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The waveforms from binary black hole mergers include inspiral, merger, and ringdown parts. Usually,
the inspiral waveform can be obtained by calibrating from post-Newtonian approximation; The merger and
ringdown ones can be gotten from the quasinormal modes with black hole perturbation theory. However,
for more general black holes, the calculation of the quasinormal modes is not trivial. In this paper we use
the photon sphere to get the quasinormal modes of spinning black holes. Then we connect the ringdown
wave with the inspiral part to get full waveforms and compare with the ones from numerical relativity. We
find that they match with each other very well. In principle this method can be extended to some general
compact objects. As an example, the ringdown waveforms from parametrized axisymmetric black holes are
obtained. We also use this method to get the ringdown signals of the accelerating final black hole; this is
due to gravitational recoil during the merger. Even for the extreme cases, the acceleration due to the recoil
cannot produce detectable effects.
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I. INTRODUCTION

There will be more gravitational-wave events in the
future, so it is essential to have sufficiently accurate
waveform templates to study different gravitational wave
events. There are already some templates for different
situations: compact binaries on eccentric orbits [1–4],
nonspinning binaries [5,6], precessing binaries [7], etc.,
and it would be helpful if there was a template for different
situations. For binary black hole (BH) events, there are
three stages in the coalescence of two BHs: the long
inspiral phase, during which the two black holes orbit each
other; the merger phase, where the two black holes collide
to form a single more heavy black hole; and the ringdown
phase, where the remnant black hole emits gravitational
waves (GWs) while settling down to its resting state. The
inspiraling part can be described by the post-Newtonian
approximation. At the end of the merger (i.e., the ring-
down), the horizon of the remnant formed. At this moment,
the spacetime is similar to a stable black hole but still has a
slight perturbation. Therefore the merger and ringdown
waveforms can be calculated from black-hole perturbation

theory. The well-known EOBNR and IMRPhenom wave-
form models rely on the above idea [8–26]. Finally, from
the gravitational waves emitted during the ringdown phase,
one can get the information about the mass and spin of the
final remnant [27–29].
There are many different methods to calculate the

perturbation. The common method uses the Teukolsky
equation [30]. There is a simple discussion of this method
in [31]. Considering the Teukolsky equation with a purely
ingoing boundary at the horizon and purely outgoing
boundary at infinity, the gravitational waves are charac-
terized by some complex frequencies called quasinormal
modes (QNMs) [32–37]: the complex frequencies
ω ¼ ωR − iωI , where ωR represents the frequency of
GWs and ωI represents the decay rate of GWs. Since
QNMs arise as the perturbation of BHs spacetimes,
different BHs will have different QNMs. Chandrasekhar
et al. [31,38,39] found that Schwarzschild BHs have two
types of perturbations (scalar type and vector type)
characterized by the same QNMs spectrum. Some liter-
ature [40–42] gave the approximate analytic expressions
of the QNMs for Schwarzschild BHs. The Kerr BHs have
an additional parameter, the spin. Therefore the QNMs
spectrum [43–46] is more complex than the Schwarzschild
ones. The QNMs for a charged black hole, or for a black
hole in an anti–de Sitter spacetime has also been studied in
literature [47–57].
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The QNMs are characterized by a small number of
parameters: s, l, m, n. The field’s spin is labeled as s, with
s ¼ 0 for the scalar field, s ¼ �1 for the electromagnetic
fields, and s ¼ �2 for the gravitational fields. l and m are
harmonic indices (jmj ≤ l). n is the overtone index that
sorts the QNMs in order of decreasing damping timescales,
so n ¼ 0 represents the least-damped mode (longest-lived
mode or fundamental mode). Some works [58,59] have
found that using higher overtones can obtain a better
description of the ringdown signal. Arnab [60] proposed
a negative-frequency (counterrotating) modes called mirror
modes which are different from the positive-frequency
(counterrotating) modes (e.g., higher overtones modes).
However, for non-GR (general relativity) black holes,

direct calculation of QNMs is usually tricky. In [61–64], the
authors found that the QNMs of the BHs with stationary,
spherically symmetric, and asymptotically flat line elements
are determined by the circular null geodesics, this result is
based on the geodesic stability and Lyapunov exponents, on
further studies, they found that, for the axisymmetric cases,
equatorial geodesics can account for the l ¼ m modes.
Therefore, McWilliams [65] proposed a new waveform
model for the GR black holes called the backwards one-
body (BOB) method, which does not include any phenom-
enological degrees of freedom.
The study of photon motion has continued for decades:

