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We perform general-relativistic simulations of self-gravitating black hole disks in which the spin of the
black hole is significantly tilted (45° and 90°) with respect to the angular momentum of the disk and the
disk–to–black hole mass ratio is 16–28%. The black holes are rapidly spinning with dimensionless spins up
to ∼0.97. These are the first self-consistent hydrodynamic simulations of such systems, which can be prime
sources for multimessenger astronomy. In particular tilted black-hole-disk systems lead to (i) black hole
precession, (ii) disk precession and warping around the black hole, (iii) earlier saturation of the Papaloizou-
Pringle instability compared to aligned/antialigned systems, although with a shorter mode growth time
scale, (iv) acquisition of a small black-hole kick velocity, (v) significant gravitational-wave emission via
various modes beyond, but as strong as, the typical (2,2) mode, and (vi) the possibility of a broad alignment
of the angular momentum of the disk with the black hole spin. This alignment is not related to the Bardeen-
Petterson effect and resembles a solid body rotation. Our simulations suggest that any electromagnetic
luminosity from our models may power relativistic jets, such as those characterizing short gamma-ray
bursts. Depending on the black-hole-disk system scale the gravitational waves may be detected by LIGO/
Virgo, LISA and/or other laser interferometers.
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I. INTRODUCTION

Black holes (BHs) immersed in gaseous environments
are ubiquitous in the Universe. Black hole disks (BHDs)
appear on a great variety of scales, reflecting their diverse
birth channels and sites. From the core collapse of massive
stars [1,2] and the cores of active galactic nuclei [3–5], to
asymmetric supernova explosions in binary systems [6],
and the merger of compact binaries where at least one of the
companions is not a BH, BHDs may be formed and serve as
prime candidates for multimessenger astronomy.
The magnitude of the spin of the BH, as well as its

orientation relative to the fluid flow, can have large effects,
as in the existence and geometry of a relativistic plasma jet
(see e.g. Ref. [7]). This jet, which can be powered either by
magnetic fields threading the event horizon and extracting
rotational energy from the BH [8], or from the accretion
flow [9], can precess when misalignment between the
BH and disk angular momentum arises [7,10,11]. Such
misalignment is expected to be a common phenomenon
[12] both in active galactic nuclei as well as in BH x-ray

binaries [6,10,11,13–17]. Even in the recent observation of
M87 by the Event Horizon Telescope [18] misalignment
could not be excluded [19,20].
Tilted BHDs are also the outcome of stellar-mass

compact object collisions when their individual spins are
not aligned with the orbital angular momentum [21–25].
Population synthesis studies suggest that in approximately
half of the BH–neutron star binaries the angle between the
orbital angular momentum and the BH spin is larger than
45° [26]. Such systems will yield misaligned BHDs which
in turn will affect the existence and the properties of an
electromagnetic counterpart, such as a short gamma-ray
burst or a kilonova.
Central to the analysis of a tilted BHD is the so-called

Lense-Thirring (LT) precession [27], a gravitomagnetic
(GM) effect, according to which frame dragging produced
by the rotating and tilted BH causes precession of a test ring
with angular velocity ΩGM−ring ≈ 2GJbh=ðc2r3Þ, where Jbh
is the BH angular momentum, and r is the ring radius. In
the presence of viscosity (for example, created by a
magnetic field) the cumulative effect of LT precession
and internal disk viscosity torques, is the alignment of the
angular momenta of the BH and the disk, a phenomenon*tsokaros@illinois.edu
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known as the Bardeen-Petterson (BP) effect [28]. BP
alignment typically occurs when the scale height of the
accretion disk is substantially smaller than the viscosity
parameter α [4], e.g. when H=R ≪ α [28–30]. Due to the
rapid fall-off behavior of the LT angular velocity, this
alignment only affects the inner parts of the disk, within the
so-called BP radius, while the outer parts keep their initial
orientation. The GM field will make the BH precess around
the disk’s rotation axis. This effect has been invoked to
explain the precession of jets in tidal disruption events
(where a star is tidally disrupted by a supermassive BH)
[31]. Even in the absence of a jet, the precession of such
disks may have observable consequences. While disk
precession has been invoked to explain the quasiperiodic
oscillations [32] observed in the x-ray brightness of a
number of neutron star and BH x-ray binaries [33–36], the
BP alignment may prevent disks from precessing and
producing such oscillations [37]. On the other hand BP
alignment may be responsible for the growth and evolution
of BHs [38].
In general, BHD systems (tilted or not) are subject to

various instabilities that can lead to significant accretion
and ablate away the disk. One such instability is the so-
called dynamical runaway instability [39] where the over-
flow of a potential surface (similar to the Roche lobe) by the
disk matter will lead to a cascading instability and the final
consumption of the disk by the BH [40–42]. In binary
mergers where a BHD is the final remnant, it was found
[43,44] that the axisymmetric runaway instability is of
limited importance due to the power-law dependence of the
specific angular momentum profile of the disk [41].
Therefore its influence in the formation of ultrarelativistic
jets is probably negligible [45–48].
A less dramatic instability was discovered by Papaloizou

and Pringle [49] that transports angular momentum out-
wards and leads to the formation of a one-arm instability,
the so-called Papaloizou-Pringle instability (PPI). Using
perturbation theory, the authors found a quartic algebraic
equation for the angular velocity of the perturbation mode
whose solutions contain two stable modes (real solutions)
and two unstable ones (imaginary solutions). These wave
perturbations depend on the inner and outer radii of the
disk [50,51] and highlight the importance of these boun-
daries in the development of the PPI. The instability
manifests itself when a wave that is traveling backwards
relative to the fluid at the inner edge exchanges energy
and angular momentum with a wave that is traveling
forwards relative to the fluid at the outer edge. Angular
momentum is transferred outwards, making the wave at
the outer edge that has positive angular momentum grow
in amplitude while the one at the inner edge that has
negative angular momentum also grow in amplitude, since
it is losing angular momentum [52–61]. A similar mecha-
nism in rotating stars leads to the Chandrasekhar-
Friedmann-Schutz instability [62–64] which is induced

by gravitational radiation. The PPI, which was originally
found in constant specific angular momentum disks, can
also be developed in BHDs with a nonconstant specific
angular momentum (l) profile [52]. Newtonian analysis
finds disks with l ∼ rq where q < 2 −

ffiffiffi
3

p ¼ 0.266 to be
unstable, where the critical exponent q could be even
smaller, i.e. q ∼ 0.25 [53]. In general the growth of the
nonaxisymmetric instability is more efficient for a smaller
exponent q [51,53]. Accretion onto the BH has a stabilizing
effect on the PPI since the waves at the inner boundary are
disturbed [55,58,65]. This is especially true for wide disks,
while in more slender ones the PPI seems to be less
affected [66].
The first full general-relativistic simulations of a tilted

thick disk onto a Kerr BH [67] have demonstrated that LT
precession results in a torque that tends to twist and warp
the disk, similar to Newtonian studies [68]. The authors
found that this precession depends primarily on the sound
speed in the disk. For disks where in their bulk the LT time
scale is less than the azimuthal sound crossing time, the
disk undergoes differential precession out to a transition
radius. On the other hand when the LT time scale is greater
than the azimuthal sound crossing time, the disk undergoes
near rigid-body precession after a short initial period of
differential precession. Another interesting finding in
Ref. [67] was the tendency for these disks to align toward
the equatorial plane of the BH, despite the lack of viscous
angular momentum transport. According to the authors this
alignment between the angular momentum of the disk and
the BH spin was facilitated by the preferential accretion of
highly tilted disk material that resulted in the depletion of
the misaligned disk angular momentum. Since the authors
considered disks with masses much smaller than the BH
(test-fluid limit) the spin of the BH was unaffected. Such
kind of purely hydrodynamical alignment has also been
found in BH–neutron star simulations [23], where the
alignment time scale was of the same order as the disk
precession time scale. The authors speculated that this
BP-like behavior is induced by a purely hydrodynamical
mechanism, such as angular momentum redistribution due
to a nonaxisymmetric shock wave excited in the disk.1

