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We consider the well-posedness of the initial value problem for Einstein-Maxwell theory modified by
higher derivative effective field theory corrections. Field redefinitions can be used to bring the leading
parity-symmetric 4-derivative corrections to a form which gives second order equations of motion. We
show that a recently introduced “modified harmonic” gauge condition can be used to obtain a formulation
of these theories which admits a well-posed initial value problem when the higher derivative corrections to

the equations of motion are small.
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I. INTRODUCTION

The only known fundamental fields for which the
classical approximation is useful are the gravitational
and electromagnetic fields. To an excellent approximation
these are described by conventional Einstein-Maxwell
theory but it is known that this theory will be modified
by higher order effective field theory (EFT) corrections. For
example, such corrections arise from quantum electrody-
namics (QED). In this paper we will consider the initial
value problem for Einstein-Maxwell theory with the lead-
ing order EFT corrections.

In EFT we write the action as an expansion involving
terms with increasing numbers of derivatives':

1
— | d*x/=G|—— (<2A+ R
N /dx\/ g{l&rG( +R)
1 v
~ 7 FuP® + L+ Lo+ . (1)

where F = dA with A, the vector potential and the scalar
L, is a polynomial in derivatives of the fields, where each
term contains a total of n derivatives of the fields (g,,.A,).
For example L, contains terms such as R?, R, R"
and (F,,F*)?.

If we truncate the above theory by discarding terms with
six or more derivatives then the resulting 4-derivative
theory describes the leading EFT corrections to conven-
tional Einstein-Maxwell theory. However, L, gives terms in
the equations of motion containing third or fourth
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'Dimensional analysis suggests that this should be viewed as a
double expansion ordered by increasing number of F,, factors,
and increasing number of derivatives.
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derivatives of the fields (g,,.A,). This is problematic for
two reasons. First, the mathematical properties of the
equations of motion are very sensitive to the terms with
the most derivatives. If these terms do not have a nice
algebraic structure then the initial value problem will not be
well posed. Second, even if these equations admit a well-
posed formulation, as is the case for 4-derivative correc-
tions to pure gravity in 4d [1], the higher order nature of the
equations of motion means that additional initial data are
required, which means that the equations describe spurious
(massive) degrees in addition to the two fields present in
the EFT.

One way around these problems is to treat the higher
derivative terms perturbatively, i.e., construct solutions as
expansions in the coefficients of the higher derivative
terms. However, there are situations where such expan-
sions exhibit secular growth, leading perturbation theory
to break down in a situation when EFT should remain
valid [2]. If a formulation of the equations could be found
that admits a well-posed initial value problem then
we would not be restricted to constructing solutions
perturbatively.

To make progress, we exploit the fact that in EFT, the
higher derivative terms in the Lagrangian are not unique,
but can be adjusted order by order in using field redefi-
nitions. This enables one to freely adjust the coefficients of
terms in the Lagrangian that are proportional to equations
of motion. For example, in the case of pure gravity,
the coefficients of the terms R? and R, R" can be adjusted
by a field redefinition of the form g,, — g, + d\R,, +
dyRg,, + - - - with suitable choices of d;, d,. This can be
used to make L, proportional to the Euler density (of the
Gauss-Bonnet invariant). In 4d this term is topological, i.e.,
it does not affect the equations of motion, and so this shows
that one can eliminate 4-derivative corrections in 4d pure
gravity.

© 2022 American Physical Society
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Similarly, in Einstein-Maxwell theory, field redefinitions
can be used to bring L, to the form (neglecting topological
terms)

Ly = X> 4+ c,Y? + 3R,  F*FP° 4 ¢, XY

HUpc
+ CSRﬂngF””FPG (2)
where
. 1 .
F;w = Ee;wpﬂFp (3)
and
X=F,F" Y=F,F" (4)

The terms with coefficients c;, ¢,, and ¢ are symmetric
under space-time orientation reversal (i.e., under parity or
time-reversal) whereas the terms with coefficients ¢, and c;
break this symmetry. In the parity-symmetric case, the
above form of the Lagrangian can be determined from
results in [3]. Reference [4] discusses the parity violating
terms (for a more general class of theories).

It is well known that ¢, ¢,, ¢3 receive contributions from
QED effects. In flat spacetime, at energies well below the
electron mass m, QED predicts corrections to Maxwell
theory described by the Euler-Heisenberg EFT which has
specific values for ¢, and ¢, proportional to a”>/m* where a
is the fine-structure constant. In curved spacetime, the term
with coefficient c¢3 also arises from “integrating out” the
electron in this way, with ¢; o< a/m? [5].

The nice thing about using field redefinitions to write L,
as above is that all of the terms except for the last one give
rise to second order equations of motion (for the c; term
this follows from [6]). In particular, if we restrict to a theory
with ¢5 =0 (e.g., a parity symmetric theory) then the
equations of motion are second order and we can hope that
the theory admits a well-posed initial value problem.

If we ignore gravity and just consider the 4-derivative
corrections to Maxwell theory (the terms quadratic in X, Y)
then it can be shown that the equations of motion can be
written as a first order symmetric hyperbolic system for
F,,, which ensures a well-posed initial value problem [7].
This result holds only when the 4-derivative corrections are
small, i.e., within the regime of validity of EFT.

With dynamical gravity, well-posedness is much more
complicated. There are no gauge-invariant observables for
gravity so any formulation of the equations requires a
choice of gauge. By “formulation” we mean a choice of
gauge plus a way of gauge-fixing the equations. Even for
the 2-derivative vacuum Einstein equation it is well-known
that many formulations do not give a well-posed initial
value problem (the same is true for the Maxwell equations
viewed as equations for A,). For example, the Arnowitt-
Deser-Misner (ADM) formulation of the Einstein equation

is only weakly hyperbolic [8], which is not enough to
ensure a well-posed initial value problem. Choquet-Bruhat
[9] was the first to show that a well-posed formulation
existed by proving the harmonic gauge formulation met this
criteria. There are also modifications of the ADM formu-
lation, such as the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation [10,11], that are strongly hyperbolic
[12,13] and therefore do admit a well-posed initial value
problem.