for example, the ray-tracing codes based on photon motion
[66,67], accretion disk [68–70], quasiperiodic oscillations
[71], and the first picture of the black hole (M87*) [72–74],
which gives us a new channel to study black holes and
general relativity. Some authors used the photon motion to
study the BH shadow with different metrics: Kerr metric
[31], Kerr-Newman metric [75], and some other metrics of
rotating regular black holes [76]. Someworks have used the
shadow of M87* to test the alternative theories of gravity:
the superspinar [77], the conformal massive gravity [78],
the Gauss-Bonnet gravity [79], Einstein-Maxwell-dilaton
theory [80], and symmergent gravity [81]. In this paper, we
use the photon motion to calculate the ringdown waveform
for the objects in GR, such as the Kerr black hole and
accelerating black hole, we also study the case with a
general parametrized axisymmetric Konoplya, Rezzolla,
and Zhidenko (KRZ) metric, this metric can be used to
describe the nonstandard compact objects in GR and black
holes in other gravity theories.
This paper is organized as follows: In Sec. II, the photon

motion under the Kerr metric is computed in two cases: the
equatorial and arbitrary planes. In Sec. III, we introduce
how to use the photon motion (especially the photon
sphere) to get the values(real part and imaginary part) of
QNMs. In Sec. IV, we compare the waveforms obtained
from the light ring and NR (numerical relativity)/SEOBNR
(spinning effective one body-numerical relativity) model.
In Sec. V, the ringdown waveform of a generally axisym-
metric black hole is obtained. In Sec. VI, we study the

effect of acceleration due to recoil on the gravitational
waves. We conclude our results in Sec. VII. We have fixed
units such that G ¼ c ¼ 1.

II. PHOTON MOTION

In this section, we will review photon motion under the
Kerr metric, and the photon motion equation will be used in
the next section. The spacetime of the Kerr metric can be
described by the following equation (we choose the Boyer-
Linquist coordinates):

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dϕdtþ Σ
Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Mra2sin2θ

Σ

�
sin2θdϕ2; ð1Þ

where

a≡J=M; Σ≡ r2þa2cos2θ; Δ≡r2−2Mrþa2: ð2Þ

M, J, and a are the mass, angular momentum, and angular
momentum per unit mass of the black hole.
The Kerr metric is stationary and axisymmetric, and it is

independent of t and ϕ coordinates, which leads to the
existence of timelike and spacelike Killing vectors.
Consequently, there are two conserved quantities: the
energy E and the z-component Lz of the angular momen-
tum, which can be expressed as

−E ¼ gtt_tþ gtϕ _ϕ;

Lz ¼ gϕt_tþ gϕϕ _ϕ; ð3Þ

where the overhead dot represents the derivative of the
affine parameter; for photons, we can get the normalization
condition of the four velocity:

uαuα ¼ 0; ð4Þ

where uα ¼ ð_t; _r; _θ; _ϕÞ.
To study the motion of photons, we should use the

geodesic equations, where we have for null geodesics the
following expression:

d2xμ

dλ2
þ Γμ

vτ
dxv

dλ
dxτ

dλ
¼ 0; ð5Þ

where λ is the affine parameter and Γμ
vτ are the Christoffel

Symbols defined as

Γμ
vτ ¼ 1

2
gμσðgσv;τ þ gστ;v − gvτ;σÞ: ð6Þ

We get the lightlike geodesic equation in separated two-
order forms with Eq. (5). Though these two-order equations
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are not very difficult to solve, there is another way to get the
lightlike geodesic equation in separated first-order forms.
We have these conserved quantities: the energy E, the z
component Lz of the angular momentum, and the four
velocity uαuα ¼ 0, so we can use these conserved quantities
to get the first-order equations. Since there are four
directions for the photon motion, we must use another
conserved quantity, which is the Carter constantQ. Through
these four conserved quantities: E, Lz, uαuα ¼ 0, andQ, we
can get the lightlike geodesic equation in the separated first-
order form:

ΔΣ_t ¼
h
ðr2 þ a2Þ2 − Δa2sin2θ

i
E − 2MraLz;

Σ2 _r2 ¼ E2r4 þ ða2E2 − L2
z −QÞr2

þ 2M
h
ðaE − LzÞ2 þQ

i
r − a2Q ¼ RðrÞ;

Σ2 _θ2 ¼ Q −
�

L2
z

sin2θ
− E2a2

�
cos2θ;

ΔΣ _ϕ ¼ 2MraEþ ðΣ − 2MrÞ Lz

sin2θ
: ð7Þ

Through Eq. (7), we can easily study the motion of
photons. In the following sections, we will use Eq. (7)
rather than Eq. (5).

A. Equatorial plane

If the photon is restricted on the equatorial plane, for the
light ring, i.e., the circular orbit of the photon, _r and _θ will
both be equal to zero. As a result, Eq. (7) only retains two
terms: _t and _ϕ. As we know, there is only one circular orbit
(and unstable) for the Schwarzschild black hole and two
circular orbits for the Kerr black hole: corotating and
counterrotating light rings. We can get the properties (such
as frequency) of the orbits through Eq. (7) easily.

