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In certain scalar-field extensions to general relativity, scalar charges can develop on compact objects in
an inspiraling binary—an effect known as dynamical scalarization. This effect can be modeled using
effective-field-theory methods applied to the binary within the post-Newtonian approximation. Past
analytic investigations focused on the adiabatic (or quasistationary) case for quasicircular orbits. In this
work, we explore the full dynamical evolution around the phase transition to the scalarized regime. This
allows for generic (eccentric) orbits and to quantify nonadiabatic (e.g., oscillatory) behavior during the
phase transition. We also find that even in the circular-orbit case, the onset of scalarization can only be
predicted reliably when taking the full dynamics into account, i.e., the adiabatic approximation is not
appropriate. Our results pave the way for accurate post-Newtonian predictions for dynamical scalarization

effects in gravitational waves from compact binaries.
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I. INTRODUCTION

Compact astrophysical objects such as black holes and
neutron stars offer special environments for tests of general
relativity. Not only do perturbative corrections to
Newtonian gravity become more pronounced, but gravity
might also hold surprises in the strong-field regime, due to
the possible onset of nonperturbative effects. A paradig-
matic example is the so-called spontaneous scalarization of
neutron stars. In the 1990s, Damour and Esposito-Farese
(DEF) showed that in a broad class of scalar extensions of
general relativity, the scalar field may remain dormant in
the weak-field regime, only to be activated around suffi-
ciently compact material bodies such as neutron stars [1].
Although most of the parameter space for spontaneous
scalarization in the original DEF model has now been ruled
out by pulsar-timing observations [2—-6], similar-type

“mohammed khalil @ aei.mpg.de
“rfpmendes @id.uff.br
*nestor.ortiz@nucleares.unam.mx
§jan. steinhoff @aei.mpg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

2470-0010,/2022/106(10)/104016(16)

104016-1

effects have been found in other contexts, including
massive scalar fields [7-10], more general scalar-tensor
theories [11], charged black holes [12—14], higher-spin
fields [15-20], as well as neutron stars [21] and black holes
in scalar-tensor-Gauss-Bonnet gravity, in which scalariza-
tion can be either curvature induced [22-32] or spin
induced [33-38].

In the original setup of the DEF theory, scalarization was
found to be potentialized in a dynamical setting. In Ref. [39],
it was shown that two neutron stars which were not compact
enough to scalarize in isolation could scalarize dynamically
in a close binary system. A similar phenomenon, though
different mechanisms are involved, has been observed in
scalar-Gauss-Bonnet theories of gravity [40—42]. In the case
of DEF theory, dynamical scalarization (DS) was demon-
strated in fully nonlinear numerical evolutions, but it
appears already in numerically constructed quasiequili-
brium solutions [43,44], and can be understood as a result
of a feedback mechanism between the two neutron stars
[45], or more thoroughly, in the context of a resumed post-
Newtonian expansion [46].

A particularly elegant way to model DS is by an effective
field theory for compact binaries [47—49] that systemati-
cally takes into account the various scales in the problem,
including nonperturbative effects in the strong-field regime
close to the compact objects. Compact bodies are modeled
by point particles moving along a worldline in the effective
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theory. Their internal dynamics, in particular from oscil-
lation modes, is encoded in dynamical variables evolved
along the worldlines. This allows for the incorporation of
scalar oscillation modes; scalarization arises when such
modes become linearly unstable [50,51]. DS is in fact
modeled similarly to dynamical tides [52-54], where fluid
oscillation modes are incorporated into the effective theory.
See also Refs. [55,56] for further similarities between tidal
effects and finite-size corrections in scalar-tensor theories.

While the effective action approach to DS was first
formulated specifically for DEF theory [50], it can be
straightforwardly generalized to other gravity theories
containing scalar fields. The main ingredient is a monopolar
scalar mode close to the critical point of instability, which is
included in the effective worldline action [51]. At leading
order, the effective action contains only three parameters for
each star. These parameters must be matched to a specific
gravity theory and compact object, but the form of the
effective theory and hence its phenomenology is theory
independent. Past work on this effective-action approach
focused on an adiabatic (or quasistationary) analysis of the
binary on quasicircular orbits and its energetics, requiring
only two of the three parameters of the action [51], finding
good qualitative and quantitative agreement with numerical
relativity [50]. In the present work, we study the full
dynamical evolution of the binary and its scalar charges
on generic (eccentric) orbits, where all three parameters
become relevant. This is an important step towards improv-
ing gravitational waveform models for dynamical-scalari-
zation effects [57,58].

This work is organized as follows. In Sec. II, we
recapitulate the effective action for DS. Section III develops
the leading-order equations of motion for the binary and the
scalar modes of the bodies, in particular the radiation-
reaction (damping) forces. The matching of all parameters
of the effective action to neutron stars is performed in
Sec. 1V, using the DEF class of scalar-tensor gravity as an
example. This allows for the investigation of the binary
dynamics around the critical point of scalarization in
Sec. V. Our conclusions are given in Sec. VI, followed
by a couple of Appendices providing detailed calculations
on oscillation equations, as well as fluxes and radiation-
reaction forces. We use units such that c = G = 1 through-
out the text.

II. EFFECTIVE ACTION MODEL

In this section, we briefly review the effective action
model for DS of compact objects introduced in
Refs. [50,51]. We emphasize the fact that the following
formalism is theory independent [51]. Let us first reca-
pitulate the widely used “instantaneous” effective action for
a neutron star in scalar-tensor gravity given by a point
particle moving along a worldline y#(z), which in the
Einstein frame reads

s = - / demg(@). (1)

where my is the Einstein-frame mass depending on the
external scalar field ¢(y*). This action is valid for an
instantaneous response of the neutron star to the external
scalar field ¢, i.e., when internal relaxation timescales are
much shorter than external timescales at which ¢ varies.
Small corrections to this approximation can be incorporated
through terms involving ¢. However, when internal time-
scales exceed external ones, as for DS, additional dynami-
cal variables representing the internal dynamics need to be
evolved along the worldline.