The assumption that the mass of the disk is negligible in
comparison with the mass of the central BH may not
always be valid. Some isolated or binary BHs detectable by
LISA may find themselves immersed in extended disks
with masses comparable or greater than the BHs

1Notice that in the numerical simulations of Ref. [69] using a
post-Newtonian description of the central potential and an
artificial viscosity, the BP picture of an aligned inner disk
occurred only at low inclinations and only when Einstein
precession was not accounted for. In high-resolution calculations
with the Einstein precession included, the authors found steady-
state oscillations in the disk tilt, as well as the breaking of the
disks that are relatively thin and highly misaligned to the BH spin
[30,68,70–72].

TSOKAROS, RUIZ, SHAPIRO, and PASCHALIDIS PHYS. REV. D 106, 104010 (2022)

104010-2



themselves. This may be particularly true of stellar-mass
BHs in active galactic nuclei and quasars or supermassive
BHs in extended disks formed in nascent or merging
galactic nuclei. The gravitational pull of the disk on the
binary can be important in such cases, the accretion rate
from the inner disk radius can be high and even super-
Eddington, orbital and spin precession as well as spin
flipping in the case of misaligned disks is a possibility, and
density perturbations in the disk can arise from instabilities.
Alternative scenarios for the formation of massive BHDs
include the collapse of rapidly rotating, supermassive stars
or the merger of binary stellar systems (such as a neutron
star–white dwarf binary) with significant asymmetry in
their mass or spin. In binaries the mass of the disk depends
on how far the secondary compact object being disrupted is
from the BH [73]. If tidal disruption happens far from the
innermost stable circular orbit (ISCO) of the BH, then a
disk with a large mass is produced. On the other hand,
small-mass disks (or even essentially no disk at all) are
produced when tidal disruption happens close to the ISCO
of the BH (or inside it). This crucial distance that controls
the importance of self-gravitation for the disk depends on
the mass ratio of the binary, the compactness of the primary
and the BH spin. The mass of the disk increases with
increasing BH spin (since the ISCO decreases with increas-
ing spin) and decreases with increasing BHmass (the ISCO
increases with increasing BH mass) [43,74].
Only by including self-gravity in full general relativity

and tracking the nonaxisymmetric perturbations that
self-gravity may trigger can gravitational waves from the
disk be calculated reliably. Such perturbations and gravi-
tational waves can be detected by LISA and other instru-
ments [75–80]. Also, disk self-gravity must be incorporated
to determine the astrophysical consequences of BH pre-
cession, which may, for example, trigger X-shaped radio
galaxies [81–83].
General-relativistic studies of self-gravitating BHDs have

been performed in a number of works [42,75–79,84,85] and
the roles of the runaway instability, as well as the PPI, have
been elucidated. Although most of the BHDs will not
develop the runaway instability (e.g. Refs. [43,75,76,84]),
it cannot be excluded when more favorable circumstances
are present [42] (e.g. disks that fill their Roche lobes).
Regarding the PPI, it was found that, as in Newtonian
gravity, self-gravitating BHDs are subject to an m ¼ 1
nonaxisymmetric mode growth under a wide range of
conditions.2 In Ref. [84] it was shown explicitly that
the m ¼ 1 PPI mode is accompanied by an outspiraling
motion of the BH, which further amplifies the one-arm
instability. More massive tori and a constant specific

angular momentum profile favor the appearance of the
PPI, in contrast with less massive disks and/or a non-
constant l profile, for which the disk may even be
PP stable [76]. In addition since the nonaxisymmetric
structure survives long after the saturation of the PPI,
these systems can be promising sources for coincident
detections of electromagnetic and gravitational waves
similar to GW170817. The above works focused on tori
around nonspinning BHs and were later extended to BHDs
around spinning BHs in [77,79,85]. In Ref. [79] it was
speculated that the accretion rate in PPI unstable disks may
be used to measure the BH spin. It was found that systems
of ∼10 M⊙—relevant for for BH–neutron star mergers—
will be detectable by the Cosmic Explorer out to
∼300 Mpc, while DECIGO (LISA) will be able to detect
systems of ∼1000 M⊙ð105M⊙Þ. The latter are relevant for
disks forming in collapsing, supermassive stars out to a
cosmological redshift of z ∼ 5ðz ∼ 1Þ. In Ref. [85] an
alternative scenario for the event GW190521 was put
forward. In particular it was conjectured that GW190521
may not represent the merger of binary BHs, but instead the
stellar collapse of a very massive star, leading temporarily
to a BH of mass ∼50 M⊙ and a massive disk of several tens
of solar masses that is dynamically unstable to the PPI.
The first general-relativistic simulations where the spin

of the BH is tilted with respect to the angular momentum of
the disk were performed in Refs. [77,78], albeit starting
from artificial initial values. In particular the authors first
computed models of self-gravitating, massive tori around
nonrotating BHs [91], and then replaced the resulting
spacetime with a tilted Kerr metric in quasi-isotropic
coordinates, while retaining the hydrodynamical profile.
Notwithstanding these initial conditions the authors per-
formed a thorough investigation of the twist (precession)
and the tilt (inclination) of the disk, finding that for BHD
mass ratios of ≳4% the assumption of using a fixed
background spacetime is unjustified. The authors observed
significant precession and nutation of the tilted BH as a
result of the disk evolution, which cannot be accounted for
in fixed spacetime simulations. The LT torque that the BH
exerts on the disk forces the disk to precess as a solid body
which in turn leads to BH precession. The simulations of
Refs. [77,78] showed the universal character of the PPI
with regards to initial spin magnitudes, tilt angles, and disk
angular momentum profiles.
In this work we extend previous studies of self-gravitating

BHDs in two ways. For the first time we perform general-
relativistic simulations of tilted BHDs starting from self-
consistent initial values. The tiltedBHDmodels are solutions
of the full (i.e. including the conformal metric) general-
relativistic initial value problem as described in Ref. [92].
Second, we extend the parameter space by evolving disks
around rapidly spinningBHs (aligned, antialigned and tilted
with respect to the disk angular momentum) having
dimensionless spins up to 0.97. We find that although

2Note that early studies in Newtonian gravity [86–90] have
shown that self-gravity inhibits the PPI for all angular momentum
profiles, while new kinds of nonaxisymmetric instabilities arise.
These include the I-mode (“intermediate”) that leads to fission,
and the J-mode (Jeans instability) that leads to fragmentation.
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the saturation of the PPI appears significantly earlier for
tilted BHDs than those with aligned/antialigned spins, due
to the inherent initial nonaxisymmetry, their growth rate is
smaller. The maximum density in the disk can increase by
orders of magnitude, while the disk precesses and warps
around the BH. The BH itself also precesses and its spin
can increase or decrease depending on the initial con-
figuration. In one case where the initial BH spin is tilted at
45° with respect to the angular momentum of the disk the
BH is spun up to a maximal value, beyond which we
cannot continue our simulation. In another case where
the initial BH spin is tilted by 90° accretion spun the
BH down. By computing the precession time scales we
confirm their agreement with post-Newtonian estimates.
The precessing BHDs are responsible for copious gravi-
tational-wave emission in multiple modes, which we
compute. In general the gravitational-wave strain appears
to be an order of magnitude larger than previous calcu-
lations [76,77,79,85] with a diverse spectrum. Although
our simulations do not include magnetic fields, estimation
of the effective turbulent magnetic viscous time scale
shows that it is much longer than the dynamical time scale
of the one-arm instability. Therefore we expect these
BHDs to be prominent sources of gravitational waves and
Poynting electromagnetic radiation (in the presence of
magnetic fields) and thus excellent sources for multi-
messenger astronomy.
In this paper, spacetime indices are greek, spatial indices

latin, and we employ geometric units in which G ¼ c ¼
M⊙ ¼ 1, unless stated otherwise.

