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L. Bruno Pontecorvo 3, 56127 Pisa, Italy

(Received 7 September 2022; accepted 12 October 2022; published 4 November 2022)

One of the most promising strategies to test gravity in the strong-field, large curvature regime is
gravitational spectroscopy: the measurement of black hole quasinormal modes from the ringdown signal
emitted in the aftermath of a compact binary coalescence, searching for deviations from the predictions of
general relativity. This strategy is only effective if we know how quasinormal modes of black holes are
affected by modifications of general relativity; and if we know this for rotating black holes, since binary
coalescences typically lead to black holes with spins J=M2 ∼ 0.7. In this article, we compute for the first
time the gravitational quasinormal modes of rotating black holes up to second order in the spin in a
modified gravity theory. We consider Einstein-dilaton Gauss-Bonnet gravity, one of the simplest theories
which modifies the large-curvature regime of gravity and which can be tested with black hole observations.
To enhance the domain of validity of the spin expansion, we perform a Padé resummation of the
quasinormal modes. We find that when the second order in spin is not included, the effect of gravity
modifications may be seriously underestimated. A comparison with the general relativistic case suggests
that this approach should be accurate up to spins ∼0.7; therefore, our results can be used in the data analysis
of ringdown signals.

DOI: 10.1103/PhysRevD.106.104009

I. INTRODUCTION

In the last century, a plethora of observations confirmed
that the gravitational interaction is well described by
general relativity (GR) [1]. However, before 2015—when
the first gravitational wave (GW) signal was detected [2]—
these tests were mostly limited to the weak-field regime of
gravity. In recent years, the observations of the Advanced
LIGO/Virgo detectors started to explore strong gravita-
tional fields and large spacetime curvature, and have
excluded large deviations of GR in this regime [3]. The
next generation of GW detectors, like the ground-based
Einstein Telescope [4], will be sensitive enough to detect
even tiny GR deviations in the strong-field, large curvature
regime of gravity.
One of the most promising strategies to find such

deviations is the analysis of the ringdown signal emitted
in the aftermath of a binary black hole (BH) coalescence. In
this stage, the waveform is a superposition of damped
oscillations, the quasinormal modes (QNMs) of the final
BH [5–7]. The QNM frequencies and damping times carry
the imprint of the underlying theory of gravity; once

measured from the GW signal, they can be compared with
the predictions of GR, or—if a deviation is observed—with
the predictions of a possible modified theory of gravity.
With a more refined analysis, it is possible to improve the
accuracy by stacking multiple observations [8–10].
This approach, which has been called “gravitational

spectroscopy” [11–13] (see also [14] and references
therein), requires the knowledge of the QNMs of BHs
in modified gravity theories. The frequencies and damp-
ing times of BH QNMs have been computed for a certain
number of such theories, for static, nonrotating BHs [15–
22] or for slowly rotating BHs at first order in the spin
[23–26].1
However, since BH remnants of compact binary coa-

lescences have typical spins—for comparable-mass
binaries—of the order of ā ¼ J=M2 ∼ 0.7 (where M, J
are the mass and angular momentum of the BH, respec-
tively), the knowledge of BH QNMs toOðāÞ is inadequate
to perform gravitational spectroscopy. Indeed, an analysis
of the QNMs in GR suggests that the slowly rotating
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1An alternative approach to study BH QNMs in modified
gravity consists in the modification of the radial potential in the
perturbation equations, computing how these deformations affect
the QNM frequencies and damping times [27–29].
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approximation at OðāÞ gives the QNM frequencies with
an accuracy of 1% for ā≲ 0.2 only (see Fig. 1 below).2

This article, to our knowledge, is the first computation of
the QNMs of a slowly rotating BH to second order in the
spin in a modified gravity theory. We shall argue that, with
an appropriate resummation of the spin expansion, this
computation is expected to be accurate for spins as large
as ā ∼ 0.7.
We shall consider Einstein-dilaton Gauss-Bonnet

