξγξδ 0

0 −ĝμγ g̃ρδξγξδ

�
ð30Þ

Furthermore, we split P⋆ðξÞ into the standard Einstein-
Maxwell terms (i.e., those coming from the first three terms
in (11)) and the higher-derivative terms:

P⋆ðξÞIJ ¼ PEM⋆ ðξÞIJ þ δP⋆ðξÞIJ ð31Þ

7Here the superscript “T” denotes a transpose, i.e., this is a
column vector.

8Here we are following the notation of [21]. “g” stands for
gravitational and “m” stands for matter. In our case the matter is a
Maxwell field.
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where
PEM⋆ ðξÞIJ ¼

� ð− 1
2
gγδPμνρσ þ Pα

γμνPαδρσÞξγξδ 0

0 ð−gμρgγδ þ gμγgρδÞξγξδ

�
ð32Þ

≡
�
PE⋆ðξÞμνρσ 0

0 PM⋆ ðξÞμρ
�

ð33Þ

The expression for δP⋆ðξÞIJ is lengthy and so is given in
the Appendix in Eq. (A6).

F. Weak coupling

The principal symbol is quadratic in ξμ so we can write
e.g., P⋆ðξÞIJ ¼ PIJμν⋆ ξμξν. We say that the theory is weakly
coupled in some region of spacetime if a basis can be
chosen in that region such that the components of δPIJμν⋆
are small compared to the components of ðPEM⋆ ÞIJμν. This is
the condition that the contribution of the higher derivative
terms to the principal symbol is small compared to the
contribution from the 2-derivative terms. Note that this is a
necessary condition for validity of EFT.
We assume that the initial data is chosen so that the

theory is weakly coupled on Σ. By continuity, any solution
arising from such data will remain weakly coupled at least
for a small time. However, there is no guarantee that the
solution will remain weakly coupled for all time e.g., weak
coupling would fail if a curvature singularity forms. Under
such circumstances, well-posedness may fail in the strongly
coupled region but EFT would not be valid in this region
anyway.

G. Symmetries of the principal symbol

Our proof of strong hyperbolicity will make heavy use of
the symmetries of the principal symbol. The following
symmetries of the principal symbol are immediate from its
definition:

Pgg⋆ðξÞμνρσ ¼ Pgg⋆ðξÞðμνÞρσ ¼ Pgg⋆ðξÞμνðρσÞ ð34Þ

Pgm⋆ðξÞμνρ ¼ Pgm⋆ðξÞðμνÞρ ð35Þ

Pmg⋆ðξÞρμν ¼ Pmg⋆ðξÞρðμνÞ: ð36Þ

In [21], it is shown that the fact Eμ and Eμν are derived from
an action principle leads to the following symmetries:

Pgg⋆ðξÞμνρσ ¼ Pgg⋆ðξÞρσμν ð37Þ

Pgm⋆ðξÞμνρ ¼ Pmg⋆ðξÞρμν ð38Þ

Pmm⋆ðξÞμρ ¼ Pmm⋆ðξÞρμ: ð39Þ

In particular this means that P⋆ðξÞIJ is symmetric.

The Bianchi identities (17) and (16) together with
the symmetries above also put conditions on the principal
symbol (also given in [21] in an equivalent form),
namely

Pgg⋆ðξÞμνρσξν ¼ 0 ð40Þ

Pgm⋆ðξÞμνρξν ¼ 0 ð41Þ

Pmg⋆ðξÞμρσξμ ¼ 0 ð42Þ

Pmm⋆ðξÞμρξρ ¼ 0: ð43Þ

IV. PROOF OF STRONG HYPERBOLICITY

A. Characteristic equation

If MðξiÞ [defined by (7)] is diagonalizable with real
eigenvalues, and eigenvectors that depend smoothly on ξi
then a symmetrizerKðξiÞ can be defined by K ¼ ðS−1Þ†S−1
where S is the matrix whose columns are the eigenvectors.
We will therefore start by considering the eigenvalue
problem for MðξiÞ, following the approach of [18]. We
will first prove smoothness of all eigenvectors for the
modified harmonic gauge formulation standard 2-deriva-
tive Einstein-Maxwell, thus establishing the strong hyper-
bolicity of this formulation. We then consider the weakly
coupled EFT. In this case we will not demonstrate smooth-
ness of all eigenvectors but nevertheless we will explain
how a symmetrizer can still be constructed.
M acts on vectors of the form9 v ¼ ðTI; T 0

IÞT where TI ¼
ðtμν; sρÞT and T 0

I ¼ ðt0μν; s0ρÞT . It is straightforward to show
that any eigenvector of MðξiÞ with eigenvalue ξ0 is of the
form ðTI; ξ0TIÞT where TI satisfies

PðξÞIJTJ ¼ 0 ð44Þ

where ξμ ¼ ðξ0; ξiÞ. This is called the characteristic equa-
tion. If this equation admits a nonzero solution TI then ξμ is
called a characteristic covector or simply characteristic. In
geometric optics, characteristics arise as wave vectors of
high frequency waves, with TI describing the polarization.
The characteristic equation can be rewritten as

�
PggðξÞμνρσtρσ þ PgmðξÞμνρsρ
PmgðξÞμρσtρσ þ PmmðξÞμρsρ

�
¼

�
0

0

�
: ð45Þ

9As before, the superscript “T” denotes a transpose, i.e., we are
defining column vectors.
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We contract the first row of this equation with ξν and
the second row with ξμ, and use (40)–(43) to see that the
nongauge-fixing parts now vanish. After expanding the
gauge fixing parts we get two equations:

−
1

2
ðĝνγξνξγÞðgμβP̃β

δρσξδtρσÞ ¼ 0 ð46Þ

−ðĝμρξμξρÞðg̃σνξσsνÞ ¼ 0: ð47Þ

Therefore we can split the analysis into two cases:
(I) ĝνγξνξγ ≠ 0 ⇒ gμβP̃β

δρσξδtρσ ¼ 0 and g̃σνξσsν ¼ 0
(II) ĝνγξνξγ ¼ 0

Note that Case I implies that PGFðξÞIJTJ ¼ 0, i.e., TI
“satisfies the gauge conditions”.

B. Standard Einstein-Maxwell theory

We start our analysis with standard c3 ¼ f ¼ 0 Einstein-
Maxwell theory. Let us consider each case above.
Case I: This is defined by ĝνγξνξγ ≠ 0 which implies

gμβP̃β
δρσξδtρσ ¼ 0 ð48Þ

and

g̃σνξσsν ¼ 0 ð49Þ

As noted above, these imply PGFðξÞIJTJ ¼ 0. Substituting
this back into (44) gives

P⋆ðξÞIJTJ ¼ 0 ð50Þ

In standard E-M theory, P⋆ðξÞ ¼ PEM⋆ ðξÞ which is block
diagonal and so this reduces to

PE⋆ðξÞμνρσtρσ ¼ 0 ð51Þ

and

PM⋆ ðξÞμρsρ ¼ 0 ð52Þ

Hence we can use results derived in [18] for the Einstein
part, supplemented with their Maxwell equivalents. We
split into two further cases:
Subcase Ia: This is defined by gγδξγξδ ≠ 0. Expanding

(52) gives

sμ ¼ ξμ
�

ξρsρ
gγδξγξδ

�
: ð53Þ

Therefore sρ ¼ λξρ for some λ. Substituting this into (49)
gives λg̃σνξσξν ¼ 0. Similarly for the Einstein parts, [18]
shows that in the case gγδξγξδ ≠ 0, the Eqs. (48) and (51)
imply tμν ¼ ξðμXνÞ and Xμg̃σνξσξν ¼ 0 for some Xμ. Taken
together, for nonzero TI we have that

g̃σνξσξν ¼ 0 ð54Þ

and TI ¼ ðξðμXνÞ; λξρÞT . Note that our assumption that the
null cones of g̃μν and gμν do not intersect ensures that (54) is
consistent with gγδξγξδ ≠ 0.
Surfaces of constant x0 are spacelike with respect to gμν

and hence spacelike with respect to g̃μν. Therefore, Eq. (54)
has two real solutions ξ̃�0 that depend smoothly on ξi.
The associated characteristic covectors are labelled
ξ̃�μ ¼ ðξ̃�0 ; ξiÞ. The two solutions can be distinguished by
the convention ∓ g̃0νξ̃�ν > 0.
There are 4þ 1 ¼ 5 linearly independent eigenvectors

associated to each eigenvalue ξ̃�0 , given by the arbitrary
choices of Xμ and λ. We call these “pure gauge” eigen-
vectors because they arise from a 4-dimensional residual
gauge freedom in gμν and a 1-dimensional residual gauge
freedom in Aμ in the gauge fixed equations of motion (21)
and (22). These eigenvectors form 5-dimensional eigens-
paces, which we denote as Ṽ�.
Subcase Ib: This is defined by

gσνξσξν ¼ 0 ð55Þ

Again this has two real solutions ξ�0 with ∓ g0νξ�ν > 0 and
characteristic covector ξ�μ ¼ ðξ�0 ; ξiÞ. We will find the
dimension of the space of eigenvectors. Starting with the
Maxwell part, the equation PM⋆ ðξ�μ Þμρsρ ¼ 0 reduces to

gσνξ�σ sν ¼ 0 ð56Þ

But the Case I condition (49) is

g̃σνξ�σ sν ¼ 0 ð57Þ

Hence the only requirements on the polarization sρ are that
it is orthogonal to ξ�μ with respect to both gμν and g̃μν. These
are the “physical” photon polarizations, and for each
eigenvalue ξ�0 , the corresponding TI ¼ ð0; sρÞ form a 2-
dimensional eigenspace that depends smoothly on ξi.
For the metric part, [18] proves a similar statement in this

case. For each eigenvalue ξ�0 , there are 2 linearly inde-
pendent eigenvectors with TI ¼ ðtμν; 0Þ that depend
smoothly on ξi. These polarizations are transverse with
respect to gμν and g̃μν in the sense that Pβ

δρσξ�δ tρσ ¼ 0 and
P̃β

δρσξ�δ tρσ ¼ 0, and correspond to physical polarizations
of the metric.
Therefore there is a 4-dimensional eigenspace V� for

each eigenvalue ξ�0 , with eigenvectors depending smoothly
on ξi.
Case II: This is defined by

ĝσνξσξν ¼ 0 ð58Þ
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Once again, this has two real solutions ξ̂�0 which we
distinguish by ∓ ĝ0νξ̂�ν > 0. Since the characteristic cov-
ectors ξ̂�μ ¼ ðξ̂�0 ; ξiÞ are the same as those for (24), we
call the corresponding eigenvectors “gauge condition-
violating” (In geometric optics these correspond to high
frequency solutions of the gauge-fixed equations that
violate the gauge condition.)
We first look at ξ̂þ0 and construct its eigenvectors. Since

