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Recent measurements of gravitational-wave ringdown following the merger of binary black holes raise
the prospect of precision black hole spectroscopy in the near future. To perform the most sensitive tests of
the nature of black holes using ringdown measurements, it is critical to compute the deviations to the
spectrum of black holes in particular extensions of relativity. These spectral shifts are also needed to
interpret any violations of the predictions of relativity that may be detected during ringdown. Here we
present a first step towards computing the shifts to the spectrum of Kerr black holes with arbitrary spins, by
deriving a modified Teukolsky equation governing the perturbations of black holes in theories beyond
general relativity. Our approach applies to a class of theories which includes dynamical Chern-Simons
gravity and shift-symmetric scalar Gauss-Bonnet gravity, in the case where the deviations from relativity
are small. This allows for a perturbative approach to solving the equations of motion. Further, we show how
to use the modified equation to compute the leading-order spectral shifts of Kerr black holes, using
eigenvalue perturbation methods. Our formalism provides a practical approach to predicting ringdown for
black holes in a range of promising extensions to relativity, enabling future precision searches for their
signatures in black hole ringdown.
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I. INTRODUCTION

The direct detection of gravitational waves [1–14] by the
Advanced LIGO [15] and Virgo [16] interferometers has
opened a new window into strong-field and dynamical
gravity. These detections have enabled stringent tests of
relativity, e.g., [17–23], primarily in the form of null tests.
With the number of detections rapidly increasing, the
strongest constraints on and the most sensitive searches
for new physics require combining tests across many
gravitational-wave events. For many tests, such as searches
for parametrized deviations from inspiral, merger, and
ringdown models, this requires either a hierarchical analy-
sis [22–25] or a specific model from which to derive
constraints on a common model parameter.
The ringdown following the merger of binary black holes

is of especial interest from this perspective. This final,
exponentially decaying emission is the superposition of
quasinormal modes (QNMs), which in the perturbative
regime are determined by the mass and spin of the merged
black hole [26]. The measurement of two or more ringdown
modes allows for black hole spectroscopy [27–29], probing
both the properties of the black hole and allowing for tests
of relativity targeting the merged remnant. While deviations
from the expected structure of Kerr black holes (violations
of the no-hair theorem) also alter the gravitational waves
produced during inspiral and merger, one attraction of
ringdown tests is that are conceptually straightforward. In
addition, measurements of black hole mergers with total

mass ≳65 M⊙, together with recent advances in modeling
[30–33], indicate that the measurement of multiple ring-
down modes may already be within reach, e.g., [34–36]
(see also [37,38]).
Perhaps more importantly, predicting deviations from

ringdown in specific extensions to general relativity (GR) is
tractable. With a theory selected, the QNM spectrum can be
computed by perturbing the metric and any additional fields
around the equilibrium black hole solutions. Shifts to the
QNM spectrum have been computed in many cases for
perturbations around Schwarzschild backgrounds, for
example in quadratic gravity extensions [39–44] such as
dynamical Chern-Simons (dCS) gravity [45–49], scalar
Gauss-Bonnet (sGB) gravity [47,50,51], and also in the-
ories with even higher powers of curvature [47,52,53]. With
spectral predictions from these theories in hand, direct
searches for their signatures during ringdown are possible,
and combining constraints across events is straightforward.
In addition, recent advances have allowed for numerical
simulations of binary black holes in some of these beyond-
GR theories [54–64], and computation of the QNM spectra
in these theories can contribute to future models covering
inspiral, merger, and ringdown in these theories.
Most progress to date has been limited to the regime

of slowly-spinning black holes, perturbing around a
Schwarzschild background. Meanwhile, astrophysical
merger remnants are expected to have dimensionless spin
χ ∼ 0.7, e.g., [65,66]. Although expansions exist to very high
orders in small spin [53,67], an approach to computing

PHYSICAL REVIEW D 106, 104018 (2022)

2470-0010=2022=106(10)=104018(24) 104018-1 © 2022 American Physical Society

https://orcid.org/0000-0003-3491-5439
https://orcid.org/0000-0002-7453-6372
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.104018&domain=pdf&date_stamp=2022-11-09
https://doi.org/10.1103/PhysRevD.106.104018
https://doi.org/10.1103/PhysRevD.106.104018
https://doi.org/10.1103/PhysRevD.106.104018
https://doi.org/10.1103/PhysRevD.106.104018


deviations to the QNM spectra on Kerr backgrounds without
any assumptions on the spin would be valuable. This is true
both for practical data analysis, where for Bayesian infer-
ence, predictions are needed across parameter space includ-
ing for high spins χ ≲ 0.99, and for understanding how the
unique features of the spectra of rapidly rotating black holes
(e.g., [68–74]) carry over to other theories.
In this study we outline an approach to computing the

deviations to QNMs in a broad class of beyond-GR
theories. Our method is especially suited for dCS and
sGB gravity when the coupling parameter that controls
deviations from relativity is small and so the theories are in
the decoupling limit. This allows us to follow the same
order-reduction scheme used in some recent simulations of
binary black holes in these theories [54–56,58]. Our
approach builds on previous work for computing the
spectra of black hole backgrounds which are a small
deformation away from Kerr [75]. That method, based
on standard eigenvalue perturbation (EVP) theory in quan-
tummechanics, has been used tomake the first predictions of
the QNMs of rapidly rotating, weakly-charged black holes
[76], to understand parametric instabilities near the horizons
of rapidly rotating black holes [77], to compute part of the
QNM shifts in dCS for slowly-rotating black holes [49], and
has been discussed in the context of coupled-oscillator
models of interacting QNMs [78].
In order to apply this method, we first derive a modified

Teukolsky equation [79], accounting for the deviations to
the background of the Kerr black hole, the presence of
additional nonminimally coupled background fields, and
the changes to the dynamics of perturbations due to
beyond-GR effects. The result is a set of coupled equations
for the metric perturbations and the additional fields. We
then show how these equations can be partially decoupled,
allowing for an iterative approach to computing the
dynamics of the fields, and then the QNM shifts of
the gravitational perturbations. This approach preserves
the separability of the equations up to the final integrals
required to compute the shifts.
Our derivation primarily takes place at the level of the

field equations, and we only project onto the Newman-
Penrose (NP) formalism [80] at the last stages in order to
take advantage of the separability of the Teukolsky equa-
tion. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from Kerr.
As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.
Following the initial stages of deriving our formalism,

we became aware of an independent but equivalent effort
for deriving a modified Teukolsky equation for dCS and
similar theories in an NP language [81]. That work outlines
additional choices of tetrad and gauge freedoms that

further simplify the NP approach. These two independent
approaches serve as valuable cross-checks, and in the future
can provide validation of technically challenging steps in
the eventual computation of QNMs beyond Kerr. For
example, both require metric reconstruction [82–85] (in
the form of tetrad reconstruction in the latter case) in order
to compute QNM shifts, and both require an approach to
solving for the dynamics of nonminimally coupled scalar
fields (in our case this reduces to solving separable, sourced
wave equations).
The remainder of this paper is as follows. In Sec. II we

present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple the
field equations governing black hole ringdown. Some
further details on the operators arising in these equations
are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly-charged
black holes fit into this formalism. Additional details on the
comparison of our approach to previous results on theQNMs
ofweakly charged black holes is inAppendixB.We describe
our modified Teukolsky equation and outline a practical
approach to compute the leading shifts to the Kerr QNM
spectra in these theories in Sec. IV. Section V provides an
alternative derivation of a modified Teukolsky equation,
governing gravitational perturbations on a deformed back-
ground that is not Type D, with further details given in
Appendix C. This provides a convenient approach for cases
where the deformed black hole remains algebraically special.
We discuss future directions and conclude in Sec. VI.
Conventions: In this paper, we set c ¼ 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A, B as abstract indices over field quantities. In our
sections including NP quantities [80], we use A to identify
nondynamical “background fields” andB to denote dynami-
cal degrees of freedom, as an extension of the notation of
[79]. In the same sections, i, j index over miscellaneous
collections of NP quantities as specified in the text.

II. FIELD EQUATIONS FOR
QNMs BEYOND KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB gravity,
in the decoupling limit where the modifications to relativity
can be treated perturbatively, e.g., [86]. In such theories a
scalar field ϑ is coupled to terms quadratic in the curvature,
for example the Pontryagin density �RR, such that a
nontrivial geometry (specifically a black hole background)
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serves as a source term for the scalar field. To tackle these
theories, we consider actions of the more general form

S ¼ SEH þ
Z

d4x
ffiffiffiffiffiffi
−g

p ½Lϑ þ ϵLint þ Lmatter�: ð1Þ

HereLϑ is the Lagrange density for a collection of fields we
denote ϑA, while Lmatter represents normal matter which is
minimally coupled to gravity. The new fields can be of any
type, for example collections of scalar fields or vector
fields, and A is an abstract index running over all the field
components. We assume that Lϑ is at least quadratic in the
new field degrees of freedom. The term Lint meanwhile
provides a nontrivial coupling between the fields ϑA and the
spacetime curvature, and we assume that it enters first at
linear order in the fields ϑA. The parameter ϵ can be viewed
as a small coupling term which governs the deviations to
relativity. Formally we treat it as a bookkeeping parameter,
and match terms order by order in ϵ. Finally, the Einstein-
Hilbert action is

SEH ¼ 1

2κ0

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð2Þ

with κ0 ¼ 8πG.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WAðϑ; gÞ ¼ ϵρAðϑ; gÞ; ð3Þ

WAðϑ; gÞ ≔
∂Lϑ

∂ϑA
−∇a

∂Lϑ

∂∇aϑA
; ð4Þ

ρAðϑ; gÞ ≔ −
∂Lint

∂ϑA
þ∇a

∂Lint

∂∇aϑA
: ð5Þ

Here WA is a collection of generalized wave equations for
the fields, sourced by ρA. For brevity, here and elsewhere
we leave off the abstract indices of all fields when they arise
in the arguments of operators. Meanwhile, the gravitational
field equations are

GabðgÞ ¼ κ0½Tϑ
abðϑ; gÞ þ Tmatter

ab þ ϵV int
abðϑ; gÞ�; ð6Þ

with each stress-energy tensor defined as usual from
variations with respect to the (inverse) metric. For example
in a variational language we can write

Tϑ
ab ≔ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LϑÞ

δgab
: ð7Þ

Meanwhile, V int
ab can similarly be derived by varyingffiffiffiffiffiffi−gp

Lint with respect to the (inverse) metric; since this
term involves curvature quantities, variation by parts results
in mixed derivatives on functions of ϑA and the metric, see
Sec. III A for an example. From here we restrict to the case
Tmatter
ab ¼ 0. Further, for convenience, we take the non-

standard convention of setting κ0 ¼ 1. These factors can be
restored in the equations we derive below by multiplying
each instance of a stress energy tensor Tϑ

ab or interaction
term V int

ab by κ0.