(EdGB) gravity, one of the simplest theories which modi-
fies the strong-field, large-curvature regime of gravity, and
which can be tested with BH observations (see [30] and

references therein). In EdGB gravity the gravitational
sector contains, besides the metric tensor, a scalar field
(i.e., it is a scalar-tensor theory), which is coupled with
the spacetime curvature through the Gauss-Bonnet term
R2

GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2, where Rμναβ, Rμν, R
are the Riemann tensor, the Ricci tensor and the Ricci
scalar, respectively. The action is [31,32]:

S¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
R−

1

2
∂μϕ∂

μϕþVðϕÞþαGB
4

eϕR2
GB

�
þSm

ð1Þ

where Sm is the matter Lagrangian, which we do not
consider in this paper since we are interested in BH
spacetimes. We also neglect, for simplicity, the scalar field
potential VðϕÞ.
EdGB gravity naturally arises in low-energy truncations

of string theories; it belongs to the class of Horndeski
gravity [33,34], i.e. the scalar-tensor theories with second-
order-in-time field equations (which are thus free from the
Ostrogradsky instability). At variance with several other
scalar-tensor theories, EdGB gravity does not satisfy the
no-hair theorems: stationary BHs have a nontrivial scalar
field profile, and are not described by the Kerr metric.
As discussed in Sec. II, a static BH with mass M can

exist in EdGB gravity only if αGB=M2 ≲ 0.69; a similar
bound applies for stationary, rotating BHs. Therefore, the
existence of the lightest BH observed, J1655-40, with mass
M ≃ 5.4 M⊙ implies

ffiffiffiffiffiffiffiffi
αGB

p
<6.6Km. Current observations

of binary BH coalescences by LIGO and Virgo lead to a
comparable constraint,

ffiffiffiffiffiffiffiffi
αGB

p
< 9.1 Km [35].3

QNMs of BHs in EdGB gravity have been computed in
[19] for nonrotating BHs, and in [23] (hereafter, Paper I) for
rotating BHs at first order in the spin. In this article we shall
compute the QNMs of stationary, rotating BHs in EdGB
gravity, by performing a slow-rotation expansion, as in
[37–39], to second order in the spin ā.
We shall use geometric units, G ¼ c ¼ 1. In Sec. II we

describe stationary BHs in EdGB gravity. In Sec. III we
discuss perturbations of the stationary BH background, up
to second order in ā. In Sec. IV we discuss the results of our
computations, and in Sec. V we draw our conclusions. In
the Appendix we give further details on the perturbation
equations to second order in the spin.

II. STATIONARY BLACK HOLES IN
EINSTEIN-DILATON GAUSS-BONNET GRAVITY

The field equations obtained from (1) (with VðϕÞ ¼
Sm ¼ 0) are

FIG. 1. Real (upper panel) and imaginary (lower panel) parts of
the relative difference between the QNMs of Kerr BHs and those
of rotating BHs computed within the slow-rotation approxima-
tion, for the ðnlmÞ ¼ ð022Þ; ð033Þ modes. The slow-rotation
expansion is performed to first order (O1), to second order (O2),
to second order with Padé resummation (Padé). The horizontal
dotted line represents a 1% error.

2A similar computation in [24] leads to a smaller agreement.
This is mainly due to the fact that, after the computation of the
mode frequencies ωnlðāÞ by solving the perturbation equations at
first order in the spin, we perform a Taylor expansion of ωnlðāÞ
around ā ¼ 0 (see Sec. III C); we find that this improves the
accuracy of the modes in the slow-rotation regime.

