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By utilizing the thin shell approximation, we investigate the behavior of radial timelike geodesics in a
black hole to white hole bouncing scenario with a mass (de)amplification relation. We show that those
geodesics lose energy after crossing the transition surface if the white hole mass is less than the black hole
mass and vice versa. That is, the bounded timelike radial geodesics become closer to the event horizon in
the mass decreasing direction. We then show that by tracing a finite amount of bouncing cycles along the
mass decreasing direction, all bounded radial geodesics can be squeezed into the range of the stretched
horizon while the black hole and white hole are still massive. Those highly squeezed geodesics are
problematic since there exists a Planck-scale blueshift between them and the regular infalling trajectories.
We also discuss the possible implication and rescues.
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I. INTRODUCTION

Understanding and resolving the singularity inside the
black hole is a fundamental and important task in modern
theoretical physics. According to general relativity, as well
as the singularity theorem [1], it is inevitable to form a
singularity as a result of gravitational collapse. At this
singularity, our tools of the differential geometry all breaks
down. Therefore, we need a new technique based on
quantum gravity.
As there is no consensus about the final theory of

quantum gravity, various approaches are proposed to
resolve the singularity. Especially, in order to directly
resolve the singularity, we need a nonperturbative approach
toward quantum gravity [2]. We list two current attitudes
toward quantum gravity:
(1) Wave function: Inside a black hole, we should

introduce the wave function, and hence, inside a
black hole is essentially quantum and there might be
no classical analogy [3].

(2) Regular black holes: Quantum gravitational correc-
tions modify the Hamiltonian or the Lagrangian. As
an effective classical solution of the modified theory,
one can obtain a singularity-free solution that can be
interpreted as a classical extension of spacetime [4].

One of the tantalizing approaches of the second attitude
is to follow loop quantum gravity [5]. Based on this

approach, one can find quantum corrections from loop
representations of quantum states. Thanks to these correc-
tions, we can modify the classical Hamiltonian; as a result,
loop quantum modified black hole solutions can be differ-
ent and even regular compared to the original classical
black holes. Of course this is not the unique approach for
regular black holes; there might be several regular black
holes from vacuum bubbles [6], nonlinear electrodynamics,
phantom matters, or various modified gravity models [4].
The question is this: How can we remove the singularity?

One of the traditional approaches is to substitute the
singularity to an inner apparent horizon and a timelike
regular boundary [7]. However, this suffers from the
instability issue of the Cauchy horizon. On the other hand,
the loop quantum gravity inspired models prefer to rely on
the time reversal symmetry [8]. In other words, it indicates
that a black hole phase should be smoothly connected to a
white hole phase once we include loop quantum gravity
corrections. However, there might be three approaches for
this construction:

(i) According to Ashtekar and Bojowald [9], the black
hole phase is connected to the white hole phase,
where the future infinity is connected in one universe
with quantum gravitational corrections only inside a
black hole.

(ii) According to Haggard and Rovelli [10], the black
hole phase is connected to the white hole phase,
where the future infinity is connected in one universe
with quantum gravitational corrections that can
reach outside a black hole [11].
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(iii) According to Ashtekar, Olmedo and Singh [12], as
well as Bodendorfer, Mele and Munch [13], the
black hole phase is connected to the white hole
phase only inside the event horizon; hence, the
future infinity of both phases are not connected in
one universe.

Now the first and the second approaches are considered as a
theoretically incomplete description [11,14]. There are
some critical discussions of the third approach [15], but
it might be still self-consistent [16]. However, it is fair to
say that we need to check the theoretical consistency of the
black-to-white hole bouncing models, for example, the
stability of the white hole phase as the infalling particles
penetrate the white hole region.
In this paper, we study the consistency of the black hole

to the white hole bouncing models, especially by using
geodesics. First, in Sec. II, we briefly review the loop
quantum gravity based models, e.g., the Bodendorfer, Mele
and Munch model [13]. This model can be approximately
described by a thin-shell model that connects a black hole
to a white hole with different mass parameters. This thin-
shell model might be considered as a generalization of the
black-to-white hole bouncing models. In Sec. III, We study
geodesics in this background. We conclude that geodesics
must be biased near the event horizon either future direction
or past direction. If geodesics must be squeezed near the
event horizon, then the instability should increase along
either the future direction or the past direction. We
demonstrate this instability by showing that there exists
a Planck-scale blueshift between those highly squeezed
geodesics and the regular infalling trajectories. Thus, either
the future or past instabilities strongly indicate the self-
inconsistency of the completeness of the spacetime. Finally,
in Sec. IV, we discuss alternative ideas as well as possible
future research topics.