Even if one considers a formulation of the equations
of motion that gives a well-posed initial value problem for 2-
derivative Einstein-Maxwell theory, there is no guarantee
that well-posedness will persist when one deforms the
theory to include 4-derivative corrections, no matter how
small. This has been seen in recent work on the EFT of
gravity coupled to a scalar field. In this EFT, one considers
gravity minimally coupled to the scalar field and then
extends this 2-derivative theory by including 4-derivative
corrections. Field redefinitions can be used to write (parity
symmetric) 4-derivative terms in a form that gives second
order equations of motion. The simplest strongly hyperbolic
formulation of the 2-derivative theory is based on harmonic
gauge. However, if one includes 4-derivative corrections
then this formulation is only weakly hyperbolic, even for
arbitrarily small 4-derivative terms, so the initial value
problem is not well posed [14,15].% Note that this problem
is not apparent when equations are linearized around a
Minkowski background, or even around some nontrivial
backgrounds (e.g., a static spherically symmetric black
hole). But it is apparent when the equations are linearized
around a generic weakly curved background [14,15].

Fortunately it has been shown that there exists a
deformation of the harmonic gauge formulation that does
give strongly hyperbolic equations when the 4-derivative
terms are small [17,18]. This smallness requirement is not a
concern because it is also required for the validity of EFT
(if higher derivative terms are not small then a “UV”
description of the physics would be necessary3). This
“modified harmonic gauge” formulation gives a well-posed
initial value problem for the gravity-scalar EFT in 4d, as
well as for the EFT of pure gravity in higher dimensions
(where the Euler density is not topological).

In this paper we will consider the theory (2) with ¢5 = 0,
which describes Einstein-Maxwell theory with the leading

This EFT is a Horndeski theory, i.e., a diffeomorphism
invariant scalar-tensor theory with second order equations of
motion. Strongly hyperbolic BSSN-like formulations have been
found for a certain subset of Horndeski theories [16] but this
subset does not include the EFT we are discussing.

3Requiring that the EFT arises from a consistent UV theory
may impose restrictions on the coupling constants of the theory.
However, the result of [17,18] demonstrates that no such
restrictions arise from the requirement that the theory admits a
well-posed initial value problem within the regime of validity of
EFT. We will see that the same is true for the class of theories
considered in this paper.
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(parity-symmetric) higher derivative EFT corrections. The
similarity with the Einstein-scalar case strongly suggests
that a conventional harmonic/Lorenz gauge formulation
of this theory will be only weakly hyperbolic even when the
4-derivative terms are small.* However, we can adapt the
modified harmonic gauge formulation to this EFT. We will
show that the resulting equations are strongly hyperbolic
when the 4-derivative terms are small, and therefore this
formulation admits a well-posed initial value problem when
it is within the regime of validity of EFT. Our results apply
also to the larger class of (¢s = 0) theories obtained by
replacing the terms quadratic in X, Y with an arbitrary
smooth function f(X,Y) satisfying £(0,0) = fx(0,0) =
fy(0,0) = 0. This includes, for example, the Born-Infeld
Lagrangian for nonlinear electrodynamics.

This paper is organized as follows. In Sec. II we review
briefly the notion of strong hyperbolicity. In Sec. III we
describe the modified harmonic gauge formulation and
determine the principal symbol of the equations of motion.
In Sec. IV we prove that these equations are strongly
hyperbolic following arguments very close to those of [18].
In Sec. V we make a few concluding remarks.

II. STRONG HYPERBOLICITY

A full overview of strong hyperbolicity and how it relates
to well-posedness is given in [18]. A summary is provided
here for context.

Consider a second order PDE for a set of fields u,,
I=1,...,N. In our case we will have u; = (g,,.A,), and
so N =10+4 = 14 (10 for the independent components
of a 4 x 4 symmetric matrix and 4 for the components of a
4-vector). Assume that initial data is prescribed on some
surface X. We pick a coordinate system (x°, x') with  the
surface x° = 0. The equations that we will consider are not
quasilinear (linear in second derivatives) however they are
linear in dydyu, i.e., the equations can be written in the form

A (x,u,0 u,ao(?iu,did,-u)déuj = F'(x,u,0,u,000;u,0,0;u)
(5)

Initial data must be chosen such that the slice xo = 0 is
noncharacteristic, meaning that A" is invertible there. The
principal symbol P(£)" is a N x N matrix which deter-
mines the coefficients of the second-derivative terms when
the equations of motion are linearized around a background
(see Appendix for details). £, is an arbitrary covector.
P(&)Y is quadratic in &, and so we can write it in the
following form

P = gAY + &B(E)Y + (&)Y (6)

*As the Einstein-scalar case, we expect that one can see this by
studying the theory linearized around a generic background
solution.

Here A!/ is the same as in (5) by the definition of P(&)".
The N by N matrices A/, B and C! have additional
suppressed arguments (x, u, d,u, dyo;u, d;0;u) but not
dpoyu by the linearity condition.

We now define the matrix

0 I > )

M@ = (e ao
Let &; be unit with respect to some smooth Riemannian
metric G on surfaces of constant x°. Then the system of
equations (5) is strongly hyperbolic if for any such ¢;, there
exists a positive definite matrix K(&;) that depends
smoothly on ¢; and its other suppressed arguments
(x,u,0,u,0y0;u, 0;0;u) such that

KM = MK (8)
and there exists a positive constant A such that
I <K< 9)

K (&) is called the “symmetrizer.”
There is a theorem proved in Chapter 5 of [19] that if a
first order system can be written in the form

ooy = By(x,u,ou), (10)

then well-posedness of its Cauchy problem follows from
the system being strongly hyperbolic (for an appropriate
definition of strong hyperbolicity for first order systems),
assuming appropriate regularity of initial data. Now, [18]
explains a construction for reducing second order systems
of the form (5) to a first order system of the form (10) in
such a way that strong hyperbolicity of the second order
system implies strong hyperbolicity of the first order
system, provided M is invertible. Hence, we can prove
the Cauchy problem is well-posed by proving strong
hyperbolicity of our second order system.

The condition that M be invertible is necessary for the
reduction to a first order system used in [18]. It will be
shown to be invertible for our Einstein-Maxwell EFT
under certain conditions, as discussed at the end of
Sec. IV B.