Hence, we include in the effective action a dynamical
variable ¢(7) representing the monopolar scalar oscillation
mode that becomes linearly unstable at scalarization. That
is, the fundamental scalar mode has a frequency that
vanishes (its period timescale diverges) at the critical point
associated with the transition to a scalarized state. For
simplicity, we do not include further dynamical modes such
as scalar-mode overtones or fluid oscillation modes in the
effective theory (see, e.g., Refs. [52,53] for the latter), and
neglect rotation of the star, but otherwise the model is rather
generic or theory independent. Let us now consider a binary
neutron star system. Around the critical point, the action
describing the dynamics of ¢ can then be written as [51]

) 2
Cp R

st= [ @[ L@ roma-naro()| @

where ~ = d/dr and the effective action is expanded in
powers of the neutron-star size R over the orbital separation
r of the binary. Likewise, m(q) can be expanded as

Co C(4 R2
) = o -+ P+ et o) @

V(q)

where we include a possible cosmological value of the
scalar field ¢, (while ¢ represents the field at the worldline
which emanates from the binary companion); the function
m(q) isevenin qif @, = 0. Note that ¢> = O(R/r) close to
the critical point where ¢ () becomes small. The coefficient
¢(0) has the interpretation of the body’s Arnowitt-Deser-
Misner (ADM) mass when g = 0 (i.e., in general relativity).
The Euler-Lagrange equation yields (suppressing the power
counting in R/r from now on)

cpd+V'(q) =oy) + @o. (4)

A stationary-state solution (¢ =~ 0) for ¢ can be employed if
the external scalar field is not varying too rapidly. In this case
itholds m(q) = mg (@) + ¢q, which can be understood as a
Legendre transformation (note that ¢ = —dmpg/d).
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By computing the Hamiltonian at leading, Newtonian
order, one obtains [50,51]

2

2 2
Ho=my+my+ oAy Pab | Py
2C¢.127A 2cé2.B 2mA

n Pi _mpmp QAQB’ (5)
2mp r r

where A, B label the two bodies in the binary, p 4 are their
linear momenta, r is the interbody distance, and p, 4/p are
the canonical conjugates to the variables g, 5. To obtain an
approximate solution for the scalar charge, we restrict to the
(quasi)stationary case p,a/p~0, then the equation of
motion for g, reads

oH

C4).A q
= ZA (—(ﬂo +C2).aqa + (6) q;}) - 737 (6)

where z4, = 0H/omy = 1 —p3/(2m,) — mp/r is the red-
shift of body A. Assuming, for simplicity, that ¢, = 0, that
the two bodies are identical (¢ = g4 = ¢3), and that we can
neglect post-Newtonian corrections to the redshift (z4 ~ 1),
one obtains

oH 1 C(4
0= ay(lecn-g). )

There are three solutions for the equation above, the trivial
one, with ¢ = 0, and

g=1 i(l—c@)). (8)

€@

The stability condition, 0*H/dg> > 0, is violated for the
trivial solution if 1/r > c(,). This is fulfilled for all r if
¢(2) <0, which corresponds to the case of spontaneous
scalarization. DS is captured in this setup by the fact that
even when ¢(3) > 0 the trivial solution can become unstable
for sufficiently small binary separations. In the present
work, we go beyond the quasistationary case and inves-
tigate the dynamical evolution of g around the moment
of DS.

A similar analysis could be performed for dipolar
(¢ = 2) or generic £-polar scalar oscillation modes, with
an interaction potential ~r~>*~! in the Hamiltonian and
hence a scalar-polarization condition r~2/~! > const.
However, since the monopolar # = 0 modes typically have
a lower frequency than the higher ¢ > 0 modes, it is
expected that a monopolar mode scalarizes before this
condition is reached for the higher modes. Still, adding a
dynamical dipolar mode to the model can be interesting,
since it can be resonantly driven by the monopolar scalar
charge of the companion, with associated contributions to

the dipolar scalar radiation (analogous to dynamical tidal
effects [52,54]).

Let us elaborate on the matching of the coefficients ¢,
C(n) of the effective theory to the properties of the compact
object obtained by solving the inner problem. If one
restricts to equilibrium configurations, with ¢ = 0, the
procedure described in Ref. [51] reduces operationally to
the one presented for scalar-tensor theories in Ref. [50]. In
particular, one can obtain the coefficients c(;) and c()
through the following steps:

(i) Solve (numerically) the relevant structure equations
for an isolated object in the full theory, computing a
sequence of solutions at a fixed baryon mass M, and
for different values of the asymptotic scalar field ¢,
then extract the Einstein-frame ADM mass mg (¢, )
and scalar charge ¢(¢,, ). Note that for each value of
(¢ more than one equilibrium solution may exist.

(ii) Compute m(q) through

m(q) = me(Pe) + Pq(Pc0) )

for each value of ¢, and each possible equilibrium
solution.

(iii) Fit the polynomial V(g) in Eq. (3) to the numerical
values of m(q) — c(g), with ¢y = 0, and extract the
quadratic c(y) and quartic c(4 coefficients, which
encode the existence of spontaneous and dynamical
scalarization, as described above.

We can additionally match the coefficient ;> by making
the connection to the oscillation frequency of the funda-
mental scalar mode. For this purpose, we specialize Eq. (4)
to the force-free case ¢ + ¢, = 0 and to small oscillations
of frequency @, around the nonscalarized equilibrium
q=0,

.. 2
j=-—"q=-wiq. (10)

However, this picture is not complete, since g also sources
monopolar scalar radiation and should include a radiation-
reaction force (a damping term involving ¢) in the oscillator
equation, which is derived in Appendix A. Now, the
parameters in our damped harmonic oscillator ¢ can be
matched to the (complex) quasinormal mode frequency w,,
obtained from neutron-star perturbation theory, resulting in
= |w,|* = Rw,]* + Jw,]|*, which was worked out in
detail within a different context in Ref. [59]. We can hence
express the remaining coefficient as

_ ‘@
|

(11)

qu

A different match for ¢.2 can be obtained by comparing
damping times from radiation reaction (Appendix A) and
the quasinormal mode frequency. While this alternative
matching is only approximate (with our radiation-reaction
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force based on a weak-field expansion), we find similar
results for cpy at least for the specific model explored in
Secs. IV and V.

Finally, one can also expand Eq. (4) around a sponta-
neously scalarized solution ¢, such that V'(g,) =0, or
qo = £+/=6¢(2)/c(4)- Plugging ¢ = g, + g in Eq. (4) and
@ + @y = 0, and expanding to linear order in g, yields

o C4 _
quqﬁ—(cm +%CI<2)>CI’ (12)

from which we obtain the matching

1 < C() 2)
Cpr = coyt+—¢
q |O)(/)|2 (2) 2 0

2y . .
= TP (around scalarized solution ¢gg). (13)
P

III. BINARY DYNAMICS

In this section, we obtain the set of equations governing
the dynamics of a compact binary under the effective action
model described in the previous section. Notice that this
formalism is still theory independent.