II. INITIAL DATA

The initial models of the BHDs considered in this work,
models A1–A4 in Table I, have been constructed using the
COCAL code and the method described in Ref. [92]. In
particular we solve the full initial value Einstein equations
by assuming that the conformal three-dimensional metric is
decomposed as γ̃ij ≔ fij þ hij, where fij is the flat metric
and hij are the nonflat contributions. The metric on the
3-geometry γij is related to the conformal metric through
γij ¼ ψ4γ̃ij. The nonflat contributions hij are computed

alongside the lapse α, shift βi, and the conformal factor ψ,
assuming detðγ̃ijÞ ¼ detðfijÞ. One of the new character-
istics of this method is the decomposition of the conformal
trace-free part of the extrinsic curvature as

Ãij ¼ ÃKS
ij þ σ̃ðL̃ W̃Þij; ð1Þ

where ÃKS
ij is the conformal Kerr-Schild trace-free part, W̃i

is an unknown spatial vector, σ̃ is a scalar, and L̃ is the
conformal Killing operator: ðL̃ W̃Þij ¼ D̃iW̃j þ D̃jW̃i −
2
3
γ̃ijD̃kW̃k. Here D̃i is the covariant derivative with respect

to the conformal metric γ̃ij. It is assumed that Aij ¼ ψ4Ãij

and σ̃ ¼ 1=ð2αÞ. As explained in Ref. [92], Eq. (1) with the
appropriate boundary conditions for W̃i yields a convergent
solution for the potentials hij, which in addition, can be
horizon penetrating. The price paid for this additional
decomposition of the extrinsic curvature is an extra
three elliptic equations for the potentials W̃i. For the
slicing we assume Kerr-Schild coordinates with K ¼
KKS under the gauge D

∘
ihij ¼ D

∘
ih

ij
KS, with hijKS being the

exact Kerr-Schild potentials, and D
∘
i the covariant deriva-

tive with respect to the flat metric fab. We set ∂tγ̃ij ¼
∂tÃij ¼ ∂tK ¼ 0.
For the Euler equations we assume stationarity and

axisymmetry [92], which is a reasonable assumption
whenever the disk is far away from the tilted BH. The
density profiles along the x axis for our models are plotted
in the top panel of Fig. 1. The disk is described by a Γ ¼
4=3 polytropic equation of state,3 having constant specific
angular momentum l ¼ −uϕ=ut. Note that there exist other
diagnostics for the specific angular momentum, such
as j ¼ utuϕ ¼ l=ð1 − ΩlÞ, as well as huϕ. Here h is
the specific enthalpy, uϕ is the azimuthal component of the
4-velocity, and Ω ¼ uϕ=ut is the angular velocity of the
fluid. The three diagnostics are plotted in the bottom panel

TABLE I. The initial BHD models. The angular momentum of the disks is along the z axis. Columns are the model name, the
magnitude of the dimensionless BH spin χ ¼ Jbh=M2

bh, the angles of the spin angular momentum in spherical coordinates ðθs;ϕsÞ, the
inner specific angular momentum lin, the inner edge of the disk rin, the maximum density coordinate rc, the outer edge of the disk rout,
the rest mass of the disk M0, the ADM mass M, the period of the maximum density point of the disk Pc, the dynamical time
td ∼ 1=

ffiffiffiffiffiffiffiffiffi
ρmax

p
, and the precession angular velocity PGM of the BH as calculated in Sec. II A. HereMbh is the mass of the BH. Center dots

denote “not applicable.”.

Model χ ðθs;ϕsÞ lin=Mbh rin=Mbh rc=Mbh rout=Mbh M0=Mbh M=Mbh Pc=Mbh td=Mbh PGM=Pc

A1 0.966 ð0°; 0°Þ 4.63 10 17.3 49.4 0.259 1.273 462 297 � � �
A2 0.957 ð45°; 0°Þ 4.60 10 17.3 49.4 0.156 1.167 435 371 60
A3 0.968 ð90°; 0°Þ 4.85 10 17.9 51.1 0.280 1.298 455 290 35
A4 0.963 ð180°; 0°Þ 5.13 10 20.0 57.3 0.242 1.256 520 364 � � �

3This choice is appropriate for a thermal radiation-dominated
gas, which might be found around a supermassive BH, but is not
the optimal choice for BH–neutron star binaries.
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of Fig. 1 for case A1 while similar behavior can be found
for cases A2–A4. Our disk models have constant l
and huϕ.
For the numerical solution of the Poisson-type of

equations we use the Komatsu-Eriguchi-Hachisu method
for BHs, which was first developed in Ref. [93]. The self-
gravitating BHD is calculated as follows. (i) First we
calculate a massless disk [94,95] around a tilted, spinning
BH whose mass is m and dimensionless spin is
a=m ¼ 0.95. We call m the BH bare mass. (ii) Using as

initial data the solution obtained in step (i) we iterate over
the Einstein and Euler equations to compute a self-
gravitating disk of a given maximum rest-mass density.
(iii) By increasing the maximum density of the disk and
repeating step (ii) we compute a sequence of BHDs whose
disk mass is growing. For each solution the angular
momentum of the BH Jbh is calculated through the isolated
horizon formalism [96,97]. Using the apparent horizon
finder described in Ref. [93] we calculate the mass of the
BH Mbh [98], and its dimensionless spin χ ¼ Jbh=M2

bh. In
Fig. 2 a full three-dimensional rendering of the BHDmodel
A2 is shown. The yellow arrow depicts the spin of the BH,
which is tilted at 45° with respect to the z axis. The latter
coincides with the axis of rotation of the disk. The apparent
horizon is denoted by a black spheroid which is similarly
tilted. Models A1, A3, and A4 have similar disk structure,
differing mainly in the tilt angle of the BH.

A. Precession frequencies

The relevant post-Newtonian (PN) theory for under-
standing a massive disk around a tilted BH is summarized
in Ref. [99], which we closely follow in the analysis below.
In particular we assume a massive thin disk confined in the
x-y plane having angular momentum Jd along the z axis,
and whose inner radius is bin while its outer radius is bout
(see Fig. 3). The disk rotates about a BH having angular
momentum Jbh tilted with respect to Jd. We further assume
that the disk lies outside the BP radius so that it is not driven
down to the hole’s equatorial plane (perpendicular to Jbh).
In our simulations there is no viscosity, so in principle there

FIG. 1. Top panel: initial rest-mass density distribution for
the four models evolved. Bottom panel: specific angular mo-
mentum of the BHD model A1. Solid lines correspond to j,
dashed lines to l and dotted lines to huϕ. The vertical dash-dotted
lines correspond to the event horizon (cyan), the marginally stable
radius for the prograde orbit (brown), and the marginally stable
radius for the retrograde orbit (magenta) around a BH whose
dimensionless spin is χ ¼ 0.95.