ξ̂þμ is null with respect to ĝμν, it is spacelike with respect to
gμν. Therefore we can introduce a basis feμ0; eμ1; eμ2; eμ3g
which is orthonormal with respect to gμν and eμ1 ∝ ξ̂þμ

(recall that indices are raised using gμν). This basis can be
chosen to depend smoothly on ξi [18].
Define indices A;B;… to take values 0, 2, 3. In this basis

we can write a general symmetric tensor as

tμν ¼ ξ̂þðμXνÞ þ tABeAμeBν ð59Þ

and a general covector as

sρ ¼ λξ̂þρ þ sCeCρ ð60Þ

By the conditions (40)–(43) and symmetries (34)–(36) the
only nonvanishing components of P⋆ðξ̂þÞ are those with
A;B;… indices. To construct the eigenvectors, we start by
considering solutions ðtAB; sCÞ to the following

�
PE⋆ðξ̂þÞABCD 0

0 PM⋆ ðξ̂þÞAC
��

tCD
sC

�
¼

�
P̂βAB
α ξ̂þβ v

α

ĝAαξ̂þα w

�

ð61Þ

where ðvα; wÞ is a fixed constant vector. We claim this can
be solved uniquely. Consider an element ðrAB; pCÞ of the
kernel of the matrix on the left-hand side:

PE⋆ðξ̂þÞABCDrCD ¼ 0 ð62Þ

PM⋆ ðξ̂þÞACpC ¼ 0 ð63Þ

In [18] it is shown that PE⋆ðξ̂þÞABCD has trivial kernel and
so rAB ¼ 0. We can do the same for P⋆Mðξ̂þÞAB using a
similar argument: (63) implies that

PM⋆ ðξ̂þÞμνpν ¼ 0 ð64Þ

for any p1. Expanding implies

pμðgγδξ̂þγ ξ̂þδ Þ ¼ ξ̂þμðgγδξ̂þγ pδÞ ð65Þ

The null cones of gγδ and ĝγδ do not intersect and so
gγδξ̂þγ ξ̂

þ
δ ≠ 0. This means the above implies pμ ∝ ξ̂þμ, and

hence in our orthonormal basis, pA ¼ 0, which establishes
the result.
Therefore the kernel of the matrix on the left hand side of

(61) is trivial and so there is a unique solution
ðtABðvα; wÞ; sCðvα; wÞÞ to (61). This solution depends
smoothly on ðvα; wÞ, ξi and gμν since both sides of (61)
depend smoothly on these things.
We use these values for ðtABðvα; wÞ; sCðvα; wÞÞ in our

definitions of ðtμν; sρÞ defined by (59) and (60). This
implies that

P⋆ðξ̂þÞIJ
�
tρσðvγ; wÞ
sρðvγ; wÞ

�
¼

�
P̂α

βμνξ̂þβ v
α

ĝμαξ̂þα w

�
ð66Þ

since the components with 1-indices vanish on the top line
and bottom lines because both sides have vanishing
contractions with ξ̂þμ .
Now, in our definitions (59) and (60) we judiciously

chose

Xμðv; tABÞ ¼
2

g̃γδξ̂þγ ξ̂
þ
δ

ðvμ − P̃μνABξ̂þν tABÞ ð67Þ

and

λðw; sCÞ ¼
1

g̃γδξ̂þγ ξ̂
þ
δ

ðw − g̃γAξ̂þγ sAÞ ð68Þ

which also depend smoothly on their arguments (and ξi).
These choices imply

P̃μνρσξ̂þν tρσ ¼
1

2
ðg̃γδξ̂þγ ξ̂þδ ÞXμ þ P̃μνABξ̂þν tAB

¼ vμ − P̃μνABξ̂þν tAB þ P̃μνABξ̂þν tAB
¼ vμ ð69Þ

and

g̃γνξ̂þγ sν ¼ λg̃γνξ̂þγ ξ̂
þ
ν þ g̃γAξ̂þγ sA

¼ w ð70Þ

which imply that TI ¼ ðtμνðvα; wÞ; sρðvα; wÞÞ satisfies

Pðξ̂þÞIJTJ ¼ P⋆ðξ̂þÞIJTJ þ PGFðξ̂þÞIJTJ

¼
�
P̂α

βμνξ̂þβ v
α

ĝμαξ̂þα w

�
−
�
P̂α

γμνξ̂þγ P̃αδρσξ̂þδ tρσ

ĝμγ g̃νδξ̂þγ ξ̂
þ
δ sν

�

¼
�
P̂α

βμνξ̂þβ v
α

ĝμαξ̂þα w

�
−
�
P̂α

βμνξ̂þβ v
α

ĝμαξ̂þα w

�

¼ 0 ð71Þ
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where the second equality comes from (66) and the third
equality comes from (69) and (70).
Hence for every ðvα; wÞ we have constructed a smoothly