3Note that the different conventions in this article and in [35]
lead to a correction factor of 4

ffiffiffi
π4

p
in the definition of

ffiffiffiffiffiffiffiffi
αGB

p
, see

e.g. [36].
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1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼

αGB
4

eϕR2
GB ð2Þ

Gμν ¼
1

2
∂μϕ∂νϕ −

1

4
gμνð∂ρϕÞð∂ρϕÞ − αGBKμν ð3Þ

where Gμν is the Einstein tensor,

Kμν ¼
1

8
ðgμρgνσ þ gμσgνρÞϵδσγα∇βðR̃ρβ

γαeϕ∂δϕÞ; ð4Þ

ϵμνδγ is the Levi-Civita tensor, and R̃μν
ρσ ¼ ϵμνδγRδγρσ.

A. Nonrotating black holes

The solution of Eqs. (2), (3) describing a static, spheri-
cally symmetric BH has been derived in [32] (see also
[40]). In this case, the spacetime metric can be written as:

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2dΩ2 ð5Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2. The functions AðrÞ, BðrÞ
and ϕðrÞ are found by numerical integration [32,40].
By requiring asymptotic flatness and an asymptotically
vanishing scalar field, one finds an unique solution,
with an ADM mass M and a scalar charge D which appear
in the asymptotic expansion of the metric and of the scalar
field:

A ¼ 1 −
2M
r

þO

�
1

r3

�

ϕ ¼ D
r
þ DM

r2
þO

�
1

r3

�
: ð6Þ

The solution depends on αGB through the dimensionless
coupling parameter

ζ ¼ αGB
M2

; ð7Þ

which has to satisfy the condition

0 ≤ ζ < ζmax ≃ 0.691: ð8Þ

If ζ ≥ ζmax, it is not possible to enforce regular boundary
conditions on the horizon, and the BH becomes a naked
singularity [41].
The scalar charge D and the horizon radius rh depend on

the BH mass and of the coupling ζ:

D
M

¼ ζ

2
þ 73

60
ζ2 þOðζ3Þ

rh
2M

¼ 1 −
49

1280
ζ2 þOðζ3Þ: ð9Þ

For a given value of the coupling constant αGB, there is a
single static, spherically symmetric BH solution for each
value of the mass satisfying M ≥ Mmin ¼ αGBζ

−1=2
max .

The field equations (2), (3) can also be solved perturba-
tively in the parameter ζ [42]. This leads to an analytic
expression for the metric and the scalar field:

AðrÞ ¼ 1 −
2M
r

þ
XNζ

j¼2

ζjAðjÞðrÞ

BðrÞ ¼ 1 −
2M
r

þ
XNζ

j¼2

ζjBðjÞðrÞ

ϕðrÞ ¼
XNζ

j¼1

ζjϕðjÞðrÞ ð10Þ

where AðjÞðrÞ, BðjÞðrÞ, and ϕðjÞðrÞ can be written as
expansions in powers of 1=r.

B. Rotating black holes

In the case of stationary, rotating BHs, Eqs. (2), (4) have
been solved numerically in Refs. [43,44], with no assump-
tions on the rotation rate. They have also been solved
analytically [40,45] in terms of a perturbative expansion in
the coupling parameter ζ and in the spin ā:

ds2 ¼ −AðrÞ½1þ 2hðr; θÞ�dt2 þ 1

BðrÞ ½1þ 2pðr; θÞ�dr2

þ r2½1þ 2kðr; θÞ�½dθ2 þ sin2 θðdφ −ϖðr; θÞdtÞ2�
ð11Þ

where AðrÞ, BðrÞ, ϕðrÞ are given in Eqs. (10), while
ϖðr; θÞ, hðr; θÞ, pðr; θÞ and the scalar field ϕðr; θÞ are
given as expansions in ζ, ā and in the Legendre poly-
nomials PlðθÞ. For instance, the scalar field expansion is