FIG. 2. Three-dimensional rendering of BHD model A2 at
t ¼ 0. The direction of the BH spin tilted at 45° with respect to the
z axis (axis of the orbital angular momentum of the disk) is shown
by the yellow arrow. The black spheroidal region denotes the
apparent horizon.

FIG. 3. A thin massive disk in the x-y plane with angular
momentum Jd along the z axis rotates around a tilted spinning BH
with angular momentum Jbh. Both of them undergo GM
precession about the total angular momentum J.
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is no such accretion and no BP effect.4 Now we imagine
that the thin disk is composed of massive rings, each one of
them having a mass dMR, and radius b. The ring’s GM field
will make the BH precess around the disk’s rotation axis
dJbh=dt ¼ ΩGM × Jbh where ΩGM ¼ 2JR=b3 and JR is the
angular momentum of the ring. Generalizing to the disk of
Fig. 3 we can write

dΩGM ¼ 2

b3
dJRðbÞ: ð2Þ

If σðbÞ is the surface gas density and ωðbÞ is the angular
velocity of the ring, we have

dJRðbÞ ¼ ωðbÞb2dMR ¼ ωðbÞb2ðσðbÞ2πbdbÞ; ð3Þ

where

σðbÞ¼
Z

hðbÞ

−hðbÞ
ρ0ðb;zÞdz; ωðbÞ¼

Z
hðbÞ

−hðbÞ
Ωðb;zÞdz; ð4Þ

are calculated as quadratures over the disk height hðbÞ at
the particular radius b. In Eq. (4) ρ0ðb; zÞ is the rest-mass
density of our three-dimensional disks, and Ωðb; zÞ is their
angular velocity profile. Note that although in Newtonian
gravity for a barotropic fluid the angular velocity of a
stationary disk depends only on the distance from the axis
of rotation (Poincaré-Wavre [101]), in general relativity the
surfaces of constant Ω (von Zeipel’s cylinders [100]) have
cylindrical topology, and therefore they depend not only on
the distance from the rotation axis but also on the distance
from the equatorial plane [102,103].
From Eqs. (2)–(4) the GM precession angular velocity of

the BH will be

ΩGM ¼
Z

bout

bin

4πωðbÞσðbÞdb; ð5Þ

where bin and bout are the radial boundaries of the disk.
Inserting the density and angular velocity of our tilted self-
gravitating disk models A2 and A3 into Eqs. (4)–(5), we
can compute ΩGM. These theoretical PN estimates are
reported in the last column of Table I in terms of the GM
precession period PGM ¼ 2π=ΩGM.
Note that a ring of mass MR rotating with Keplerian

angular velocity around a BH of mass Mbh at a radius bR
will be subject to GM precession with

MΩGM ¼ 2

�
M
bR

�
5=2

�
Mbh

M

�
1=2

�
MR

M

�
; ð6Þ

whereM is the Arnowitt-Deser-Misner (ADM) mass of the
system. For our models fA2;A3g Eq. (6) yields PGM=Pc ¼
f54; 31g in rough agreement with the values shown in
Table I. This shows that despite the constant specific
angular momentum our self-gravitating disks are effec-
tively close to the Keplerian test-ring model.
Not only does the disk makes the BH to precess:

conservation of the total angular momentum J¼ JbhþJd
implies that the BH will make the disk to precess, i.e.,

dJd
dt

¼
�
2Jbh
b3

�
× Jd: ð7Þ

The precession frequency of the disk ΩGM−disk is related to
the precession frequency of the BH ΩGM as

ΩGM−disk ¼ ΩGM
Jbh
Jd

: ð8Þ

For models A2 and A3 we find that PGM=PGM−disk is of
order 1.0 implying that the spin of the BH will precess at
the same time scale as the warping of the disk.
As a final note we mention that the disk’s tidal field will

also exert a torque on the BH that leads to tidally torqued
precession with angular velocity [99]

ΩT ¼ 3aMR

2b3R
cos θs: ð9Þ

For model A2 we find PT=PGM ≈ 8 using bR as the
radius of the maximum density. On the other hand we
can perform an analysis similar to the GM frequency and
write dΩT¼3adMRcosθs=ð2b3Þ, with dMR ¼ σðbÞ2πbdb.
Integrating as in Eq. (5), we find PT=PGM ≈ 9 in agreement
with the cruder estimate above. Therefore the tidally
torqued precession is secondary to the GM precession
and needs very long evolutions to be probed.

III. EVOLUTIONS

The models A1–A4 of self-gravitating BHDs are evolved
using the Illinois GRMHD moving-mesh-refinement code
that employs the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation of the Einstein equations [104,105]
to evolve the spacetime fields. Outgoing wavelike boun-
dary conditions are applied to all BSSN variables, which
are evolved using the equations of motion (9)–(13) in
Ref. [106], along with the 1þ log time slicing for the lapse
α, and the “Gamma-freezing” condition for the shift βi, cast
in first-order form [see Eq. (2)–(4) in Ref. [106]]. Time
integration is performed via the method of lines using a
fourth-order accurate Runge-Kutta integration scheme with
a Courant-Friedrichs-Lewy factor set to 0.36. Spatial

4As we discussed in the Introduction, in Ref. [23] the authors
found such alignment in pure hydrodynamical simulations. In any
case, even if numerical viscosity is present we assume that the
bulk of the mass and angular momentum of the ambient disk
remains largely intact (apart from precession).
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derivatives are computed with fourth-order, centered
finite differences, except on shift advection terms, where
we employ fourth-order upwind differencing. We use the
Carpet infrastructure [107,108] to implement moving-box
adaptive mesh refinement, and add fifth-order Kreiss-Oliger
dissipation [109] to spacetime and gauge field variables. For
numerical stability, we set the damping parameter η appear-
ing in the shift condition to η ≈ 26.6=M. For further stability
we modify the equation of motion of the conformal factor ϕ
by adding a constraint-damping term [see Eq. (19) in
Ref. [110]] which damps the Hamiltonian constraint. We
set the constraint-damping parameter to cH ¼ 0.08 (see also
Ref. [111]).
High-resolution, shock-capturing methods [112,113] are

used for the equations of hydrodynamics, which are written
in conservative form. The primitive, hydrodynamic matter
variables are the rest-mass density, ρ0, the pressure P and
the coordinate 3-velocity vi ¼ ui=u0. The stress-energy
tensor is Tαβ ¼ ρ0huαuβ þ Pgαβ. For the equation of state
we use the ideal-gas Γ law P ¼ ðΓ − 1Þρ0ϵ with Γ ¼ 4=3,
and ϵ is the specific internal energy. The grid hierarchy
used in our simulations is summarized in Table II. It
consists of a set of 13 nested mesh-refinement boxes
centered on the BH apparent horizon. The computational
domain is ½−4000Mbh; 4000Mbh�3. The half-side length of
the finest box has Δxmin ¼ 50Mbh=212 ¼ 0.0122Mbh. Note
that the ADM mass is M ≈ 1.2–1.3Mbh depending on the
model. In our simulations we do not assume any symmetry.
The extremely high resolution used is necessary in order to
accurately capture the dynamics of the highly spin-
ning BHs.