varying eigenvector ðTIðvα; wÞ; ξ̂þ0 TIðvα; wÞÞ of M with
eigenvalue ξ̂þ0 . If we pick a set of 5 linearly independent
choices of ðvα; wÞ then the corresponding tAB and sC will be
linearly independent by the triviality of the kernel of the
left-hand side (lhs) of (61), and hence the corresponding
eigenvectors will be linearly independent. Label the 5-
dimensional span of these eigenvectors by V̂þ. We can
repeat all the above steps with ξ̂−0 to get the same result for
V̂−. We claim that V̂� contain all the eigenvectors with
eigenvalue ξ̂�0 by counting the dimensions of the eigens-
paces we have found so far:

dim Ṽþ þ dim Ṽ−þ dimVþ þ dimV−þ dim V̂þ þ dim V̂−

¼ 5þ 5þ 4þ 4þ 5þ 5¼ 28 ð72Þ

M is a 28 by 28 matrix, and hence there are no more
eigenvectors to find. Therefore V̂� are the total eigenspaces
for ξ̂�0 .
To summarize, we have found that, for standard 2-

derivative Einstein-Maxwell, MðξÞ has 6 distinct eigenval-
ues, ξ̃�0 , ξ�0 and ξ̂�0 which are all real. Furthermore it has a
complete set of eigenvectors that depend smoothly on ξi.
Therefore the modified-harmonic-gauge formulation of
standard Einstein-Maxwell is strongly hyperbolic.
Now, as mentioned in Sec. II, the argument that strong

hyperbolicity implies well-posedness assumes that M is
invertible. This is equivalent to CIJ being invertible, which
is equivalent to the condition that ξ0 ≠ 0 for any character-
istic covector. However, we chose our spacetime foliation
such that surfaces of constant x0 are spacelike with respect
to gμν, and hence spacelike with respect to g̃μν and ĝμν. This
means that a covector with ξ0 ¼ 0 is spacelike with respect
to all three (inverse) metrics. But as we found above, the
characteristic covectors are null with respect to one of the
three metrics, and hence M is invertible for standard E-M
theory. By continuity, M will remain invertible when we
include higher derivative terms, assuming weak coupling.

C. Weakly coupled Einstein-Maxwell EFT

Now we consider our theory including the higher
derivative terms. At weak coupling, MðξiÞ is a small
deformation of the corresponding matrix of the 2-derivative
theory. The continuity of this deformation will be used in
the following to show that many of the above results still
hold. In particular, the eigenvalues ofMðξiÞ will be close to
those discussed above, and can be sorted into six groups
corresponding to which eigenvalue they approach in the
standard 2-derivative (i.e., c3 → 0, f → 0) limit. As in [18],
we call these groups the ξ̃þ0 -group, the ξ̃

−
0 -group etc. We do

not know that these eigenvalues are real so we view MðξiÞ

as acting on the 28 dimensional space V of complex vectors
of the form v ¼ ðTI; T 0

IÞT .
Following the argument of [18] we can decompose V as

follows

V ¼ Ṽþ ⊕ V̂þ ⊕ Vþ ⊕ Ṽ− ⊕ V̂− ⊕ V− ð73Þ

where Vþ is the sum of all generalized eigenspaces10

associated with eigenvalues in the ξþ0 group and similarly
for the other spaces. The spaces Ṽþ, Ṽ− etc. must have the
same dimensions as the corresponding eigenspaces in
standard 2-derivative E-M theory. Therefore, Ṽ� and V̂�

are all five dimensional and V� are four dimensional. These
vector spaces are complex.
Recall (Sec. IVA) that the analysis of the characteristic

equation splits into two cases. We will see that Ṽ�
correspond to eigenvectors in Case I arising from the same
residual gauge invariance as in the standard 2-derivative
theory. V� correspond to the remaining eigenvectors in
Case I, which are the physical eigenvectors. V̂� correspond
to gauge-condition-violating eigenvectors in Case II.

D. Ṽ�

These are the spaces associated with the ξ̃�0 -groups of
eigenvalues, where ξ̃�0 are the two real solutions to
g̃μνξ̃�μ ξ̃�ν ¼ 0. However, the weakly coupled theory still
has the same residual gauge freedoms in gμν and Aμ as the
2-derivative theory. As such it turns out that ξ̃�0 are still
eigenvalues of the weakly coupled theory with the same
eigenvectors v ¼ ðTI; ξ0TIÞT of the form

TI ¼ ðξ̃�ðμXνÞ; λξ̃�ρ Þ ð74Þ

for arbitrary Xν and λ. To show this, note that TI satisfies
PGFðξ̃�ÞIJTJ ¼ 0, and also

P⋆ðξ̃�ÞIJTJ ¼
�Pgg⋆ðξ̃�Þμνρσξ̃�ðρXσÞ þ λPgm⋆ðξ̃�Þμνρξ̃�ρ

Pmg⋆ðξ̃�Þμρσξ̃�ðρXσÞ þ λPmm⋆ðξ̃�Þμρξ̃�ρ

�

¼
�
0

0

�
ð75Þ

where the second equality follows from conditions
(40)–(43) and symmetries (34) and (36). Therefore
Pðξ̃�ÞIJTJ ¼ 0. Hence Ṽ� are genuine eigenspaces (rather
than generalized eigenspaces) with eigenvalues ξ̃�0 , and
eigenvectors that depend smoothly on ξi.