ϕðrÞ ¼
XNζ

j¼1

XNā

n¼0;2;4;…

Xn
l¼0;2;4…

ζjānϕðnjÞ
l ðrÞPlðθÞ; ð12Þ

where Nζ, Na, n are the truncation orders of the expansions
in the coupling, in the spin and in the Legendre poly-
nomials. The expansions of ϖðr; θÞ, hðr; θÞ, pðr; θÞ have
the same structure. Note that for ζ ¼ 0 (i.e., in GR) the
metric (11) reduces to the Hartle-Thorne metric [37].
The explicit expression of this expansion is given in [45]

and in the Mathematica notebook in the Supplemental
Material [46]. Similarly, the horizon radius rh, the scalar
charge D and the maximum allowed coupling ζmax acquire
corrections with respect to the nonrotating case, and can be
expressed as expansions in ζ and ā.
In the following we shall study perturbations around the

slowly rotating BH background given by the expansion
(11), (12). We shall truncate the spin expansion at Nā ¼ 2.
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As discussed in Sec. IVA, an assessment of the slow-
rotation expansion in GR, and an analysis of the truncation
error at different orders in the coupling, suggest that in this
way we should be able to compute the QNMs, for ā ∼ 0.4,
with truncation errors within ∼1%, and for ā ∼ 0.7, with
truncation errors within ∼5%. Moreover, we shall truncate
the expansion in the coupling at Nζ ¼ 6; this should lead to
errors within ∼1% for coupling constant ζ ∼ 0.4 for the real
part of the QNMs, and for ζ ∼ 0.3 for the imaginary part.

III. PERTURBATIONS OF EINSTEIN-DILATON
GAUSS-BONNET BLACK HOLES

We consider a perturbed stationary, rotating BH. The
spacetime metric and the scalar field are

gμν ¼ gð0Þμν þ hpolμν þ haxμν

ϕ ¼ ϕð0Þ þ δϕ ð13Þ

where gð0Þμν , ϕð0Þ are given by Eqs. (11), (12). The metric
perturbation is decomposed in components with polar and
axial parities.

A. General structure of the equations

The perturbations of the metric tensor and of the scalar
field are expanded in tensor spherical harmonics as:

δϕðt; r; θ;φÞ ¼ 1

r
ΦlmðrÞYlmðθ;φÞe−iωt; ð14Þ

hpolμν ðt; r; θ;φÞdxμdxν
¼ ½AðrÞHlm

0 ðrÞdt2 þ 2Hlm
1 ðrÞdtdrþ B−1ðrÞHlm

2 ðrÞdr2
þ KlmðrÞðdr2 þ sin2 θdφ2Þ�Ylmðθ;φÞe−iωt; ð15Þ

haxμνdxμdxν ¼ 2ðhlm0 ðrÞdtþ hlm1 ðrÞdrÞ
× ðSθðθ;φÞdθ þ Sφðθ;φÞdφÞe−iωt ð16Þ

where we have chosen the Regge-Wheeler gauge [47,48],
and ðSlmθ ; Slmφ Þ ¼ ð−ðsin θÞ−1Ylm

;φ ; sin θYlm
;θ Þ. Replacing this

expansion in Eqs. (2), (3) leads to a set of partial differential
equations in r and θ (see the Appendix). Due to the
stationarity and axial symmetry of the background, the
dependence on on t and φ factors out as ∼eiðmφ−ωtÞ, and
the equations with different values of m, ω are decoupled.
Following e.g. [49] (see also [50] and Paper I), we can

reduce the perturbation equations to a system of ordinary
differential equations in r, up to second order in the spin.
Since the background is not spherically symmetric, equa-
tions with different values of l are coupled. Schematically,
the general structure of the perturbation equations can be
written as:

0 ¼ Plm þ āmP̄lm þ ā2P̂lm þm2ā2 ¯̄Plm

þ āðQlmÃl−1m þQlþ1mÃlþ1mÞ
þ ā2ðQl−1mQlmP̆l−2m þQlþ1mQlþ2mP̆lþ2mÞ
þmā2ðQlmǍl−1m þQlþ1mǍlþ1mÞ ð17Þ