A. Global structure

The overall evolution of models A1–A4 can be seen in
Figs. 4 and 5. At t ¼ 0 (left column of Fig. 4) the disks have
very similar geometries (see also Fig. 1) while the BHs
have the same mass and similar spin magnitudes. Thus the
main difference in our cases is the BH tilt angle, which
results in distinct behaviors for the four models. Note that
in Figs. 4 and 5 the magnitude of the BH spin vector is not
to scale. Also the shrinkage of the BH and the disk sizes in
the right column of Fig. 4, and the left column of Fig. 5 is
due to gauge effects arising from differences between the
initial data and the evolution gauge choices. In the right
column of Fig. 4 we depict a meridional cut at the final
moment in our evolutions. For the aligned case (top row)
the BH preserves its spin orientation and magnitude and the
disk retains its broad characteristics. The one-arm insta-
bility fully develops, but the induced BH orbit remains
bounded. On the other hand, the antialigned case (bottom
row) after a certain time becomes largely unstable, with the
disk losing its initial structure and exhibiting massive mass
accretion. The BH acquires a kick velocity (keeps drifting
away until the end of our simulations). Although the BH

spin orientation is preserved, its magnitude is significantly
reduced due to accretion.
For the misaligned cases (second and third rows), we

observe the combined effects of (i) BH precession, (ii) disk
precession and warping around the BH, (iii) development
of the PPI, (iv) acquisition of a small BH kick velocity,
(v) significant gravitational-wave emission of various
modes beyond the l ¼ 2, m ¼ 2 which are as strong as
the (2,2) mode, and (vi) in the A3 case (90° initial tilt) an
overall broad alignment of the disk with the BH spin (third
row in Fig. 4, right column). This alignment is not
associated with the BP effect, which requires a viscosity
mechanism absent in our simulations. True BP alignment
has only been observed in GRMHD simulations of very
thin disks with scale heights below H=R < 0.05 (e.g.
Ref. [114]). There has been no indication that BP alignment
for thicker accretion disks is possible. That said, thicker
accretion disks can, and do align as a whole, not just the
inner disk [7,115,116]. In these cited GRMHD simulations
this “global” mode happened on the viscous time of the
disk and thus does not produce a steady-state solution
as envisioned by BP. In our hydrodynamical simulations
the disks have H=R ∼ 0.625 and thus the flow is not
susceptible to BP warps (at least initially). Similarly to
Refs. [7,67,115,116] the possible alignment is global, i.e.
the whole disk rotates like a solid body, instead of the local
alignment of only the inner regions of the disk typical of the
BP picture. In fact, from the third row, right column
of Fig. 5, where the two streams onto the BH are apparent,
we confirm that there is no such alignment in the inner
regions of the disk. Our results are reminiscent of the
behavior described in Refs. [67,115] and are referred to as
“plunging streams.” The additional complication in our
case though is that the BH-disk spacetime is dynamical
and responds to the motion of the disk. The alignment
in case A3 happens on a shorter time scale than the effec-
tive viscous time scale reported in Sec. III D. As in
Refs. [67,115] the plunging streams enter the BH above
and below its symmetry plane from almost antipodal points
due to strong differential precession and the nonspherical
nature of the spacetime. For a Kerr BH (which is very close
to the BHD spacetimes close to the horizon) orbital
stability strongly depends on the inclination of the orbit,
with the unstable region being larger for increasing incli-
nation. Also the value of rISCO is larger for larger inclina-
tions [115,117]. For the A3 case we observe the largest BH
kick velocity which is ∼2 km=s. For model A2 (45° initial
tilt angle) we could not evolve beyond t ≈ 3133M because
the BHwas spun up to maximal spin. At that point both the
BH and the disk experience a tilt by ∼45° with respect to
their initial orientation, but in opposite directions (see
second row, right column in Fig. 4) Similar to case A3 and
Refs. [67,115], we observe two plunging streams in
opposite directions entering the BH above and below its
symmetry plane. Thewarping of the disk around the BH for
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TABLE II. Grid parameters used for the evolution of the BHDs of Table I. The computational grid consists of a set of 13 nested
refinement boxes centered on the BH apparent horizon. The step interval in the coarser level is Δxmax ¼ 50Mbh, while in the finer
refinement level it is Δxmin ≈ 0.0122Mbh. Note that the ADM mass M ≈ 1.2–1.3Mbh depending on the model.

fx; y; zgmin fx; y; zgmax Grid hierarchy (Box half-length)

−4000Mbh 4000Mbh f0.5; 1.56; 3.12; 6.24; 12.48; 25; 50; 100; 200; 399; 799; 1597; 4000gMbh

FIG. 4. Meridional cuts for the initial (left column) and final (right column) state of the rest-mass density for models A1 (first row), A2
(second row), A3 (third row), and A4 (fourth row). The direction of the BH spin is given by the yellow arrow. The black spheroidal
regions denote the apparent horizon.
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both cases A2 and A3 is significant (see second and third
rows of Fig. 5).

B. Mode growth and angular momentum transport

According to previous studies, both Newtonian and
general relativistic, we expect all our models to be

dynamically unstable to the one-arm (m ¼ 1) spiral-shape
instability. In the general-relativistic simulations of
Refs. [77,78,84] it was concluded that if the mass of the
disk is larger than ≳4% of the mass of the BH a fixed
background spacetime cannot fully capture the dynamics of
the system. In particular in order to accurately describe the

FIG. 5. The left column shows the full three-dimensional rendering of the disk rest-mass density at the final moment of our
simulations. The right column zooms in near the BH at the same time as in the left column. The rest-mass densities are plotted for models
A1 (first row), A2 (second row), A3 (third row) and A4 (fourth row). The direction of the BH spin is given by the yellow arrow. The
black spheroidal regions denote the apparent horizon.
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dynamical gravitational interaction between a time-varying
BH (in position, mass and spin), as well as a time-varying
massive disk, simulations in a nonfixed background space-
time are necessary, as we perform here.
To quantify the growth of various unstable density

modes we evaluate the parameters [79,118]

Cm ¼
Z
r>rah

ρ0ut
ffiffiffiffiffiffi
−g

p
eimϕd3x; ð10Þ

where g is the determinant of the spacetime metric and
ϕ ¼ tan−1ðy=xÞ is the azimuthal angle. The volume integral
is performed outside the apparent horizon of the BH and
the mode amplitude is denoted by the normalized quantity
Cm=C0, where C0 ¼ M0 is the rest mass of the disk. The
pattern speed of an azimuthalmodem is defined as [119,120]

Ωp;m ¼ 1

m
dϕm

dt
; ð11Þ

with the phase angle ϕm being

ϕm ¼ tan−1
�
ImðCmÞ
ReðCmÞ

�
: ð12Þ

In other words the pattern speed of any mode is proportional
to the slope of the curve ϕmðtÞ with the proportionality
constant being 1=m.
As we discussed in the Introduction, the PPI manifests

itself when a perturbation that is traveling backwards
relative to the fluid at the inner edge, and therefore has
Ωp;m < Ω, exchanges energy and angular momentum with
a perturbation that is traveling forwards relative to the fluid
at the outer edge and therefore hasΩp;m > Ω. The radius rcr
where the interaction happens is called the corotation radius
and satisfies Ωp;m ¼ ΩðrcrÞ.
In Fig. 6 we plot the m ¼ 1 (top panel) and m ¼ 2

(bottom panel) mode growths for all cases: A1 (aligned,
blue line), A2 (45° red line), A3 (90° green line), and
A4 (180° brown line). The most prominent feature of this
plot is the fact that for both modes, the ðCm=C0Þðt ¼ 0Þ
values for the tilted cases (A2 and A3) are much larger than
those for A1 and A4.5 In fact for models A2 and A3
ðC2=C0Þðt ¼ 0Þ ∼Oð10−2Þ is 10 to 100 times larger than
ðC1=C0Þðt ¼ 0Þ and initially slightly decreases while the
latter steadily grows in an exponential manner. When
C1=C0 reaches values ∼Oð10−2Þ then the m ¼ 2 mode
grows in a similar manner. In other words the m ¼ 1 mode
drives the growth of the m ¼ 2 mode, something that is
also seen in the aligned and antialigned cases (A1 and A4).