B. Notation for expanding operators

It is useful at this point to define a notation for expanding
operators when evaluated on perturbative series expansions
of the fields and the metric. We define a two-index notation
for perturbations around the background values ϑA ¼
ϑð0ÞA ¼ 0 and gab ¼ gð0Þab , and use single parenthetical super-
scripts ðjÞ to indicate orders in ϵ. For a given, generally
nonlinear, operator F ðϑ; gÞ we define

F ðj;kÞ½φ1;…;φj; h1;…hk�

≔
1

j!k!
∂
j
∂
kF ðϑð0Þ þPj

i¼1 ϵiφi; g
ð0Þ
ab þP

k
i¼1 κihiÞ

∂ϵ1…∂ϵj∂κ1…∂κk

����
ϵ1 ;…→0
κ1 ;…→0

;

ð8Þ

The operatorsF ðj;kÞ are multilinear in their arguments, with
j slots for perturbations to the fields and k slots for
perturbations to the metric. They are separately totally
symmetric in each slot type. To formally define our
operator expansions, we have used ϵj and κk as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent fields
and metric perturbations φi and hi, indexed by i. We have
also assumed that the operators we use admit series
expansions around the background values of the fields
and metric. In some cases, we expand quantities that
depend only on the metric, for example when expanding
the Einstein tensor. In those cases, we use only a single

index in the superscript, for example Gð1Þ
μν ½h� for the leading

expansion of the Einstein tensor around a perturbed
background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F ðϑÞ ¼ ϑ2, using a single
scalar field for the ϑA. Then

F ð2;0Þ½φ1;φ2� ¼ φ1φ2: ð9Þ

Meanwhile, if F ðϑÞ ¼ ϑ∂aϑ, we have

F ð2;0Þ½φ1;φ2� ¼
1

2
ðφ1∂aφ2 þ φ2∂aφ1Þ: ð10Þ

1This assumes the equations of motion are second order in the
field derivatives; these expressions can be extended to other
cases.
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Some care needs to be taken with the prefactors when we
expand operators using this notation. Consider again the
example F ðϑÞ ¼ ϑ∂aϑ, then

F ðϵ1φ1 þ ϵ2φ2Þ ¼ ϵ21F
ð2;0Þ½φ1;φ1� þ 2ϵ1ϵ2F ð2;0Þ½φ1;φ2�

þ ϵ22F
ð2;0Þ½φ2;φ2�: ð11Þ

Note the factor of two on the mixed term from the
combinatorics of the expansion, arising from summing
over both orderings and recalling the total symmetry
of F ðj;kÞ.
In terms of this notation, the assumption that Lϑ is at

least quadratic in the fields and ϑð0ÞA ¼ 0 means that

Wð0;kÞ
A ¼ 0; ð12Þ

Tϑð0;kÞ
ab ¼ Tϑð1;kÞ

ab ¼ 0: ð13Þ

Our assumption that Lint is at least linear in the fields means
that

V intð0;kÞ
ab ¼ 0; ð14Þ

but, for example, ρð0;0ÞA need not be zero. In fact, we are

interested in the case where ρð0;0ÞA is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field ϑ and the
interaction term separates as Lint ¼ fðϑÞR½g� for some
curvature operator R. Then ρ ¼ f0ðϑÞR, and sources the
fields at OðϵÞ when f0ð0Þ ≠ 0. The power counting
provided below only holds if f0ð0Þ ≠ 0, in which case
any f is essentially equivalent at leading order; only the
Taylor expansion of f around ϑ ¼ 0 matters in the
perturbative expansion [57].
Pursuing this example further, for the quadratic gravity

models of interest we have

WðϑÞ ¼ □gϑ; ð15Þ

which is the scalar wave equation for the metric gab. It is
linear in the field, so Wðj;kÞ½ϑ; g� ¼ 0 for j ≥ 2. Expanding

around ϑ ¼ 0þ ϵφ and gab ¼ gð0Þab þ ϵhab, we have

Wð1;0Þ½φ� ¼ □gð0Þφ; ð16Þ

Wð1;1Þ½φ; h� ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det gð0Þcd

q ∂a

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gð0Þcd

q
hab∂bφ

�

þ 1

2
gab0 ð∂ahccÞ∂bφ; ð17Þ

with indices raised and lowered using the background
metric. Meanwhile,

ρð0;0Þ ¼ f0ð0ÞR; ð18Þ

ρðj;0Þ½φ;φ;…� ¼ 1

j!
djf
dϑj

����
ϑ¼0

φjR: ð19Þ

These models, and many others of interest, have standard
scalar field stress-energy tensors,

Tϑ
ab ¼ ∂aϑ∂bϑ −

1

2
gabgcd∂cϑ∂dϑ: ð20Þ

In this case we have

Tϑð2;0Þ
ab ½φ1;φ2� ¼ ∂ðaφ1∂bÞφ2 −

1

2
gð0Þab g

cd
ð0Þ∂cφ1∂dφ2; ð21Þ

and

Tϑð2;1Þ
ab ½φ1;φ2; h� ¼ ∂ðaφ1∂bÞφ2

þ 1

2
ðgð0Þab h

cd − habgcdð0ÞÞ∂cφ1∂dφ2: ð22Þ

The interactions terms V int
ab can be similarly expanded, but

conventionally they are somewhat complicated in structure.
We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand Eqs. (3)
and (6) around a Kerr background, order by order in ϵ,
while also incorporating perturbations representing propa-
gating degrees of freedom in the metric (gravitational
perturbations hab), and in the scalar fields. Before adding
in these waves, we consider the how the field equations are
solved in equilibrium.
We are interested in cases where as ϵ → 0, we recover

the Kerr solution, which means that we require that ϑA ¼ 0
should solve WA½ϑ� ¼ 0 on a black hole background. This
means there should be no potentials V which support
nonzero configurations of scalar fields in the limit ϵ → 0.
With this in mind, we expand our fields in powers of ϵ,

gab ¼ gð0Þab þ ϵgð1Þab þ ϵ2gð2Þab þOðϵ3Þ; ð23Þ

ϑA ¼ 0þ ϵϑð1ÞA þOðϵ2Þ; ð24Þ

where we know that ϑA enters first at OðϵÞ, consistent with
our requirement that ϑA ¼ 0 in the limit ϵ → 0. At leading
order we find that for the metric

Gabðgð0Þcd Þ ¼ 0; ð25Þ

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find
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Wð1;0Þ
A ½ϑð1Þ� ¼ ρð0;0ÞA ; ð26Þ

which are sourced wave equations that we must solve for

ϑð1ÞA . Similarly at OðϵÞ we have

Gð1Þ
ab ½gð1Þ� ¼ Eab½gð1Þ� ¼ 0; ð27Þ

where we have noted that our Gð1Þ is just the standard
linearized Einstein operator on the background,

Eab½h� ≔
1

2
½2∇c∇ðahbÞc −∇c∇chab −∇a∇bhcc

þ gð0Þab ð∇c∇chdd −∇c∇dhcdÞ�: ð28Þ

Here all covariant derivatives are with respect to gð0Þab . There

are no source terms for gð1Þab at this order, recalling our
requirements from Eqs. (12) and (14). As we are interested
in equilibrium solutions about a black hole background, we

see that gð1Þab ¼ 0 and the metric is only deformed away from
Kerr at Oðϵ2Þ.
At Oðϵ2Þ we have

Eab½gð2Þ� ¼ Tϑð2;0Þ
ab ½ϑð1Þ; ϑð1Þ� þ V intð1;0Þ

ab ½ϑð1Þ�: ð29Þ

The equilibrium solution to this sourced wave equation

gives the deformation gð2Þab to the Kerr metric.

D. Coupled field equations with
propagating degrees of freedom

Now we consider the case where in addition to the
equilibrium deviations to the spacetime, we allow for
gravitational-wave perturbations hab. To do this, we further

perturb gð0Þab by hab, and we introduce a second small
parameter η to track these perturbations. We consider our
solutions only up to the leading corrections in ϵ, in order to
derive the leading corrections to the ringdown spectrum.
One complication to the usual treatment of gravitational

perturbations to Kerr is now the perturbations couple to the
additional fields ϑA, requiring in general a simultaneous
treatment of further,OðηÞ perturbations to both. Physically,
this is because perturbations to the spacetime can “shake”
the background fields and effectively generate propagating
degrees of freedom in them, and vice versa. Practically it
means that the corrections to the ringdown spectrum arise

both due to the deformation of the metric gð2Þab and due to the

coupling of the equilibrium fields ϑð1ÞA to these waves.
With this in mind we write our field expansions as

gab ¼ gð0Þab þ ϵ2gð2Þab þ ηhab þ…; ð30Þ

ϑA ¼ ϵϑð1ÞA þ ϵ2ϑð2ÞA þ ηφA þ…: ð31Þ

Here φA represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same Oðη0Þ expressions used to

derive ϑð1ÞA and gð2Þab as before, Eqs. (26) and (29). At OðηÞ,
we find up to Oðϵ2Þ

Eab½h� þ 2ϵ2Gð2Þ½h; gð2Þ�
¼ ϵ½2Tϑð2;0Þ

ab ½ϑð1Þ;φ� þ V intð1;0Þ
ab ½φ��

þ ϵ2½2Tϑð2;0Þ
ab ½ϑð2Þ;φ� þ Tϑð2;1Þ

ab ½ϑð1Þ; ϑð1Þ; h�
þ 3Tϑð3;0Þ

ab ½ϑð1Þ; ϑð1Þ;φ� þ V intð1;1Þ
ab ½ϑð1Þ; h�

þ 2V intð2;0Þ½ϑð1Þ;φ��: ð32Þ

For the field degrees of freedom, we find to OðϵÞ

Wð1;0Þ
A ½φ� þ 2ϵWð2;0Þ

A ½ϑð1Þ;φ� þ ϵWð1;1Þ
A ½ϑð1Þ; h�

¼ ϵρð1;0ÞA ½φ� þ ϵρð0;1ÞA ½h�: ð33Þ

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no OðηÞ matter sources for the
gravitational waves, and similarly no OðηÞ sources for the
fields in Eq. (33), but these can be added as appropriate. We
see that Eqs. (32) and (33) are coupled, due to the nonzero

background fields ϑð1ÞA and the presence of the interaction
term in the Lagrangian Lint which is responsible for V int

ab
and ρA. To proceed, we ideally decouple this linear system
of equations for hab and φA.

E. Decoupling and partial decoupling
of the field equations

We know that in the limit ϵ → 0, Eqs. (32) and (33)
decouple, meaning that we can find solutions where φA ¼ 0
and hab obeys the linearized Einstein equations, or where
hab ¼ 0 and φA satisfies the generalized wave equation on
the background. We seek consistent solutions perturbing
around each of these cases. In other situations such an
ansatz results in a complete decoupling of the field
equations, such as occurs for the electromagnetic (EM)
and gravitational QNMs of weakly charged Kerr-Newman
black holes [76]. In the class of field equations treated here
the problem is more complicated.
We start with the simpler case, where we seek a solution

perturbing around the scalar QNMs,

φA ¼ φð0Þ
A þ ϵφð1Þ

A þOðϵ2Þ; ð34Þ

hab ¼ 0þ ϵhð1Þab þOðϵ2Þ: ð35Þ

In this case, we find
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Wð1;0Þ
A ½φð0Þ� þ 2ϵWð2;0Þ

A ½ϑð1Þ;φð0Þ� þ ϵWð1;0Þ
A ½φð1Þ�

¼ ϵρð1;0ÞA ½φð0Þ�; ð36Þ

neglecting terms ofOðϵ2Þ. Meanwhile, assuming φ ∼Oð1Þ
and neglecting terms of Oðϵ2Þ, we see that Eq. (32) admits

solutions hab ¼ ϵhð1Þab , consistent with our ansatz. This
means that the equations for the fields φA have decoupled
from hab at leading order. We discuss how to solve Eq. (36)
for OðϵÞ shifts to the QNM frequencies associated with the
fields φA in Sec. IVA below. Physically, this is the case
where the beyond-GR effects modify the free QNM ringing
of the fields ϑA at OðϵÞ, while at the same time the
ringdown of ϑA sources gravitational modes at OðϵÞ.
The gravitational case is of greater interest but unfortu-

nately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practical
route for computing the QNM shifts. We take as our ansatz

hab ¼ hð0Þab þ ϵ2hð2Þab þOðϵ2Þ; ð37Þ

φ ¼ 0þ ϵφð1Þ
A þOðϵ2Þ: ð38Þ

First we apply this ansatz to Eq. (33), giving

Wð1;0Þ
A ½φð1Þ� þWð1;1Þ

A ½ϑð1Þ; hð0Þ� − ρð0;1ÞA ½hð0Þ� ¼ 0; ð39Þ

when neglecting terms of Oðϵ2Þ. We see that in this case,
we consistently source a solution φA ∼OðϵÞ from a
gravitational ringdown starting at Oð1Þ in ϵ-counting.
Meanwhile, Eq. (32) becomes