0 ¼ Alm þ āmĀlm þ ā2Âlm þm2ā2 ¯̄Alm

þ āðQlmP̃l−1m þQlþ1mP̃lþ1mÞ
þ ā2ðQl−1mQlmĂl−2m þQlþ1mQlþ2mĂlþ2mÞ
þmā2ðQlmP̌l−1m þQlþ1mP̌lþ1mÞ ð18Þ

whereQlm are constant coefficients, andPlm, P̄lm, P̂lm,
¯̄Plm,

P̃lm, P̆lm, P̌lm, (Alm, Ālm, Âlm,
¯̄Alm, Ãlm, Ălm, Ǎlm) are

combinations of the polar perturbation functions Hlm
0 , Hlm

1 ,
Hlm

2 , Klm, Φlm (of the axial perturbation functions hlm0 ,
hlm1 ). We remark that the expressions Plm, etc. do not depend
explicitly on the harmonic indexm. For further details, see the
Appendix and the Supplemental Material [46].
While at zeroth order in the spin the equations (Plm ¼ 0,

Alm ¼ 0) are decoupled, at first order in the spin polar
perturbations with harmonic index l are coupled to axial
perturbations with harmonic indexes l� 1, and vice versa.
Moreover, when m ≠ 0 polar (axial) perturbations are
coupled to perturbations having the same l and the same
parity (see the discussion in Paper I). At second order in the
spin, perturbations with harmonic index l are also coupled
to perturbations with same parities and harmonic indexes
l� 2, and (when m ≠ 0) to perturbations with opposite
parities and harmonic indexes l� 1.

B. Quasinormal modes

The QNMs are the proper modes at which BHs (or
compact stars) oscillate when excited by nonradial pertur-
bations (see e.g. [5–7] and references therein). At variance
with normal modes, the QNMs are damped oscillations,
since they are associated to GW emission. Therefore the
corresponding frequencies ω [see Eqs. (14)–(16)] are
complex: ω ¼ ωR þ iωI , with ωI < 0 being the inverse
of the damping time of the oscillation.
To find the QNM frequencies, we solve the perturbation

equations with Sommerfeld boundary conditions, i.e. out-
going waves at infinity and ingoing waves at the horizon.
At the horizon and at infinity, the scalar (ΦlmðrÞ) and
gravitational (Hlm

1 ðrÞ=r, KlmðrÞ, etc.) perturbation func-
tions behave as

Alm
in e

−ikHr� þ Alm
oute

ikHr� ðr → rhÞ
Alm
in e

−iωr� þ Alm
oute

iωr� ðr → ∞Þ; ð19Þ

where r� is a properly defined tortoise coordinate for the

background spacetime gð0Þμν (see below), and
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kH ¼ ω −mΩH with ΩH ¼ − lim
r→rh

gtφ
gφφ

: ð20Þ

At the horizon and at infinity the couplings (between scalar
and gravitational perturbations, and between perturbations
with different values of l) are subleading, and the pertur-
bation equations can be written as two second-order
differential equations with the structure (with Zlm being
either Φlm or Klm)

Zlm
;r�r� þ k2HZ

lm ¼ Oðr − rhÞ ðr → rhÞ

Zlm
;r�r� þ ω2Zlm ¼ O

�
1

r2

�
ðr → ∞Þ; ð21Þ

with boundary conditions

Zlm ∼ e−ikHr� at ðr → rhÞ
Zlm ∼ eiωr� at ðr → ∞Þ: ð22Þ

The tortoise coordinate r�ðrÞ maps the region outside the
BH horizon r ∈ ½rh;∞� into r� ∈ ½−∞;þ∞�; the function

dr
dr�

¼ FðrÞ ð23Þ

behaves as FðrÞ ∼ r − rh for r → rh, and FðrÞ → 1 for
r → ∞. The explicit expression of FðrÞ can be found by
requiring that the perturbation equations reduce, at the
horizon and at infinity, to Eq. (21).
Actually, for rotating BHs in EdGB gravity there are

different possible functions FðrÞ satisfying this require-
ment. In Paper I we have shown that by imposing a stronger
requirement, i.e. that besides Eq. (21),