10The generalized eigenspace corresponding to a matrix A and
eigenvalue λ is the space of vectors x such that there exists a
positive integer m with ðA − λIÞmx ¼ 0. In the Jordan decom-
position of A, each Jordan block is associated with a generalized
eigenspace.
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E. V̂�

These are the spaces associated with the ξ̂�0 -groups of
eigenvalues where ξ̂�0 are the two real solutions to
ĝμνξ̂�μ ξ̂

�
ν ¼ 0. We will now show that our above construc-

tion of eigenvectors with eigenvalue ξ̂�0 in the 2-derivative
theory extends to the weakly coupled higher-derivative
theory with only minor modifications.
We introduce the same basis as before, and take indices

A,B,... to take values 0,2,3. The only line which needs
changing is Eq. (61), as we now want to find solutions
ðtAB; sCÞ to
�
Pgg⋆ðξ̂þÞABCD Pgm⋆ðξ̂þÞABC
Pmg⋆ðξ̂þÞACD Pmm⋆ðξ̂þÞAC

��
tCD
sC

�
¼
�
P̂βAB
α ξ̂þβ v

α

ĝAαξ̂þα w

�
:

ð76Þ

However in standard E-M theory, we found that the kernel
of the matrix on the left-hand side is trivial and so its
determinant is nonzero. By continuity, its determinant is
also nonzero for sufficiently weak coupling, and so its
kernel is still trivial and there is still a unique solution
ðtABðvα; wÞ; sCðvα; wÞÞ to (76). Both sides of (76) still
depend smoothly on ðvα; wÞ, ξi, gμν and Aμ and their
derivatives, and so the solution also depends smoothly on
these things.
The rest of the construction follows the same steps as for

the 2-derivative theory, and hence V̂� are genuine eigens-
paces with eigenvalues ξ̂�0 and eigenvectors that depend
smoothly on ξi and the fields and their derivatives.

F. V�

These are the spaces associated with the ξ�0 -groups of
eigenvalues where ξ�0 are the two real solutions to
gμνξ�μ ξ�ν ¼ 0. Since we are only considering weak cou-
pling, we can assume that these eigenvalues are sufficiently
close to ξ�0 so that ĝσνξσξν ≠ 0 and g̃σνξσξν ≠ 0. Therefore
the eigenvalues and eigenvectors in the 4-dimensional
generalized eigenspaces V� are those in Case I that do
not also satisfy g̃σνξσξν ¼ 0. We will show that V� are
genuine eigenspaces by closely following the argument in
[18] for Horndeski theories.
The first step of the argument is to establish that the

deformed eigenvalues are real. We proceed by defining

H�⋆ ¼ �
�
B⋆ A⋆
A⋆ 0

�
ð77Þ

where A⋆ and B⋆ are defined as in (6) but by only using the
nongauge fixing parts of the principal symbol. H�⋆ is
Hermitian since P⋆ðξÞIJ is symmetric and real. We then

define the Hermitian form ð; Þ� on vectors vðiÞ ¼
ðTðiÞ

I ; T 0ðiÞ
I Þ in V� (viewed as 4-dimensional complex vector

spaces) by

ðvð1Þ; vð2ÞÞ� ¼ vð1Þ†H�⋆ vð2Þ ð78Þ

We show this is positive definite for standard E-M theory,
and hence by continuity it is positive definite for suffi-
ciently weakly coupled E-M theory. In standard E-M, V�

are genuine eigenspaces each with one eigenvalue ξ�0 and

eigenvectors vðiÞ ¼ ðtðiÞμν ; sðiÞρ ; ξ�0 t
ðiÞ
μν ; ξ�0 s

ðiÞ
ρ Þ satisfying the

equations which define Subcase Ib. A⋆ and B⋆ are also
block diagonal so the Hermitian form splits into a gravi-
tational part and a Maxwell part:

ðvð1Þ; vð2ÞÞ� ¼ �½tð1Þ�μν ð2ξ�0 A⋆ þ B⋆Þμνρσtð2Þρσ

þ sð1Þ�μ ð2ξ�0 A⋆ þ B⋆Þμρsð2Þρ � ð79Þ

In [18] it is shown that the gravitational part simplifies to

−g0νξ�ν t
ð1Þ�
μν Pμνρσtð2Þρσ where

Pα
βμν ¼ δðμα gνÞβ −

1

2
δβαgμν ð80Þ

Using (56), we can also reduce the Maxwell part, leading to

ðvð1Þ; vð2ÞÞ� ¼∓ g0νξ�ν ½tð1Þ�μν Pμνρσtð2Þρσ þ 2sð1Þ�μ gμρsð2Þρ � ð81Þ

To simplify further, we pick a tangent space basis
ðe0Þμ ¼ ξ�μ, ðe1Þμ ∝ ξ∓μ, ðe2Þμ and ðe3Þμ with

gðe0; e1Þ ¼ 1; gðeî; eĵÞ ¼ δî ĵ ð82Þ

where î; ĵ ¼ 2, 3 and all other contractions vanish.
In this basis, Eq. (56) becomes s0 ¼ 0, and so

sð1Þ�μ gμρsð2Þρ ¼ sð1Þ�
î

sð2Þ
î
. Similarly for the gravitational part,

[18] shows that the conditions defining Subcase Ib imply
that all components of tμν either vanish or depend linearly
on the traceless quantity tî ĵ. Furthermore, they show that