Eab½hð0Þ� þ ϵ2½2Gð2Þ
ab ½hð0Þ; gð2Þ� − Tϑð2;1Þ

ab ½ϑð1Þ; ϑð1Þ; hð0Þ�
−V intð1;1Þ

ab ½ϑð1Þ; hð0Þ� − 2Tϑð2;0Þ
ab ½ϑð1Þ;φð1Þ� − V intð1;0Þ

ab ½φð1Þ��
þ ϵ2Eab½hð2Þ� ¼ 0; ð40Þ

neglecting Oðϵ3Þ terms. We can see that had we included a

term ϵhð1Þab in our ansatz, we would have had an equation
Eab½hð1Þ� ¼ 0 which is no different than the equation

obeyed by hð0Þab , so this correction can be absorbed into

the definition of hð0Þab . The beyond-GR effects only source
modifications to the QNMs at Oðϵ2Þ. Together, Eqs. (39)
and (40) are a coupled set of equations, but that can be

solved order by order: First, a particular QNM solution hð0Þab
is selected, and input into the source term in Eq. (39), which

is then solved for φð1Þ
A . With this, the Oðϵ2Þ part of Eq. (40)

can be solved.
In Sec. IV we describe a practical approach to compute

the shifts to the QNM frequencies from our decoupled and
partially decoupled equations. Before this, we give some
explicit examples of the various operators described for
particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNMwave equations are modified in a class of beyond-GR
theories. Here we discuss particular cases in greater detail,
focusing on dCS and sGB gravity. We also discuss how the
known approach to computing the QNMs of weakly
charged black holes [76] fits into our formalism. This final
case is an important example, both for how to treat black
hole deformations which are due to nontrivial boundary
conditions, and as an example of how a different ϵ-scaling
of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field ϑ coupled to
curvature quantities, and with a standard kinetic term in the
Lagrangian,

Lϑ ¼ −
1

2
gabð∂aϑÞð∂bϑÞ: ð41Þ

The form of the scalar wave equations for this situation has
been discussed using our notation below Eq. (15). We can
consider two cases of particular interest: dCS and shift-
symmetric sGB gravity.
In the first case, the dCS scalar couples to the

Pontryagin-Chern density �RR [43],

Lint ¼ ϑRdCS; ð42Þ

RdCS ¼ −
1

8
�RR ≔ −

1

8
�RabcdRabcd; ð43Þ

�Rabcd ≔
1

2
ϵabefRef

cd: ð44Þ

The static field ϑð1Þ solves to leading order

□gð0Þϑ
ð1Þ ¼ 1

8
ð�RRÞð0;0Þ: ð45Þ

and ð�RRÞð0;0Þ is the Pontryagin-Chern density evaluated on
the background Kerr metric. The static deformation to the

metric gð2Þab solves Eq. (29) with the interaction term given in
terms of the C-tensor,

Vintð1;0Þ
ab ½ϑð1Þ� ¼ −Cð0Þ

ab ½ϑð1Þ�; ð46Þ

Cab½ϑð1Þ� ≔ ðϵðacde∇jdjRbÞcÞ∇eϑ
ð1Þ þ� RðacbÞ

d∇c∇dϑ
ð1Þ:

ð47Þ

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect to the

full metric, but for Cð0Þ
ab all these are evaluated on the Kerr

background. The solutions to these equations have been
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found to high order in a slow spin expansion [67,87] and
numerically explored in the rapidly rotating case [86]. For
the dynamical perturbations to dCS, the above equations
together with Eqs. (21) and (22) can be adapted in a
straightforward manner to give the terms in Eq. (40). The
only element explicitly missing the is the lengthy expansion

of Cab around the background to give V intð1;1Þ
ab ½ϑð1Þ; hð0Þ� ¼

−Cð1Þ
ab ½ϑð1Þ; hð0Þ�, which we omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where ϑ is
made dimensionless by drawing an overall factor of
1=ð2κ0Þ out of Lϑ and Lint, so that the action is

SGB ¼ 1

2κ0

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ Lϑ þ ϵLint�: ð48Þ

Here the curvature coupling is to the Gauss-Bonnet
invariant

Lint ¼ 2fðϑÞRGB; ð49Þ

RGB ¼ RabcdRabcd − 4RabRab þ R2: ð50Þ

In addition, we must select a potential fðϑÞ. As mentioned
previously, all choices where f0 ≠ 0 are equivalent to
leading order, up to rescaling of ϵ, and so we select the
simple shift-symmetric case f ¼ ϑ. Then the operators
appearing in the scalar wave equations mirror those in the
dCS case, with ρð0;0Þ simply twice the Gauss-Bonnet scalar
evaluated on the background. With these conventions, ϵ is
dimensionful, but can be rendered dimensionless by draw-
ing out factors of the total mass of the system, see e.g., [58].
For sGB, the interaction terms in the equations for the

metric deformation gð2Þab are [57]

V intð1;0Þ
ab ½ϑð1Þ� ¼ −Gð0Þ

ab ½ϑð1Þ�; ð51Þ

Gab½ϑð1Þ� ≔ 2gcðagbÞdϵedfg∇hð�Rch
fg∇eϑ

ð1ÞÞ: ð52Þ

The metric, curvature quantities, and covariant derivatives
in the expression for Gab are with respect to the full metric,

but are evaluated on the Kerr background for Gð0Þ
ab . The

solutions to these equations have been found in a slow-spin
expansion [67,88,89]. As with dCS, the dynamical field
equations (40) directly follow from V int

ab at this order and
Eqs. (21) and (22), together with the expansion of Gab

around the background to give V intð1;1Þ
ab ½ϑð1Þ; hð0Þ�. Again,

we omit this lengthy expression.

B. Weakly-charged black holes

Consider next the perturbations of weakly charged black
holes, where now ϵ ¼ Q=M is the small dimensionless
charge of the black hole. In this case, the deformation to the

spacetime is simply the linearization of the exact Kerr-
Newman solution in ϵ2. These deformations to the metric
arise because of the EM stress-energy provided by the
electric and magnetic fields of the charged black hole. In
this situation, the additional fields ϑA can be taken to be the
components of the Maxwell stress tensor Fab, or equiv-
alently the Maxwell scalars ϕ0, ϕ1, and ϕ2 which are the
projections of Fab onto a null tetrad in the NP formal-
ism [80,90].
In our language, there is no interaction Lagrangian Lint,

and hence both the source terms ρA in the wave equations
for the fields and the interaction potential Vint

ab vanish.
Instead, the fields ϑA are nonzero because of the boundary
conditions at the horizon. Thus the solutions of the leading
field equations,

Wð1;0Þ½ϑð1Þ� ¼ 0; ð53Þ

are nonzero, entering in at order ϵ due to the ϵ-small charge,

ϑA ≈ ϵϑð1ÞA . These fields source stationary metric deforma-

tions gð2Þab through Tϑð2;0Þ
ab ½ϑð1Þ; ϑð1Þ�.

Turning to perturbations of the stationary solution, we
note that the linearity of Maxwell’s equations means that

Wðj;kÞ
A ¼ 0 for j ≥ 2, and so the field equations at OðηÞ

expand to Oðϵ2Þ as

Wð1;0Þ½φ� þ ϵWð1;1Þ
A ½ϑð1Þ; h� þ ϵ2Wð1;1Þ

A ½ϑð2Þ; h�
þ ϵ2Wð1;1Þ

A ½φ; gð2Þ� ¼ 0: ð54Þ

Here we need to go to a higher order than before, because it

turns out the terms Wð1;1Þ
A ½ϑð1Þ; h� and Wð1;1Þ

A ½ϑð2Þ; h� are
pure gauge.
To see this, we write out the source-free Maxwell’s

equations for Fab using gab ¼ gð0Þab þ hab,

∇aFab þ SaacFcb þ SbacFac ¼ 0; ð55Þ

Sabc ≔
1

2
gadð0Þð∇chdb þ∇bhdc −∇dhbcÞ: ð56Þ

Here∇a is taken to be a covariant derivative with respect to
the background Kerr metric, and we have expanded to
leading order in the perturbation hab. We see that the last
term in Eq. (55) vanishes by the antisymmetry of Fac, and

by using the definition of Sabc and the fact that gð0Þab
commutes with ∇a we can simplify,

∇aFab þ 1

2
Fac∇chaa ¼ 0: ð57Þ

However, the trace of the gravitational perturbations can be
set to zero by a choice of gauge, and hence we can set terms

like Wð1;1Þ
A ½ϑ; h� to zero for Maxwell’s equations.
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With this, the coupled field equations for the dynamical
perturbations are simply

Wð1;0Þ½φ� þ ϵ2Wð1;1Þ
A ½φ; gð2Þ� ¼ 0: ð58Þ

Eab½h� þ 2ϵ2Gð2Þ½h; gð2Þ� ¼ 2ϵTϑð2;0Þ
ab ½ϑð1Þ;φ�

þ ϵ2ð2Tϑð2;0Þ
ab ½ϑð2Þ;φ� þ Tϑð2;1Þ

ab ½ϑð1Þ; ϑð1Þ; h�Þ: ð59Þ

Note that Tϑð3;0Þ
ab ½ϑð1Þ; ϑð1Þ;φ� ¼ 0 since the stress-energy is

purely quadratic in the electromagnetic fields.
At this point, we run into an issue. When treating the

problem of coupled gravitoelectromagnetic perturbations
of Kerr Newman black holes using the NP formalism
[91,92], charge enters the equations as Q2. Here though it
appears that the gravitational equations are coupled at

OðQÞ, through the term 2ϵTϑð2;0Þ
ab ½ϑð1Þ;φ�. We can cure this

issue by realizing that the consistent scaling for the
dynamical EM fields must be φ ¼ ϵφð1Þ þ � � �, when
computing either the EM or gravitational shifts.
The fact that this scaling is appropriate can be justified

from a few perspectives. One approach is to recognize that
one of the gauge-invariant combinations of EM and
gravitational perturbations is [92,93]

ΦEM ¼ 2ϕA
1ΨB

1 − 3ΨA
2ϕ

B
0 ; ð60Þ

where ϕA
1 is the Maxwell scalar associated with the back-

ground fields ϑð1ÞA , ϕA
1 ∼OðϵÞ, ΨB

1 is a Weyl curvature
scalar associated with the gravitational perturbations hab,
ΨA

2 is the nonvanishing background Weyl curvature scalar,
and ϕB

0 is the Maxwell scalar associated with the EM
perturbations. Taking both contributions to ΦEM on equal
footing indicates that ϕB

0 ∼OðϵÞ, hence, in the language of
our formalism, φA ∼OðϵÞ.
Another argument is essentially physical. The reason for

the coupling between EM and gravitational perturbations of
Kerr Newman is that a perturbation to the spacetime
naturally “shakes” the background electric and magnetic
field lines, generating propagating degrees of freedom.
Meanwhile, dynamical perturbations to the field lines
naturally alter the curvature sourced by these matter fields.
By insisting that the dynamical perturbations to the EM
fields is of the same order as the stationary EM fields, we
assert that the QNM ringing is due to the ringing of these
field lines, even in the case where we expand around the
background EM QNMs by taking hab ¼ ϵ2hð2Þab , which is
used to decouple the equations.
Setting this scaling, we arrive at equations with cou-

plings at the expected orders,

Wð1;0Þ½φð1Þ� þ ϵ2Wð1;1Þ
A ½φð1Þ; gð2Þ� ¼ 0: ð61Þ

Eab½h� þ 2ϵ2Gð2Þ½h; gð2Þ�
¼ 2ϵ2Tϑð2;0Þ

ab ½ϑð1Þ;φð1Þ� þ ϵ2Tϑð2;1Þ
ab ½ϑð1Þ; ϑð1Þ; h�: ð62Þ

The fact that the corrections to both leading order equations
is ϵ2 allows for a complete decoupling when computing the
QNM shifts using the EVP method [76]. To confirm that
the chosen scalings are appropriate, we can project the

coupling term Tϑð2;0Þ
ab ½ϑð1Þ;φð1Þ� into the NP language and

compare to the known NP result. We show that these
expressions agree in Appendix B.
To make use of these equations, we would next project

both the gravitational and EM expressions into the NP
formalism, the former using the method described below in
Sec. IV B, and the latter using the projection operator Sa

E
defined in [83].