B. Nonequatorial plane

When considering the three-dimension (3D) motion,
Eq. (7) should be calculated to get the photon orbits.
The radius does not vary (i.e., _r ¼ 0) when considering the

photon circular orbits. Then one can get RðrÞ ¼ dRðrÞ
dr ¼ 0.

For convenience, we use two new parameters (L̃, Q̃) to
replace the parameters (E, Lz, Q), where L̃≡ Lz=E and

Q̃≡Q=E. Through this condition: RðrÞ ¼ dRðrÞ
dr ¼ 0, we

can get the expression of L̃ and Q̃:

L̃ ¼ −
r3 − 3Mr2 þ a2rþ a2M

aðr −MÞ ; ð8Þ

Q̃ ¼ −
r3ðr3 − 6Mr2 þ 9M2r − 4a2MÞ

a2ðr −MÞ2 : ð9Þ

In this case, the photons oscillate around the equatorial
plane. The maximum angle can be solved through the
following equation [82]:

u20 ¼ cos2θmax;

¼ 1

2a2

�
ða2 − Q̃ − L̃2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − Q̃ − L̃2Þ2 þ 4a2Q̃

q �
:

ð10Þ

Using Eq. (7), considering there is a square on the _θ (i.e.,
_θ2) so we use a new parameter u to replace θ.

u ¼ cos θ; ð11Þ

then we can rewrite the equation of θ as

Σ2 _u2 ¼ a2ðu20 − u2Þðu2 − u21Þ; ð12Þ

where

u21 ¼
1

2a2

�
ða2 − Q̃ − L̃2Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − Q̃ − L̃2Þ2 þ 4a2Q̃

q �
:

ð13Þ

By rewriting u ¼ u0 sin χðλÞ, where χ is a monotonic
function, we get the following equation:

_χ¼�a
Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2−u21

q
¼� a

r2þa2u20sin
2χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20sin

2χ−u21

q
: ð14Þ

Now we use Eq. (14) to replace the θ direction equation in
Eq. (7), then, combining _t and _ϕ in Eq. (7), the circular
orbits (light sphere) in 3D can be solved. A more detailed
description of the calculations is presented in [82].

III. GETTING QNMs FROM PHOTON MOTIONS

Photon motion (“null orbit”) is essential for astrophysi-
cal and theoretical study. For example, the optical appear-
ance to the observer of a collapsed star is related to the
properties of photon motion. In addition, photon motion is
also related to the characteristic modes (QNMs) of a black
hole in the eikonal limit [63,64,83,84]. These modes can be
approximated related with the terms of photons moving in
an unstable circular orbit (also known as “light ring” or
“photon sphere”). The decay rate (ωI) in QNMs connects
with the Lyapunov exponent of light rays (the neighboring
two photons on the light ring will separate exponentially
due to the unstable orbit). As the same as ωI , the parameter
ωR can be represented by the energy of the photon sphere.
Therefore the gravitational-wave emissions at the ringdown
period could be described by the properties of the null
geodesics on unstable circular orbits at the black hole’s
light ring. So, in this section, we will show how to connect
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the photon motion and the QNMs. The complex frequen-
cies in QNMs is ω ¼ ωR − iωI . We will introduce how to
get ωR and ωI through the photon motion. There are three
parameters in QMNs: the multipolar indices l and m and
the overtone index n (the parameter s is a constant in
gravitational fields). This section considers the case where
the overtone index is the fundamental mode n ¼ 0.

A. Determination of ωR

We get the value of ωR by following Ref. [85], which
considers the photon in 3D motion. The real part of the
QNMs, ωR, can be decomposed along θ and ϕ:

ωR ¼ LΩθðm=LÞ þmΩprecðm=LÞ; ð15Þ

whereΩθ is the frequency of polar motion, the frequency at
which the photon oscillates below and above the equatorial
plane, with a period given by Tθ ¼ 2π=Ωθ.
The particle also moves in the azimuthal (ϕ) direction in

the period Tθ. Usually, when the polar motion finishes a
period, ϕ does not scan through 2π for a corotating orbit
(m > 0) or −2π for a counterrotating orbit (m < 0) due to
the relativistic precession. The difference between the Δϕ
and �2π (its precession-free value) is denoted as the
“precession angle”:

Δϕprec ¼ Δϕ − 2πsgnðmÞ; ð16Þ

Ωprec ¼ Δϕprec=Tθ; ð17Þ

L ¼ lþ 1=2; ð18Þ

the value ofm is a constant that can be freely chosen (in this
paper, we choosem ¼ 2), and the value of l can be obtained
through the following content.
For orbits between the equatorial orbits and polar ones,

we can use the following equations:

ΩR ¼ μa
r20 þ a2

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p
r20 þ a2

βðaΩRÞ;

0 ¼ ∂

∂r

�
ΩRðr2 þ a2Þ − μaffiffiffiffiffiffiffiffiffiffi

ΔðrÞp
�
r¼r0

; ð19Þ

where ΩR ¼ ωR
L , μ ¼ m

L.
Equation (19) is gotten through the following equation:

Vrðr;ωRÞ ¼
∂Vr

∂r

����
ðr;ωRÞ

¼ 0; ð20Þ

where Vr is the potential in the radial Teukolsky equation.

βðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðzÞ þ z2 − 2μz

q
;

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

2
− 2μzþ μ2z2

2

r
; ð21Þ

for convenience, we can use another method to get the
value of l:

ΩR ¼ μa
r20 þ a2

�
ffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ

p
r20 þ a2

βðaΩRÞ;

¼ ðM − r0Þμa
ðr0 − 3MÞr20 þ ðr0 þMÞa2 : ð22Þ

One can obtain r0 and μ from the above equations.
Therefore, since μ ¼ m=L, m ¼ 2, and L ¼ lþ 1=2 we
can get the value of l.
We do not choose a specific metric when computing the

value of ωR. We only write down the photon motion
equations, then, with these equations, we can get the value
of ωR, this result is valid in the eikonal approximation, even
for small values l. Thus, we can apply this method to some
GR and non-GR black hole metrics (which we will show in
the following sections).

B. Determination of ωI

The ringdown signal damping rate:

ωI ¼
�
nþ 1

2

� ffiffiffiffiffiffiffiffiffi
2R00

0

p
Δ0

½∂R
∂E þ ∂R

∂Q ðdQdE Þ�r0
; ð23Þ

where

RðrÞ ¼ ½Eðr2 þ a2Þ − Lza�2 − Δ½ðLz − aEÞ2 þQ� ð24Þ

and

Q ≈ L2 −m2 −
a2ω2

R

2

�
1 −

m2

L2

�
: ð25Þ

Through Eqs. (23)–(25) we can get the value of ωI with
different r0. Applying the same method to obtain ωR, we
can derive the expression of ωI only by using the photon
motion equations. As a result, this method can be applied to
some other black holes.
The above calculations show the procedure to get the

quantities ωR and ωI through the photon motion. To test the
accuracy of the calculated values of ωR and ωI we obtained,
we use the package “qnm” [86] (qnm is an open-source
PYTHON package for computing the Kerr quasinormal mode
frequencies, angular separation constants, and spherical-
spheroidal mixing coefficients). As shown in Figs. 1 and 2,
we observe that the ωR and ωI calculated from the photon
motion have good accuracy at high spin. We suppose this
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could be because the photon sphere is closer to the horizon
as the spin increases and will have a better reflection of the
BHs. The maximum relative difference of ωR is not larger
than 5.6%, and ωI is not larger than 8.5%. One thing
that should be mentioned is that the parameter ωR is the
wave frequency, which is the same as the energy E.
Therefore when calculating ðdQdEÞ we can just calculate
ð dQdωR

Þ through Eq. (25).

IV. GRAVITATIONAL WAVE AND COMPARISON
WITH NR/SEOBNRV4

This section will use ωR, ωI obtained from the photon
sphere to construct the ringdown signals. Furthermore, we
connect the PN inspiral waves with the ringdown one to
derive the full waveforms, so we call our model PSI (Ψ:
photon sphereþ inspiral) waveforms. The PSI model is
inspired by the BOB waveform model described in
Ref. [65]. This model calculates the waveforms for equal
mass and the GR binary black holes by the light ring. Many
waveform models include phenomenological degrees (e.g.,

phenomenological coefficients) to have good accuracy with
NR. However, the BOB method does not include phenom-
enological degrees of freedom but has a good result
compared with NR in the ringdown period. In the present
paper, we will construct our Ψ waveforms for the binary
BH mergers with varied spins and mass ratios, then apply
them to the parametrized (KRZ) black holes and accel-
erating black holes.
As shown in [65,87], the amplitude of the GW has the

following form:

jhlmj2 ∼
d
dt

ðΩlm
2Þ; ð26Þ

where Ωlm is the orbital frequency; through this equation,
we can get the equation of the GW waveform:

h22 ¼ Xsech½γðt − tpÞ�e−iΦ̃22ðtÞ; ð27Þ

where X is a constant, γ is the Lyapunov exponent, tp is the
time corresponding to the peak waveform amplitude, and
Φ22ðtÞ is the phase.
We can also derive the phase equation:

Φ̃22 ¼
Z

t

0

Ωdt0 ¼ arctanþ þ arctanhþ

− arctan− − arctanh− − ϕ0; ð28Þ

where

8<
:

arctan� ≡ κ�τ
�
arctan

�
Ω
κ�

�
− arctan

�
Ω0

κ�

��

arctan h� ≡ κ�τ
�
arctan h

�
Ω
κ�

�
− arctanh

�
Ω0

κ�

�� ; ð29Þ

κ� ≡
�
Ω4

0 � k

�
1 ∓ tanh

�
t0 − tp

τ

��	
1=4

; ð30Þ

Ω¼
�
Ω4

0þ k

�
tanh

�
t− tp
τ

�
− tanh

�
t0 − tp

τ

��	
1=4

; ð31Þ

k ¼
� Ω4

QNM −Ω4
0

1 − tanh ½ðt0 − tpÞ=τ�
�
; ð32Þ

where τ ¼ γ−1, ΩQNM ¼ ωQNM=m (ΩQNM is just ωR), and
ϕ0, Ω0, t0 are the constants that can be freely chosen.
We should pay attention to Eqs. (31) and (32) in the

above equations, the presence of terms with an even power
imposes an additional condition on Ω0. We want to find the
minimum value of Ω0, so we can let the value inside
Eq. (31) equal to zero. Then we obtain this function:

Ω4
0 ¼ k

�
− tanh

�
t − tp
τ

�
þ tanh

�
t0 − tp

τ

��
: ð33Þ

FIG. 1. Comparison of ωR calculated from the photon sphere
(PS) and black hole perturbation method.

FIG. 2. Comparison of ωI calculated from the PS and black
hole perturbation method.
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Substituting Eq. (32) into Eq. (33), we can get the solution
of Eq. (33) (we only consider the positive solution):

Ω0
4 ¼ ΩQNM

4ðtanh½t−tpτ � − tanh½t0−tpτ �Þ
ð−1þ tanh½t0−tpτ �Þ

�
1 − tanh½t−tpτ �

1−tanh½t0−tpτ � þ
tanh½t0−tpτ �

1−tanh½t0−tpτ �

� :

ð34Þ
With Eq. (34), we get the minimum value of Ω0. For

convenience, we choose t to be equal to tp, so Eq. (34) can
be simplified to this form:

Ω0
4 ¼ ΩQNM

4

�
tanh

�
t0 − tp

τ

��
: ð35Þ

Thus, we obtain the minimum value ofΩ0 isΩQNM (i.e., the
region of Ω0 is Ω0 > ΩQNM). Figure 3 shows the minimum
value of Ω0 with different spins in Kerr BHs. Because the
value of Ω0 relates to ΩQNM, the minimum value of Ω0 is
different for different metrics.
Now we need to connect the waveforms from the photon

sphere with the inspiral ones. This match can be done
anywhere between the innermost stable circular orbit and
the light ring. In the present work, we choose the peak of the
waveform as the match point. Then we can get the optimal
values for ϕ0, Ω0, and t0. First, to validate our model, we
compare the Ψ waveforms with SEOBNRv4 ones. We plot
the waveforms with different spins to compare with
SEOBNRv4 and PSI in Fig. 4. We use parameter overlap
to make a more precise judgment on the PSI model’s
accuracy. The definition of the overlap is as follows:

F ¼
� hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p

�
; ð36Þ

hh1; h2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð37Þ

where h1 is the waveform derived from the PSI model, h2 is
the compared waveform (e.g., SEOBNRv4, SXS), and
SnðfÞ is the power spectral density of the detector noise,
in this work we use the aLIGO’s sensitivity curve [88]. And
the definition of the match is

FF ¼ max

� hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p

�
; ð38Þ

and the mismatch of two waveforms is defined as 1 − FF.
From Fig. 4, we find that the PSI model coincides with

SEOBNRv4 one very well, especially at high spin. Even at
low spin, the overlap is still larger than 98%. Note that
here we only compare the ringdown part. The overlap will
be larger if we compare the complete waves because our
PSI waveform includes the EOB inspiral signal. Therefore
we conclude that the PSI waveforms have a good con-
sistency with SEOBNRv4 ones for spinning binary
black holes.
Now we compare the PSI waveforms with NR data.

We use the Simulating eXtreme Spacetimes (SXS)
Collaboration catalog [89,90] as the NR waveform data.
With appropriate SXS data, we compare PSI, SEOBNRv4,
and NR waveforms with different spins, as shown in Fig. 5.
We observe that the match between the PSI and NR
waveforms decreases for larger spin values. However, even
for the dimensionless spins χ1;2 both equal to 0.9, the
overlap is still larger than 98%. Therefore the accuracy of
PSI (Ψ) waveforms should be enough based on the
comparison with NR data. This result implies that the Ψ
waveform model should be helpful in the GW data
analysis.