II. MODEL

A. Bodendorfer-Mele-Munch model

We first review a loop quantum gravity inspired black
hole model which was proposed by Bodendorfer, Mele and
Munch [13]. We introduce the metric ansatz

ds2� ¼ −
aðrÞ
L2
0

dt2 þ nðrÞ
aðrÞ dr

2 þ bðrÞ2dΩ2; ð1Þ

where L0 is an infrared cutoff in the noncompact direction.
Introducing canonical variables v1 ≡ ð2=3Þb3, v2 ≡ 2ab2,
and corresponding canonical momenta P1, P2, we obtain
the Hamiltonian density

H ¼ 3v1P1P2 þ v2P2
2 − 2: ð2Þ

By introducing the prescription of loop quantum
gravity, i.e.,

P1;2 →
sin λ1;2P1;2

λ1;2
; ð3Þ

one can obtain a regular black hole solution.
The effective solution explains a big bounce near the

putative spacelike singularity. We define the mass of the
black hole phase M− and that of the white hole phase Mþ.
There is no fundamental relation between M− and Mþ.

1

According to the Bodendorfer-Mele-Munch model, one
needs to require the relation

Mþ ¼ M−

�
M−

m

�
β−1

ð4Þ

to avoid indefinite mass amplification or deamplification,
where m is a constant and β ¼ 5=3 or 3=5.

B. Thin-shell generalization

The Bodendorfer-Mele-Munch model is a consistent
prescription [16], but technically the solution structure is
complicated. In order to describe the mass amplification
relation in a generic and consistent way, we introduce the
thin-shell formalism [18]. We introduce the metric ansatz

ds2� ¼ −ð−f�Þ−1dr2� þ ð−f�Þdt2� þ r2�dΩ2; ð5Þ

which describes the metric inside the horizon,

f� ¼ 1 −
2M�
r

; ð6Þ

and − denotes the black hole phase andþ denotes the white
hole phase. The junction surface is at r� ¼ rðτÞ, where the
induced metric along the spacelike surface is given as

ds2shell ¼ dτ2 þ r2ðτÞdΩ2: ð7Þ

At the shell, the Einstein equation must be satisfied. First,
we need to impose the Einstein equation or the so-called
Israel junction equation. The junction equation requires the
energy-momentum tensor of the shell; hence, second, we
need the energy conservation relation for consistency.
Therefore, the equations of motion of the shell are

ϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 − fþ

q
− ϵ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 − f−

q
¼ 4πrσ; ð8Þ

_σ ¼ −2
_r
r
ðσ − λÞ; ð9Þ

where the dot denotes the derivative with respect to τ; the
first equation is the junction equation and the second
equation is the energy conservation relation [11]. ϵ� ¼
þ1 if r increases along the outward normal direction;

1The mass amplification or deamplification relation was
already observed in Ref. [17], where there is no fundamental
relationship between mass parameters.
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otherwise, ϵ� ¼ −1. Therefore, for the black hole phase,
ϵ− ¼ 1, while for the white hole phase, ϵþ ¼ −1. σ is the
tension and λ is the pressure of the shell. One can assume
the equation of state λi ¼ −wiσi (i ¼ 1; 2;…) to obtain

σðrÞ ¼
X
i

σ0i
r2ð1þwiÞ ; ð10Þ

where σ0i are constants. By plugging this, the energy
conservation relation is automatically satisfied and the
junction equation is simplified to

_r2 þ VðrÞ ¼ 0; ð11Þ
where the effective potential

VðrÞ ¼ −f−ðrÞ −
ðf−ðrÞ − fþðrÞ − 16π2σ2ðrÞr2Þ2

64π2σ2ðrÞr2 : ð12Þ

By tuning the parameters, it is possible to obtain a
consistent model such that there exists r0 at which Vðr0Þ ¼
V 0ðr0Þ ¼ 0 and V 00ðr0Þ > 0, needed for a static and stable

shell (r0 ≈ 10.7 in the model shown in Fig. 1). We need to
tune the energy momentum tensor of the shell, but we
assume that this can be justified from quantum gravitational
effects. This thin-shell model effectively realizes several
versions of the black to white hole bouncing models.2 The
final causal structure is shown in Fig. 2.