IV. SPECTRAL SHIFTS AND A MODIFIED
TEUKOLSKY EQUATION

With our decoupled and partially decoupled field equa-
tions from Sec. II E, we can derive the shifts to the QNM
frequencies of Kerr due to the deformations of the black
hole, and the additional coupling of the gravitational waves
to the dynamics of the extra fields ϑA. Our primary tool is
the EVP approach given in [76]. To introduce this approach
and provide a simple example of the formalism, we first
derive an expression for the QNM shifts for the ringdown
of the propagating degrees of freedom of the fields, φA.

A. Shifts for the field QNMs

We take as our starting point the decoupled Eq. (36). Our
QNM solutions can be expanded as

φð0Þ
A ¼ e−iωteimϕφ̃ð0Þ

A;mωðr; θÞ ð63Þ

in terms of Boyer-Lindquist coordinates xμ ¼ ðt; r; θ;ϕÞ.
The symmetries of the background guarantee separation of
frequencies and angular modes, so the leading equation is

Wð1;0Þ
A ½φð0Þ� → W̃ð1;0Þ

A;mω½φ̃ð0Þ
mωðr; θÞ� ¼ 0; ð64Þ

where W̃ð1;0Þ
A depends onω,m, r, and θ since azimuthal and

time derivatives in the linear operator bring down factors of
−iω and im. This is solved for the QNM wave functions

φ̃ð0Þ
A;mωðr; θÞ and discrete frequencies ωð0Þ by setting out-

going boundary conditions at asymptotic infinity and
ingoing boundary conditions at the horizon. We leave
implicit the indexing of these modes and the indexing of
their frequencies. For the separable case of scalar fields, the
QNMs are indexed azimuthal quantum number l and an
overtone number n in addition to the magnetic quantum
number m.
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The OðϵÞ corrections to the φA QNMs come in two
flavors. There are those corrections that leave the wave
functions intact but shift the QNM frequencies,

ω ¼ ωð0Þ þ ϵωð1Þ; ð65Þ

and those that shift the wave functions. Specifically, we
expand Eq. (63) as

φA ¼ e−i½ωð0Þþϵωð1Þ�teimϕðφ̃ð0Þ
A;mω þ ϵφ̃ð1Þ

A;mωÞ ð66Þ

so that, viewing W̃A as a frequency-dependent linear
operator,

WAðφÞ ≈ ½W̃ð1;0Þ
A;mω½φ̃ð0Þ

mω� þ ϵωð1Þð∂ωW̃ð1;0Þ
A Þmω½φ̃ð0Þ

mω�
þϵW̃ð1;0Þ

A;mω½φ̃ð1Þ
mω��e−iωð0Þte−imϕ: ð67Þ

The parts ωð1Þ and φ̃ð1Þ
A;mω are in direct analogy to the shifts

of the quantum mechanical eigenvalues and wave functions
in time-independent perturbation theory. The leading-order
term vanishes by definition of the unperturbed modes.
At the next order then we find

ωð1Þð∂ωW̃ð1;0Þ
A Þmω½φ̃ð0Þ

mω� þ ŨA;mω½φ̃ð0Þ
mω� þ W̃ð1;0Þ

A;mω½φ̃ð1Þ
mω� ¼ 0;

ð68Þ

where we have defined the operator ŨA;mω via

ŨA;mω½φ̃ð0Þ
mω� ¼ 2W̃ð2;0Þ

A;mω½ϑð1Þ; φ̃ð0Þ
mω� − ρ̃ð1;0ÞA;mω½φ̃ð0Þ

mω� ð69Þ

and all quantities are evaluated at the unperturbed QNM
frequency ωð0Þ. By the symmetry of the background metric,

ϑð1ÞA must be independent of t and ϕ and so do not mix
frequencies or azimuthal modes.
In order to isolate the frequency shifts ωð1Þ we apply the

same technique used in quantum mechanics; we define a
product on QNM wave functions with respect to which the
leading-order wave operator is self-adjoint,

hψ̃AjW̃ð1;0Þ
A;mω½ξ̃�i ¼ hW̃ð1;0Þ

A;mω½ψ̃ �jξ̃Ai: ð70Þ

This product must also be finite. The first requirement is
accomplished by integrating the wave functions in r and θ
with respect to a weight wðr; θÞ that can be chosen to

enforce that W̃ð1;0Þ
A;mω is self-adjoint. Ensuring the product is

finite is not completely straightforward, since the QNM
wave functions blow up at the horizon and spatial infinity
on slices of constant Boyer-Lindquist time t. However, a
trick introduced by Leaver works [94]; we promote r to a
complex variable and deform the radial integration contour
into the complex plane, wrapping around the outer horizon,
where the QNM wave functions have a branch point. By

placing both ends of the contour in the upper half plane
where the QNM wave functions decay exponentially, the
integral can be regulated. The contour is illustrated
in Fig. 1.
We take the product of Eq. (68) with the leading solution

φ̃ð0Þ
m and use the self-adjoint property of the product to

eliminate the term that depends on φ̃ð1Þ
A;mω. The resulting

shift is

ωð1Þ ¼ −
hφ̃ð0ÞA

mω jŨA;mω½φ̃ð0Þ
mω�i

hφ̃ð0ÞA
mω jð∂ωW̃ð1;0Þ

A;mωÞ½φ̃ð0Þ
mω�i

: ð71Þ

Given the equilibrium field ϑð1ÞA , the operator ŨA;mω, and the

susceptibility of the leading wave equations ∂ωW̃
ð1;0Þ
A;mω,

the leading order QNMs can thus be used to compute
the frequency shifts.
It should be noted that if Eq. (64) does not separate,

solving for the mode wave functions may be computation-
ally challenging, requiring a two-dimensional elliptical
solve for each frequency and angular mode, while seeking
the particular frequencies that satisfy the boundary con-
ditions. Methods to solve for QNMs in similar circum-
stances have been implemented in many studies, see e.g.,
[92] and the references therein. If numerical, rather than
series solutions are employed, an alternative regularization
technique is likely needed for the radial integrals. Finally,
we note that we have been fairly careless in specifying how
the abstract indices A should be treated in the inner
products, as this depends on the particular problem at
hand. For a single scalar field, as with dCS and sGB gravity,
the situation is trivial, while for vector fields the Maxwell
equations can be projected into the NP language, and once

FIG. 1. Depiction of the radial integration contour in the
complex plane. The QNM wave functions have a branch point
at the outer horizon rþ, which the contour wraps.
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again the problem reduces to the treatment of scalar fields
with common modes. We turn next to the treatment of
gravitational perturbations.

B. Modified Teukolsky equation

With the method outlined, the next step is to recast the
partially coupled gravitational equations (39) and (40) into
a form amenable to the EVP method. The challenge is that
there is no known gauge where the metric perturbations of
Kerr separate, allowing for convenient computation.
Instead, the Teukolsky formalism provides a separable
master equation for spin-weighted scalars ψ s, which are
directly proportional to the Weyl curvature scalars Ψ0 and
Ψ4 [79]. The master equation is derived using the NP
formulation of the field equations and Bianchi identities
[80,90]. Separation of the scalars allows for easy compu-
tation of the QNM frequencies ωlmn and wave functions,
e.g., using Leaver’s method [95]. In turn, the technique of
metric reconstruction allows for the recovery of metric
perturbations hab corresponding to a given curvature
perturbation ψ s in a radiation gauge [82–85]. The simplest
approach works provided there are no sources where the
metric is reconstructed, which is the case of interest for us,

since hð0Þab are the usual QNMs in vacuum (the impact of the
extended fields ϑA enters at higher orders in ϵ). A method
for metric reconstruction in the Lorenz gauge has also been
recently derived [96].
These conveniences motivate us to recast Eq. (40) in

terms of the Teukolsky scalars ψ s. For this we make use of
the operator formalism introduced by Wald [83]. Let T be
the linear differential operator that takes a metric perturba-
tion of Kerr hab into the spin-weighted scalar ψ s. Then ψ s
obeys the Teukolsky master equation

OT ½hcd� ¼ O½ψ s� ¼ SabEab½hcd�; ð72Þ

where Sab is linear differential operator that can be read off
the right-hand side of Teukolsky’s equation. The derivation
of the Teukolsky equation can be seen as an operator
identity which applies for any rank two tensor field hab.
Just as O depends on which spin-weighted scalar is
considered (ψ2 corresponding to the Weyl scalar Ψ0 and
ψ−2 corresponding to Ψ4), the projection operator Sab

depends on which spin-weight is considered. Either choice
s ¼ �2 can be used since, up to gauge and shifts in the
mass and spin of the Kerr black hole, all information about
the perturbations are present in either quantity [97]. The
expression for Sab is succinctly provided by using the
Geroch-Held-Penrose (GHP) formalism [98] in Eq. (B5.a)
of [99]. When using that expression, note that the usual
factor of κ0 ¼ 8π appearing in front of the stress-energy
tensor in the Einstein field equations has been absorbed
into Tab.

To see that we can apply the operator formalism to our
problem, consider the ansatz that gab ¼ gð0Þab þ ηhab and
linearize the Einstein tensor in hab about the Kerr back-

ground gð0Þab . Similarly, linearize the Bianchi identities about
the background. Neither the definition of the Einstein
tensor nor the Bianchi identities rely on the Einstein field
equations, and their projection into the NP equations
similarly just relies on choosing a null tetrad. In addition,
the commutation relations used by Teukolsky in deriving
the master equation hold provided the directional deriva-
tives and spin coefficients are defined on the Kerr back-
ground. Thus, none of the steps in the derivation of
OT ¼ SabEab change, provided all of these operators
are defined on the Kerr background.
With the operator identity in hand, we apply Sab to

Eq. (40) and use the identity to write

O½ψ ð0Þ
s � þ ϵ2O½ψ ð2Þ

s � þ ϵ2V½hð0Þ� þ ϵ2C½φð1Þ� ¼ 0; ð73Þ

V½hð0Þ� ¼ Sabð2Gð2Þ
ab ½hð0Þ; gð2Þ� − Tϑð2;1Þ

ab ½ϑð1Þ; ϑð1Þ; hð0Þ�
− V intð1;1Þ

ab ½ϑð1Þ; hð0Þ�Þ; ð74Þ

C½φð1Þ� ¼ −Sabð2Tϑð2;0Þ
ab ½ϑð1Þ;φð1Þ� þ V intð1;0Þ

ab ½φð1Þ�Þ; ð75Þ

Equations (73)–(75) are a modified Teukolsky equation.
They incorporate both corrections to the leading-order

expression due to the deformation to the background gð2Þab
and through the modified dynamics, which couple the
gravitational waves to the field degrees of freedom. It is not
fully decoupled from (39), but as discussed previously
Eq. (73) can be solved at Oð1Þ in the usual manner for the
separable QNM wave functions and frequencies. These in
turn can be used to reconstruct the leading-order QNM

metric perturbations hð0Þab , for example using the methods of

[85,100]. Those can be used to solve for the fields φð1Þ
A ,

which therefore can be viewed as being given by compli-

cated linear operators on hð0Þab (i.e., through convolution

with a Green’s function). Finally, the solutions φð1Þ
A can be

fed back into Eq. (73) to solve for the Oðϵ2Þ corrections to
the waves.