tð1Þ�μν Pμνρσtð2Þρσ ¼ tð1Þ�
î ĵ

tð2Þ
î ĵ
. Therefore

ðvð1Þ; vð2ÞÞ� ¼∓ ξ�0ðtð1Þ�
î ĵ

tð2Þ
î ĵ

þ 2sð1Þ�
î

sð2Þ
î
Þ ð83Þ

Our convention was that ∓ ξ�0 > 0 so this is non-
negative for vð1Þ ¼ vð2Þ ¼ v. Suppose that ðv; vÞ� ¼ 0.
Then sî ¼ 0 and so Eq. (57) becomes g̃11s1 ¼ 0. But
0 ≠ g̃σνξ�σ ξ�ν ¼ g̃11, and hence this implies s1 ¼ 0.
Therefore sρ ¼ 0. Similarly tî ĵ ¼ 0 implies that tμν ¼ 0

by Subcase Ib conditions [18]. Hence ðv; vÞ� ≥ 0 with
equality iff v ¼ 0. Therefore we have shown that the
Hermitian form is positive definite for 2-derivative E-M
theory, and hence, by continuity, also for weakly coupled
E-M theory.
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In [18], it is shown that the existence of this positive
definite form on the complex vector space V� implies the
eigenvalues in the ξ�0 -group are real so long as a) P⋆ðξÞIJ is
symmetric (which we have) and b) the corresponding
eigenvectors are in the kernel of PGFðξÞIJ. The second
condition follows for V� by Case I conditions. Hence the
eigenvalues in the ξ�0 -groups are real.
We now proceed to show diagonalizability of MðξiÞ.

Since we have already shown that Ṽ� and V̂� are genuine
eigenspaces, we just need to show that MðξiÞ is diago-
nalizeable within V�. To this end, let ξ0 be an eigenvalue in
the ξ�0 group and consider a left eigenvector of MðξiÞ with
this eigenvalue. One can show these are of the form

w ¼ ðTI; ξ0TIÞ
�
B A

A 0

�
ð84Þ

where

TIPðξÞIJ ¼ 0 ð85Þ

Now, using the symmetries of P⋆ðξÞIJ one can show that a
family of left eigenvectors with eigenvalue ξ̂�0 is given by

TI ¼ ðξ̂�ðμXνÞ; λξ̂
�
ρ Þ ð86Þ

for arbitrary Xν and λ. Then by considering the Jordan
normal form of M, we have that w must be orthogonal to
any vector v ¼ ðuI; u0IÞT in any of V� or Ṽ�, i.e.,

0 ¼ wv ¼ ðTI; ξ̂
�
0 TIÞ

�
BIJ AIJ

AIJ 0

��
uJ
u0J

�
ð87Þ

¼ TIðBIJ þ ξ̂�0 AIJÞuJ þ TIAIJu0J ð88Þ

By expanding TI through (86) and using the fact that Xν

and λ are arbitrary we get the two following conditions on
ðuI; u0IÞ:

0 ¼ ξ̂�ν ðBμνJ þ ξ̂�0 AμνJÞuJ þ ξ̂�ν AμνJu0J ð89Þ

0 ¼ ξ̂�μ ðBμJ þ ξ̂�0 AμJÞuJ þ ξ̂�μ AμJu0J ð90Þ

We can eliminate ðξ̂�0 Þ2 using ĝσνξ̂σξ̂ν ¼ 0 to get

ξ̂�0 Rμ þ Sμ ¼ 0 ð91Þ

ξ̂�0 Rþ S ¼ 0 ð92Þ

where

Rμ ≡ −2ðĝ00Þ−1ĝ0iξiAμ0JuJ þ Bμ0JuJ þ ξiAμiJuJ þ Aμ0Ju0J
ð93Þ

R≡ −2ðĝ00Þ−1ĝ0iξiA0JuJ þ B0JuJ þ ξiAiJuJ þ A0Ju0J
ð94Þ

Sμ ≡ −ðĝ00Þ−1ĝijξiξjAμ0JuJ þ ξiBμiJuJ þ ξiAμiJu0J ð95Þ

S≡ −ðĝ00Þ−1ĝijξiξjA0JuJ þ ξiBiJuJ þ ξiAiJu0J: ð96Þ

Note that none of Rμ, R, Sμ or S depend on ξ̂�0 . Therefore,
since (91) and (92) are true for both signs �, they imply

Rμ ¼ 0 ¼ Sμ; R ¼ 0 ¼ S: ð97Þ

Now, we can match coefficients of powers of ξ0 in the
Bianchi-style identities (40)–(43) to get the following
identities on A⋆ and B⋆ (and on C⋆ but these are not
relevant to our argument):

Aμ0I⋆ ¼ 0 ð98Þ

ξiA
μiI⋆ þ Bμ0I⋆ ¼ 0 ð99Þ

A0I⋆ ¼ 0 ð100Þ

ξiAiI⋆ þ B0I⋆ ¼ 0 ð101Þ

We can plug these into (93) and (94) and see that all the ⋆
terms vanish in Rμ and R. Hence they only depend on
gauge-fixing terms which are block diagonal. Writing uI ¼
ðtμν; sρÞ and u0I ¼ ðt0μν; s0ρÞ and expanding AGF and BGF, the
equations Rμ ¼ 0 and R ¼ 0 reduce to