V. THE RINGDOWN WAVEFORMS FROM KRZ
BLACK HOLES

The KRZ metric was proposed by Konoplya, Rezzolla,
and Zhidenko [91], who use the spacetime parametrization
of generally axisymmetric black holes. The most signifi-
cant difference between the KRZ metric and other metrics
is that it contains many significant parameters, and each
parameter is associated with the physical properties of the
black hole. Therefore the KRZ metric can be used to
describe the spacetime of various black holes in alternative
gravity theories. The ringdown signals reflect the properties
of black holes and can be used to test the nature of the black
hole and then general relativity. We now use the photon
sphere to construct the ringdown waveforms for the
generally axisymmetric black holes. The lowest-order
metric expression of the KRZ parametrization has the
following form:

FIG. 3. The minimum allowable value of Ω0 in the BOB model
with different spins under Kerr metric.
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ds2 ¼ −
N2ðr̃; θÞ −W2ðr̃; θÞsin2θ

K2ðr̃; θÞ dt2

− 2Wðr̃; θÞr̃sin2θdtdϕþ K2ðr̃; θÞr̃2sin2θdϕ2

þ Σðr̃; θÞ
�
B2ðr̃; θÞ
N2ðr̃; θÞ dr̃

2 þ r̃2dθ2
�
; ð39Þ

where r̃ ¼ r=M, ã ¼ a=M, and the other metric functions
are defined as [92]

Σ ¼ 1þ a2 cos2 θ=r̃2; ð40Þ

N2 ¼ ð1 − r0=r̃Þ½1 − ϵ0r0=r̃þ ðk00 − ϵ0Þr20=r̃2 þ δ1r30=r̃
3�

þ ½a20r30=r̃3 þ a21r40=r̃
4 þ k21r30=r̃

3L�cos2θ; ð41Þ

B ¼ 1þ δ4r20=r̃
2 þ δ5r20 cos

2 θ=r̃2; ð42Þ

W ¼ ½w00r20=r̃
2 þ δ2r30=r̃

3 þ δ3r30=r̃
3 cos2 θ�=Σ; ð43Þ

K2 ¼ 1þaW=rþfk00r20=r̃2þ k21r30=r̃
3Lcos2θg=Σ; ð44Þ

FIG. 4. Comparison of PSI (Ψ) and SEOBNRv4 waveforms with different spins. In the inspiral part, the two kind waveforms are
totally overlapped due to the PSI model including the EOB inspiral waves.
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L ¼
�
1þ k22ð1 − r0=r̃Þ

1þ k23ð1 − r0=r̃Þ
�
−1
: ð45Þ

In this paper we use the following parameters defined
as [92]

r0 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
; ð46Þ

a20 ¼ 2ã2=r30; ð47Þ

a21 ¼ −ã4=r40 þ δ6; ð48Þ

ϵ0 ¼ ð2 − r0Þ=r0; ð49Þ

k00 ¼ ã2=r20; ð50Þ

k21 ¼ ã4=r40 − 2ã2=r30 − δ6; ð51Þ

w00 ¼ 2ã=r20; ð52Þ

k22 ¼ −ã2=r20 þ δ7; ð53Þ

k23 ¼ ã2=r20 þ δ8; ð54Þ

where r0 is the radius of the event horizon in the equatorial
plane and δi (i ¼ 1, 2, 3, 4, 5, 6, 7, 8) is the dimensionless

parameter describing the corresponding deformation of the
parameter in the metric (39). Particularly, δ1 corresponds to
the deformation of gtt, δ2, and δ3 refer to the deformations
of spin, δ4 and δ5 relate to the deformations of grr, δ6 is for
the deformation of the event horizon. In the case where
δi ¼ 0, the KRZ one (39) reduces to the Kerr metric, and
ã ¼ 0 reduces the Kerr metric to the Schwarzschild one.
To get the ringdown waveforms of perturbed KRZ black

holes, we need the radius of the circular photon orbits and
the values of ωR and ωI . The way to calculate the radius of
the circular photon orbits, ωR and ωI , is given in this paper
[93]. This metric only retains three dimensionless param-
eters δ1, δ2, and δ4 when we consider the equatorial plane
and for simplicity we set δ4 ¼ 0.00 in this paper. The
photon orbits and ωR are shown in Fig. 6. We observe in
Fig. 6(a) that the radius of the photon sphere shrinks as
δ1ðδ2Þ increases, and the effect of δ2 is more obvious than
δ1. With the rise of spin a, the decrease in radius is
weakened. We observe in Fig. 6(b) that δ2 has more
influence on ωR, which also means that δ2 has a more
significant impact on ringdown waveforms.
Then we can get the ringdown signals as shown in Fig. 7.

From the first and second rows, with the increase of δ1ðδ2Þ,
the waveforms can be easily distinguished from the Kerr
cases, and the influence of δ2 is more significant than δ1.
The result is reasonable because δ2 has a more substantial
effect in ωR than δ1 as shown in Fig. 6.

FIG. 5. Comparison of PSI waveforms with SEOBNRv4 and SXS for binary black holes systems with different spins. χ1 and χ2
represents the dimensionless spin of the first and second black hole, respectively.
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We also study the mismatch (1-overlap) of gravita-
tional-wave waveforms between the Kerr black hole
and KRZ black hole to see the influence of the two
parameters δ1 and δ2. Through Fig. 8, it is clear that
with the increase of δ1ðδ2Þ the mismatch increases. We

observe that the influence of δ2 is more significant than
δ1, when δ1 ¼ 1.00 the mismatch equals to 1.0, but
when δ2 ¼ 0.20 the mismatch already equals to 1.0.
The other KRZ parameters could be investigated in future
work.