In the center-of-mass frame, and using polar coordinates,
the Hamiltonian for a binary at leading order, Eq. (5), can
be written as

P’ Pia +p§,3
2c0p T o

H=

A e
where the center-of-mass momentum p =p, = —pp,
p* = p? + L*/r?, where L is the orbital angular momen-
tum of the system, and the total and reduced masses are
defined by

0,0
mympg

M 9’

M =m§ + mY, U= (15)
i.e., in terms of the constant masses mg /B = C(0).A/B 1O keep
the equations of motion at leading order. These equations
are given by

. OH . dH d &
— , . fqua f lp
r p, p o —+ +
. OH . o0H d &
= —, L=—— fqua Fo A
¢ oL d¢ + +
oH oH
p — , > — f‘mon’
qa 0pyn Pga = 0 n qa
) 0H . o0H on
): ap R s PgB = aq + fqgo ’ (16)
q,

where we add the leading-order tensor quadrupole, scalar
dipole, and scalar monopole radiation-reaction forces; the

dipole force is expected to dominate in the scalarized phase
for binaries with unequal masses and charges, while the
quadrupole dominates in the unscalarized phase.

For the tensor quadrupole radiation-reaction force, we
use the leading-order expressions given by Egs. (3.67) and
(3.68) in Ref. [60], which read

8 M , . M
fq(p d:———:t ¢( r2+2r2¢2+27>. (17)

The monopole and dipole radiation-reaction forces are
derived in Appendix B, and are given by

Faot =TFg" = —qa(t) — 4p(1). (18)
o 2 M mY m9 2 qaq
F(rjlp—gppr(ﬁjq _WAQB) (1+ &MB)’
; I ML mY 2 qaq
]:-dlp __ B _ A 1 AYB . 19
9 3P\ M 94~ 3,98 + My (19)

Note that the monopole radiation-reaction force enters the
equations of motion for the scalar charges, but not the
orbital equations, since the monopole energy flux depends
only on ¢ but not on the orbital variables.

In order to set initial conditions, the following relations
are useful:

k L?
r=——, k=a(l-e*)=—5—
1+ e cos¢ u-m

. (20)
where k is the semilatus rectum, a the semimajor axis, and
e the eccentricity of the orbit. The periastron distance is
then r, = k/(1 +e) and the apastron distance is r, =
k/(1—e), with the eccentricity e = (ra = 1)/ (14 + rp)-
If we start the orbit at apastron and assume that the binary
starts unscalarized, then the initial conditions read

L=u\/r,M(1—¢e). (21)

In the absence of radiation reaction, p, = 0 at apastron.
However, for slowly varying L due to radiation, and for
circular orbits, the initial condition for p, reads

¢ =nr

r=r,

EL 2L ]_—quad _ gﬂzMz
uM uM 15 #

pr=pi= (22)

This also provides a good approximation for eccentric
orbits at apastron.

For the scalar charge, in the presence of a (small)
cosmological scalar field ¢y, and assuming stationarity,
g = 0, one gets from Eq. (4) that
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q
c)ada + O(q3) = @y + TB’
3\ qda
c).898 + 0(qp) = @o + 0 (23)
leading to
1 +C ! r
gu = ®o ; (Zl).B ~ ®o , (24)
@A T e (24

and similarly for ¢gz. Notice that the last approximation only
holds away from the scalarization point, since ¢ () gr ~ 1
close to scalarization.

Given that we start the evolution in the unscalarized
regime, the initial value of p,, is zero. However, if we set the
cosmological scalar field ¢, = 0, one needs to take p, as a
small but nonzero number to perturb the system away from
the unstable solution, ¢ = 0, and allow the transition to the
DS regime.

IV. A PARTICULAR SCALAR-TENSOR MODEL

In this section, we illustrate how to compute the effective
action coefficients C(2)s C(4)» and cp for the case of a
massless scalar-tensor theory defined by the (Einstein-
frame) action

S d4x\/—g(7€ - 2vﬂ§0v’l(/’) + Sm [Tm; a<(p)zgﬂv]’

(25)

~ l6n

where g = det(g,,) and R is the Ricci scalar. The function
a(p)—which defines the Jordan-frame metric §,, =
a(¢)?g,, to which matter fields ¥y, couple universally—
is fixed to

a(p) = exp(fe*/2). (26)

This model, introduced by Damour and Esposito-Farese
[1], is arguably the simplest one displaying spontaneous
scalarization, and most works on the subject revolve around
it. Although most (or all) of the range f < —4.5 allowing
for spontaneous scalarization in this model [61-64] has
now been ruled out by pulsar timing observations [2—6], it
is still a good prototype for our discussion. We have
analyzed both the cases where f = —5 and —6, and found
very similar behaviors. In what follows, results for f = =5
will be displayed. Additionally, the stellar fluid will be
described by a two-piece polytrope with adiabatic index
I' =3 in the core, and I'; = 1.3 in the crust, with the
transition happening at 1.66 x 10'3 g/cm?; this is the same
equation of state adopted for the computation of radial
mode frequencies in Ref. [65], which will be used in what
follows.

We note that there is an interesting range, i.e.,
—4.5 < p < -3.5, which is not ruled out by binary-pulsar
observations but still would allow for DS before the two NS
merge [45]. However, for a fixed value of § in that range,
there is no scalarization critical point that can be
approached parametrically, and around which one can
safely assume the validity of the effective action. Still,
there is no technical issue that prevents applying our model
to that case as well, and we expect a similar phenomeno-
logical behavior.

A. Potential coefficients: c(;) and c 4,

In order to feed the effective action model with the
potential parameters c(;) and c(4), one must consider the
“inner” problem of an isolated neutron star with some fixed
baryon mass M, subject to an external (varying) scalar
field—as per item (i) in Sec. II. The structure equations in
this case are given, e.g., by Eqgs. (31)-(34) of Ref. [66].
Next, following item (ii), one computes m(q) in Eq. (9)
from the ADM mass mg (¢, ) and scalar charge ¢(¢, )—in
Ref. [66] these are denoted by M and w, and are given in
Egs. (37) and (38), respectively. For baryon masses close to
the critical value for the onset of spontaneous scalarization
(M, ., = 1.3474 M, for the scalar-tensor model and equa-
tion of state described above), the potential V(g) = m(q) —
cy [with ¢ =m(0)] is well approximated by the
truncated expansion

_@ 2 ™ 4
Vig)=— ¢+ d" (27)
The final step (iii) consists in extracting the coefficients ¢,
and c(4) of the best fit to the numerical data.