P̃β
iρσξitρσ þ P̃β

0ρσt0ρσ ¼ 0 ð102Þ

g̃νiξisν þ g̃ν0s0ν ¼ 0 ð103Þ

The first condition is the same as in [18], while the second
condition is its Maxwell equivalent.
These are the conditions we will need to show diago-

nalizability of V�. Let us start with Vþ. For contradiction,
assume we have a nontrivial Jordan block so there exists
w ¼ ðuI; u0IÞT ∈ Vþ such that

v ¼ ðMðξiÞ − ξ0Þw ≠ 0 ð104Þ

where v ¼ ðTI; ξ0TIÞ ∈ Vþ is an eigenvector ofMðξiÞwith
eigenvalue ξ0. Write TI ¼ ðrμν; pρÞ. Now, (104) is equiv-
alent to the two equations

u0I ¼ ξ0uI þ TI ð105Þ

PðξÞIJuJ ¼ −ð2ξ0Aþ BÞIJTJ ð106Þ

Note that we can substitute (105) into the conditions (102)
and (103) to get
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P̃β
μρσξμtρσ þ P̃β

0ρσrρσ ¼ 0 ð107Þ

g̃νμξμsν þ g̃ν0pν ¼ 0 ð108Þ

We can also rewrite (106) by extracting the gauge-fixing
terms:

P⋆ðξÞIJuJ ¼ −PGFðξÞIJuJ − ð2ξ0AGF þ BGFÞIJTJ

− ð2ξ0A⋆ þ B⋆ÞIJTJ ð109Þ

The gauge-fixing terms are block-diagonal so they split into
a gravitational part and a Maxwell part. In [18], it is shown
that (107) implies the gravitational gauge-fixing part
vanishes. The Maxwell parts vanish similarly since

− ðPGFðξÞμνsν þ ð2ξ0AGF þ BGFÞμνpνÞ
¼ ĝμγ g̃νδξγξδsν þ ð2ξ0ĝμ0g̃ν0 þ ξiĝμig̃ν0 þ ξiĝμ0g̃νiÞpν

¼ ĝμγ g̃νδξγξδsν þ ĝμγ g̃ν0ξγpν þ ĝμ0g̃νγξγpν

¼ ĝμ0g̃νγξγpν

¼ 0 ð110Þ

where the third equality follows from (108) and the fourth
from using the Case I condition on the eigenvector v. Hence
all the gauge-fixing terms in (109) vanish, and contracting
the remaining terms with T�

I gives

T�
IP⋆ðξÞIJuJ ¼ −T�

I ð2ξ0A⋆ þ B⋆ÞIJTJ ¼ ðv; vÞþ: ð111Þ

But by symmetry of P⋆ðξÞIJ, the left-hand side can be
written as

uJP⋆ðξÞJIT�
I ¼ uJðP⋆ðξÞJITIÞ� ¼ 0 ð112Þ

where the second equality follows because v ¼ ðTI; ξ0TIÞ
is a Case I eigenvector of M and therefore PðξÞIJTJ ¼ 0

and PGFðξÞIJTJ ¼ 0. But this implies that ðv; vÞþ ¼ 0, and
since ð; Þþ is positive definite this means v ¼ 0. This is a
contradiction, and hence our assumption of a nontrivial
Jordan block must be false, i.e., MðξiÞ must be diagonaliz-
able in Vþ. Repeating the arguments for V− gives us the
same result.

G. Construction of symmetrizer

To summarize, we have found that Ṽ� and V̂� are spaces
of smoothly varying eigenvectors of MðξiÞ with real
eigenvalues. We have also found that V� have bases of
eigenvectors with real eigenvalues. However, the eigen-
vectors may not have smooth dependence on ξi at points
where eigenvalues cross, and so it is not obvious that the
symmetrizer built from the eigenvectors will be smooth.

Instead, as in [18], we will show that H�⋆ is a symmetr-

izer for MðξiÞ within V�. Let vð1Þ ¼ ðTð1Þ
I ; ξð1Þ0 Tð1Þ

I ÞT and

vð2Þ ¼ ðTð2Þ
I ; ξð2Þ0 Tð2Þ

I ÞT be eigenvectors in V� with eigen-

values ξð1Þ0 and ξð2Þ0 . Since all the eigenvalues associated
with V� are real, we can take vð1Þ and vð2Þ to be real. Then

vð1ÞTðMTH�⋆ −H�⋆MÞvð2Þ

¼ ðξð1Þ0 − ξð2Þ0 Þvð1ÞTH�⋆ vð2Þ

¼ Tð1Þ
I ððξð1Þ20 − ξð2Þ20 ÞA⋆ þ ðξð1Þ0 − ξð2Þ0 ÞB⋆ÞIJTð2Þ

J

¼ Tð1Þ
I ðP⋆ðξð1ÞÞ − P⋆ðξð2ÞÞÞIJTð2Þ

J ¼ 0 ð113Þ

The final equality follows because vð1Þ and vð2Þ are

Case I eigenvectors, and so P⋆ðξð1ÞÞIJTð1Þ
J ¼ 0 and

P⋆ðξð2ÞÞIJTð2Þ
J ¼ 0. Now, since eigenvectors form a basis

of V�, it follows that H�⋆ is a symmetrizer forMðξiÞ within
V�. In particular, it depends smoothly on all its arguments
and is positive definite.
We can construct the total symmetrizer in V in an

identical fashion to [18]. Let fv�1 ;…; v�4 g be a smooth
basis for V�, and let fṽ�1 ;…; ṽ�5 g and fv̂�1 ;…; v̂�5 g be the
smooth eigenvector bases constructed above for Ṽ� and
V̂�. Let S be the matrix whose columns are these basis
vectors. Then the symmetrizer is given by

KðξiÞ ¼ ðS−1ÞT

0
BBBBBBBBB@

Hþ⋆ 0 0 0 0 0

0 I5 0 0 0 0

0 0 I5 0 0 0

0 0 0 H−⋆ 0 0

0 0 0 0 I5 0

0 0 0 0 0 I5

1
CCCCCCCCCA
S−1 ð114Þ

where H�⋆ are 4 × 4 matrices with components

ðH�⋆ ÞAB ¼ ðv�A ÞTH�⋆ v�B ð115Þ

KðξiÞ has smooth dependence on ξi, the fields and all their
derivatives, is positive definite and satisfies Eq. (8).
Therefore, at weak coupling, our Einstein-Maxwell EFT
is strongly hyperbolic and hence admits a well-posed initial
value problem.