III. GEODESIC ANALYSIS

A. Energy shift

From this section on, we consider only the simplest
scenario of the thin shell generalization, in which a thin
shell is located at some fixed value of r�. In such a case,
from the first junction condition that the induced metric
ds2shell on both sides of the thin shell must be the same, we
have

ð−f−Þdt2− þ r2−dΩ2 ¼ ð−fþÞdt2þ þ r2þdΩ2: ð13Þ

Thus, in an effective model that a black hole (BH) phase
transition to a white hole (WH) phase at some minimal
radius b, we must have

rþ ¼ r− ¼ b: ð14Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f−ðbÞ

p
dt− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fþðbÞ

p
dtþ; ð15Þ

which further leads to

tþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
f−ðbÞ
fþðbÞ

s
t−: ð16Þ

Notice that it is a relation on the thin shell.
Next, inside the event horizon, the four-velocity of a test

particle moving along with a timelike radial geodesic in the
BH phase is given by

Uα
− ¼ ð_r−; _t−Þ ¼

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
− − f−

q
;
E−

f−

�
; ð17Þ

while in the WH phase it has the form

Uαþ ¼ ð_rþ; _tþÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2þ − fþ
q

;
Eþ
fþ

�
; ð18Þ

where E� is the energy density per unit mass of the test
particle and the irrelevant angular components are

FIG. 1. The effective potential VðrÞ with σ01 ¼ 0.01496,
σ02 ¼ −0.3, w1 ¼ −1, w2 ¼ −0.5, M− ¼ 10 and Mþ ¼ 0.9M−.

FIG. 2. The Penrose diagram of the black hole to white hole
bouncing models, where the shell or quantum bouncing surface
(gray colored region) is located around the classical singularity.

2It is worthwhile to mention that by utilizing the generalized
Oppenheimer-Snyder model, the bouncing collapse have been
investigated in general terms [19]. However notice that the
resulting causal structure for a black-to-white hole bounce is
different from what we consider here.
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suppressed. When E� ≤ 1, E� is related to the maximal
radius R� the geodesic can reach by the relation
E2
� ¼ 1–2M�=R�. We substitute the relation Eq. (15) into

the t component of Eq. (18) to have, at the thin shell,

_tþðbÞ ¼
Eþ

fþðbÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
f−ðbÞ
fþðbÞ

s
_t− ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
f−ðbÞ
fþðbÞ

s
E−

f−ðbÞ
; ð19Þ

in which the t component of Eq. (17) is used to obtain the last
equality. Thus we have a relation of the energy shift as, after
the test particle crosses the thin shell,

Eþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fþðbÞ
f−ðbÞ

s
E−: ð20Þ

Herewe further show that this energy shift effect, Eq. (20),
is consistent with the condition that there is no cusp for any
radial geodesic at the thin shell, that is, the trajectory of any
geodesic must cross the thin shell smoothly.
Before starting our argument, we would like to point out

a caveat that one might naively think that the no cusp
condition can be given by the following relation

lim
rþ→b

_tþ
_rþ

¼ lim
r−→b

_t−
_r−

; ð21Þ

where _r� and _t� are given in Eqs. (17) and (18). However,
it is not true since we are using two coordinate patches and
sewing them up right at the thin shell. So, Eq. (21) does not
make much sense, since each side of it explicitly depends
on the vector components in different coordinates. To be
able to use the continuity of the quantity dt=dr as the
condition for the no cusp for any geodesic at the thin shell,
one needs to find a well-behaved coordinate patch covering
an open region of the spacetime containing the whole thin
shell, see Fig. 3. However, we do not seek for such a
coordinate patch in this work, but use a coordinate
independent method by relating the no cusp condition to
the continuity of a coordinate independent quantity at the
thin shell. We then show that the continuity of this quantity
leads to the energy shift relation Eq. (20). Furthermore, we
will see that by using this method, we can interpret the no
cusp condition as a more physical condition that any
timelike free falling observer sees no sudden change of
the relative speed with respect to other timelike free falling
observers after crossing the shell.3

To begin with, we first notice that Eqs. (17) and (18)
contain a special case E� ¼ 0, which leads to the four-
velocity