Figure 1 illustrates the potential V(g) for some baryon
masses around M, .. Before the critical point, ¢(3) > 0, the
potential has a single minimum at ¢ = 0. After the critical
point, ¢(5) < 0, the potential has a local maximum at g = 0
(corresponding to a GR-like unstable equilibrium solution)
and two local minima ¢ # 0 with opposite signs

0.0010 My[Ms]
1.5

0.0005

= \ 13
= 0.0000F- A NN
7 12
11
—~0.0005
L L L L L L L 1.0
0.6 -04 -02 00 02 04 06
q[Mo)] 0
FIG. 1. V(gq) for fixed baryon masses (ranging from 0.9 to

1.5 M). Points represent the numerically computed values,
which are fitted by polynomial expressions of the form (27).
Fit coefficients are represented in Fig. 2.
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0.06
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A’{%CM)/IU

]
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FIG. 2. Coefficients c(;) and ¢y for some baryon masses
around the critical point (represented by the dashed vertical line).
Points represent the numerically computed values, which are
fitted by expressions (28) and (29).

(corresponding to stable scalarized solutions). The local
extrema of V(g) correspond to ¢, =0, since from
Eq. 9), V'(q) =

In Fig. 1, the numerically computed points are fitted by a
polynomial expression of the form (27), with the coeffi-
cients c(z) and c(4) represented in Fig. 2. Their dependence
on the baryon mass is well captured by the following
polynomial fits:

Mgy (x—x,) (=0.3796+0.3294x—0.09174x%), (28)
M%c(4) ~4.270 — 7.804x + 5.545x> — 1.337x%,  (29)
where x = M, /M and we set x., = 1.3474.

B. Scalar modes and the coefficient Cp

The coefficient ¢ > determines the strength of the kinetic
term in Eq. (2); in order to feed the model with this
parameter, one can consider the dynamics of scalar field
perturbations around a neutron star in equilibrium.
As per Egs. (11) and (13), ¢, depends on the potential
coefficients c(,) and c(4), and on the frequency w,, which
encodes the dynamical timescale of scalar field oscillations.
In this work, we adopt the following prescription:
w§ = Rw,]* + Jw,)?, where w, is the fundamental
scalar-led radial mode (or ¢-mode) frequency.

The @-mode frequency was computed in Ref. [65] for
stars subject to a vanishing asymptotic scalar field
(¢ = 0), and the result is reproduced in Fig. 3 for the
range of baryon masses considered previously
O9 My <M,<15My). For M, <M, ,, ie., before
the onset of spontaneous scalarization, the (radial) pertur-
bation equations for the scalar field and the fluid decouple,
and the ¢ modes are purely scalar perturbations. For
M, > M, .., three equilibrium solutions exist. The trivial

005- S L B E S A B
] P MoR(w) 1
0.04f D MoS(w)
0.03f ]
0.02f 1
0.00 T —
0.9 1.0 1.1 1.2 1.3 1.4 1.5
M,[M:)]
FIG. 3. Real and imaginary parts of the fundamental scalar-led

radial mode frequency (scaled by Mg). Points represent the
numerically computed values, and lines represent the polynomial
fits (30) and (31). The dashed vertical line corresponds to the
critical point, M, .

one, with ¢ = 0, is unstable under scalar field perturba-
tions. Correspondingly, its ¢ mode has J(w) <0 and
N(w) =0 (not shown in the plot). The two nontrivial
solutions are scalarized, with opposite scalar charges and
identical oscillation frequencies (shown in Fig. 3). These
correspond to coupled scalar and fluid oscillations [65,67].

Around the critical point, we obtain the following
polynomial interpolations for N(w,) and I(w,) as a
function of x = M, /My:

(17

{ X —x.,)?(0.4465 —0.9698x +0.6670x?), x <x.,

(x—x,,)*(18.753-20.205x +5.374x%), x>x,,
(30)

and

S(w,)(x)

{ (x—x.,)(=0.20769 +0.21629x —0.11647x?), x<x,,

" (x=x,,)(1.5439-1.2407x +0.20706x2),  x>x,,

(31)

From Eq. (11), ¢;2 = ¢(3)/ |w,,|* before the crltlcal point,
and from Eq. (13) cp = —2(: /@, |* after it." Figure 4
shows the coeff1c1ent cpr as a functlon of baryon mass,
where the polynomial interpolations in Egs. (28), (30), and
(31) were used. From these expressions and our

'A caveat here is that in the spontaneously scalarized regime,
one has to take into account the coupling between scalar and fluid
oscillations, the latter requiring a more sophisticated effective
action with further dynamical variables.
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FIG. 4. Coefficient ¢, as a function of baryon mass around the

critical point (displayed as a dashed vertical line).

prescription for ¢, it is apparent that the coefficient
diverges at the critical point. Consequences of this diver-

gence are discussed in Sec. V B.

V. RESULTS FOR THE BINARY DYNAMICS

In this section, we show results for the binary dynamics
in the context of scalar-tensor gravity of the DEF class with
p = —5. We start by considering two representative exam-
ples of an equal-mass binary on an eccentric orbit. Then,
we show how each of the model parameters affects the
scalar charge evolution. After that, we study binaries in a
quasicircular-orbit inspiral; we compare the quasistationary
approximation with the full dynamical evolution, and
compare the binding energy and waveform with general
relativity. We finally consider the case of unequal masses to
show the effect of the dipole flux.

A. Eccentric orbits

We recall that, if we assume that the scalar charge
evolves adiabatically, i.e., p,~0, then DS occurs for
r < rps = 1/c(y), where we denote the maximum radial
separation allowing for DS by rpg. We also consider the
mean radial separation 7, or the length of the semimajor
axis, which we calculate by obtaining interpolating func-
tions for the local maxima r,(¢) and minima r,(¢) of the
solution r(¢), then evaluating

() = D () ! iU (32)

Figure 5 shows an example for an equal-mass binary
with baryon mass M,, = M,z = 1.18 M, initial eccen-
tricity e = 0.3, and initial radial separation at apastron
r, = rps +22 Mg ~33.6M. (Equal mass implies that the
scalar charges g, and g are identical, thus we refer to only
one scalar charge ¢.) We assume the asymptotic scalar field
@o = 0, which means the initial scalar charge, calculated
from Eq. (24), is zero. So we take p, 4 = p,p = 1072,

representing some small perturbation to move the solution
away from the unstable ¢ = 0 solution. For all configura-
tions considered in this paper, we stop the numerical
evolution of the equations of motion at r = 10M.