C. Shifts for the gravitational-wave QNMs

Now that we have a modified Teukolsky equation, we
can repeat our expansions in terms of frequency and
angular harmonics and apply EVP theory. We encounter
a new conceptual issue as compared to the scalar case in
Sec. IVA and to previous applications of the EVP formal-
ism to the shifts of QNM frequencies in Kerr. The
complication is that the modified Teukolsky equation for
the complex scalar ψ s depends on the real quantity hð0Þab .

Schematically, given a QNM ψ s, the reconstructed hð0Þab
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involves a linear combination of both ψ ð0Þ
s and its complex

conjugate ψ ð0Þ�
s ,

hð0Þab ¼ Kab½ψ ð0Þ
s � þK�

ab½ψ ð0Þ�
s �; ð76Þ

where Kab is implicitly defined through this expression,
and is a linear operator used to carry out metric
reconstruction. This combination of operators inevitably
mixes together two closely related families of QNM
solutions in the harmonic expansion of Eqs. (73)–(75).
To proceed we divide the QNM frequencies into two sets

according to the sign of their real part, ωþ
lmn and ω−

lmn. In
Kerr, each QNM frequency with positive real part is paired
with a corresponding mode with the same imaginary part
but negative real part, and with opposite magnetic quantum
number m (see e.g., [101]). This means these modes obey

ωþ
lmn ¼ Ωlmn − iγlmn; ð77Þ

ω−
l−mn ¼ −Ωlmn − iγlmn; ð78Þ

where we have denoted the real part of the frequency as
Ωlmn and the decay rate of the mode as γlmn. Hence
ωþ
lmn ¼ −ðω−

l−mnÞ�. These frequency pairs can be viewed
as degenerate eigenvalues for perturbations of Kerr, and to
apply the EVP method on the deformed Kerr spacetime we
must consider combinations of both modes.
Consider the situation where the Weyl scalars are made

up of a single pair of positive and negative frequency
harmonics, of the form

ψ s ¼ ψþ
s þ α�ψ−

s ; ð79Þ

ψþ
s ¼ ψ̃þ

slmnðr; θÞe−iω
þ
lmntþimϕ; ð80Þ

ψ−
s ¼ ψ̃−

sl−mnðr; θÞe−iω
−
l−mnt−imϕ: ð81Þ

Here α is a complex constant, and we have absorbed an
overall amplitude and phase into the definition of the wave
functions, so that all that matters is their relative amplitude
and phase. We use the complex conjugate α� for later
convenience. As we did when computing the frequency
shifts for φA, we divide the perturbations to the QNMs into
frequency shifts and perturbations to the wave functions,
so that

ψþ
s ≈ ψþð0Þ

s þ ϵ2ψþð2Þ
s

≈ exp½−iðωþð0Þ
lmn þ ϵ2ωþð2Þ

lmn Þtþ imϕ�ðψ̃þð0Þ
slmn þ ϵ2ψ̃þð2Þ

slmnÞ;
ð82Þ

and similarly for ψ−
s . The leading-order wave functions are

given by

ψ̃þð0Þ
slmn ¼ sRlmωðrÞsSlmωðθÞ; ð83Þ

ψ̃−ð0Þ
sl−mn ¼ sRsl−m−ω� ðrÞsSl−m−ω� ðθÞ; ð84Þ

where sRlmω solves the radial Teukolsky equation for a

QNM frequency ωþð0Þ
lmn , and sSlmω is the corresponding

spin-weighted spheroidal harmonic [79]. Similarly,
sRsl−m−ω� is the paired wave function with −m for the

magnetic quantum number, and −ðωþð0Þ
lmn Þ� ¼ ω−ð0Þ

l−mn
inserted for the frequency, with Ssl−m−ω� the corresponding
spin-weighted spheroidal harmonic.
Viewing the additional fields φð1Þ

A as linear functionals of

hð0Þab , so that φð1Þ
A ¼ φA½hð0Þ�, Eq. (73) becomes

O½ψþð0Þ
s þ ϵ2ψþð2Þ

s � þ ϵ2ðF ½ψþð0Þ
s � þ αG½ψ−ð0Þ�

s �Þ
þ α�O½ψ−ð0Þ

s þ ϵ2ψ−ð2Þ
s � þ ϵ2ðα�F ½ψ−ð0Þ

s � þ G½ψþð0Þ�
s �Þ

¼ 0: ð85Þ

This expression is organized so that the terms on the first
line and the second line must vanish independently once
expanded in time and angular harmonics. We have defined

F ¼ ðV þ CφÞK; ð86Þ

G ¼ ðV þ CφÞK�: ð87Þ

Next we expand Eq. (85) in harmonics.
By now the rapidly multiplying decorations on each

quantity have become unmanageable, so from here we
leave the s, l and n indices implicit. As before, we write the
action of a linear operator on a positive-frequency harmonic
expansion as

O½ψ̃þ
me−iω

þtþimϕ� ¼ e−iω
þtþimϕÕmω½ψ̃þ

m�: ð88Þ

Importantly, we define frequency-domain operators Õmω as
evaluated on the positive frequency modes ωþ

m and their
corresponding m, so that we do not need to further specify
which set of frequencies they are evaluated on. Then, when
expanding operators on the negative frequency modes, we
exploit the relationship between the positive and negative
frequency modes to write, for example,

O½ψ̃−
−me−iω

−t−imϕ� ¼ e−iω
−t−imϕÕ−m−ω� ½ψ̃−

−m�: ð89Þ

Since at our level of approximation, the operators are
always evaluated on the leading-order frequencies, there is
no ambiguity in relating positive and negative fre-
quency modes.
With this, the action of the Teukolsky operator on ψ�,

when expanded in ϵ, are
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O½ψþ� ≈ ϵ2ðωþð2Þ
m ð∂ωÕÞmω½ψþð0Þ

m � þ Õmω½ψþð2Þ
m �Þ; ð90Þ

O½ψ−� ≈ ϵ2ðω−ð2Þ
−m ð∂ωÕÞ−m−ω� ½ψ−ð0Þ

−m �
þ Õ−m−ω� ½ψ−ð2Þ

−m �Þ; ð91Þ

where

ð∂ωÕÞ−m−ω� ¼ ½∂ωðÕmωÞ�m→−m;ω→−ω� : ð92Þ

With this, we expand the modified Teukolsky equation in
harmonics and equate each independent harmonic to zero.
This gives the following equations:

ωþð2Þ
m ð∂ωÕÞmω½ψþð0Þ

m � þ F̃mω½ψ̃þð0Þ
m � þ αG̃mω½ðψ−ð0Þ

−m Þ��
þ Õmω½ψ̃þð2Þ

m � ¼ 0; ð93Þ

α�ω−ð2Þ
−m ð∂ωÕÞ−m−ω� ½ψ−ð0Þ

−m � þ α�F̃−m−ω� ½ψ̃−ð0Þ
−m �

þG̃−m−ω� ½ðψ̃þð0Þ
m Þ�� þ α�Õ−m−ω� ½ψ̃−ð2Þ

−m � ¼ 0: ð94Þ

In addition, we have the complex conjugates of these
equations, which forms an eigensystem to solve for the
frequency shifts.
In fact, the system to use is Eq. (93) and the complex

conjugate of Eq. (94). The zeroth-order frequencies from
those expressions are ωþð0Þ

lmn and −ðω−ð0Þ
l−mnÞ�, which are

equal as noted. Hence the problem is one of degenerate
perturbation theory; we seek two independent linear
combinations of ψþ

s and ðψ−
s Þ�, which can be viewed as

the correct modes whose frequencies are shifted. This is the
reason for making the prefactor α� explicit in Eq. (79). To
proceed, we set

ωþð2Þ
m ¼ −ðω−ð2Þ

−m Þ� ≔ ωð2Þ
m ð95Þ

and solve for the ratio of amplitudes α that allows for a

consistent solution for ωð2Þ
m .

First, we must eliminate the perturbed wave functions

ψ̃þð2Þ
s and ðψ̃þð2Þ

s Þ�, which we accomplish as in Sec. IVA,
by left multiplication by the appropriate zeroth-order wave
functions, and using contour integration with a weight to
make Õmω and ðÕ−m−ω� Þ� self-adjoint. After doing so, we
make the convenient definitions

hδOþi ¼ hψþð0Þ
m jð∂ωÕÞmω½ψþð0Þ

m �i; ð96Þ

hFþi ¼ hψ̃þð0Þ
m jF̃mω½ψ̃þð0Þ

m �i; ð97Þ

hGþi ¼ hψþð0Þ
m jG̃mω½ðψ−ð0Þ

−m Þ��i; ð98Þ

hδO−i ¼ hψ−ð0Þ
−m jð∂ωÕÞ−m−ω� ½ψ−ð0Þ

−m �i�; ð99Þ

hF−i ¼ hψ̃−ð0Þ
−m jF̃−m−ω� ½ψ̃−ð0Þ

−m �i�; ð100Þ

hG−i ¼ hψ−ð0Þ
−m jG̃−m−ω� ½ðψ̃þð0Þ

m Þ��i�: ð101Þ

In terms of these, our system is

ωð2ÞhδOþi þ hFþi þ αhGþi ¼ 0; ð102Þ

−αωð2ÞhδO−i þ αhF−i þ hG−i ¼ 0: ð103Þ

We get a consistent solution provided α obeys the quadratic
equation

α2 þ
�hFþi
hGþi

þ hF−ihδOþi
hGþihδO−i

�
αþ hG−ihδOþi

hGþihδO−i
¼ 0: ð104Þ

The solution is

ωð2Þ ¼ −
hFþi þ αhGþi

hδOþi
: ð105Þ

We see that in general there are two solutions for how the
QNM frequency pair is perturbed, splitting the degenerate
positive and negative frequency modes into two distinct
linear combinations of modes. The shift of Eq. (105) can be
further refined using the two solutions to Eq. (104).
However, the current form is useful also in the (presumably
rare) cases where the positive and negative frequency
modes do not couple in the modified Teukolsky equation,
as is the case for perturbations of weakly-charged Kerr
Newman black holes.
In Kerr, the presence of the modes with ω−

lmn with their
relation to the ωþ

lmn modes guarantees that pairs of QNMs
with opposite parity, even and odd, share the same
frequency, see Appendix C of [100]. Thus, the pairing is
a manifestation of the famous isospectrality of axial and
polar perturbations of Schwarzschild (see e.g., [26]) in the
Kerr spacetime. The splitting of these modes under a
generic perturbation appears to be related to a breaking
of isospectrality under generic deformations of Kerr.
This completes our derivation of the QNM shifts. Much

remains to be desired, including the selection of a specific
metric reconstruction approach and the simplifications of
the various operators defined implicitly in this subsection.
We leave this and a further discussion of issues of QNM
parity and isospectrality breaking to future work.