Vα
� ¼ ð_r�; _t�Þ ¼ ð�

ffiffiffiffiffiffiffiffiffi
−f�

p
; 0Þ: ð22Þ

Thus the corresponding geodesics have a fixed t� compo-
nent except the jump at the thin shell given by Eq. (16).
Here, we argue that this jumping of t component should not
cause discontinuity of the geodesics, and these group of
geodesics are normal to the constant r� surfaces on both
sides of the thin shell, see Fig. 4. Notice that this family of
radial geodesics always stays inside the event horizon and
the particles moving along with them can be thought as
comoving with respect to the interior spacetime. Therefore,
Vα
� is the unique future-pointed unit four-vector normal to

the thin shell since the four-velocity is always normalized
as −g�αβVα

�V
β
� ¼ 1.

FIG. 3. The intuitive equivalence between the smooth crossing
of a geodesic (purple) and θþ ¼ θ− shown in this picture is only
true in a well-defined coordinate patch ðr0; t0Þ covering a open
area that contains the entire thin shell.

FIG. 4. An artificial cusp is generated for an arbitrary radial
infalling geodesic (magenta) due to the fact that we just simply
sew up two different coordinate patches at the thin shell.
However, there is a special group of radial geodesics (light blue)
which must be normal to the thin shell due to the fact that they
always stay inside the B=W holes.

3To be more precisely, the relative speed is defined between a
single free falling observer with some given E− ¼ Ea and a
family of free falling observers specified by a different energy
density E− ¼ Eb. In this way, each point on the trajectory of the
single observer intercepts with only one member of the family, so
the relative speed between them can defined locally. See Ref. [20]
for more discussion.
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Since Vα
� is uniquely determined as mentioned above

and any radial four-velocity Uα
� has only a single degree of

freedom due to normalization, the condition of no cusp for
any radial geodesic crossing the thin shell is equivalent to
the continuity of the inner product of Uα

� and Vα
� at the thin

shell as

γ−ðbÞ ¼ γþðbÞ; ð23Þ

where

γ�ðbÞ≡ lim
r�→b

− g�αβUα
�V

β
�: ð24Þ

Using Eqs. (17) and (18) for Uα
� and the metric Eq. (5), one

can easily show that the condition Eq. (23) leads to Eq. (20).
Lastly, notice that since we are considering only the timelike
geodesics, the inner product γ ¼ −gαβUαVβ is in fact related
to the relative speed vrel between Uα and Vβ as

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2rel

p : ð25Þ

The relation Eq. (23) can be therefore reinterpreted as the
statement that all timelike free falling observers see no
sudden change in the relative speed with respect to other
timelike free falling observers when crossing the shell.

B. Changing of the maximal radius reached
by the test particles

Now we discuss the consequence of the energy shift
relation Eq. (20). Especially, we consider the limit b ∼ lPl ≪
2GM�, which corresponds to the usual assumption that the
quantum gravity effect is important only near the Planck
scale. And, from here, we put the gravitational constant G
back for the convenience of later discussion. In such a limit,
Eq. (20) reduces to

Eþ ¼
ffiffiffiffiffiffiffiffi
Mþ
M−

s
E−; ð26Þ

which, by using E2
� ¼ 1–2GM�=R�, can be further rewrit-

ten as

1 −
2GMþ
Rþ

¼ Mþ
M−

�
1 −

2GM−

R−

�
: ð27Þ

Notice that having a negative R� is still a physical situation
corresponding to E� > 1 for the energy density of the test
particle. The only thing changes is thatR� loses themeaning
as the maximal radius reached by the geodesic. In an usual
maximally extended Schwarzschild solution, those geode-
sics are unbounded since they can reach the spatial infinity
either in the distance future or past. However, the distinction

between the bounded and unbounded radial geodesics
changes in the BH/WH cyclic model as follows.
By using the ratio α ¼ Mþ=M− to replace the WH mass

Mþ, we have

1

Rþ
¼ 1

R−
þ 1 − α

α

1

2GM−
: ð28Þ

To understand this relation, we first assumeRþ → ∞, which
is the condition that the test particle emitted by thewhite hole
just has the enough energy to reach infinity without being
sucked into the black hole again, i.e., saturating the unbound
condition. With Rþ → ∞, Eq. (28) gives