In the left panel of Fig. 5, we plot r(z) and 7(z). The
dashed horizontal line represents the radius rpg at which
DS is expected, while the vertical line indicates the time #pg
at which 7 crosses that radius. The initial separation is such
that 7 > rpg. Correspondingly, the scalar charge is initially
dominated by an exponential damping, as shown in the
middle panel. Even though the periastron distance at the
beginning is smaller than rpg, the binary does not spend
enough time inside rpg for DS to occur. However, the small
oscillations in the scalar charge in this phase are due to the
binary entering and exiting the DS region.

Shortly after 7 becomes smaller than rpg, an exponential
growth kicks in, and the scalar charge grows exponentially
with small modulations. It eventually saturates, and the
saturation point of the exponential growth agrees with the
quasistationary solution ¢* ~6/c)[1/r(t) — ¢(z] from
Eq. (8), as can be seen in the right panel of Fig. 5.
After reaching saturation, the increase in the scalar charge
is proportional to 1/4/7.

In Fig. 6, we consider another example for a binary with
the same baryon mass as in Fig. 5, but with eccentricity
e = (0.7 and asymptotic scalar field® o = 107, We see that
the high eccentricity and nonzero ¢, cause the scalar charge
to increase at periastron and decrease at apastron. This
behavior was first demonstrated in Ref. [45] for eccentric
binaries and was dubbed “transient DS.” The magnitude of
the oscillations of the scalar charge increases with increas-
ing eccentricity and for baryon masses closer to the critical
value M, ... However, the increase in the scalar charge
compared to its initial value, given by Eq. (24), is mostly
independent of ¢, e.g., for the mass and eccentricity used
in Fig. 6, the charge increases by about an order of
magnitude regardless of the value of ¢,.

B. Effect of the parameters on the scalar charge

In order to explore the phenomenology of our theory-
independent effective action, it makes sense to slightly
move away from the specific effective parameters predicted
by the DEF theory. In what follows, we focus on an equal-
mass binary with baryon mass M, = M,p = 1.2 Mg,
which would be characterized by the parameters
c@) = 0.01716, ¢4y =0.5791, and c, =53.7 for the
DEF model with g = -5 (cf. Sec. IV).

*Note that in principle the scalar mode frequencies, and thus
the value of ¢, depend on ¢, but were computed for ¢, = 0.
However, as with other macroscopic properties of the neutron
star, we do not expect these mode frequencies to change
appreciably in the range of (small) values of ¢, considered in
this section.
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FIG.5. Separation and scalar charge for an equal-mass binary with baryon mass M, = M,z = 1.18 M, initial eccentricity e = 0.3,

initial separation r, ~ 33.6M, and asymptotic scalar field ¢, =

0. The right panel shows the scalar charge around the time it reaches

saturation, and compares it with the approximate solution in Eq. (8).

To explore the effect of each parameter on the scalar
charge, we vary one at a time and plot the charge in Fig. 7.
For all panels in that figure, the middle curve corresponds
to the DEF values of those parameters. In the first three
panels, we take the initial eccentricity as ¢ = 0.2 and the
asymptotic scalar field as ¢, = 107°, and explore the
effects of varying e and ¢, in the last two panels. We start
the evolution with initial separation such that 7 is just above
the DS radius, so that the plots focus on the DS transition.
In particular, all curves in Fig. 7 start at initial separation
r, ~ 31.2M, except for the last panel, in which we use r, =
36M for eccentricity e = 0.4 and r, = 27M for e = 0 fora
better visualization.

From the figure, we observe the following:

(1) The coefficient c(y) has a significant effect on when
scalarization occurs, since rpg = 1/ c2)s but it has a
small effect on the magnitude of the charge after
scalarization, as can be understood from Eq. (8).

(ii) The coefficient c4 affects the magnitude of the
charge but not the DS radius, since from Eq. (8), we
see that the charge after scalarization is proportional

o 1/,/c@.

- i !HHHHU!H!?“ |

t/(10°M)

In(|ql/m")

(iii) The coefficient ¢, affects the timescale for the
exponential growth of the scalar charge during
scalarization, with smaller values leading to a shorter
time. Sufficiently increasing the value of ¢ 2, while
keeping the other coefficients constant, would in-
crease the scalarization timescale and prevent the
binary from scalarizing before merger.

(iv) The asymptotic scalar field ¢, changes the initial
value of the scalar charge, and hence how early it
reaches saturation. This is because g = @y/c(y)
before scalarization.

(v) The eccentricity e affects the oscillations near
saturation, with larger eccentricity leading to larger
oscillations, because the binary spends more orbits
going in and out of the DS region.

Note that, as one approaches the critical mass for
spontaneous scalarization, c(;) goes to zero, and rpg
becomes arbitrarily large. On the other hand, the coefficient

¢;2, which governs the timescale for variations of the scalar

charge, diverges at the critical point (cf. Fig. 4). These two
effects compete in the initial phase of exponential growth of
the scalar charge: as the critical point is approached, the

0-500F 3 p = Myp = 1.18M,, g
[ e=07, r,=75M &
0.100} ¥ .

Fog=10"° g
0.050f ° ]
0.010¢
0.005F 3
0.001 :

0 20 40 60 80

t/(10°M)

FIG. 6. Similar to Fig. 5 but for initial eccentricity e = 0.7 and asymptotic scalar field ¢, = 107>. The local maxima of the scalar
charge occur at periastron, which is below the expected separation allowing for DS.
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FIG. 7.  Each panel shows the effect on the scalar charge of varying one of the parameters of the effective action (c(2), ¢(4), and ¢2), or
varying the asymptotic scalar field ¢, and eccentricity e. The middle orange curve is the same in all panels, representing a configuration with
baryon mass M, = M,z = 1.2 M, initial eccentricity e = 0.2, initial separation r, ~ 31.2M, and asymptotic scalar field ¢, = 1072,

growth of the scalar charge starts at earlier times due to the
increase in rpg (favoring DS), but with a larger timescale
due to the increase in c,. (disfavoring DS). Since the
growth of the scalar field is exponential and the inspiral
timescale is proportional to r* one expects DS to be favored
as one moves closer to the critical point, which we have
checked numerically.