V. CONCLUSION

We have considered Einstein-Maxwell theory extended
by the leading (4-derivative) effective field theory correc-
tions. We have used the methods of [18] to prove that the
modified harmonic gauge formulation of this theory admits
a well-posed initial value problem when the initial data is
weakly coupled, i.e., when the 4-derivative terms in the
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equations of motion are initially small compared to the
2-derivative terms. Note that our result concerns local well-
posedness, i.e., it guarantees existence of a solution only for
a small interval of time. Over long time intervals, the fields
may become large (e.g., if a singularity forms), in which
case the theory would not be weakly coupled and well-
posedness is likely to fail. From an EFT perspective this is
fine because there is no reason to trust the theory if the
fields become large.
It is interesting to ask how large the higher derivative

terms can become before strong hyperbolicity fails.
Reference [21] discussed this question for the case of
the scalar-tensor EFT. In that case, it was shown that one
can define a characteristic cone associated purely with the
physical degrees of freedom. Using this cone one can
define a notion of weak hyperbolicity that is independent of
any gauge-fixing procedure. When this condition is sat-
isfied, it was suggested that a sufficient condition for the
modified harmonic gauge formulation to be strongly
hyperbolic might be that the null cones of g̃μν and ĝμν

should lie strictly outside the characteristic cone. The same
might be true for the Einstein-Maxwell EFT that we have
considered. But determining whether or not this is the case,
whether for scalar-tensor or Einstein-Maxwell EFT, will
require new ideas.
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APPENDIX: PRINCIPAL SYMBOL

Consider a theory of a pair ðgμν; AρÞ defined by equations
of motion Eμ ¼ 0, Eμν ¼ 0. Let ξμ be an arbitrary covector.
Then the principal symbol for these equations is a matrix

PðξÞIJ ¼
�
PggðξÞμνρσ PgmðξÞμνρ
PmgðξÞμρσ PmmðξÞμρ

�
ðA1Þ

with elements defined by

PggðξÞμνρσ ¼
∂Eμν

∂ð∂α∂βgρσÞ
ξαξβ PgmðξÞμνρ¼

∂Eμν

∂ð∂α∂βAρÞ
ξαξβ

ðA2Þ

PmgðξÞμρσ ¼
∂Eμ

∂ð∂α∂βgρσÞ
ξαξβ PmmðξÞμρ¼

∂Eμ

∂ð∂α∂βAρÞ
ξαξβ

ðA3Þ

The matrix PðξÞIJ acts on the 14 dimensional vector space
of “polarization” vectors ðtμν; sρÞ where tμν is symmetric,
and so I and J run from 1 to 14 and refer to a basis of this
vector space.
For our EFT in modified harmonic gauge with equations

of motion Eμ
mhg ¼ 0, Eμν

mhg ¼ 0, the principal symbol is
given explicitly by

PðξÞIJ ¼ PEM⋆ ðξÞIJ þ δP⋆ðξÞIJ þ PGFðξÞIJ ðA4Þ

where

PEM⋆ ðξÞIJ ¼
� ðf − 1

2
gαβPμνρσ þ Pγ

αμνPγβρσÞξαξβ 0

0 ð−gμρgαβ þ gμαgρβÞξαξβ

�
ðA5Þ

δP⋆ðξÞIJ ¼
� −c3TμρλανσηβFλτFη

τξαξβ −2c3Tμγλανρηβ∇ηFλγξαξβ

−2c3Tργλασμηβ∇ηFλγξαξβ ð2c3TμαληρβγδRληγδ þMμραβÞξαξβ

�
ðA6Þ

PGFðξÞIJ ¼
�−P̂γ

αμνP̃γβρσξαξβ 0

0 −ĝμαg̃ρβξαξβ

�
ðA7Þ

where

Pα
βμν ¼ δðμα gνÞβ −

1

2
δβαgμν ðA8Þ

P̂α
βμν ¼ δðμα ĝνÞβ −

1

2
δβαĝμν ðA9Þ

P̃α
βμν ¼ δðμα g̃νÞβ −

1

2
δβαg̃μν ðA10Þ

Tμρλανσηβ ¼ 1

2
ðϵμρλαϵνσηβ þ ϵνρλαϵμσηβÞ ðA11Þ

and

Mμραβ ¼ 4ðgμρgαβ − gμαgρβÞ∂Xf þ 16FμαFρβ
∂
2
Xf

þ 8ðFμαϵρβγδFγδ þ FρβϵμαγδFγδÞ∂X∂Yf
þ 4ϵμαληϵρβγδFληFγδ∂

2
Yf ðA12Þ
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