R−

2GM−
¼ α

α − 1
: ð29Þ

For α > 1, i.e., theWHmass is greater than the BHmass,R−
is positive finite. It means that before entering the black hole,
the particle is “bounded”by the blackhole as it canonly reach
the maximal radius R−, but after crossing the BH to WH
transition surface, it is able to reach infinite to become
unbounded.
Next, if the WH mass is less than the BH mass

α ¼ Mþ=M− < 1, Eq. (28) can be rewritten in the terms
of the ratio β� ¼ R�=2GM� for the bounded geodesics
with positive finite Rþ as

βþ ¼ β−
ðβ− − 1Þð1 − αÞ þ 1

; ð30Þ

which shows that βþ < β− when α ¼ Mþ=M− < 1 by
noticing β� > 1. This means that a bounded geodesic will
become closer to the next event horizon after crossing the
BH/WH transition surface along the mass decreasing
direction. We now discuss geodesics for the BH/WH cyclic
model with a decreasing mass.

C. Squeezing of the bounded geodesics

1. Squeezing geodesics into the stretched horizon

Now we consider a decreasing cycle with α ¼
Miþ1=Mi < 1 starting from some reference stagewith initial
values M0 and R0, which satisfy conditions M0 ≫ mPl ¼
G−1=2 and R0 − 2GM0 ≫ lPl ¼ G1=2, respectively.4 Then at
stage n we have

Mn ¼ αnM0; ð31Þ
and

E2
n ¼ αnE2

0; ð32Þ
whereEq. (26) is used.We then ask the question that atwhich
stage the maximal radius of the geodesic falls into the range

4We set ℏ ¼ c ¼ 1, but keep G to make the distinction
between mass and length explicitly.
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of the stretched horizon. That is, at certain stage labeled as Y,
we have

E2
Y ¼ 1 −

2GMY

2GMY þ lPl
≈

G1=2

2GMY
; ð33Þ

where the condition 2GMY ≫ lPl and the relation lPl ¼ G1=2

are used in the approximation. Notice that the condition
2GMY ≫ lPl guarantees that at stage Y, the black and white
holes can still be treated classically, that is, we still have
b ≪ 2GMY soEq. (26) holds.UsingEqs. (31)–(33), wehave

Y ¼
logð2 M0

mPl
E2
0Þ

2ð− log αÞ ; ð34Þ

where mPl ¼ G−1=2 is used.
However, this relation might not be always true for any

given reference valuesM0 and R0 since the BH/WHmasses
also decrease stage by stage. Therefore, we need to ensure
that the condition MY ≫ mPl still holds when all bounded
geodesics are squeezed in the range of stretched horizon.
Using, Eqs. (31) and (34), this condition leads to the
following relation between the initial parameters

M0

mPl
≫ 2E2

0: ð35Þ

Notice that the condition of a bounded geodesic is simply
given by E2

0 < α−1 when the approximation Eq. (20) is
valid. Equation (35) shows that generally, for any reason-
able choice of initialM0 and E0, the maximal radii reached
by the bounded geodesics merge into the range of stretched
horizon way before the BH/WH masses able to reach the
Planck scale. For instance, if in a decreasing model with
α ¼ 1=2 we choose M0 to be the solar mass M0 ¼ M⊙ ∼
1038mPl and E0 saturating the limit for the bounded
geodesics: E2

0 ¼ α−1 ¼ 2. Then by using above relations,
we can see that at the stage when all bounded geodesics
merge into the stretched horizon [21], the BH/WH masses
is about MY ∼ 0.5 × 1019mPl, which is still many orders
above the Planck scale, see Fig. 5.