Zlm
;r�r� þ ω2Zlm ¼ lðlþ 1Þ

r2
Zlm þO

�
1

r3

�
ð24Þ

for r → ∞, the function FðrÞ is uniquely determined. To
Oðζ2Þ, it is

FðrÞ ¼
�
1 −

rh
r

��
1 − ā2

rhðr2 þ rrh þ r2hÞ
8r3

− ζ2
�

rh
3840r4

ð147r3 þ 117r2rh − 526rr2h þ 263r3hÞ

þ ā2
rh

30720r3
ð375r2 þ 435rrh þ 343r2hÞ

��
þOðζ3Þ þOðā3Þ: ð25Þ

The explicit expression of FðrÞ to Oðζ6Þ is given in the
Supplemental Material [46]. We have verified that with a
different definition of the tortoise coordinate—satisfying
the condition (21) but not the stronger condition (24)—the

values of the QNMs are the same within the numeri-
cal error.
We remark that both the equations (17), (18) and the

boundary conditions for QNMs (22) are invariant for the
transformation in ðā; mÞ → ð−ā;−mÞ (note that ΩH ∝ ā),
as long as axial perturbations change sign and polar
perturbations remain the same. Therefore, the solution
and the quasinormal modes frequencies are invariant for
this transformation as well. This implies that the OðāÞ
corrections in the spin are odd inm, while the second-order
corrections are even (see e.g. [51] and Paper I). Since the
equations are quadratic at most in m, we shall make the
following ansatz for the QNM frequencies

ω ¼ ω0 þ āmω1 þ ā2ðω2a þm2ω2bÞ þOðā3Þ; ð26Þ

where ωr (r ¼ 0; 1; 2a; 2b) do not depend on m. This will
be confirmed by the actual QNM computation.

C. Perturbation equations

We shall here discuss the derivation and the numerical
implementation of the perturbation equations to second
order in the spin. For the derivation in the nonrotating case
and to first order in rotation, we refer the reader to [19] and
to Paper I, respectively.
We decompose the metric and scalar field perturbations

in terms of the perturbation functions of polar parity
fHlm

0 ðrÞ; Hlm
1 ðrÞ; Hlm

2 ðt; rÞ; KlmðrÞ;ΦlmðrÞg and of axial
parity fhlm0 ðrÞ; hlm1 ðrÞg as in Eqs. (14)–(16). The field
equations (2), (3), linearized in the perturbations and to
second order in the spin, yield a system of ordinary
differential equations, with the general structure (17),
(18). We remark that the equations couple perturbations
with different parities, and with different values of the
harmonic index l.
As discussed in [38,51,52], the couplings of the pertur-

bations with index l to those with index l� 1 can be
neglected in the computation of the QNM spectrum to first
order in the spin. Similarly, as we are going to show, we can
neglect the couplings between perturbations with index l
and with index l� 2 in the computation of the QNMs to
second order in the spin.
Let us consider the expansion in the spin of the perturba-

tion functions with polar parities Zlm
pol (¼ Hlm

0 ; Hlm
1 ; …) and

with axial parities Zlm
ax (¼ hlm0 , hlm1 ):

Zlm
pol=ax ¼ Zlmð0Þ

pol=ax þ āZlmð1Þ
pol=ax þ ā2Zlmð2Þ

pol=ax: ð27Þ

Since perturbations with index l� 1 are always multiplied
by ā in the Eqs. (17), (18), their second-order term in the
expansion (27) does not contribute to the equations; more-
over, when they are multiplied by ā2, their first-order terms
does not contribute as well. Similarly, perturbations with
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index l� 2 contribute to the Eqs. (17), (18) with their
0-order part in the expansion (27) only.
Let us now assume that a source only excites a polar

perturbation with a given harmonic index l. The rotation-
induced couplings in the field equations induce perturba-
tions with axial parity and with harmonic index l0 ≠ l, but

they vanish in the nonrotating limit: Zlmð0Þ
ax ¼ Zl0mð0Þ

pol ¼ 0.