The fact that in the tilted cases at t ¼ 0 the m ¼ 1 mode
amplitude is already nonzero and much larger than in the
aligned or antialigned cases results in a smaller m ¼ 1
growth time scale, as can be seen from the slope of the fitted
dashed lines (in the top panel of Fig. 6). These time scales
are reported in the second column of Table III and are in
broad agreement with other studies [79,84]. If we denote
the growth of the m ¼ 1 mode as et=τ, we find that τ=Pc ¼
f0.5; 0.9; 0.9; 0.7g for cases A1–A4, confirming that the
instability is indeed dynamical. The two tilted cases show
almost identical growth time scales, even though the disk in
case A3 has almost double the mass of the disk in case A2
while their radial extent is approximately the same. Note
that in Refs. [76,80] it was found that more compact (or
more massive) disks are more subject to the dynamical
instability, and when M0=Mbh ≳ 0.6 the growth time scale
can be smaller than Pc. Our models show that time scales
≲Pc are possible with even less massive disks with
M0=Mbh ∼ 0.16. This result is not surprising [54] since
our disk models have l ¼ const which makes them more
prone to the development of the PPI than the models of
Refs. [76,80], which have a nonconstant specific angular
momentum profile. Given the fact that models A2 and A3

FIG. 6. Growth of them ¼ 1 (top panel) and them ¼ 2 (bottom
panel) modes.

TABLE III. Mode growth, pattern speed, and corotating radius
for the m ¼ 1 mode.

Model Imðω1Þ=Ωc Ωp;1=Ωc rcr=rc

A1 0.318 0.748 1.17
A2 0.177 0.748 1.17
A3 0.177 0.637 1.24
A4 0.227 0.812 1.12

5For models A1 and A4, at t ¼ 0 slight deviations from
Cm ≡ 0, m ≥ 1, are due to numerical error, as the disks are
constructed to be strictly axisymmetric in spherical polar coor-
dinates and then interpolated onto a Cartesian grid.
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have the same spin magnitude we conclude that the spin tilt
is crucial for the determination of the growth time scale and
can be degenerate with the BH-to-disk mass ratio.
The phase angle of the m ¼ 1 mode is shown in Fig. 7

and the slopes of the fitted dashed lines [Eq. (11)] provide
the corresponding pattern velocities Ωp;1 that are quoted in
Table III. From this figure one can easily read the time for
the saturation of the PPI. In particular for case A1 it is
≈5.5Pc, for A2 it is ≈4Pc, for A3 it is ≈3Pc, and for A4 it is
≈6Pc. These values are in agreement with the top panel of
Fig. 6 and show that the larger the tilt, the smaller the time
span for the development of the nonaxisymmetric insta-
bility. After this initial period, the mode growth saturates
and the phase angle ϕ1 asymptotes to a constant.
Interestingly, the m ¼ 1 pattern speed is almost identical
for cases A1 and A2 despite the different spin orientations
of the BHs, as well as the different BH-to-disk mass ratios.
This may be related to the fact that those models have
identical inner rin and outer rout boundaries, which play a
crucial role for the explanation of the PPI [49,50,52,53].

Another critical component of the PPI is the corotation
radius rcr through which angular momentum is transferred
outwards [49,53,54,58]. In Table III we report the ratio
of the corotation radius to the radius of the maximum
density for our models A1–A4. This ratio is close to unity,
which is typical of the m ¼ 1 PPI mode [77,78,84]. In
terms of the total mass of the system the corotation radii are
rcr=M ¼ f16; 17; 17; 17g. In order to confirm and better
understand the development of the PPI in thick, tilted self-
gravitating BHDs we plot in Fig. 8 the specific angular
momentum l ¼ −uϕ=ut at three different instances for
case A2. At one rotation period (left panel) the disk has
essentially the angular momentum profile of the initial
data i.e. l ¼ const. After three rotation periods (middle
panel), when the PPI has been well developed, we see two
characteristics: (i) a shock front located at approximately
r ∼ 20M, and (ii) the shock front separating the inner part
(r≲ 20M) of the disk with angular momentum regions
having values smaller than the initial angular momentum
(white-blue areas) from the outer part (r≳ 20M) of the disk
with angular momentum regions having values larger than
the initial angular momentum (green-yellow-red areas).
Also, a spiral structure in the outer part starts to form. After
six rotation periods (right panel), where the PPI is fully
developed, this picture is even clearer and the characteristic
spiral arm is apparent. This shows how the PPI can
redistribute angular momentum by outward transport.
The growth of the one-arm instability results in a

pseudobinary system consisting of the BH and the
m ¼ 1 “planet” that sets the BH in motion. In Fig. 9 we
depict the trajectory of the BH in the equatorial (top panel)
and meridional (bottom panel) planes. In all cases we notice
the characteristic spiral trajectory resulting from the spiral
motion of matter in the disk (see the left column of Figs. 5
and 8) and the conservation of the center of mass of the
system. For case A1 the motion is planar (in the x-y plane)
with larger radius of curvature in the beginning when the
PPI develops and smaller at the end, when it has saturated.

FIG. 7. Phase angle ϕ1 of the mode m ¼ 1 for models A1–A4.

FIG. 8. Snapshots at three different times of the specific angular momentum l ¼ −uϕ=ut for case A2. To convert to t=M multiply by
373 (see Table I).
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For the tilted cases A2 and A3 this motion is three
dimensional, while for the antialigned case A4 we again
have a three-dimensional motion due to the destabilization
of the whole system after ∼ six rotation periods.6 The
evolution of A4 will be further described in the next
section. The combined motion of the BH with the self-
gravitating disk produces copious amounts of gravitational
radiation, as we will discuss next.