2. Throwing massive particles into
the BH/WH cyclic model

Let us use a thought experiment to see what kind of
bizarre scenario could occur if this type of BH/WH cyclic
model exists. First, for a decreasing mass model, consid-
ering that at some stage, there is a distant observer, Alice,
releasing one baseball per minute into the black hole, say
for one hour. Then after those baseballs travel through a
certain number of the BH/WH cycles, a second observer,
Bob, at some future stage will see that all sixty baseballs are
squeezed inside a Planck length range outside the black and
white holes. If Alice measures the black hole mass to be
around the solar mass M⊙ ∼ 1038mPl, then as estimated
previously, the black hole mass for Bob will still be much
larger than the mass of a baseball, which is about 107mPl.
For instance, in the previous Miþ1=Mi ¼ 0.5 case, the
black hole mass observed by Bob must be greater than
0.5 × 1019mPl. Thus, those baseballs should not be able to
disturb the spacetime structure significantly and are still
valid to be treated as some classical test particles.5 Also
notice that since it only takes finite proper time for the
baseballs to enter and then exit a BH/WH cycle, those
baseballs would be seen in the squeezed phase after a finite
amount of proper time experienced by them. So once we
assume the existence of this type of decreasing mass BH/
WH cyclic model, the squeezing scenario in principle must
exist when the spacetime structure away from the bouncing
surface still can be treated classically. Inversely, in a mass
increasing model, if we trace back the history of a group of
bounded particles ejected from a white hole, then at some
earlier stage (Universe), they could all be squeezed within
the stretched horizon as viewed by an observer at that stage.

D. A Planck-scale accelerator

Although well-separated radial geodesics can weirdly
evolve into the squeezed geodesics in BH/WH cyclic

FIG. 5. In this BH/WH cyclic model, a set of well-separated bounded geodesics in one stage (left) would be squeezed within a length
shorter than the Planck distance either in some future or past stages (right) while the BH/WH masses are still much greater than the
Planck mass.

5Indeed, the tidal force can easily tear those baseballs apart, but
it does not change the theoretical issue here, that is, a set of
originally well-prepared system can evolve into a system involv-
ing Planckian scale.
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models with mass difference as shown previously, those
squeezed geodesics alone might not cause issues. Since
one can argue that when the test particles moving along
with those bounded geodesics, interactions between them
unavoidably happen. Thus, before the questions such as how
those particles interact and where the energy comes from are
answered, it is still undetermined whether the existence
squeezed geodesics is problematic or not. Such scrutiny may
be required ifweonly consider the squeezed geodesics alone.
Here, we circumvent this complication involving a discus-
sion of different types of possible interactions. In the
following, we demonstrate that the existence of the Planck
scale squeezed geodesics indeed can cause instability when
we consider the interaction between them and a group of
regular infalling massive particles.
Let us consider the quantity γ ¼ −gαβUαVβ

in again, and
focus on γ outside the event horizon. This time, we choose
Uα to be the four-velocity of a bounded radial geodesic
and Vβ

in to be the four-velocity of a radial infalling observer
whose trajectory does not have to be a geodesic.
Nevertheless, at any instant, we can relate Vβ

in to a radial
infalling geodesic specified by some energy density E0.
Thus, for simplicity, we can use a radial infalling geodesic
specified by some energy density E0 ∼Oð1Þ in the follow-
ing discussion without losing generality. By using Eqs. (5),
(17), and (18), we have

γ ≡ −gαβUαVβ
in ¼

1

f

h
EE0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 − f

q i
; ð36Þ

where the plus sign on the rhs is for the outgoing Uα from
the white hole, while the minus sign is for the infalling Uα

to the black hole. We can further simplify the calculation
without altering the qualitative result by setting E0 ¼ 1,
which makes Eq. (36) reduce to

γ ¼ 1

f

�
E�

ffiffiffiffiffiffiffiffiffiffiffi
2GM
r

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f

q �
: ð37Þ

Notice that γ is finite at the BH event horizon but divergent
at the WH horizon. One can check this by substituting r ¼
2GM þ δ with δ ≪ 2GM to get

γ ≈
1

x

�
E�E

�
1−
�
1

2
þ 1

2E2

�
xþ

�
3

8
−

1

4E2
þ 1

8E4

�
x2
��

;

ð38Þ

where x≡ δ=ð2GMÞ and x ≪ E2 is assumed in the above
expansion. For the infalling Uα at the BH event horizon,
Eq. (38) leads to

γðr ¼ 2GMÞ ¼ E
2
þ 1

2E
; ð39Þ

and notice that this is an exact relation for E > 0. While
for the outgoing Uα around the WH event horizon, γ
diverges as

γðδ → 0Þ ≈ 4GME
δ

: ð40Þ

This issue is common if we agree with the existence of the
white hole as part of the maximally extended Schwarzschild
solution. Thus, we can argue that Eq. (40) is not really a
physical issue since it is impossible to prepare such an
observer moving along with the WH event horizon at a
certainmoment. So the divergenceof γ at thewhite hole event
horizon is not a real problem, see Fig. 6 (left). On the other
hand, fromEq. (39) for the infallingUα, one can immediately
see that γ can be arbitrary large for those squeezed radial
geodesics with E ≪ 1. This result is expected since those