C. Quasicircular orbits

If the scalar charge is assumed to change adiabatically
(¢ = 0), then the charge after scalarization is given by
Eq. (8). In Fig. 8, we compare that approximation with the
numerical solution of Eq. (16), which includes ¢, for
quasicircular inspirals.

We consider two configurations: one with baryon mass
Mys =M,p =12 My, and the other with mass M, =
M = 1.15 M. For both, we use ¢y = 1072, and start
with initial separation r, = 1/c(y) + 0.1 Mg ~19.8M,
which is just above the expected DS radius. We see very
good agreement between the analytical approximation and
numerical solution, except at the beginning of the evolution,
during the onset of DS. That is because including the ¢ .
coefficient accounts for the timescale of the exponential
growth of the scalar charge, and hence delays reaching the
saturation point.

For the configuration with mass My, = My =
1.15 M, we plot in Fig. 9 the binding energy for the

binary, which we define as the value of the Hamiltonian
minus the constant ADM mass, that is

E,=H-M. (33)

To obtain E;, for circular orbits as a function of the orbital
frequency, we solve 0H/dr = 0 and 0H /dL = Q for r(Q)

0.5f -]
0.4 ) o
- 03r o - ]
g [ -
~ ) .
= 0ok / . .
T / o M, = 1.2M;, (adiabatic)
o [ M, = 1.2M,, ]
o L PP M, = 1.15M,, (adiabatic) |
! ‘ My = 1.15M, ]
O'Oj-- .--1--' ----- e L I-)-l ------- 21 -------- 1--—‘
0.010 0.015 0.020 0.025 0.030 0.035
MSQ
FIG. 8. Comparison of the quasistationary (adiabatic) approxi-

mation with the full dynamical evolution of the scalar charges,
plotted versus the orbital frequency for equal-mass binaries on
quasicircular orbits.

104016-9



KHALIL, MENDES, ORTIZ, and STEINHOFF

PHYS. REV. D 106, 104016 (2022)

—0.006 Mya = My — 1150Mo, ¢ = 0, 7o~ 19.8M |
—0007? \ 1
—0.008? 1

i —0.009? 1
& —040105 1
-oon k — general relativity ]
-0.012F — DEF theory, 8 = —5 3
0.010 0.015 0.020 0.025 0.030 0.035

MQ

T T T T T T T

0.0351 ]
0.030F

0.025F

MQ

0.020f 1

0.015F L

OlOb ]
0 10 15 20 25 30

t/(10°M)

wt

FIG. 9. Binding energy as a function of the orbital frequency (left panel) and orbital frequency as a function of time (right panel) for

masses My, = M,z = 1.15 M in a quasicircular inspiral.

and L(Q), with p, = 0. Substituting that solution into the
Hamiltonian yields

2 2
Eb:mA—l—mB—M—FM—i— pq.B
20512,.4 2Ci]2,B
K 23 qaqs\*>
~LmMQ)¥3 (1A% 34
2 a1+ 22) (34)

In Fig. 9, we see that the binding energy after scalarization
decreases less rapidly than in general relativity, due to the
sudden increase in the orbital frequency, causing the binary
to become more tightly bound than in general relativity in a
very short time. This behavior qualitatively agrees with the
quasiequilibrium numerical calculations of Ref. [43].

We also plot in Fig. 10 the Newtonian-order waveform,
and compare it with general relativity. The leading order of
the (2,2) waveform mode, for general orbits, is given by

T (M L* pr . Lp,
h22:—4ﬂ\/;6’ 21¢<r—|—ﬂ2r2—ﬂ2—|—2l /421” s (35)

which can be written as a magnitude and phase
hyy = |hyy|e'?2. We see from Fig. 10 that the waveform
agrees with general relativity until the onset of DS, which

leads to a sudden change in the phase of the waveform,
causing it to approach merger more quickly.

In addition to the tensor modes hg,, scalar-tensor
theories allow for scalar waveform modes ,,,, which
were derived in Ref. [68] to 1.5PN order. The dominant
mode is y;, and it is proportional to (q,/m; — q,/m,) at
leading PN order. Therefore, the magnitude of wq; is
qualitatively similar to the leading order dipole flux, which
is discussed in the following subsection. The leading order
of the y, mode is proportional to g; + ¢», so its behavior
around scalarization is represented by the several plots in
this paper for the scalar charge.

D. Dipole flux

So far, we have considered equal-mass systems, for
which the leading-order dipole radiation vanishes
[cf. Eq. (B12)]. To see the effect of the dipole flux, we
consider a configuration with baryon masses M, =
1.1 Mg and M,z = 1.3 M, on a quasicircular orbit with
initial separation r, =80 My, and asymptotic scalar
field ¢y = 0.

In Fig. 11, we plot the two scalar charges and see that
they scalarize at almost the same time, with larger magni-
tude for the larger mass. The right panel of that figure
shows the ratio of the leading-order scalar dipole energy

Mys — My = 1150, 1000f ool ' o, |
anl =0, r, ~19.8M ’ e I |
0.30 00l I ‘
L N “
— 600} § 1] |
i&“ 0.25 & = 040-———“——‘——‘——;——‘r———‘r— SR ‘L
400} = T |
o R .. =0.1F (I ]
020k general relativity 200k ‘ ““\ “‘ n | \
DEF theory, § = -5 -0.2}F ' | 1
. . . . Uy . . . . . . . . .
0.015  0.020  0.025  0.030 0015  0.020 0.025  0.030 7 18 19 20 21
MQ MQ t/(10°M)

FIG. 10. The leading order of the (2,2) waveform mode for a quasicircular inspiral. The left and middle panels show the magnitude and
phase of the waveform versus the orbital frequency, while the right panel shows the real part of the waveform around scalarization.
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with unequal masses on a quasicircular orbit.

flux @dElp, Eq. (B12), to the tensor quadrupole flux, which is
given for quasicircular orbits by @M = 32M342/(51°).
That ratio is of order 1073 after scalarization, but decreases
at small separations since ®%" is proportional to 1/* while
@3 is proportional to 1/7.