II1. SETUP OF INITIAL VALUE PROBLEM
A. Equations of motion

We shall consider a theory with action

1 1
S = d*x\/—g|-2A + R —~F, F*
1671'GA,, * g|: + 4w

+f(X,Y) + c3RﬂW,,,F"”F/"’} (11)
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where f(0,0) = fx(0,0) = fy(0,0) = 0. This includes
our (c5 = 0) Finstein-Maxwell EFT, where we rescaled
the Maxwell field to scale out an onverall factor of 162G.
The equations of motion result from varying S with respect
to A, and g,,. We define variations

_ 162G &S

oS B 162G 68
V=g bA,’

Vaui') 59/41/ '

HY —

Et = (12)

Explicitly these are given by

1/1
B = Ag" +G" + 5 <4 gUFPF,, — FW’F”/,>

1
=5 9(f = Yoy f) + 2FF* yoxf

1 Apo T
—56 G s (FicFP" R, + VOF, V) (13)

EF =V, F*(1 =40y f) — 2V F5(4F* F* 0% f + 2(FMF 56%1° 4 7o F , F*P)ox 0y f + e*P°eP°F , F ,50% f)

+ 03000, FPR 10,

Let n,, be a normal to the initial surface X. In our coordinate
chart we have n, o 52 The antisymmetries of the gener-
alized Kronecker delta mean that n,E* and n,E*" do not
contain any second x° derivatives, and hence these are
constraint equations, as in conventional Einstein-Maxwell
theory. Furthermore, these antisymmetries also imply these
equations are linear in the second derivative with respect to
any one coordinate, and hence can be put in the form (5).
This will remain true when we include the gauge-fixing
terms described below.

B. Bianchi identities

The action S is invariant under diffeomorphisms and
electromagnetic gauge transformations. By considering an
infinitesimal diffeomorphism x* — ¥ (x) = x* — " (x) we
get the Bianchi identity

1 1
VB~ FYE 4 S AV, E =0, (15)

Furthermore, by considering a gauge transformation
A, = A, +V,x we get

V, B = 0. (16)

Hence we can rewrite (15) as
1
V, EF — EFﬂ”Ey =0. (17)

These equations hold for any field configuration. They will
allow us to prove the propagation of the modified harmonic
gauge condition. They will also have consequences for the
principal symbol discussed below.

C. Modified harmonic gauge

The “modified harmonic” gauge introduced in [18]
requires the introduction of two auxiliary metrics, §*

(14)

[
and ¢*. These are completely unphysical, introduced only
for purposes of fixing the gauge. Any index raising and
lowering is done using the physical metric as usual.

The only properties we require of the auxiliary metrics
are that the (cotangent space) null cones of §**, g"* and g**
are nested as shown in Fig. 1(a) in Supplemental Material
[20], with the null cone of ¢*” lying inside the null cone of
3", which lies inside the null cone of @/‘”.5 This nested
structure ensures that any covector that is causal with
respect to ¢/ is timelike with respect to g or ¢"*. This
implies that if X is spacelike with respect to ¢**, then it is
also spacelike with respect to ¥ and §*. Reference [18]
provides examples for how to construct such auxiliary
metrics, such as ¥ = ¢ —an*n*, g* = ¢ — bn'n"
where n# is the unit normal to surfaces of constant x°
and a, b are functions chosen to take values in a certain
range. In the tangent space, the null cones are also nested,
with the ordering reversed, as shown in Fig. 1(b) in
Supplemental Material [20].

Modified harmonic gauge is defined by6

H*=H=0 (18)

where
Ht =gV V x# (19)
H=-3"V,A, (20)

and the gauge-fixed equations of motion are taken to be

EY

g = B+ P ogHT = 0 (21)

SReference [18] discusses alternative choices for the ordering
of the nested cones.

It would be more accurate to refer to this as “modified
harmonic/Lorenz” gauge, since it modifies the harmonic gauge
condition on the metric and the Lorenz gauge condition on the
Maxwell field. However, we will stick with the shorter name.
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Bl =B+ Y, H = 0 (22)
where
P = ol L dlipe. (23)

Standard harmonic/Lorenz gauge would result from choos-
ing ¢ = g = ¢"¥. However, the similarity with the
Einstein-scalar case [14,15] strongly suggests that this
would result in equations that are only weakly hyperbolic.

Note that the gauge fixing terms are linear in second
derivatives of g, and A, and hence Eqs. (21) and (22) can
still be put in the form (5). For standard 2-derivative
Einstein-Maxwell theory in modified harmonic gauge,
the matrix A’/ is invertible on surfaces of constant x°
provided the surfaces are spacelike (i.e., spacelike surfaces
are noncharacteristic). We will require that our initial data is
chosen such that A% is invertible, i.e., the surface x° = 0 is
noncharacteristic. By continuity (of detA’/), this will
be the case for a spacelike initial surface if the initial data
is sufficiently weakly coupled, i.e., the higher derivative
terms are small compared to the 2-derivative terms.
By continuity, invertibility of A’/ will continue to hold
in a neighborhood of x* = 0. Hence, for weakly coupled
initial data, Eqs. (21) and (22) meet the prerequisites to
consider whether they are strongly hyperbolic. The notion
of weak coupling will be defined more precisely in
Sec. I K.

D. Propagation of gauge condition

We must show that a solution to the modified harmonic
gauge equations is also a solution to the original equations
of motion provided the initial data satisfies the constraint
equations and gauge conditions. We can impose H* = 0 on
our initial data surface X, by choosing coordinates x* as
argued in [18]. Additionally H = 0 can be imposed on X by
gauge transformation of A,. The propagation of these
conditions follows from much the same argument as in
[18]. Suppose we have a solution to Egs. (21) and (22) that
satisfies the constraint equations n,E* = 0 and n,E*" =0
on X. Then by taking the divergence of (22) and using the
Bianchi identity (16) we have

0=V,E!

wEng = ¢*Vv,V,H + (V,g*)V,H (24)
which is a linear wave equation for H with principal
symbol defined by §*. We know that X is spacelike
with respect to ¢ and hence this equation has a well-
posed initial value formulation. This means it has a
unique solution in D(X) (the domain of dependence
of ¥ with respect to §*) for given initial data H and
n,g*"o,H on . But by the constraint equation n,E* =0
we have

0=n,F

]
mhg

u =n,g"o,H (25)
and hence the initial data for H is trivial and the unique
solution is H = 0. Similarly we can show H* = 0 through-
out D(Z) using the Bianchi identity (17) and the constraint
equation n,E* = 0, as explained in [18].