FIG. 6. In this figure, arrows represent the four-velocities of radial infalling observers, whose trajectories do not have to follow
geodesics. On the left Penrose diagram, different radial infalling observers encounter a group of regular bounded geodesics and measure
the relative speed between them, and those arrows in green represent the situation that the relative speed falls into the regular range. The
only observer (red arrow) measuring a relative speed extremely close to the speed of light is the one who encounters the group of
bounded geodesics close to the WH event horizon. However, this issue is common if we agree with the existence of the white hole part of
the maximally extended Schwarzschild solution. And we can argue that it is not really a physical issue since it is impossible to prepare
such an observer moving along with the WH event horizon at a certain moment. On the right Penrose diagram, however, not only the
above mentioned divergence at the WH event horizon exists, but there is a Planck scale blueshift of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=mPl

p
to the relative speed

between infalling observers and those highly squeezed geodesics. This energetic interaction between those two groups of particles
indicates instability of the background spacetime.
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squeezed geodesics turn their direction from outgoing to
infalling in the region close to the event horizon, the
qualitative results from Eqs. (39) and (40) should be the
same, see Fig. 6 (right).
To obtain a quantitative estimate, we choose Uα to be

the four-velocity of a squeezed geodesic whose maximal
radius is at the boundary of stretched horizon, i.e.,
R ¼ 2GM þ lPl. By substituting E ¼ 1–2GM=R and R ¼
2GM þ lPl into Eq. (37) with r ¼ 2GM þ δ, we have the
following relation

γ ≈
2GM
δ

� ffiffiffiffiffiffiffiffiffiffiffi
lPl

2GM

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lPl − δ

2GM

r �
; ð41Þ

where − is again for the infalling Uα and þ is for the
outgoing Uα. Also notice that lPl; δ ≪ 2GM is used and
δ ≤ lPl. By using

0 ≤
δ

lPl
≡ y ≤ 1; ð42Þ

Eq. (41) for the infalling Uα can be rewritten as

γ ≈

ffiffiffiffiffiffiffiffiffiffiffi
2GM
lPl

s  
1

y
−

ffiffiffiffiffiffiffiffiffiffi
1− y
y2

s !
¼

ffiffiffiffiffiffiffi
2M
mPl

s  
1

y
−

ffiffiffiffiffiffiffiffiffiffi
1− y
y2

s !
; ð43Þ

with

1

2
≤

 
1

y
−

ffiffiffiffiffiffiffiffiffiffiffi
1 − y
y2

s !
≤ 1 when 0þ ≤ y ≤ 1; ð44Þ

where G1=2 ¼ lPl ¼ m−1
Pl is used. Since γ is related to the

relative speed by Eqs. (25) and (43) shows a Planck scale
blueshift

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=mPl

p
between the four-velocities of infalling

squeezed geodesics Uα and of infalling observers Vβ
in. One

should also notice that the result in Eq. (43) is derived by
using the condition R ¼ 2GM þ lPl; therefore, for the
squeezed radial geodesics deeper inside the stretched
horizon, the similar blueshift can be larger. This highly
blueshifted relative speed between the squeezed radial
geodesics and infalling objects (observers) can cause
energetic collision. Especially, based on the discussion
in Sec. III C, not only the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=mPl

p
can be large, but

the mass of the particles can also be of several orders above
the Planck mass. Thus, we conclude that this type of
spacetime structure is unstable once we put the behavior of
radial geodesics into consideration.
This means that if the classical singularity of a

Schwarzschild solution is replaced by some BH/WH
bouncing with mass difference, which can also be effec-
tively modeled by the thin shell approximation, then the
bounded geodesics then suffer from the Planckian squeez-
ing effect mentioned in Sec. III C. Then, this effect further

leads to a Planck-scale blueshift between the squeezed
geodesics and regular infalling trajectories, which is quan-
tified by using the group of radial infalling geodesics
specified by E0 ¼ 1 in Eq. (41). This issue indicates an
unexpected breakdown of the BH/WH cycles much earlier
than the naive expected breakdown when the BH/WH
masses reach the Planck scale.