C. Precession and gravitational waves

In the top panel of Fig. 10 we plot the evolution of the
maximum density in the disk. The general trend shows the
maximum density to be constant until approximately
the end of the development of the PPI, at which point
nonlinear growth sets in and can lead to an increase of
ρ0;max by orders of magnitude. Consistent with Figs. 6 and 7
we observe that the peak of ρ0;max for case A1 occurs at
∼6Pc which coincides with the end of the linear growth of

the phase angle ϕ1 in Fig. 7. Similarly for the cases A2,
A3, and A4 the peak times are ∼f4.5Pc; 3.5Pc; 6Pcg.
Depending on the characteristics of the system the maxi-
mum density relaxes to values higher or lower than the
initial maximum density and leads to persistent emission of
gravitational waves. Also, as already discussed, the larger
the tilt, the earlier the peak of the maximum density.
In the middle panel of Fig. 10 the dimensionless spin

parameter χ ¼ Jbh=M2
bh is plotted as a function of time for

all our models. We adopt the AHFinderDirect thorn [121]
to locate and monitor the apparent horizon, and the isolated
horizon formalism [122] to measure the mass of the BH,
Mbh, and its dimensionless spin parameter χ. For the cases
A1 and A4, we also confirm that the Kerr formula for the
ratio of the proper polar horizon circumference Lp, to the

equatorial one Le, Lp=Le ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

p
Eð a2

r2þþa2Þ [here

EðxÞ is the complete elliptic integral of the second kind,
rþ is the event horizon in Boyer-Lindquist coordinates, and
a ¼ Jbh=Mbh is the Kerr spin parameter], and its approxi-
mation Lp=Le ≈ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MbhÞ2

p
þ 1.55Þ=2.55 [123],

yield almost identical results for the evolution of χ. For
the tilted case A2 we observe that the BH is spun up and
approaches maximum spin, which prevents us from con-
tinuing the simulation beyond ∼ eight rotation periods. For
the 90° tilted case A3 we observe that when the maximum
density peaks at ∼3.5Pc significant accretion onto the BH
is initiated, which results in a reduction of the rest mass of
the disk (bottom panel in Fig. 10). At the same time the
mass of the BH increases (in an analogous way as the
decrease of the disk rest mass), which leads to an abrupt
decrease of its dimensionless spin to χ ∼ 0.85. By the end
of our simulation at ∼8Pc the disk has 75% of its initial

FIG. 9. BH trajectory in the x-y and x-z planes.

FIG. 10. Evolution of the maximum rest-mass density of the
disk (top panel), the BH dimensionless spin (middle panel), and
the disk rest mass (bottom panel).

6Note that the linear drift observed in the later part of the A2
and A3 orbits in Fig. 9 may be partly due to the BSSN formalism
used in our simulations.
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mass and the spin of the BH asymptotes to χ ∼ 0.82. The
most unstable case in our simulations is the antialigned case
A4. At six rotation periods the maximum rest-mass density
increases by 2 orders of magnitude and shortly afterwards
massive accretion is initiated. That increases the BH mass
significantly and its spin drops to ∼0.5. Interestingly, the x
and y spin components do not show any appreciable change
(i.e. they remain zero); only the z component decreases in
magnitude. We did not observe such instability in Ref. [79]
where a model with a much smaller spin χ ¼ −0.7 was
employed. We plan to investigate this issue in the future.
The evolution of the three components of the BH spin as
well as the three components of the ADM angular
momentum for the two tilted cases A2 and A3 are plotted
in Fig. 11. In Fig. 12 we plot the BH spin for the tilted
models A2 and A3 as it evolves from its initial value (red
arrow) to its final one (blue arrow). The gray curve shows
the path of the BH spin vector throughout our simulations.
In order to verify that precession is observed and measured
well before significant accretion arises, and to accurately
measure the GM-induced precession we show a green
bullet that corresponds to t ¼ 3Pc for model A2 and t ¼
2Pc for model A3. Although at those times the PPI is
growing (see Figs. 6 and 7) the rest masses of the disks are
essentially the same as their initial values. The precession
of the BH spin from its initial value (red arrows) to the
green bullets is thus mainly due to the GM effect.
Projecting the gray path onto the x-y plane and computing
its radius of curvature we find that the angle between the
projections of the initial spin vector and the spin vector
corresponding to the green bullet is≈18° or PGM=20, which
yields PGM ≈ 60Pc. This value exactly matches the

estimate from the analysis of Sec. II A reported in
Table I. A similar calculation for model A3 yields an
angle between the projections of the initial spin vector and
the spin vector corresponding to the green bullet of ≈19° or
PGM=19. Hence PGM ≈ 38Pc which is in excellent agree-
ment with the estimate reported in Table I. Therefore our
simulations are in agreement with the estimates from the
PN analysis in Sec. II A.

D. Multimessenger astronomy

BHDs are prominent sources of electromagnetic radia-
tion due to accretion. In our case because of the self-gravity
of the disk such systems also produce significant amounts
of gravitational radiation, which makes them excellent
sources for multimessenger astronomy. For the extraction
of gravitational waves we measure the outgoing component
of the complex Weyl scalar Ψ4 expanded in terms of the
spin-weighted spherical harmonics with spin weight −2 at
various finite radii. The axis of the spherical harmonics is
taken to be the z axis which is the initial direction of the
disk angular momentum. The strain h is then computed
with a double integration in time as described in Ref. [124].
In previous studies [76,77,79,80], where nonspinning

or aligned BHD systems were analyzed, it was found
that the development and saturation of the PPI leads to an
initial wave burst, and then a relaxation to a persistent
quasimonochromatic signal of lower amplitude. The peak
amplitude of the strain depends on the disk-to-BH mass
ratio as well as the disk characteristics. Disks of constant
specific angular momentum profiles develop a more pro-
nounced m ¼ 1 instability, and thus the amplitude of the
gravitational wave is larger. As explained in Refs. [79,125]
rh ∼OððrcΩcÞ2Þ and therefore the amplitude of the strain
is directly related to the angular velocity and radius of the
maximum density point.
When the orbital angular momentum and the BH spin are

misaligned this will cause the precession of the orbit and a
modulation of the gravitational waves. As we have seen in

FIG. 12. BH spin precession for the two tilted cases A2 and A3.
The magnitude of the spin vector is not to scale. The gray curve
shows the evolution of the spin from its initial value (red arrow) to
its final value (blue arrow). Green dots denote times t ¼ 3Pc for
model A2, and t ¼ 2Pc for model A3.

FIG. 11. Evolution of the BH (solid lines) and ADM (dashed
lines) angular momentum components for the tilted cases A2
(45°) and A3 (90°).
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Sec. II A, the angular velocity of the orbital precession is
much smaller than the orbital angular velocity, which
implies that we will need many rotation periods to observe
the imprint of precession on the gravitational waves. In the
left column of Fig. 13 we plot the (2,2) mode (top panel)
and (2,1) mode (bottom panel) of hþ for the tilted case A2
(rA is the areal extraction radius). As we discussed above
we cannot evolve this model beyond eight rotation periods
due to the almost extremal spin the BH acquires from
accretion. Despite that we observe that the initial amplitude
of the strain is much larger than in the aligned cases (see for
example Ref. [79]). In this particular model the (2,1) mode
has a larger initial amplitude than the (2,2) mode. The
reason for this large initial amplitude is not due to the rcΩc
value mentioned above but from the large nonaxisymmetry
of the system at t ¼ 0. Indeed, the aligned model A1 has
the same rcΩc value as model A2 but it has a much smaller
peak strain even though the rest mass of the disk is larger.
Similar large amplitudes are found in the right panels of

Fig. 13 where the hþ strain of the modes (2,2) and (2,0) are
plotted for the tilted case A3. The large peak of the (2,0)
mode is also present in the (2,1) mode, characteristic of
mode mixing. Contrary to the A2 case where the l ¼ 3
modes are negligible, case A3 has significant amplitude
l ¼ 3modes. In Ref. [78] where spins up to χ ∼ 0.5 and tilt
angles up to ∼30° were employed it was found that the
gravitational-wave signal has a weak dependence on the
initial tilt angle, especially for disks with nonconstant
specific angular momentum profiles. The authors observed
the smallest peak amplitudes for the most tilted BH
spacetime. By contrast, in our simulations we see that
the gravitational-wave signal can be greatly influenced by
the tilt angle as discussed above for the cases A2 and A3.