Therefore E¥ = 0 and E* = 0 in D(X). But since the
causal cone of ¢** lies inside that of §**, we have D(X) C
D(X) where D(X) is the domain of dependence with
respect to g. Hence, if the initial data satisfies the gauge
conditions and constraints then, within D(X), a solution to
the gauge fixed equations is also a solution to the equations
of motion arising from the original Lagrangian.

E. Principal symbol

The definition of the principal symbol is reviewed in the
Appendix. The principal symbol for our equations acts on a
vector of the form’

T = (tﬂwsp)T (26)

where L is symmetric. Indices 7, J, ... take values from 1
to 14. In geometric optics, 7; describes the polarization of
high frequency gravitoelectromagnetic waves.

We label the blocks of the principal symbol8 as

Pyg(&)re Pgm(f)’wp) (27)

1J [Jyo _
POT =Pret = (ng(@”ﬂ“ P&

where we have suppressed the dependence on
(x,u,0,u,dyo;u, 0;0;u). We decompose this into a part
P, (&) coming from E* and E**, and a gauge fixing part
PGF(é) with

P =P (O + Pgr(&)” (28)
Poga (EV7 Pya (£

P = " ’ ) 29

O = (e P 29
P Peorog g 0

= ! 30

Parter = (" e L)oo

Furthermore, we split P, () into the standard Einstein-
Maxwell terms (i.e., those coming from the first three terms
in (11)) and the higher-derivative terms:

P& =PMEY + 6P (&) (31)

"Here the superscript “T” denotes a transpose, i.e., this is a
column vector.

Here we are following the notation of [21]. “g” stands for
gravitational and “m” stands for matter. In our case the matter is a
Maxwell field.
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where

Peve = ( .

(33)

a

The expression for 5P, (£)!/ is lengthy and so is given in
the Appendix in Eq. (A6).

F. Weak coupling

The principal symbol is quadratic in £, so we can write
e.g., P, (&) = PV ¢, E,. We say that the theory is weakly
coupled in some region of spacetime if a basis can be
chosen in that region such that the components of spLm
are small compared to the components of (PEM)M# This is
the condition that the contribution of the higher derivative
terms to the principal symbol is small compared to the
contribution from the 2-derivative terms. Note that this is a
necessary condition for validity of EFT.

We assume that the initial data is chosen so that the
theory is weakly coupled on Z. By continuity, any solution
arising from such data will remain weakly coupled at least
for a small time. However, there is no guarantee that the
solution will remain weakly coupled for all time e.g., weak
coupling would fail if a curvature singularity forms. Under
such circumstances, well-posedness may fail in the strongly
coupled region but EFT would not be valid in this region
anyway.

G. Symmetries of the principal symbol

Our proof of strong hyperbolicity will make heavy use of
the symmetries of the principal symbol. The following
symmetries of the principal symbol are immediate from its
definition:

pgg*(é:)/wpa — pgg*(g)(uv)pv - ’ng*@)lw(ﬂf’) (34)
7)gmit (f)lll//) = 7ng* (5) (/w)/) (35)

Pnge (E) = Pgu (£) 4. (36)

In [21], it is shown that the fact E# and E** are derived from
an action principle leads to the following symmetries:

ng* (é)ﬂl//lﬂ — ng* (5)/)0’}41/ (37)
Pomu (EP7 = Paga (£) (38)
Pmmt (f)ﬂp = Pmm* (5)1)”- (39)

In particular this means that P, ()" is symmetric.

(=3 g7 P 4 PPV £ 0 )

32
(=99 + ¢"9°)&,&5 )

The Bianchi identities (17) and (16) together with
the symmetries above also put conditions on the principal
symbol (also given in [21] in an equivalent form),
namely

Pyge(§)778, =0 (40)
Pome (E)F7€, =0 (41)
Pinge (§)#7°8, =0 (42)
Pruma ()€, = 0. (43)

IV. PROOF OF STRONG HYPERBOLICITY

A. Characteristic equation

If M(&;) [defined by (7)] is diagonalizable with real
eigenvalues, and eigenvectors that depend smoothly on ¢&;
then a symmetrizer K (&;) can be defined by K = (§~!)7S~!
where S is the matrix whose columns are the eigenvectors.
We will therefore start by considering the eigenvalue
problem for M(¢;), following the approach of [18]. We
will first prove smoothness of all eigenvectors for the
modified harmonic gauge formulation standard 2-deriva-
tive Einstein-Maxwell, thus establishing the strong hyper-
bolicity of this formulation. We then consider the weakly
coupled EFT. In this case we will not demonstrate smooth-
ness of all eigenvectors but nevertheless we will explain
how a symmetrizer can still be constructed.

M acts on vectors of the form” v = (T, ;)T where T; =
(ty>5,)" and T} = (1, 5,,)". It is straightforward to show
that any eigenvector of M(&;) with eigenvalue &, is of the
form (T;,&T;)" where T; satisfies

PE)T, =0 (44)

where &, = (&), &;). This is called the characteristic equa-

tion. If this equation admits a nonzero solution 7' then &, is

called a characteristic covector or simply characteristic. In

geometric optics, characteristics arise as wave vectors of

high frequency waves, with 7'; describing the polarization.
The characteristic equation can be rewritten as

<Pyg(£)”%t"” + Pon (£)*s, ) = (0) (45)
ng (g)ﬂ/mt/m + 7)mm (é)ﬂps/; B 0 '

9 . .
As before, the superscript “T” denotes a transpose, i.e., we are
defining column vectors.
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We contract the first row of this equation with £, and
the second row with £,, and use (40)—(43) to see that the
nongauge-fixing parts now vanish. After expanding the
gauge fixing parts we get two equations:

1 -
- E (gwéugy)(gﬂﬂpﬂapﬂéétpa) =0 (46)

_(gﬂﬂfugp)(zfygo'su) =0. (47)

Therefore we can split the analysis into two cases:
(I) gyyéyéy ;é 0= gﬂﬂpﬂépgfﬁt/m =0 and g(w(;:o'sy =0
) §7EE =0
Note that Case I implies that Pgp(E)Y T, =0, ie., T,
“satisfies the gauge conditions”.