IV. POSSIBLE RESCUES AND DISCUSSION

Loop quantum gravity offers possible solution both to
the singularity inside a black hole and to the beginning of
the Universe (big bang singularity). In the early Universe
aspect, potential cyclic cosmological models as alterna-
tives to cosmological inflation are still under consider-
ation. Particularly, a cyclic cosmological model with a
nonzero average Hubble expansion rate is suggested to be
able to solve the long standing entropy issue in the early
Universe theory [22]. However, in such an early Universe
model, by looking backward in time, massive particles
can be infinitely blueshifted within their own finite
proper time, which indicates a breakdown of the cyclic
phase [20,23].
Similarly, in this BH/WH bouncing model with mass

difference inspired by loop quantum gravity, massive
particles can gain or lose energy when crossing the
bouncing surface. One might be wondering if this type
of model suffers the similar infinite blueshift issue as the
special cyclic cosmological model mentioned above.
Although indeed a massive particle can gain energy in a
increasing mass BH/WH cyclic model, the particle cannot
be infinitely blueshifted since once the energy is large
enough, it simply escapes the black hole at a certain stage
and becomes unbounded. Therefore, no massive particle
can be accelerated to reach the speed of light by the BH/
WH cycles so this particular model is safe from this UV
aspect. On the contrary, the existence of event horizon
causes a different type of issue when particles are losing
their energy. Assuming the usual junction condition, the
radial infalling particles lose their energy quicker than the
decreasing masses of the BH/WH cycles in the sense that
all of the bounded geodesics would be squeezed into the
stretched horizon within their finite proper time while the
BHs/WHs are still massive. We then show that those highly
squeezed geodesics are problematic by demonstrating a
Planck-scale blueshift between them and the regular
infalling trajectories. Indeed, one might argue that radial
geodesics infinitely close to the event horizon also exist in
the usual Schwarzschild solution. However, the very point
here is that those geodesics can be evolved from well-
separated radial geodesics in the BH/WH cyclic model with
a mass difference. This might indicate either an early
breakdown of the BH/WH cyclic picture before the BH/
WH masses become comparable to the Planck mass, or
some inner inconsistency of the loop quantum gravity
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theory in which BH/WH cyclic models with mass differ-
ence exist.6

If one wants to avoid such a potential instability, we may
imagine two possibilities:
(1) If there exists a symmetry between Mþ and M−, one

may avoid the past or future squeezing. For example, if
Mþ ¼ M− (perfectly symmetric [12]) or β ¼ 3=5 or
5=3 (periodically symmetric [13]), the squeezing
effect will be relaxed repeatedly. However, this inter-
pretation requires the a priori relation between Mþ
andM−; this is not very persuasive unless there exists a
fundamental restriction to the mass parameters M�.

(2) The big bounce inside the black hole happens near
the quantum gravitational regime. Around this
quantum bouncing surface, there is no well-defined
arrow of time. So, there might be dual interpretations
[3]; either we interpret there is one arrow only or
there are two arrows. The latter interpretation is
the so-called annihilation-to-nothing interpretation
(Fig. 7). In other words, there is no white hole phase,
but there are two black hole phases, where these are
annihilated near the singularity. If this is the case, we
can definitely avoid all problems of the squeezing or
mass amplification issues.

The latter interpretation provides a wisdom to understand
generic quantum bouncing models of loop quantum gravity
[24]. Also, this provides the DeWitt boundary condition
inside a black hole horizon that is recently emphasized in
the literature [25].
Lastly, can the squeezing effect be avoided if we

consider the interaction between the test particles moving
along with the squeezed geodesics? Is there any modifi-

cation required to describe interaction in such a squeezing
scenario? Or, for instance, we can consider a situation that
two squeezed particles interact, in which one of them is able
to gain enough energy to escape the black hole. Then, where
does the other particle go? And also, can such an interaction
cause some other unphysical issues? In this work, we merely
point out the existence of the geodesic squeezing phenome-
non in a generalized black-to-white hole bouncing scenario
with mass difference, and then identify one problem in this
type of model by considering the relation of those squeezed
geodesics and other regular infalling trajectories. To answer
above mentioned questions requires further studies and will
be our futureworks. Especially, a detailed construction of the
trajectories of radial geodesics might be an interesting future
research direction.
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