V. NEWMAN PENROSE APPROACH TO A
GENERALIZED TEUKOLSKY EQUATION

An alternative way to get the corrections to the
Teukolsky operator of Eq. (73) is to redo the derivation
in the original paper by Teukolsky [79], keeping all the
terms that were set to zero based on assumptions about the
background spacetime and chosen tetrad. We give the basic
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character of the results here, but defer the derivation and
full result to Appendix C. For completeness, we state the
ingredients that go into deriving the Teukolsky equation.
For this derivation, we consider a splitting into “back-
ground” perturbations which are Oðη0Þ and “dynamical”
perturbations which are OðηÞ. Thus, the background in
principle includes stationary deformations to Kerr, such as

the OðϵÞ corrections gð2Þab discussed previously, and all
background NP quantities are defined with respect to this
background metric and an appropriate null tetrad. The
dynamical degrees of freedom then propagate on this
background, and are due to the OðηÞ perturbations hab
to the metric [i.e., due to the QNMs, including Oðϵ2Þ
corrections to them] and to the dynamical fields φA.
First one needs two Bianchi identities in the NP

formalism,

ðδ� − 4αþ πÞΨ0 − ðD − 4ρ − 2ϵÞΨ1 − 3κΨ2

¼ ðδþ π� − 2α� − 2βÞΦ00 − ðD − 2ϵ − 2ρ�ÞΦ01

þ 2σΦ10 − 2κΦ11 − κ�Φ02; ð106Þ

and

ðΔ − 4γ þ μÞΨ0 − ðδ − 4τ − 2βÞΨ1 − 3σΨ2

¼ ðδþ 2π� − 2βÞΦ01 − ðD − 2ϵþ 2ϵ� − ρ�ÞΦ02

− λ�Φ00 þ 2σΦ11 − 2κΦ12; ð107Þ

as well as one spin coefficient equation,

ðD − ρ − ρ� − 3ϵþ ϵ�Þσ
− ðδ − τ þ π� − α� − 3βÞκ −Ψ0 ¼ 0: ð108Þ

Lastly, we require a modification to the commutator
identity used by Teukolksy,

½D− ðpþ 1Þϵþ ϵ�þqρ− ρ��ðδ−pβþ qτÞ
− ½δ− ðpþ 1Þβ− α� þ π� þ qτ�ðD−pϵþ qρÞ ¼ Ep;q;

ð109Þ

where

Ep;q ¼ σδ� − κΔþ q½ðτ� þ π − β̄ þ 3αÞσ
þ ðμ� − μ − γ� − 3γÞκ þ 2Ψ1�
− p½ðαþ πÞσ þ ð−γ − μÞκ þ Ψ1�; ð110Þ

for any constants p and q, as derived in Appendix C. For
backgrounds where κ ¼ σ ¼ 0 and Ψ1 ¼ 0, the corrections
Ep;q to the original identity vanish. In our derivation of the
modified Teukolsky equation, no Ricci identities are used,
so any change to the equations of motion coming from

beyond-GR effects can be absorbed into the Ricci scalars
Φij, and so do not modify our derivation.
Similar to the derivation in [79], we expand all the

tetrads, NP scalars and derivatives into background and
dynamical parts. Schematically, we write them as ψA þ
ηψB for any NP quantity or derivative, where the super-
script B denotes the wavelike perturbation of the quantity
and the superscript A denotes the background value of the
quantity. Expanding, we collect the OðηÞ terms, since as
before, the Oðη0Þ equations must be satisfied by the
background solution.
Simply stating the results we derived in Appendix C

here, we find that schematically the modified Teukolsky
equation takes the form

OA½ψB
0 � ¼ TA

0 ½ΦB
ij� þ K: ð111Þ

This notation follows that of [79]. In Eq. (111), OA and TA
0

are made up of the same NP quantities as the Teukolsky
master equation, except that they incorporate the Oðϵ2Þ
deformations to the metric and the corresponding correc-
tions to the tetrad, specifically

OA ¼ ðD − 3ϵþ ϵ� − 4ρ − ρ�ÞAðΔ − 4γ þ μÞA
− ðδþ π� − α� − 3β − 4τÞAðδ� þ π − 4αÞA − 3ΨA

2 ;

ð112Þ

and

TA
0 ½ΦB

ij�¼ ½D−3ϵþϵ�−4ρ−ρ��Aðδþ2π�−2βÞAΦB
01

− ½D−3ϵþϵ�−4ρ−ρ��AðD−2ϵ−2ρ�ÞAΦB
02

− ½δ−3β−α�þπ�−4τ�Aðδþπ�−2α�−2βÞAΦB
00

þ½δ−3β−α�þπ�−4τ�AðD−2ϵþ2ϵ�−ρ�ÞAΦB
01;

ð113Þ

where A denotes that the quantity is evaluated on the
beyond Kerr background. Meanwhile, the termK [provided
in (C51)] includes any additional modifications which
cannot be captured in this way. This equation is supple-
mented by an equation governing ΨB

4 , which is the GHP
dual of Eq. (111).
While it is true, and is shown in the appendix, thatK ¼ 0

on vacuum Type D backgrounds in relativity, for beyond-
GR theories we do not expect that the Goldberg-Sachs
theorem [80] enforces the additional simplifications κ ¼
σ ¼ 0 (and their GHP dual relations) that usually arise for
Type D spacetimes. To avoid any ambiguity we spell
out the conditions required for K to vanish. We must first
have that

σA ¼ κA ¼ λA ¼ ΨA
0 ¼ ΨA

1 ¼ 0: ð114Þ
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Next we must have a background that is a vacuum,
specifically all the background Ricci scalars vanish,

ΦA
ij ¼ 0; ð115Þ

and lastly one needs that the background Ψ2 follows the
two equations

DΨA
2 ¼ 3ρAΨA

2 and δΨA
2 ¼ 3τAΨA

2 : ð116Þ

Sincewe are interested in beyond-GR theories, the condition
of Eq. (115) does not hold in our case, but some or all of the
conditions in Eq. (114) may hold, particularly when the
background metric remains Type D, in which case ΨA

0 ¼
ΨA

1 ¼ 0 (aswell as the dual relationsΨA
3 ¼ ΨA

4 ¼ 0). The full
equation we have derived does not assume any of these
conditions, but the above conditions achieve the reduction of
Eq. (111) to the Teukolsky equation. When only a portion of
the conditions hold, various contributions to K vanish.
The simplicity of Eq. (111) belies the underlying

complexity of the terms in K, and the resultant equation
couples to the wave perturbations of many other NP scalars,
necessitating some tetrad-reconstruction procedure in gen-
eral. As with our alternate derivation in Secs. II and IV, this
equation also couples to the additional fields, which appear
in the Ricci scalars, and must be supplemented with
equations of motion for those fields. For work that focuses
on this approach to computing the QNM shifts, and exploits
gauge and tetrad choices to further simplify the above
expressions, we refer to [81].

VI. CONCLUSIONS

In this work we have derived a modified Teukolsky
equation for gravitational perturbations in a broad class of
beyond-GR theories, with the goal of computing the shifts
to the QNM spectrum in such theories. Our approach is
primarily adapted to quadratic gravity models when the
modifications to gravity are perturbative, such as dCS and
sGB gravity in the decoupling limit. However it can be
modified to capture other cases, which we have illustrated
by considering the case of weakly charged black holes. The
modified Teukolsky equation is coupled to additional
fields, those which are nonminimally coupled to the
curvature and source deformations to the background
Kerr solution. Our equation incorporates corrections from
both the deformation to the Kerr background and the
changes to the dynamics of the fields arising from the
modified equations of motion.
By using as an ansatz that we seek solutions which

perturb around the QNMs of Kerr black holes, we can
partially decouple the additional fields from the gravita-
tional QNMs. This allows for a hierarchical approach to
computing the shifts to the QNM spectra as follows. First
one computes the unperturbed QNM wave function for a
given mode on Kerr, including the reconstructed metric

perturbation hð0Þab for that mode. This mode serves to source

the additional fields ϑð1ÞA , usually a nonminimally coupled
scalar field. With the solution to this sourced scalar, and the
unperturbed QNM wave function, the correction to the
gravitational QNM frequency can be computed. Finally, we
illustrate how these equations can be used in a concrete
expression for the gravitational QNM shifts, using EVP
theory. Along the way, we have shown that in general
deviations from Kerr lift a degeneracy between positive and
negative frequency modes, requiring degenerate perturba-
tion theory to resolve the spectral shifts. The connection
between these degeneracies, parity breaking, and the loss of
isospectrality will be the subject of future studies.
In this work we do not compute the QNM shifts for any

particular theory. Practical application of our formalism
requires a number of nontrivial steps, which are the target
of future work. To apply our approach, we first must choose
a beyond-GR theory, such as dCS or sGB, compute the
nonminimally coupled fields which are sourced by the
background Kerr curvature, and use these as a source for
solving for the stationary metric deformation, which we
denote gð2Þab in this work. Next, we require the solutions for

the dynamical field degrees of freedom φð1Þ
A , generically

sourced by the dynamical gravitational QNM hð0Þab . With
these elements in place it is straightforward to compute the
QNM shifts. However, our EVP approach requires the
ability to evaluate these quantities for complex r, both
inside and outside of the outer horizon rþ. Series solutions
for these quantities would be ideal for this purpose,
particularly solutions which are nonperturbative in the
black hole spin parameter χ. If particular cases require
direct numerical solutions for any of these quantities, our
approach can be adapted by regularizing the required
integrals by some other means. For example, hyperboloidal
slicing could provide a promising alternative approach
[102–104]. It would also be valuable to compare specific
QNM shifts to those observed in numerical simulations of
dCS and sGB binary black hole mergers [56,58].
Our approach may also prove valuable in extending

approaches that predict QNMs from generic, parametrized
deviations from the Regge-Wheeler and Zerilli potentials
around nonspinning and slowly spinning black holes
[105,106], and those that seek to reconstruct the deforma-
tions of the effective potential from the QNM shifts [107].
The method presented here would allow for the mapping of
specific, stationary deformations from the Kerr spacetime,
such as those arising from “bumpy” black holes [108], onto
QNM shifts. However, without an underlying theory for
how such deviations are supported, our derivation shows
that contributions to the frequency shifts from modifica-
tions to the equations of motion and coupling to additional
degrees of freedom would be missed.
The formalism presented here represents a first step

towards a concrete prediction of the full QNM spectrum in
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specific theories beyond-GR, for Kerr black holes with
arbitrary spin. With such predictions, direct constraints on
the coupling parameters can be derived by applying
Bayesian inference on past and future gravitational-wave
detections. Unlike the case of parametrized null tests, by
using specific theories it is straightforward to combine a
large number of detections in precision searches for
beyond-GR effects in black hole ringdown. In addition,
if parametrized ringdown tests uncover a violation of the
predictions of relativity, the ability to predict the shifts to
the QNM spectra in particular theories is critical to
identifying the physics underlying such deviations. As
we move into the era of precision gravitational-wave
physics, we can hope that such subtle deviations will point
the way to a new paradigm for gravitation.
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APPENDIX A: OPERATOR Gð2Þ

In order to compute the QNM shifts, the expression

Gð2Þ
ab ½hð0Þ; gð2Þ� is required, as in Eq. (40). To derive it, we

first consider the general problem of expanding the Einstein
tensor Gab around a generic perturbation to a background

metric, gab ¼ gð0Þab þ hab. In what follows, all covariant

derivatives are with respect to the background metric gð0Þab
and all indices are raised and lowered with the background
metric.
First we expand the Riemann tensor in powers of hab,

Rabðgð0Þ þ hÞ ¼ Rð0Þ
ab þ Rð1Þ

ab ½h� þ Rð2Þ
ab ½h; h� þ…; ðA1Þ

where Rð0Þ
ab ¼ Rabðgð0ÞÞ is the full Ricci tensor evaluated on

the background metric, Rð1Þ
ab is linear in hab and Rð2Þ

ab is
quadratic in hab. We have (e.g., [109])

Rð1Þ
ab ½h� ¼ ∇c∇ðahbÞc −

1

2
ð∇c∇chab þ∇a∇bhccÞ; ðA2Þ

Rð2Þ
ab ½h; h� ¼

1

2
½hcdð∇a∇bhcd þ∇c∇dhab − 2∇d∇ðahbÞcÞ

− ð∇ch̄cdÞð2∇ðahbÞd −∇dhabÞ

þ 1

2
ð∇ahcdÞð∇bhcdÞ

þð∇chbdÞð∇chad −∇dhacÞ�; ðA3Þ

where we have defined the trace-reversed perturbation

h̄ab ¼ hab − ð1=2Þgð0Þab g
cd
ð0Þhcd. The Einstein tensor is then

GabðgÞ ¼ Gð0Þ
ab þ Gð1Þ

ab ½h� þ Gð2Þ
ab ½h; h� þ…; ðA4Þ

where Gð0Þ
ab ¼ Gabðgð0ÞÞ is the full Einstein tensor on the

background, and for example

Gð1Þ
ab ½h� ¼ Rð1Þ

ab ½h� −
1

2
ðhabRð0Þ þ gð0Þab R

ð1Þ½h�Þ; ðA5Þ

where the Ricci scalars Rð0Þ, Rð1Þ are defined as the trace of
the Ricci tensors at each order.
Before discussing the next order, we specialize to the

case where the background is vacuum, so that Rð0Þ
ab ¼ 0.