Also, for case A3, which has the largest tilt we observe the
largest peak amplitude.
We compute the Fourier power spectrum of the gravi-

tational waves for the (2,2) mode by calculating

h̃ðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃22þ ðfÞj2 þ jh̃22× ðfÞj2

2

s
: ð13Þ

Here h̃22þ ðfÞ and h̃22× ðfÞ are the Fourier transforms of the
two independent polarizations þ and ×. In left panel of
Fig. 14 we plot the dimensionless characteristic strain
hcðfÞ ¼ 2fh̃ðfÞ for the four models A1–A4. Cases A1
and A3 have peaks at twice the orbital frequency fc while
case A2 has a peak at approximately 3fc and a secondary
one at 2fc. The short evolution of the latter, due to reaching
maximal spin, reflects mainly the initial spectral content
for that model, i.e. for tret ≲ 2Pc in the left panels of
Fig. 13, where a modulation of the gravitational wave is
present. For tret ≳ 2Pc this modulation is smoothed out.
We expect that this effect is due to the specific structure of
the BHD. As explained in detail in Ref. [79] the gravi-
tational waves depend on the mass of the system from
which they originate and will be excellent sources for
the future gravitational-wave observatories. In addition,
for tilted BHDs the gravitational-wave strain of modes
beyond the (2,2) mode is as strong as the (2,2) one (see the
bottom row of Fig. 13), and thus the magnitude of their
characteristic strain will be comparable to that of Fig. 14
(left panel) and therefore detectable by future gravita-
tional-wave observatories.
In the presence of magnetic fields simulations of

compact objects that lead to the formation of BHDs have

FIG. 13. Strain amplitude (hþ) for various gravitational-wave modes for the two tilted models A2 and A3. Here rA is the areal
extraction radius and tret is retarded time.
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shown that they can power relativistic jets [46–48,126–129]
with an outgoing electromagnetic Poynting luminosity of
LEM ∼ 1052�1 erg=s. These relativistic jets are consistent
with the Blandford-Znajek mechanism for launching jets
and their associated Poynting luminosities [130]. Although
our simulations lack magnetic fields we can still estimate
the Poynting electromagnetic luminosity, since the power
available for electromagnetic jet emission is usually propor-
tional to the accretion power [131], i.e.

LEM ¼ ϵ _M0c2; ð14Þ

where _M0 is the rest-mass accretion rate and ϵ is an
efficiency factor of Oð10−3Þ–Oð10−2Þ. Assuming ϵ ¼
0.003 as in Ref. [132] we plot in the right panel of
Fig. 14 the electromagnetic luminosity for models A1–
A4. The tilted cases A2 andA3 exhibit episodes of accretion
at earlier times, due to the tilted geometry of the ISCO. The
larger the tilt, the earlier these episodes appear (2.5Pc for
A3 and 3.5Pc for A2). Following these periods, accretion
continues to grow exponentially until approximately the
saturation of the PPI, at which point it drops. The tilt seems
to affect the asymptotic value of the accretion rate. Although
longer simulations are needed for more conclusive results,
with radiative transport and magnetic fields incorporated,
our simulations show that case A3 asymptotes to a larger
value than case A2, which in turn asymptotes to a larger
value than case A1, with the differences being less than an
order of magnitude. From Fig. 14 we compute the accretion
time scale of our models to be taccr ≈2×104–105 Mbh
consistent with Refs. [76,79]. Analogous to the accretion
rate, the accretion time scales follow taccrðA1Þ >
taccrðA2Þ > taccrðA3Þ.

On the other hand, the inclusion of magnetic fields will
lead to the development of the magnetorotational instability
[133] as well as turbulence [134]. The increase of turbulent
viscosity will redistribute the angular momentum in the
disk with the possibility of suppressing the PPI. Despite
this, if the turbulent viscous time scale is much longer than
the time scale for the growth and saturation of the PPI there
may be sufficient time for a multimessenger event. We
estimate the viscous time scale as

τvis
Pc

¼ R2

Pcν
≈

1

2πα

ΩcR2

csH
ð15Þ

where ν ¼ αHcs is the shear viscosity, (H, R) are the
(height, width) of the disk, cs is the sound speed, and α is
the Shakura-Sunyaev viscosity parameter [4]. In our case
c2s ¼ ΓðΓ − 1ÞP=ððΓ − 1Þρþ ΓPÞ. For α ¼ 0.01 it turns
out that our models have τvis=Pc ∼ f198; 198; 201; 176g.
Even if αSS is 5 times larger, the viscous time scale will be
∼40Pc i.e. much larger than the time for PPI development
and saturation. This is especially true for the tilted BHDs,
in which case the PPI grows much earlier than in the
aligned/antialigned ones. Therefore our preliminary con-
clusion is that the one-arm instability in BHD systems
can still be a source for multimessenger astronomy.
Full general-relativistic magnetohydrodynamic simulations
with radiative transport will be needed to reliably assess
the outcome of such systems.

IV. DISCUSSION

In this work we initiated a study of tilted, self-gravitating
disks around spinning black holes. Our general-relativistic,
hydrodynamics simulations are the first that start from

FIG. 14. Left panel: gravitational-wave spectrum of the (2,2) mode. Right panel: estimated bolometric luminosities.
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self-consistent initial values and include highly spinning
black holes. In these preliminary simulations we focused on
BHDs that have a constant specific angular momentum
profile and for which the disk-to-BH mass ratio is 16–28%.
We investigated aligned (0°), antialigned (180°), and highly
tilted systems (45° and 90°), all of them having dimension-
less spins of 0.96–0.97. The nonaxisymmetric mode
analysis showed that the saturation of the PPI happens
earlier than in the aligned/antialigned cases and the m ¼ 1
mode growth is smaller. The disks precess and warp around
the BHs, which also precess following PN GM precession
periods. This causes the BH center to acquire a small kick
velocity. We confirmed that after outward angular momen-
tum transport is initiated close to the m ¼ 1 corotation
radius, the disk’s maximum density increases (sometimes
by orders of magnitude). Accretion on the BH causes its
dimensionless spin either to increase or to decrease,
depending on the configuration. In the 90° initial tilt case,
we found an alignment of the disk with the BH spin similar
to Refs. [7,67,115,116]. This alignment should not be
interpreted as a BP effect for multiple reasons. 1) Our
disks have H=R ¼ 0.625 ≫ α (effective α) in contrast to
the condition H=R ≪ α that the BP effect is known to
operate. Here we have no explicit viscosity. 2) Global
alignment arises, and not just alignment near the BH. 3) In
addition to 2) the inner parts of the disk that create the
plunging streams on the BH are not perpendicular to the
BH spin, typical of the BP picture. 4) The alignment
happens on a time scale much shorter than the effective
viscous time scale estimated in Sec. III D. Tilted systems
exhibit earlier accretion episodes than the aligned/antia-
ligned ones. We also observed a weak dependence on the
BH tilt, with larger tilts leading to higher accretion rates,

although longer simulations are needed. Gravitational
waves from tilted BHDs typically have larger strains than
the ones coming from aligned/antialigned systems and
exhibit a diverse spectrum of modes beyond the (2,2) mode.
We expect such self-gravitating disks to be excellent
sources for multimessenger astronomy.
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