Axial parity perturbations with index l� 1 are excited
through the rotation-induced couplings at first order in
the spin, and are Zl�1m

ax ¼ OðāÞ; similarly, polar parity
perturbations with index l� 2 are excited through the
rotation-induced couplings at second order in the spin, and
are Zl�2m

pol ¼ Oðā2Þ. Therefore, neglecting Oðā3Þ terms,
Eqs. (17), (18) reduce to

Plm þ āmP̄lm þ ā2P̂lm þm2ā2 ¯̄Plm þ āðQlmÃl−1m þQlþ1mÃlþ1mÞ ¼ 0

Alþ1m þ āmĀlþ1m þ āQlþ1mP̃lm þmā2Qlþ1mP̌lm ¼ 0

Al−1m þ āmĀl−1m þ āQlmP̃lm þmā2QlmP̌lm ¼ 0: ð28Þ

These perturbations—on which we shall focus in this
work—form a subset of the solutions of Eqs. (17), (18),
called polar-led sector.
A similar set of solutions is the axial-led sector

of perturbations sourced by an axial perturbation
with a given l. We shall not consider axial-led

perturbations, because they have no coupling between
the metric and the scalar field at zero-th order in
rotation, and thus the QNMs are very close to those of
GR [19].
The perturbation equations for the polar-led sector can be

written as (see the Appendix)

AðIÞ
lm þ ā2AðIÞ

2;lm þ ā2ÂðIÞ
lm ½Q2

lm þQ2
lþ1m� þ ā2B̃ðIÞ

lm ½lQ2
lþ1m − ðlþ 1ÞQ2

lm� þ i ā mCðIÞ
lm þ ā2m2EðIÞ

lm

þQlmā½ÃðIÞ
l−1m þ ðl − 1ÞBðIÞ

l−1m� þQlþ1mā½ÃðIÞ
lþ1m − ðlþ 2ÞBðIÞ

lþ1m� ¼ 0; ð29Þ

lðlþ 1ÞαðJÞlm þ lðlþ 1Þā2αðJÞ2;lm − imā½β̃ðJÞlm þ ζðJÞlm − ðl − 1Þðlþ 2ÞξðJÞlm � þ ā2½ðlþ 1Þðl − 2ÞQ2
lm þ lðlþ 3ÞQ2

lþ1m�α̂ðJÞlm

þm2ā2ΔðJÞ
lm þ ā2½lQ2

lþ1m − ðlþ 1ÞQ2
lm�η̃ðJÞlm þ ā2½2m2 þQ2

lmðlþ 1Þðl2 − lþ 4Þ −Q2
lþ1mlðl2 þ 3lþ 6Þ�γ̃ðJÞl

þ āQlmðlþ 1Þfðl − 1Þα̃ðJÞl−1m − ηðJÞl−1m þ ðl − 2Þðl − 1ÞγðJÞl−1mg
þ āQlþ1mlfðlþ 2Þα̃ðJÞlþ1m þ ηðJÞlþ1m − ðlþ 2Þðlþ 3ÞγðJÞlþ1mg ¼ 0; ð30Þ