B. Standard Einstein-Maxwell theory

We start our analysis with standard c¢; = f = 0 Einstein-
Maxwell theory. Let us consider each case above.
Case I. This is defined by §*7¢,&, # 0 which implies
gﬂﬂpﬂﬁlméétpo' =0 (48)
and

J"es, =0 (49)

As noted above, these imply Pgr (€)' T; = 0. Substituting
this back into (44) gives

P(OYT; =0 (50)

In standard E-M theory, P, (&) = PEM(&) which is block
diagonal and so this reduces to

PEE 1,0 = 0 51)
and
PY(E)s, =0 (52)

Hence we can use results derived in [18] for the Einstein
part, supplemented with their Maxwell equivalents. We
split into two further cases:

Subcase la: This is defined by g7‘3§y§5 # 0. Expanding

(52) gives
7
v =o (i) s

Therefore s, = A&, for some 4. Substituting this into (49)
gives A§7¢,£E, = 0. Similarly for the Einstein parts, [18]
shows that in the case gV5§y§5 # 0, the Egs. (48) and (51)
imply #,, = £, X,y and X*g*&,€, = 0 for some X,. Taken
together, for nonzero 7; we have that

g8, =0 (54)

and T; = (§,X,), 4¢,)". Note that our assumption that the
null cones of 7 and ¢* do not intersect ensures that (54) is
consistent with g7°& &5 # 0.

Surfaces of constant x° are spacelike with respect to g**
and hence spacelike with respect to §**. Therefore, Eq. (54)
has two real solutions Z% that depend smoothly on ¢&;.
The associated characteristic covectors are labelled
& = (& .&;). The two solutions can be distinguished by
the convention F §*&" > 0.

There are 4 + 1 = 5 linearly independent eigenvectors
associated to each eigenvalue &, given by the arbitrary
choices of X, and 4. We call these “pure gauge” eigen-
vectors because they arise from a 4-dimensional residual
gauge freedom in g, and a 1-dimensional residual gauge
freedom in A, in the gauge fixed equations of motion (21)
and (22). These eigenvectors form 5-dimensional eigens-
paces, which we denote as V*.

Subcase Ib: This is defined by

9766, =0 (55)

Again this has two real solutions & with F ¢”&F > 0 and
characteristic covector & = (£5.&;). We will find the
dimension of the space of eigenvectors. Starting with the
Maxwell part, the equation P} (&5)#s, = 0 reduces to

9"és5, =0 (56)
But the Case I condition (49) is
J%é5s,=0 (57)

Hence the only requirements on the polarization s, are that
it is orthogonal to & with respect to both ¢** and 7. These
are the “physical” photon polarizations, and for each
eigenvalue &, the corresponding 7; = (0,s,) form a 2-
dimensional eigenspace that depends smoothly on &;.

For the metric part, [18] proves a similar statement in this
case. For each eigenvalue &, there are 2 linearly inde-
pendent eigenvectors with 7, = (7,,.0) that depend
smoothly on &;. These polarizations are transverse with
respect to ¢* and g in the sense that Ps%°&5t,, = 0 and
Pgo&ft,, =0, and correspond to physical polarizations
of the metric.

Therefore there is a 4-dimensional eigenspace V* for
each eigenvalue &3, with eigenvectors depending smoothly
on &;.

Case II: This is defined by

9766, =0 (58)
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Once again, this has two real solutions 23[ which we
distinguish by F f]o”.%,jf > (. Since the characteristic cov-
ectors c:“,jf = (;E(jf,éi) are the same as those for (24), we
call the corresponding eigenvectors “gauge condition-
violating” (In geometric optics these correspond to high
frequency solutions of the gauge-fixed equations that
violate the gauge condition.)

We first look at ;ﬁ{ and construct its eigenvectors. Since
E;’ is null with respect to g"*, it is spacelike with respect to
¢". Therefore we can introduce a basis {ep, €}, €5, €5}
which is orthonormal with respect to g,, and ¢l Etr
(recall that indices are raised using ¢"*). This basis can be
chosen to depend smoothly on &; [18].

Define indices A, B, ... to take values 0, 2, 3. In this basis
we can write a general symmetric tensor as

t;w = %&Xy) + tABe;eef (59)

and a general covector as

S, = /1.%; + sceS (60)
By the conditions (40)—(43) and symmetries (34)—(36) the
only nonvanishing components of P,(%*) are those with

A, B, ... indices. To construct the eigenvectors, we start by
considering solutions (745, s¢) to the following

<P€(8+)ABCD 0 ) <tCD > _ <P§AB%;U“>
0 PUENC) \ sc Fetiw
(61)
where (v%, w) is a fixed constant vector. We claim this can

be solved uniquely. Consider an element (r4p, pc) of the
kernel of the matrix on the left-hand side:

PLEPPrep =0 (62)
PY(E Y Cpe=0 (63)
In [18] it is shown that PE(&")ABCD has trivial kernel and
so rup = 0. We can do the same for P*M(EJF)AB using a

similar argument: (63) implies that
PUE ) p, =0 (64)

for any p;. Expanding implies

P(goE &) = E (g8 ps) (65)

The null cones of ¢’ and §° do not intersect and so
¢"°&&F # 0. This means the above implies p* o &™, and

hence in our orthonormal basis, p, = 0, which establishes
the result.

Therefore the kernel of the matrix on the left hand side of
(61) is trivial and so there is a unique solution
(tap(v*,w), sc(v* w)) to (61). This solution depends
smoothly on (v%,w), & and g,, since both sides of (61)
depend smoothly on these things.

We use these values for (z,3(v* w), sc(v*, w)) in our
definitions of (t,,.s,) defined by (59) and (60). This
implies that

P*(%)’f(t””(”y’W)) _ (’3 M ”a> (66)

s,(v",w) Fakiw

since the components with 1-indices vanish on the top line
and bottom lines because both sides have vanishing
contractions with & .

Now, in our definitions (59) and (60) we judiciously
chose

2 A
X”(’U, tAB) = T Ai~r (U” - PMDAB&J;ZAB) (67)
JOEES
and
A0,50) = e W= G4Es)) (68)
75 ’

which also depend smoothly on their arguments (and &;).
These choices imply

o s 1 PITIN - N
Prll 1y, = 2 (708 &)X + P01y,

= of — PUABEF L+ PRABES L,

= (69)
and

GUE s, = AgrETES + §hEl sy
=w (70)

which imply that T; = (z,,(v%, w), s,(v*, w)) satisfies

PENT; = P.(ENT; + PerED)VT,
_ <Paﬂ}w%; 1}(1) ~ <i)ayﬂDZ:;LPa§/)O'Z::; [po'>

FESw PrgoEELs,
(rEn)-(rE)
FEw gatw

0 (71)
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where the second equality comes from (66) and the third
equality comes from (69) and (70).