Then Gð1Þ
ab ½h� ¼ Eab½h� as given in Eq. (28). If the back-

ground is not vacuum, Gð1Þ
ab still gives the linearized

Einstein equation for hab, but with additional terms present

in Eq. (28). With this specialization, the expression forGð2Þ
ab

simplifies to

Gð2Þ
ab ½h; h� ¼ Rð2Þ

ab ½h; h� þ
1

2
ðgð0Þab h

cdRð1Þ
cd ½h�

− habRð1Þ½h� − gð0Þab R
ð2Þ½h; h�Þ: ðA6Þ

Further, we are interested in cases where the perturbation
hab is a solution to the linearized equations, with or without
source,

Eab½h� ¼ τab; ðA7Þ

so that Rð1Þ
ab ½h� and Rð1Þ½h� can be further reduced. For

example, when hab is a QNM perturbation hð0Þab as in

Eq. (40), Rð1Þ
ab ½hð0Þ� ¼ 0. Meanwhile, when hab is the static

deformation gð2Þab , if convenient we can substitute Ricci
terms for source terms,

Rð1Þ
ab ½gð2Þ� ¼ τab −

1

2
gð0Þab τ; ðA8Þ

τab ¼ Tϑð2;0Þ
ab ½ϑð1Þ; ϑð1Þ� þ V intð1;0Þ

ab ½ϑð1Þ�: ðA9Þ
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With this we express Gð2Þ
ab ½hð0Þ; gð2Þ� by taking Gð2Þ

ab ½h; h� and, for each quadratic term in hab, ensuring that one copy is

replaced by hð0Þab and one by gð2Þab , summing over both possible substitutions. Further simplifications are made for the Rð1Þ
ab

terms in each case. We have

Gð2Þ
ab ½hð0Þ; gð2Þ� ¼

1

4

�
gcdð2Þð∇a∇bh

ð0Þ
cd þ∇c∇dh

ð0Þ
ab − 2∇d∇ðah

ð0Þ
bÞcÞ − ð∇cḡcdð2ÞÞð2∇ðah

ð0Þ
bÞd −∇dh

ð0Þ
ab Þ þ

1

2
ð∇ag

ð2Þ
cd Þð∇bhcdð0ÞÞ

þ ð∇cgð2Þb
dÞð∇ch

ð0Þ
ad −∇dh

ð0Þ
ac Þ

�
−
1

8
gð0Þab

�
gcdð2Þð∇e∇ehð0Þcd þ∇c∇dhð0Þ − 2∇d∇ehð0Þec Þ

− ð∇cḡcdð2ÞÞð2∇ehð0Þed −∇dhð0ÞÞ þ
1

2
ð∇eg

ð2Þ
cd Þð∇ehcdð0ÞÞ þ ð∇cgedð2ÞÞð∇ch

ð0Þ
ed −∇dh

ð0Þ
ec Þ

�
þ ðgð2Þab ↔ hð0Þab Þ

−
1

4
gð0Þab h

cd
ð0Þτcd þ

1

4
h̄ð0Þab τ; ðA10Þ

where the term ðgð2Þab ↔ hð0Þab Þ indicates all the previous
terms in the expression with the two types of perturbations
exchanged. The final contribution is asymmetric in the
perturbation types because each is sourced differently, as
noted above.

APPENDIX B: COMPARISON TO THE
NEWMAN-PENROSE APPROACH FOR
WEAKLY-CHARGED BLACK HOLES

Here we confirm that the ϵ-scaling selected in Sec. III B
matches known results on the perturbation of weakly-
charged black holes. We focus on matching a single term
between our modified Teukolsky equation for s ¼ þ2 and
the full perturbation equations derived in the NP formalism
for the corresponding scalars, Ψ0 and ϕ0. We use the
expressions given in [92], hereafter DGS, and we cite the
NP equations as given in [90], hereafter SKMHH, whose
definitions of the NP scalars are appropriate for our metric
signature. We denote the OðηÞ dynamical perturbations to
the geometry and EM fields with the superscript B, and all
other quantities are assumed to be background quantities
unless noted. When necessary for clarity, these Oðη0Þ
quantities are decorated with the superscript A.
Our point of comparison is the coupling term present in

the GHP dual of DGS Eqs. (3) and (6), keeping in mind that
we set Q ¼ 0 in these equations because we only need the
leading order expressions. Using the background NP
relations, SKMHH Eqs. (7.32e) and (7.32h), DΨ2 ¼
3ρΨ2 and δΨ2 ¼ 3τΨ2, we cast the coupling term of
DGS in the form

Φ11Q2φ1 ¼ 2κ0ϕ
�A
1 ½ðD − 2ρÞðδ − 2β − 3τÞ

þðτ − π�ÞðD − 3ρÞ�ϕB
0 ; ðB1Þ

by commuting factors of Ψ−1
2 through the directional

derivatives. Here we have chosen to set the NP spin

coefficient ϵ ¼ 0 at leading order using our background
tetrad, and we have also selected a perturbation to tetrad
such that ΨB

1 ¼ 0. We have also restored the factor
κ0 ¼ 8πG. From the background EM fields, the Ricci
scalars are Φij ¼ κ0ϕiϕ

�
j , so that only Φ11 and its complex

conjugate are nonvanishing at leading order.2

In our approach, the coupling between the gravitational
QNMs and the EM QNMs is given by the term

2κ0SabT
ð2;0Þ
ab ½ϑð1Þ;φð1Þ� ðB2Þ

when projecting Eq. (62) using Sab and restoring κ0. To
match the coupling term to Eq. (B1), we expand the
projection operator in terms of NP quantities. The only

nonzero projection of Tð2;0Þ
ab ½ϑð1Þ;φð1Þ� onto the tetrad is the

one that involves a single copy of the background Maxwell
scalar ϕA

1 and the dynamical perturbation ϕB
0 , which is

Tð2;0Þ
lm ¼ Tð2;0Þ

ab ½ϕA
1 ;ϕ

B
0 �lamb ¼ 2ϕ�A

1 ϕB
0 : ðB3Þ

With this, reading Sab off of the source term in [79], we
have

2κ0SabT
ð2;0Þ
ab ¼ 2κ0½ðδþ π� − α� − 3β − 4τÞðD − 2ρ�Þ

þðD − 4ρ − ρ�Þðδþ 2π� − 2βÞ�ðϕ�A
1 ϕB

0 Þ:
ðB4Þ

To make progress, we use Maxwell’s equations on the
background EM field,

Dϕ�A
1 ¼ 2ρ�ϕ�A

1 ; δϕ�A
1 ¼ −2π�ϕ�A

1 ; ðB5Þ

2The GHP dual of Φ11 is itself, and so it would appear that
there should be no complex conjugate on the ϕ1 term in the
denominator of the Q−2 operator in DGS Eq. (6).
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to bring factors of ϕ�A
1 through the derivative operators in

Eq. (B4). Next we use the commutator relation SKMHH
Eq. (7.6b),

δDϕB
0 ¼ DδϕB

0 þ ðα� þ β − π�ÞDϕB
0 − ρ�δϕB

0 : ðB6Þ

to match the ordering of derivatives in Eq. (B1). The
result is

2κ0SabT
ð2;0Þ
ab ¼ 2κ0ϕ

�A
1 ½ðD − 2ρÞδþ ðτ − π�ÞD

−ðβ þ 3τÞD − βρ� −Dβ þ 4βρ�ϕB
0 : ðB7Þ

The remaining differences can be removed using the
background NP equations,

Dβ ¼ βρ�; Dτ ¼ ðτ þ π�Þρ; ðB8Þ

bringing Eqs. (B1) and (B7) into agreement. This shows
that the coupling terms are in agreement between the
formalisms, and similar manipulations are expected to
demonstrate agreement between the remaining terms.

APPENDIX C: DETAILS OF THE NEWMAN-
PENROSE APPROACH TO A GENERALIZED

TEUKOLSKY EQUATION

In this section we derive the modified Teukolsky
equation directly from the NP formalism, and connect it
to the discussion in Sec. V. We expand the tetrads and all
the resultant NP quantities and derivatives into background
and wave parts. Background quantities are Oðη0Þ and have
the superscript A, while the wave perturbation of the
quantities are OðηÞ have the superscript B.

1. Notation

Before we move on we state some convenient notation
that makes the resulting modified Teukolsky equation more
succinct. In particular we create a new notation for some
derivative quantities, since they frequently reappear in
expressions. We define

δp;q ¼ ðδ − pβ þ qτÞ; ðC1Þ

Dp;q ¼ ðD − pϵþ qρÞ; ðC2Þ

Pp;q ¼ ½Dp;q − ϵþ ϵ� − ρ��; ðC3Þ

Qp;q ¼ ½δp;q − β − α� þ π��: ðC4Þ

We define further operators

δ�00 ¼ δ� − 4αþ π; ðC5Þ

Δ10 ¼ Δ − 4γ þ μ; ðC6Þ

and operators acting on Ricci scalars,

Cij
0 ½Φij� ¼ ðδþ π� − 2α� − 2βÞΦ00

− ðD − 2ϵ − 2ρ�ÞΦ01 þ 2σΦ10

− 2κΦ11 − κ�Φ02; ðC7Þ

and

Cij
1 ½Φij� ¼ ðδþ 2π� − 2βÞΦ01

− ðD − 2ϵþ 2ϵ� − ρ�ÞΦ02 − λ�Φ00

þ 2σΦ11 − 2κΦ12: ðC8Þ

This converts the Eqs. (106)–(109) into

δ�00½Ψ0� − D̂2;−4½Ψ1� − 3κΨ2 ¼ Cij
0 ½Φij�; ðC9Þ

Δ10½Ψ0� − δ̂2;−4½Ψ1� − 3σΨ2 ¼ Cij
1 ½Φij�; ðC10Þ

P2;−1½σ� −Q2;−1½κ� ¼ Ψ0; ðC11Þ

Pp;qδp;q −Qp;qDp;q ¼ 0þ Ep;q: ðC12Þ

Note that Eq. (C12) is an operator identity.