FIG. 6. The photon circular orbital radius and ωR with different values of δ1ðδ2Þ in the equatorial plane under the KRZ metric. The left
figure shows the effect of δ1 or δ2 on the photon circular orbital radius with two different spin cases: a ¼ 0.00 and a ¼ 0.50. The right
figure shows the effect of δ1 or δ2 on the ωR under spin a ¼ 0.50. It should be noted that when we study the influence of one of the δ, the
other δ we take as 0.

FIG. 7. The ringdown waveform of perturbed KRZ black holes with various values of δ1 and δ2. The top panels show the ringdown
waveform with various δ1 (fixing δ2 ¼ 0.00 and a ¼ 0.50); The bottom panels show the ringdown waves with various δ2 (fixing
δ1 ¼ 0.00 and a ¼ 0.50).
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VI. RINGDOWN FROM ACCELERATING
BLACK HOLES

The forming black hole can be accelerated to a large
velocity due to anisotropically radiating GWs during the
binary black hole merger. This phenomenon is gravitational
recoil, and the kick velocity can be as large as a few
thousand kilometers per second in a very short dura-
tion (∼20M).
The kick velocity will induce a redshift or blueshift on

the GWs, which is already investigated in literature (see
[94–98] and references inside). In addition, the acceleration
should produce some additional effects, which are rarely
discussed. In this section, we want to use the PSI model to
calculate the ringdown signals from accelerating black
holes and evaluate whether the GWs can detect this recoil
acceleration directly. The metric of the accelerating Kerr
black hole is [99]

ds2 ¼ 1

Ω2

�
Σ
�
dθ2

Δθ
þ dr2

Δr

�
−
ðΔr − a2Δθsin2θÞdt2

Σ

þ 2½χΔr − aΔθsin2θðaχ þ ΣÞ�dtdϕ
Σ

þ ½Δθsin2θðaχ þ ΣÞ2 − χ2Δr�dϕ2�
Σ

�
; ð55Þ

where

χ ¼ a sin2θ;

Ω ¼ 1 − Ar cos θ;

Σ ¼ r2 þ a2cos2θ;

Δr ¼ ð1 − A2r2Þðr2 − 2mrþ a2Þ;
Δθ ¼ 1 − 2Am cos θ þ a2A2 cos2θ; ð56Þ

where a, m are the spin and mass of the BH. A is the
acceleration of the BH with a unit of 1=M.
First we calculate the radius of the photon circular orbits,

for convenience, we use this equation [100]:

H�ðr; θÞ≡ −gtϕ �
ffiffiffiffi
D

p

gϕϕ
; ð57Þ

where D≡ ðg2tϕ − gttgϕ _ϕÞ, the photon circular orbits

occur at ∂H�
∂r ¼ 0 and we only consider the prograde orbits

(i.e., Hþ). Through this method, we can get the radius of
the circular photon orbits in Fig. 9. It is shown that the
change of radius of the photon sphere is more obvious for a
small spin, so we use a ¼ 0.01 in the following study.
Before we calculate ωR and ωI for an accelerating BH,

we should write the equations of the photon motion:

FIG. 8. The mismatch (1-FF) of ringdown waves between the Kerr and KRZ black holes with varied parameters δ1 and δ2.

FIG. 9. The radius of the photon circular orbits for varied
acceleration parameter A.
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Σ
Ω2

dt
dτ

¼ χðLz−EχÞ
Δθsin2θ

þðΣþaχÞ½ΣþaχÞE−aLz�
Δr

;

Σ
Ω2

dϕ
dτ

¼ Lz−Eχ
Δθsin2θ

þa½ΣþaχÞE−aLz�
Δr

;

�
Σ
Ω2

�
2
�
dθ
dτ

�
2

¼ΔθK−
ðχE−LzÞ2

sin2θ
≡ΘðθÞ;

�
Σ
Ω2

�
2
�
dr
dτ

�
2

¼ ½ðΣþaχÞE−aLz�2−ΔrK≡RðrÞ; ð58Þ

where τ is the affine parameter, E and Lz are the photon’s
energy and angular momentum. Because we consider the
circular photon orbits, these orbits will satisfy the con-
ditions: RðrpÞ ¼ 0; R0ðrpÞ ¼ 0, then we can get the value
of K and L. With the definition K̄ ¼ K=E2 and L̄ ¼ L=E,
we have