Hence for every (v%, w) we have constructed a smoothly
varying eigenvector (T;(v® w),& T;(v%,w)) of M with
eigenvalue %f{ . If we pick a set of 5 linearly independent
choices of (v%, w) then the corresponding 74 and s will be
linearly independent by the triviality of the kernel of the
left-hand side (lhs) of (61), and hence the corresponding
eigenvectors will be linearly independent. Label the 5-
dimensional span of these eigenvectors by V. We can
repeat all the above steps with 25 to get the same result for
V. We claim that V* contain all the eigenvectors with

eigenvalue Z:(jf by counting the dimensions of the eigens-
paces we have found so far:

dimV* +dim V- +dimV* +dim V- +dim V" +dim V"
=54+5+4+44+4+5+5=28 (72)

M is a 28 by 28 matrix, and hence there are no more
eigenvectors to find. Therefore V* are the total eigenspaces
for (:&(jf

To summarize, we have found that, for standard 2-
derivative Einstein-Maxwell, M (&) has 6 distinct eigenval-
ues, E(jf cf(jf and Ef)t which are all real. Furthermore it has a
complete set of eigenvectors that depend smoothly on ¢&;.
Therefore the modified-harmonic-gauge formulation of
standard Einstein-Maxwell is strongly hyperbolic.

Now, as mentioned in Sec. II, the argument that strong
hyperbolicity implies well-posedness assumes that M is
invertible. This is equivalent to C! being invertible, which
is equivalent to the condition that &, # O for any character-
istic covector. However, we chose our spacetime foliation
such that surfaces of constant x° are spacelike with respect
to ¢*, and hence spacelike with respect to g** and ¢*. This
means that a covector with &, = 0 is spacelike with respect
to all three (inverse) metrics. But as we found above, the
characteristic covectors are null with respect to one of the
three metrics, and hence M is invertible for standard E-M
theory. By continuity, M will remain invertible when we
include higher derivative terms, assuming weak coupling.

C. Weakly coupled Einstein-Maxwell EFT

Now we consider our theory including the higher
derivative terms. At weak coupling, M(¢;) is a small
deformation of the corresponding matrix of the 2-derivative
theory. The continuity of this deformation will be used in
the following to show that many of the above results still
hold. In particular, the eigenvalues of M (¢&;) will be close to
those discussed above, and can be sorted into six groups
corresponding to which eigenvalue they approach in the
standard 2-derivative (i.e., c3 — 0, f = 0) limit. Asin [18],
we call these groups the Eg -group, the 55 -group etc. We do
not know that these eigenvalues are real so we view M(¢&;)

as acting on the 28 dimensional space V of complex vectors
of the form v = (T, T)T.

Following the argument of [18] we can decompose V as
follows

v=vteVievtev-eV-eVv- (73

where V* is the sum of all generalized eigenspaces'’
associated with eigenvalues in the & group and similarly
for the other spaces. The spaces V', V™ etc. must have the
same dimensions as the corresponding eigenspaces in
standard 2-derivative E-M theory. Therefore, V* and V*
are all five dimensional and V* are four dimensional. These
vector spaces are complex.

Recall (Sec. IV A) that the analysis of the characteristic
equation splits into two cases. We will see that V*
correspond to eigenvectors in Case I arising from the same
residual gauge invariance as in the standard 2-derivative
theory. V* correspond to the remaining eigenvectors in
Case I, which are the physical eigenvectors. V* correspond
to gauge-condition-violating eigenvectors in Case II.

D. v+
These are the spaces associated with the & -groups of
eigenvalues, where & are the two real solutions to
gﬂ%ﬁf = 0. However, the weakly coupled theory still
has the same residual gauge freedoms in g,, and A, as the

2-derivative theory. As such it turns out that & are still
eigenvalues of the weakly coupled theory with the same
eigenvectors v = (T, &T;)T of the form

for arbitrary X, and 1. To show this, note that 7'; satisfies
Por(E)YT, =0, and also

Poge (B VB X ) + APy, (B0 )
ng* (Ei )ﬂpag(ipx(j) + A’Pmm* (%i_ )ﬂpg‘f

(2

where the second equality follows from conditions
(40)—(43) and symmetries (34) and (36). Therefore

P(EF)YT, = 0. Hence V* are genuine eigenspaces (rather
than generalized eigenspaces) with eigenvalues g% and
eigenvectors that depend smoothly on ¢&;.

P(ENWT, = (

"The generalized eigenspace corresponding to a matrix A and
eigenvalue A is the space of vectors x such that there exists a
positive integer m with (A — AI)"x = 0. In the Jordan decom-
position of A, each Jordan block is associated with a generalized
eigenspace.
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E. V*

These are the spaces associated with the ;‘Z?f—groups of
eigenvalues where éét are the two real solutions to
@””%ff@f = 0. We will now show that our above construc-
tion of eigenvectors with eigenvalue Egt in the 2-derivative
theory extends to the weakly coupled higher-derivative
theory with only minor modifications.

We introduce the same basis as before, and take indices
A,B,... to take values 0,2,3. The only line which needs
changing is Eq. (61), as we now want to find solutions
(taBsc) t0

<«Pyg*(gz+)ABCD fpgm*(é-'r)ABC)(tCD) B <P§AB$};1}G>
Pruge AP P (ENAC ) Nsc )\ gpagry, )

(76)

However in standard E-M theory, we found that the kernel
of the matrix on the left-hand side is trivial and so its
determinant is nonzero. By continuity, its determinant is
also nonzero for sufficiently weak coupling, and so its
kernel is still trivial and there is still a unique solution
(tap(v*, W), sc(v*,w)) to (76). Both sides of (76) still
depend smoothly on (v%,w), &, g, and A, and their
derivatives, and so the solution also depends smoothly on
these things.

The rest of the construction follows the same steps as for
the 2-derivative theory, and hence V* are genuine eigens-
paces with eigenvalues ;% and eigenvectors that depend
smoothly on &; and the fields and their derivatives.