VI. CONCLUSIONS

Dynamical scalarization is a nonperturbative phenome-
non that shows up in scalar-tensor theories of gravity, and
involves the development of nontrivial scalar charges on
inspiraling compact objects. Although this effect was
originally discovered in fully nonlinear numerical simu-
lations of neutron stars in scalar-tensor gravity [39], it is
captured by compact-binary models that employ effective-
field-theory methods [50,51]. By construction, this effec-
tive approach is designed to capture the UV and IR scales of
the system, where the UV physics is simplified by model-
ing the binary components as point particles, while relevant
internal degrees of freedom are captured by variables that
evolve along the worldlines. In this way, the model can
incorporate physical aspects such as tidal deformations and/
or stellar oscillations.

Earlier effective-action models for DS considered the
case where the evolution is quasistationary, and were
restricted to quasicircular orbits. In this work, we consid-
ered the full dynamical evolution predicted by the model for
general (eccentric) orbits. This is achieved at leading order
in the effective action, which contains only three parameters
for each binary component. One of these parameters—the
coefficient ¢ of the kinetic term in Eq. (2)—was neglected
in previous works dealing with the quasistationary case
[51]. Here we suggested a prescription to match this
coefficient to properties of the fundamental scalar mode
of a neutron star, and considered its effect on the binary
evolution. Additionally, radiation-reaction effects were
incorporated at the level of the equations of motion. In
order to show how the model works in practice, we chose to
work with the well-known DEF scalar-tensor theory

0.007F
0.006

0.005

quad

= 0.004

0.003

PP /P

0.002

0.001

0.000

Scalar charge (left panel) and the ratio of the scalar dipole flux to the tensor quadrupole flux (right panel), for a configuration

[cf. Egs. (25) and (26)] with the parameter f = —5. We
have thus worked out the full dynamics of eccentric,
oscillatory binary neutron stars in DEF theory, near the
phase transition to the scalarized regime.

The main effect of including the ¢, term in the model is
to account for the initial phase of exponential growth of the
scalar charge, before it reaches saturation and the evolution
becomes well described by the adiabatic solution. The time
spent in the initial phase also depends on the cosmological
value of the scalar field (¢q), which determines the
magnitude of the scalar charges prior to scalarization. ¢,
impacts the theory’s parametrized post-Newtonian param-
eters [69] and is thus subject to an upper bound from solar
system observations; on the other hand, a lower bound is
provided by the scalar field vacuum fluctuations.

General eccentric orbits were also considered. For such
orbits, the scalar charge is amplified and suppressed
successively as the binary enters and exits the DS radius
—defined as the maximum radial separation allowing for
DS in the stationary limit—with the mean radial separation
determining the overall behavior (see Fig. 5).

By incorporating the effects of mode dynamics and
dissipation, our work makes important steps towards
improving the accuracy of post-Newtonian waveform
models for compact binaries in gravity theories that allow
for scalarization, and can thus be useful in constraining
scalarization =~ with  gravitational-wave  observations
[4,57,58,70-73].

It is worth emphasizing that, although many of our
results were obtained for a specific gravity theory, the
effective action model introduced here is theory indepen-
dent. Thus, it can be used as the basis for both theory-
specific and theory-agnostic tests of DS. In the latter case,
one could attempt to constrain directly the leading coef-
ficients (c(y), c(4), c;2) of the effective action—or combi-
nations thereof, taking into account possible degeneracies
in their relation to observables. Degeneracies related to
uncertainties in the nuclear equation of state may also be
relevant for the case of binary neutron star systems, but we
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note that scalarization also shows up for black holes in
some scalar extensions of GR. In any case, waveform
models for DS would benefit from higher-order post-
Newtonian calculations in specific frameworks (see e.g.,
Refs. [68,74,75] for efforts in a class of scalar-tensor
models) and of possible refinements to the effective action,
such as accounting for the interplay between fluid and
scalar oscillation modes.
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APPENDIX A: OSCILLATOR EQUATION WITH
DAMPING TERM

In Sec. II, we approximated ¢ ~ 0 and used the oscillator
equation c,2g =~ —c3)q to relate cp2 to the g-mode fre-
quency as in Eq. (11). In this Appendix, we investigate the
effect of the monopole radiation-reaction force as a damp-

ing term.
In Appendix B, we show that the radiation-reaction force
for an isolated compact object is given by F, = —q.

Inserting that force on the right-hand side of the oscillator
equation (4) yields
cpqg+V'ig) =@+ F, (A1)

Assuming vanishing cosmological scalar field ¢, = 0, and
keeping only the leading term in V'(g), we get
cpg+q+caq=0, (A2)

which is the equation for a damped harmonic oscillator and
can be written as

4+ r0q+wiq =0, (A3)
with the definitions
1 > _ @)
=—, =—". A4
Yo qu @0 qu ( )
The solution of this equation is given by
q(t) = e “1'la cos(wgt) + b sin(wgt)],  (AS)

where

4 /
w; = EO, WR = ‘U% - (70/2)2,

leading to w3 = w% + w?. These relations can be inverted

to obtain ¢;,2 and c(y) in terms of wg and wy, i.e.,

(A6)

2
1 W

Cip2 = —_——, C(z) (A7)

_20)[‘

It was argued in Ref. [59] that wp and w; can be
identified as the real and imaginary parts, respectively, of
the mode frequency. Hence, the relation (A7) for c,e,
obtained by including a damping term in the oscillator
equation, is the same as the one in Eq. (11), which was
obtained by assuming ¢ ~ 0. However, c(,) calculated from
the ¢-mode frequency in Eq. (A7) gives a different result
from the one calculated from the quartic fit in Fig. 1, with a
relative difference of about ~50%. Such a difference would
then propagate to c;2, but we showed in Fig. 7 that the
scalarization time has a weak dependence on the value of
;2. Thus, we choose to identify ¢, = c(y)/ w3, with )
calculated from the quartic fit, which is more accurate.

APPENDIX B: SCALAR FLUXES AND
RADIATION-REACTION FORCE

In this Appendix, we derive the leading order scalar
monopole energy flux, and the scalar dipole energy and
angular momentum fluxes, following the steps in Ref. [76].
From the fluxes, we obtain the radiation-reaction force that
enters the equations of motion (16).