K̄ ¼ 1

a

�
Σþ aχ −

4rΔr

Δ0
r

�
; ð59Þ

L̄ ¼ 1

a

�
Σþ aχ −

4rΔr

Δ0
r

�
: ð60Þ

From these equations, we can get ωR and ωI as shown in
Figs. 10 and 11. We observe in these figures that with the
acceleration parameter A increase, the difference of ωR, ωI
between the accelerating and Kerr BHs is more significant.
Additionally, the influence of acceleration is more evident
on the ringdown frequency (ωR) than on the decay
rate (ωI).
The final recoil velocity depends on the spin, mass ratio,

and so on, and it could be as large as a few 103 km=s [96].
Assuming the final recoil velocity is 3000 km=s, and the
typical accelerating time is 20M, we can get the accel-
eration parameter A ¼ 5 × 10−4. The ringdown signal for
A ¼ 5 × 10−4 is calculated using the method mentioned in
the previous section and shown in the left panel of Fig. 12.
We find that even for such a large kick velocity, the
acceleration could not significantly influence the ringdown
waveform. We are also interested in when the acceleration
parameter A would significantly affect GW waveforms.
While the acceleration parameter A is as large as 10−3, one
can see the visible difference that is shown in Fig. 12(b).
However, even in this case, the overlap is still larger than
0.99. When the acceleration reaches 10−2, it may produce a
detectable effect in GWs. However, it is not clear now if
some mechanisms can induce such large acceleration.

FIG. 10. The value of ωR under accelerating black hole
(a ¼ 0.01) versus acceleration A.

FIG. 11. The value of ωI under accelerating black hole
(a ¼ 0.01) versus acceleration A.

FIG. 12. The ringdown signals of accelerating and no-acceleration Kerr BHs (a ¼ 0.01). The left panel is the ringdown with
A ¼ 5 × 10−4, and the right panel shows the results for A ¼ 4 × 10−3.
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VII. CONCLUSION

The black hole predicted by GR has only three “hairs”:
mass, spin, and charge (the well-known “no-hair” theorem).
However, alternative gravitational theories can predict more
complicated (hairy) black holes. Tests of the no-hair
theorem of the black hole are the critical target for GW
astronomy. Developing waveform models for no-GR black
holes is a foundation for testing black holes with gravita-
tional waves. As an alternative method, we propose the PSI
(Ψ) model based on the photon sphere to construct the
waveforms, particularly for the ring-down signal in the case
of a Kerr black hole. We also extend this work to more
generic black holes.
Earlier in this paper, we studied the photon’s motion

under the Kerr metric for two cases: the equatorial and 3D
planes. In the case of the equatorial plane, since _r and _θ are
equal to zero, the motion equations with four terms reduce
to two terms, and we can get the motion orbits easily. In the
case of the 3D planes, we should use two new parameters
(L̃, Q̃) to replace the three parameters (E, Lz, Q), then
replace θ with χ and with these new parameters we can get
the motion orbits directly.
With the photon sphere at hand, we got the QNMs which

are mainly described by the frequency (real partωR) and the
decay rate (imaginary part ωI). From Eq. (15), we can get
the value of ωR, as shown in this equation, the value of ωR
depends on two parts: the θmotion and the ϕmotion. When
calculating the value of ωI, we only need the term of r
direction in motion equations. We compare our results with
the values of ωR and ωI calculated from black hole
perturbation theory and find that the differences are slight
for the high spin a. Even in the small spin case, the
difference between our results and black hole perturbation
is not larger than 10%. Because this method gives the
values of ωR and ωI only through photon motion, we can
easily extend to more generic black holes.
From ωR;I , we construct the ringdown signals directly.

Then we connect this part with the PN inspiral waveforms
around the photon sphere and get the full inspiral-merger-
ringdown (IMR) waveforms. In this way, we call this the
PSI (Ψ) model. Since there are inspiral formalisms (e.g.,
SEOBNR) for Kerr black holes, we easily construct the

GW waveforms from two spinning black hole mergers
through the PSI model. We compare the Ψ waveforms with
SEOBNRv4 and SXS (NR) as shown in Figs. 4, 5. All the
overlaps are larger than 98%, which validates that the PSI
waveform model has enough accuracy. Because the method
based on PSs does not need to solve the complicated black
hole perturbation equations, it can be directly used on more
generic black holes. For example, we first use the PS
method in the KRZ metric, which describes the generally
axisymmetric black holes. We compare the ringdown
waveforms of the KRZ black holes and the Kerr black
hole (a special case of the KRZ black hole with all deviation
parameters equal to zero). We find that, from the ringdown
signals, we have the chance to constrain or extract the
deviation parameters if they are large enough. In the next
work, we will construct the full IMR waveforms for the
generally axisymmetric black holes.
Finally, we use the PS to study the ringdown of

accelerating black holes. The acceleration can happen in
the gravitational recoil during the final merger of two black
holes. We find that for the extreme recoil case, the
acceleration during the kick cannot produce a detectable
effect for GWs.
Connect the inspiral waveforms around the photon

sphere with the ringdown part at hand. We can construct
the full IMR waveforms for more generic black holes. We
will apply our PSI model to no-GR black holes to get
waveform templates in future work. It should be helpful in
testing black holes and GR in the era of GW astronomy.
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