F. V£

These are the spaces associated with the &F-groups of
eigenvalues where & are the two real solutions to
¢vERES = 0. Since we are only considering weak cou-
pling, we can assume that these eigenvalues are sufficiently
close to & so that &, # 0 and §7&,&, # 0. Therefore
the eigenvalues and eigenvectors in the 4-dimensional
generalized eigenspaces V* are those in Case I that do
not also satisfy §°*&,£, = 0. We will show that V* are
genuine eigenspaces by closely following the argument in
[18] for Horndeski theories.

The first step of the argument is to establish that the
deformed eigenvalues are real. We proceed by defining

B, A,

+ ( ) (77)
A, O

where A, and B, are defined as in (6) but by only using the

nongauge fixing parts of the principal symbol. Hf is
Hermitian since P, (£)! is symmetric and real. We then

HE =

define the Hermitian form (,), on vectors () =

(Tgi), T §i>) in V* (viewed as 4-dimensional complex vector
spaces) by

(1_)(1)7 H(Z))i = /U(l)THitU(2> (78)

We show this is positive definite for standard E-M theory,
and hence by continuity it is positive definite for suffi-
ciently weakly coupled E-M theory. In standard E-M, V*
are genuine eigenspaces each with one eigenvalue £ and
eigenvectors ) = (,(f,f,sg),tf(j)ﬁt,(f,,),éﬁs,(f) ) satisfying the
equations which define Subcase Ib. A, and B, are also
block diagonal so the Hermitian form splits into a gravi-
tational part and a Maxwell part:

(o0, o), = £ (285, + By 1)
+ 50" (28£A, + B, s (79)

In [18] it is shown that the gravitational part simplifies to

—gWEr t,(,},)*P””p"tﬁ,i) where
1
P =5l = g (50)
Using (56), we can also reduce the Maxwell part, leading to

(o, o), =F Ve[ Pty 425 g5 (81)

To simplify further, we pick a tangent space basis
(eg)t = EF, (e )* o EFF, (ey)* and (e3)* with

g(eg,er) =1, gle; e3) =8 (82)

where ;} =2, 3 and all other contractions vanish.
In this basis, Eq. (56) becomes sy =0, and so

S g s = s§1>*s§2). Similarly for the gravitational part,

(1
Su
[18] shows that the conditions defining Subcase Ib imply
that all components of 7, either vanish or depend linearly
on the traceless quantity #; ;- Furthermore, they show that

f;(tp*P"”""t/()%;) = tfi)*tf? Therefore

(00, 0@), = g0 42 +25s1)  (83)

Our convention was that F & >0 so this is non-
negative for v(!) = »(2) = ¢, Suppose that (v,v), = 0.
Then s; =0 and so Eq. (57) becomes §''s; = 0. But
0# gvérer = ', and hence this implies s; = 0.
Therefore s, = 0. Similarly # 5 =0 implies that 7,, =0
by Subcase Ib conditions [18]. Hence (v,v), >0 with
equality iff » = 0. Therefore we have shown that the
Hermitian form is positive definite for 2-derivative E-M

theory, and hence, by continuity, also for weakly coupled
E-M theory.
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In [18], it is shown that the existence of this positive
definite form on the complex vector space V* implies the
eigenvalues in the &5 -group are real so long as a) P, (€)% is
symmetric (which we have) and b) the corresponding
eigenvectors are in the kernel of Pgr(£)Y. The second
condition follows for V* by Case I conditions. Hence the
eigenvalues in the & -groups are real.

We now proceed to show diagonalizability of M(&;).
Since we have already shown that V* and V* are genuine
eigenspaces, we just need to show that M(&;) is diago-
nalizeable within V=. To this end, let &, be an eigenvalue in
the & group and consider a left eigenvector of M (&;) with
this eigenvalue. One can show these are of the form

w = (T;.&T) (i 13) (84)
where
T,/P)" =0 (85)

Now, using the symmetries of P, (£)/ one can show that a
family of left eigenvectors with eigenvalue % is given by

T = (&5X,).08) (86)

for arbitrary X, and A. Then by considering the Jordan
normal form of M, we have that w must be orthogonal to
any vector v = (uy, u}))” in any of V* or V*, ie.,

o=w=mgr(h, )(4)

AV 0 u
= T;(BY + & AY Ju; + T,AY u), (88)

By expanding T through (86) and using the fact that X,
and A are arbitrary we get the two following conditions on

(uy, up):
0 =& (B + A Ju, + EAM, (89)
0 =& (BY + &AM Juy + &AM u), (90)
We can eliminate (&) using §&,&, = 0 to get
R 4+ 5 =0 (91)
ESR+S=0 (92)
where

RV = —2(@00)_1§0i§iA”OJMJ + ByOJuJ + fiA”iJM] + AyOJu/J
(93)

R = _2(@00)—1901'5[14011/!] + BOJMJ + él’AﬂM‘] + AOJM{,
(94)

St = _@00)—1@{]&@14,401”] + &EB* Y uy + EAMTY, (95)
S=—(9")197EEAY uy + EBY uy + EAT U (96)

Note that none of R*, R, S# or S depend on % Therefore,
since (91) and (92) are true for both signs =+, they imply

Rt =0 =S¥, R=0=S. (97)
Now, we can match coefficients of powers of &, in the
Bianchi-style identities (40)—(43) to get the following

identities on A, and B, (and on C, but these are not
relevant to our argument):

AT — (98)
EAMT L BT — (99)
AY =0 (100)

EAT +BY =0 (101)
We can plug these into (93) and (94) and see that all the
terms vanish in R¥ and R. Hence they only depend on
gauge-fixing terms which are block diagonal. Writing u; =
(tu.s,)and uy = (t,,,s,) and expanding A and B, the
equations R* = 0 and R = 0 reduce to

P/}ipofit/m + P/}Opo-t;)o' =0 (102)

FiEis, + 305, =0 (103)
The first condition is the same as in [18], while the second
condition is its Maxwell equivalent.