1. Energy flux

The scalar-field equation is given by

U = —4xS, (B1)
with the source term
S = a8 (¥ = x4) + qp()F(x —xp).  (B2)
The scalar field has the solution
wz/fﬂﬁﬁﬁx (B3)

where x is the distance to the detector at near spatial
infinity, and the retarded time #,; = ¢t — |x — x/|.

Defining R = |x|, N=x/R, and ¥ = 1 — R, we expand
the scalar field, in the far zone, in terms of multipole
moments such that
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Sx',¢) 109
— & i —— S, )x - N+---
) / X [ R T Ra (¥, )x-N+

1 .
EE(‘PJF‘I”N’ +0), (B4)

where the monopole and dipole moments are defined by

‘Pz/d3xS:qA—|—qB, (B5)

0 0
i E/ dxx'S = <%CIA —%q3> r,  (B6)

and we have wused the center-of-mass relations
x4 =mGr/M, xg = —mSr/M, and r = x4 — x5.
The energy flux due to scalar radiation is related to the

stress-energy tensor via

CDE - —R2 / dQ TOiNi, (B7)
where To: = 0op0;p/4m ~ —N,;(0yp)* /4, since
0;¢p =~ —N,;0yp + O(r/R), which yields

O — /dQ(T+\'I’”N +)?
E — 4r i
:w2+§‘1ﬂ\1ﬂ+.--. (B8)

The first term in this equation is the monopole flux, while
the second is the dipole flux. To evaluate the angular
integral, we have used the relation [ dQN'N’/ = 4x8" /3.

In taking the time derivatives, we assume that ¢ is small
compared to g. So we neglect terms with ¢ in the dipole
part of the energy flux, but we keep them in the leading-
order monopole flux. Hence, we obtain

. 1 (m mS  \2.
®E:(QA+QB)2+_<_BQA ——AQB) i, (B9)

3\ M M
with
; M 9498\
=—=|(1 ) B10
r ’,,2 ( + Mﬂ r ( )
leading to the monopole and dipole energy fluxes
PP = (G4 + g5)*, (B11)

; M2 mO mO 2 qaq 2
o =5 (ro=Taa) (1+50) . 02

The dipole flux vanishes for equal masses and charges, in
which case, the next-to-leading order monopole flux and
the leading order quadrupole flux become the leading

contributions. The scalar quadrupole flux can be computed
tional contribution ¥*¥" /15 in Eq. (B8). However, it is at
the same post-Newtonian order as the next-to-leading
monopole flux, which requires the equations of motion
at next-to-leading order, and is thus beyond the scope of
this work.

2. Angular momentum flux

The angular momentum carried by the scalar field is
related to the stress-energy tensor via

Ji — ikl / & x <Ol

I .
——e’kl/d3x(00(p)xk(6l(p). (B13)
47

Using /N’ = (6Y — N/N/)/R, and d’x = R*dtdQ, the
above equation yields

ar 1 .k,/ o
—=— dQRN* Y +9/ N/
it 4r° (¥ +¥N]

. .. 1 .
X {—N"P—NIN’”‘I”M—E(&"’ —N"NOHP"|. (Bl4)

Because of the antisymmetry of ¥/, the only term that does
not vanish is

i1 .kl/ o
—=—¢' dQ NN/
dr  4n¢
= %eik’fi!kliﬂ . (B15)
Differentiating the dipole moment, while assuming ¢ ~ 0,
leads to
dJi 1 . mO m() 2“ .
E:§€’kl <A;QA —A/?q3> P, (B16)
Thus, we obtain the angular momentum flux
(Ddip _ _d_']e
I dt
1ML (m mg  \? qads
~——— | 2g,——=% 1 . (B17
3W3<MqA VRL My (B17)

3. Radiation-reaction force

To obtain the monopole radiation-reaction force, we use
the balance equation Egge, = —®F", where the energy
loss by the system is the time derivative of the Hamiltonian

in Eq. (14) after substituting the equations of motion (16)
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without the dipole or quadrupole radiation-reaction force,
leading to
Dot = Fp, + Fo (B18)
Setting this equal to the energy flux in Eq. (B11), and
solving for the radiation-reaction force yields
Fpon = Fpen = =g, = 4. (B19)
This force is the same for both ¢, and ¢p, which implies
that the equation of motion for the combination g4 — gp
does not have a damping term at that order. Therefore,
for equal masses but opposite charges, such that the sum
g4 + gp vanishes, the monopole force would not affect the
charges. The damping in this case would be provided by
terms in the scalar dipole flux with time derivatives of the
scalar charges. We dropped these contributions in
Eq. (B12) for simplicity, but we checked that they have
a negligible effect on the results considered in this paper.
For the dipole radiation-reaction forces, we follow the
arguments in Ref. [60], and use the energy and angular
momentum balance equations including Schott terms, which
represent additional contributions to energy and angular
momentum due to interaction with the radiation field, i.e.,

dlp
system + ESchott + q)E =0,

J%ystem + JSchott + (I)dlp =0. (B20)

The energy and angular momentum losses by the system are
given by

- di dH
d di di

Es;gtem = It 1p f o

- di dL ;
d 7_—d B2
s}lgtem - ,It - (/;p‘ ( 1)

We choose to set J. schott = 0, Which corresponds to part
of the coordinate gauge freedom. The components of the

radiation-reaction force are then related to the fluxes via

- dip | g _
rJ:r + Eschott - _CI)EJ7

FoP = —@,, (B22)

where we define ®p; = &5 — é’)@ ; with ¢ being the orbital
frequency.

For circular orbits ®g; = 0 since ©y = PD ;. Hence,
@y, can be written in terms of quantities that vanish for
circular orbits, such as p2 and p,, which also satisfy time-
reversal symmetry,

Oy = f1p}+ f2b,

:pr< nf1 _£>

for some arbitrary functions f; and f,, which leads to

d
+ o (fap). (B23)

Eschon = —f2Prs

ij r d
(rlp_—p?<l9rf1 fz)

- (B24)

Applying that approach using the dipole fluxes from
Eq. (B12) leads to

f1=0,
M m(l)? m?x 2 q44p
= — —Z g, ——=2 1 . B25
fa 3/”2(Mq L M (B25)
Thus, we obtain the Schott energy and FoP
M mY my )2 e
Egchon = Wpr (H 94 =77 98 1+ My ) (B26)
o2 M m! m? 2
dip __ B A dadB
dp 2, (M, A 1 . (B27
F 34 3P (M Iy CIB) ( + My ) (B27)
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