2. Expanding around Kerr background

Expanding all the NP quantities and derivatives we get
four new equations which are later combined to form the
Teukolsky equation.

a. First Bianchi identity

Using the first Bianchi identity we get

δ�A00 ½ΨB
0 � − D̂A

2;−4½ΨB
1 � − 3κBΨA

2

¼ CijA
0 ½ΦB

ij� þ CijB
0 ½ΦA

ij� − δ�B00 ½ΨA
0 �

þ D̂B
2;−4½ΨA

1 � þ 3κAΨB
2 : ðC13Þ

We reorder terms and put all the extra terms that are absent
in the original derivation into the expression SAB0 ,

δ�A00 ½ΨB
0 � − D̂A

2;−4½ΨB
1 � − 3κBΨA

2 ¼ CijA
0 ½ΦB

ij� þ SAB0 ; ðC14Þ

where

SAB0 ¼ CijB
0 ½ΦA

ij� − δ�B00 ½ΨA
0 � þ D̂B

2;−4½ΨA
1 � þ 3κAΨB

2 : ðC15Þ

b. Second Bianchi identity

With the second Bianchi identity we get another
equation,
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Δ�A
10 ½ΨB

0 � − δ̂A2;−4½ΨB
1 � − 3σBΨA

2 ¼ CijA
0 ½ΦB

ij� þ CijB
0 ½ΦA

ij� − Δ�B
10 ½ΨA

0 � þ δ̂B2;−4½ΨA
1 � þ 3σAΨB

2 : ðC16Þ

We again reorder terms and put all the extra terms that are absent in the original derivation into the expression SAB1 ,

Δ�A
10 ½ΨB

0 � − δ̂A2;−4½ΨB
1 � − 3σBΨA

2 ¼ CijA
1 ½ΦB

ij� þ SAB1 ; ðC17Þ

where

SAB1 ¼ CijB
1 ½ΦA

ij� − Δ�B
10 ½ΨA

0 � þ δB2;−4½ΨA
1 � þ 3σAΨB

2 : ðC18Þ

Notice so far that for a Kerr background,ΦA
ij ¼ 0; σA ¼ κA ¼ 0 andΨA

0 ¼ ΨA
1 ¼ 0, which makes SAB1 ¼ 0 and SAB0 ¼ 0. We

keep these terms for our analysis.

c. The spin-coefficient equation

Expanding the spin-coefficient equations we get

PA
2;−1½σB� −QA

2;−1½κB� þ PB
2;−1½σA� −QB

2;−1½κA� ¼ ΨB
0 : ðC19Þ

Multiplying both sides by ΨA
2 ,

PA
2;−1½σB�ΨA

2 −QA
2;−1½κB�ΨA

2 þ PB
2;−1½σA�ΨA

2 −QB
2;−1½κA�ΨA

2 ¼ ΨB
0ΨA

2 ; ðC20Þ

and using the product rule,

Pp;q½fg� ¼ Pp;q½f�gþD½g�f;
Qp;q½fg� ¼ Qp;q½f�gþ δ½g�f; ðC21Þ

we can rearrange and get

PA
2;−1½σBΨA

2 � − σBD½ΨA
2 � −QA

2;−1½κBΨA
2 � þ κBδ½ΨA

2 � ¼ ΨB
0ΨA

2 − PB
2;−1½σA�ΨA

2 þQB
2;−1½κA�ΨA

2 : ðC22Þ

Now by looking at the definitions of PA
p;q and QA

p;q, we can show that

PA
p;q−n ¼ PA

p;q − nρA; ðC23Þ

QA
p;q−n ¼ QA

p;q − nτA: ðC24Þ

So now if we want to convert our PA
2;−1 into P

A
2;−4 andQ

A
2;−1 intoQ

A
2;−4 so that they match the terms in the Bianchi identities,

we need to only add and subtract factors of 3ρA and 3τA, respectively.
Continuing with Eq. (C22), we add and subtract 3ρA and 3τA to get

ðPA
2;−1 − 3ρAÞ½σBΨA

2 � − σBðD − 3ρAÞ½ΨA
2 � − ðQA

2;−1 − 3τAÞ½κBΨA
2 � þ κBðδ − 3τAÞ½ΨA

2 �
¼ ΨB

0ΨA
2 − PB

2;−1½σA�ΨA
2 þQB

2;−1½κA�ΨA
2 ; ðC25Þ

which can be made more compact by writing

PA
2;−4½σBΨA

2 � −QA
2;−4½κBΨA

2 � ¼ ΨB
0ΨA

2 − SAB2 ; ðC26Þ

where

SAB2 ¼ PB
2;−1½σA�ΨA

2 þQB
2;−1½κA�ΨA

2 þ σBðD − 3ρAÞ½ΨA
2 � − κBðδ − 3τAÞ½ΨA

2 �: ðC27Þ

We see that SAB2 only vanishes when σA ¼ κA ¼ 0, and the background quantities obey
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DΨA
2 ¼ 3ρAΨA

2 and δΨA
2 ¼ 3τAΨA

2 : ðC28Þ

The former are satisfied for any vacuum Type D spacetime in general relativity.

d. Operator identity

In this section we prove the operator identity (109). We can expand the expression as

Pp;qδp;q −Qp;qDp;q ¼ ½Dp;q; δp;q� − ðϵ − ϵ� þ ρ�Þδp;q þ ðβ þ α� − π�ÞΔp;q; ðC29Þ

where

½Dp;q; δp;q� ¼ ½D; δ� − ½ðpϵ − qρÞ; δ� − ½D; ðpβ − qτÞ�: ðC30Þ

In the above operator expression, any NP scalar is essentially an operator that multiplies any function with itself (e.g.,
ρ½Ψ� ¼ ρΨ). This means that the commutator of the derivative operator with an NP scalar can be defined, and simplified as

½D; f�ðΨÞ ¼ DðfΨÞ − fDðΨÞ ¼ DðfÞΨþ fDðΨÞ − fDðΨÞ ¼ DðfÞΨ; ðC31Þ

implying that the commutator of a derivative with a scalar is just the derivative acting on the scalar. This simplifies what we
have above and gives us

½Dp;q; δp;q� ¼ ½D; δ� þ δ½ðpϵ − qρÞ� −D½ðpβ − qτÞ�: ðC32Þ

We define the result of the operator expression,

Ep;q ≔ Pp;qδp;q −Qp;qDp;q: ðC33Þ

Upon further simplifications we get

Ep;q ¼ ½D; δ� − pðDβ − δϵÞ − qðδρ −DτÞ − ðϵ − ϵ� þ ρ�Þδp;q þ ðβ þ α� − π�ÞDp;q; ðC34Þ

which then follows to

Ep;q ¼ ½D; δ� − ðϵ − ϵ� þ ρ�Þδþ ðβ þ α� − π�ÞD − pðDβ − δϵ − βðϵ − ϵ� þ ρ�Þ þ ϵðβ þ α� − π�ÞÞ
− qðδρ −Dτ þ τðϵ − ϵ� þ ρ�Þ − ρðβ þ α� − π�ÞÞ: ðC35Þ

Using the commutation relation

½D; δ� ¼ σδ̄ − κΔþ ðρ� þ ϵ − ϵ�Þδ − ðα� þ β − π�ÞD; ðC36Þ

and three spin coefficient equations,

Dβ − δε ¼ ðαþ πÞσ þ ðρ̄ − ε̄Þβ − ðμþ γÞκ − ðᾱ − π̄Þεþ Ψ1; ðC37Þ

δρ − δ̄σ ¼ ρðᾱþ βÞ − σð3α − β̄Þ þ ðρ − ρ̄Þτ þ ðμ − μ̄Þκ − Ψ1 þΦ01; ðC38Þ

Dτ − Δκ ¼ ðτ þ π̄Þρþ ðτ̄ þ πÞσ þ ðε − ε̄Þτ − ð3γ þ γ̄Þκ þ Ψ1 þΦ01; ðC39Þ

we find that the commutator becomes,

Êp;q ¼ σδ̄ − κΔþ q½ðτ̄ þ π − β̄ þ 3αÞσ þ ðμ̄ − μ − γ̄ − 3γÞκ þ 2Ψ1� − p½ðαþ πÞσ þ ð−γ − μÞκ þ Ψ1�: ðC40Þ

This operator is the right hand side of the operator identity used by Teukolsky in [79], where it is set to zero by the fact that
the background is Type D. This is manifest in the above, where we can see that any background where σ ¼ κ ¼ Ψ1 ¼ 0
makes this operator vanish.
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e. Combining the two Bianchi identities and the operator equation

To get the Teukolsky equation we compute

PA
2;−4½Equation ðC17Þ� −QA

2;−4½Equation ðC14Þ�: ðC41Þ

This gives us

PA
2;−4½Δ�A

10 ½ΨB
0 � − δ̂A2;−4½ΨB

1 �� −QA
2;−4½δ�A00 ½ΨB

0 � − D̂A
2;−4½ΨB

1 �� − 3ðPA
2;−4½σBΨA

2 � −QA
2;−4½κBΨA

2 �Þ
¼ PA

2;−4½CijA
1 ½ΦB

ij� þ SAB1 � −QA
2;−4½CijA

0 ½ΦB
ij� þ SAB0 �: ðC42Þ

Using (C26) we get,

PA
2;−4½Δ�A

10 ½ΨB
0 � − δ̂A2;−4½ΨB

1 �� −QA
2;−4½δ�A00 ½ΨB

0 � − D̂A
2;−4½ΨB

1 �� − 3ðΨB
0ΨA

2 − SAB2 Þ
¼ PA

2;−4½CijA
1 ½ΦB

ij� þ SAB1 � −QA
2;−4½CijA

0 ½ΦB
ij� þ SAB0 �: ðC43Þ

Now rearranging the first terms gives us,

ðPA
2;−4Δ�A

10 −QA
2;−4δ

�A
00 ÞΨB

0 − ðPA
2;−4δ̂

A
2;−4 −QA

2;−4D̂
A
2;−4ÞΨB

1 − 3ðΨB
0ΨA

2 − SAB2 Þ
¼ PA

2;−4½CijA
1 ½ΦB

ij� þ SAB1 � −QA
2;−4½CijA

0 ½ΦB
ij� þ SAB0 �: ðC44Þ

The operator acting on ΨB
1 is equivalent to our commutator operator relation from Eq. (109) on the background, so we can

substitute that in, yielding

ðPA
2;−4Δ�A

10 −QA
2;−4δ

�A
00 ÞΨB

0 − EA
2;−4½ΨB

1 � − 3ðΨB
0ΨA

2 − SAB2 Þ ¼ PA
2;−4½CijA

1 ½ΦB
ij� þ SAB1 � −QA

2;−4½CijA
0 ½ΦB

ij� þ SAB0 �: ðC45Þ

Now we can get it into a form suggestive of Teukoslky’s equation for ΨB
0 ,

ðPA
2;−4Δ�A

10 −QA
2;−4δ

�A
00 − 3ΨA

2 ÞΨB
0 ¼ PA

2;−4½CijA
1 ½ΦB

ij� þ SAB1 � þ EA
2;−4½ΨB

1 � −QA
2;−4½CijA

0 ½ΦB
ij� þ SAB0 � − 3SAB2 ; ðC46Þ

which is the Teukolsky equation for Ψ0. Note that the T0 source terms that normally exist on the right-hand side of the
Teukolsky equation are a subset of the PA

2;−4½CijA
1 ½ΦB

ij�� −QA
2;−4½CijA

0 ½ΦB
ij�� terms above. We can break up the CijA

a ½Φij�
expressions by defining

Cij
0 ½Φij� ¼ ðδþ π� − 2α� − 2βÞΦ00 − ðD − 2ϵ − 2ρ�ÞΦ01 þ Fij

0 ½Φij�; ðC47Þ

Fij
0 ½Φij� ¼ 2σΦ10 − 2κΦ11 − κ�Φ02; ðC48Þ

and

Cij
1 ½Φij� ¼ ðδþ 2π� − 2βÞΦ01 − ðD − 2ϵþ 2ϵ� − ρ�ÞΦ02 þ Fij

1 ½Φij�; ðC49Þ

Fij
1 ½Φij� ¼ −λ�Φ00 þ 2σΦ11 − 2κΦ12: ðC50Þ

This splitting up gives us the usual form of the Teukolsky equation,

OA½ΨB
0 � ¼ TA

0 ½ΦB
ij� þ K; ðC51Þ

K ≔ PA
2;−4½FijA

1 ½ΦB
ij� þ SAB1 � þ EA

2;−4½ΨB
1 � −QA

2;−4½FijA
0 ½ΦB

ij� þ SAB0 � − 3SAB2 : ðC52Þ

The above can be expanded using the Eqs. (C1)–(C5), (C7), (C8), (C15), (C18), and (C27). One can then get the equation
for Ψ4 using the GHP dual, interchanging la ↔ na and ma ↔ ma�.
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To reiterate the conditions under which the above is zero,
we have shown that,

σA ¼ κA ¼ λA ¼ ΨA
0 ¼ ΨA

1 ¼ 0

⇒ FijA
0 ½ΦB

ij� ¼ FijA
1 ½ΦB

ij� ¼ EA
p;q ¼ 0: ðC53Þ

Additional assumptions on top of the ones above yield
further simplifications, such as

ΦA
ij ¼ 0 ⇒ SAB0 ¼ SAB1 ¼ 0; ðC54Þ

and

ðD − 3ρÞAΨA
2 ¼ ðδ − 3τÞAΨA

2 ¼ 0 ⇒ SAB2 ¼ 0; ðC55Þ

which would then completely set K ¼ 0.
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