These are the conditions we will need to show diago-
nalizability of V*. Let us start with V. For contradiction,
assume we have a nontrivial Jordan block so there exists
w = (uy,u})T € VT such that

v = (M(&) = &)w #0 (104)
where v = (T,&T;) € VT is an eigenvector of M (¢;) with
eigenvalue &,. Write T; = (r,,. p,). Now, (104) is equiv-
alent to the two equations

uy = Eoup + T (105)

P& u; = -(26A+ BT, (106)

Note that we can substitute (105) into the conditions (102)
and (103) to get
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Pyt + Py7r, = 0 (107)

@Uﬂfﬂsy + gyopv =0 (108)
We can also rewrite (106) by extracting the gauge-fixing
terms:

P& uy = =Por(&)”u; — (260Agr + Bgr)"' T,

— (280A, + BT, (109)
The gauge-fixing terms are block-diagonal so they split into
a gravitational part and a Maxwell part. In [18], it is shown
that (107) implies the gravitational gauge-fixing part
vanishes. The Maxwell parts vanish similarly since

= (Per(&)"™s, + (28Acr + Ber)" py)
= 9758, Es5, + (28097 + &7 T + &0 ) p,
= 0758, Es5, + 3T,y + F°FE, Dy
=7°37¢,p,
~0 (110)

where the third equality follows from (108) and the fourth
from using the Case I condition on the eigenvector v. Hence
all the gauge-fixing terms in (109) vanish, and contracting
the remaining terms with 77 gives
TiP (&Y uy = =T;(25A, + B)T; = (v,v),. (111)
But by symmetry of P, (&)Y, the left-hand side can be
written as

u; P (E)IT: = uy (P (6)'T))* =0 (112)
where the second equality follows because v = (T, & T;)
is a Case I eigenvector of M and therefore P(&)YT; =0
and Psr(€)YT; = 0. But this implies that (v, v) . = 0, and
since (, ), is positive definite this means v = 0. This is a
contradiction, and hence our assumption of a nontrivial
Jordan block must be false, i.e., M(&;) must be diagonaliz-

able in V. Repeating the arguments for V- gives us the
same result.

G. Construction of symmetrizer

To summarize, we have found that V* and V* are spaces
of smoothly varying eigenvectors of M(&;) with real
eigenvalues. We have also found that V* have bases of
eigenvectors with real eigenvalues. However, the eigen-
vectors may not have smooth dependence on &; at points
where eigenvalues cross, and so it is not obvious that the
symmetrizer built from the eigenvectors will be smooth.

Instead, as in [18], we will show that Hf is a symmetr-
izer for M(¢;) within V*. Let o) = (71", &V T{")7 and
v@ = (1 EPTPNT be eigenvectors in V* with eigen-
values 5(()1) and f(()z). Since all the eigenvalues associated
with V* are real, we can take v(!) and »? to be real. Then

v (MTHE — HEM)v®?

_ (5(()1) _ 5(()2))v(1)Tva(2)

=1 - &7A. + (&) - &) T
=0

= TP, (M) = P, (EQ) TP (113)

The final equality follows because v and v are

Case I eigenvectors, and so P*(ém)”Ty) =0 and

P, () T(Jz) = 0. Now, since eigenvectors form a basis
of V£, it follows that HY is a symmetrizer for M (&;) within
V*. In particular, it depends smoothly on all its arguments
and is positive definite.

We can construct the total symmetrizer in V in an
identical fashion to [18]. Let {vf,...,vF} be a smooth
basis for V*, and let {7, ..., 7%} and {?F, ..., 95} be the
smooth eigenvector bases constructed above for V* and
V*. Let S be the matrix whose columns are these basis
vectors. Then the symmetrizer is given by

Hf 0 0 0 0 0
0 I, 0 0 0 0
0 0I5 0 0 0
K(&) = (s s (114
(g’)()ooomoo (114)
0 00 0 I5 0
0 00 0 0 I

where H; are 4 x 4 matrices with components

(M) a = () Hi v (115)
K (&;) has smooth dependence on &;, the fields and all their
derivatives, is positive definite and satisfies Eq. (8).
Therefore, at weak coupling, our Einstein-Maxwell EFT
is strongly hyperbolic and hence admits a well-posed initial
value problem.

V. CONCLUSION

We have considered Einstein-Maxwell theory extended
by the leading (4-derivative) effective field theory correc-
tions. We have used the methods of [18] to prove that the
modified harmonic gauge formulation of this theory admits
a well-posed initial value problem when the initial data is
weakly coupled, i.e., when the 4-derivative terms in the
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equations of motion are initially small compared to the
2-derivative terms. Note that our result concerns local well-
posedness, i.e., it guarantees existence of a solution only for
a small interval of time. Over long time intervals, the fields
may become large (e.g., if a singularity forms), in which
case the theory would not be weakly coupled and well-
posedness is likely to fail. From an EFT perspective this is
fine because there is no reason to trust the theory if the
fields become large.

It is interesting to ask how large the higher derivative
terms can become before strong hyperbolicity fails.
Reference [21] discussed this question for the case of
the scalar-tensor EFT. In that case, it was shown that one
can define a characteristic cone associated purely with the
physical degrees of freedom. Using this cone one can
define a notion of weak hyperbolicity that is independent of
any gauge-fixing procedure. When this condition is sat-
isfied, it was suggested that a sufficient condition for the
modified harmonic gauge formulation to be strongly
hyperbolic might be that the null cones of §* and g"
should lie strictly outside the characteristic cone. The same
might be true for the Einstein-Maxwell EFT that we have
considered. But determining whether or not this is the case,
whether for scalar-tensor or Einstein-Maxwell EFT, will
require new ideas.

APPENDIX: PRINCIPAL SYMBOL

Consider a theory of a pair (g,,, A,) defined by equations
of motion E# = 0, E* = 0. Let £, be an arbitrary covector.
Then the principal symbol for these equations is a matrix

P, (E)wee P (E)mr
pey = (0 )@
Poug(E)77 P (&)
with elements defined by
JdEW JdEW
pvpo uup —
,ng(f) a(a aﬁ pﬂ)gaéﬁ Pgm(f) a(a aﬁA )éagﬁ
(A2)
P =20 gty P& == s,
" a(aaaﬁ /m’) > " a(aaaf)’A ) >
(A3)
The matrix P(&£)" acts on the 14 dimensional vector space

of “polarization” vectors (t,,,s,) where t,, is symmetric,
and so / and J run from 1 to 14 and refer to a basis of this
vector space.

For our EFT in modified harmonic gauge with equations
of motion E}, =0, E,, =0, the principal symbol is
given explicitly by
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