ðlþ 1Þðlþ 2ÞβðJÞlþ1m þ im ā½α̃ðJÞlþ1m þ ηðJÞlþ1m þ lðlþ 3ÞγðJÞlþ1m� þ āQlþ1mðlþ 2Þflβ̃ðJÞlm − ζðJÞlm − ðl − 1ÞlξðJÞlm g
þ imā2Qlþ1m½2α̂ðJÞlm − ðlþ 2ÞΔðJÞ

lm þ η̃ðJÞlm þ ðl − 1Þðlþ 4Þγ̃ðJÞlm � ¼ 0; ð31Þ

lðl − 1ÞβðJÞl−1m þ im ā½α̃ðJÞl−1m þ ηðJÞl−1m þ ðl − 2Þðlþ 1ÞγðJÞl−1m� þ āQlmðl − 1Þfðlþ 1Þβ̃ðJÞlm þ ζðJÞlm þ ðlþ 1Þðlþ 2ÞξðJÞlm g
þ im ā2Qlm½2α̂ðJÞlm þ ðl − 1ÞΔðJÞ

lm þ η̃ðJÞlm þ ðl − 3Þðlþ 2Þγ̃ðJÞlm � ¼ 0; ð32Þ

lðl − 1Þðlþ 1Þðlþ 2Þðslm þ ā2s2;lmÞ − im āðl − 1Þðlþ 2Þflm þ ā2½2m2 þQ2
lmðlþ 1Þðl2 − lþ 4Þ

−Q2
lþ1mlðl2 þ 3lþ 6Þ�g̃lm þ ā2½2m2 − lðlþ 1Þ þ ðlþ 1Þðlþ 2ÞQ2

lm þ lðl − 1ÞQ2
lþ1m�k̂lm

þ ā2f8m2 − 2lðlþ 1Þ −Qlml2ðlþ 1Þ½4ðl − 2Þ − lðlþ 1Þðlþ 4Þ� −Q2
lþ1ml½4ðlþ 3Þ − lðlþ 1Þðl − 3Þ�gŝlm

−Qlmfāðl − 1Þðlþ 1Þðlþ 2Þgl−1mg þQlþ1mfālðl − 1Þðlþ 2Þglþ1mg ¼ 0; ð33Þ

lðlþ 1Þðlþ 2Þðlþ 3Þtlþ1m þ im ālðlþ 3Þglþ1m − āQlþ1mflðlþ 2Þðlþ 3Þflmg
þ im ā2Qlþ1m½ðl − 2Þðlþ 3Þg̃lm − 2ðlþ 3Þk̂lm þ 4ðl − 1Þðlþ 3Þŝlm� ¼ 0; ð34Þ

ðl − 1Þðl − 2Þlðlþ 1Þtl−1m þ im āðl − 2Þðlþ 1Þgl−1m þ āQlmfðl − 1Þðl − 2Þðlþ 1Þflmg
þ im ā2Qlm½ðl − 2Þðlþ 3Þg̃lm þ 2ðl − 2Þk̂lm þ 4ðl − 2Þðlþ 2Þŝlm� ¼ 0; ð35Þ
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where the quantities AðIÞ, CðIÞ, αðJÞ, βðJÞ, etc. (I ¼ 0;…; 4,
J ¼ 0, 1) are combinations of the perturbation functions
and of their derivatives. We have followed and expanded
the notation of [49]; at variance with [49], the dependence
on the spin ā has been factored out; therefore, the quantities
appearing in Eqs. (29)–(35) depend on ζ but not on ā.

Moreover, we have introduced new quantities (A2;lm, E
ðIÞ
lm ,

α̂ðJÞlm , ΔJ
lm, η̃

ðJÞ
lm , γ̃ðJÞlm , s2;lm, g̃lm, k̂lm, ŝlm), which appear at

second order in the spin. The explicit expressions of the
quantities in Eqs. (29)–(35), up to Oðζ6Þ, are given in the
Supplemental Material [46].
We remark that since some of the tensor spherical

harmonics identically vanish for l ¼ 0, 1, it is possible
to exploit the residual gauge freedom to set to zero the axial
perturbations (see e.g. [22]). Therefore, Eqs. (29)–(35) are
valid for l ≥ 2 and, in the case l ¼ 2 (in which polar
perturbations with index l are coupled with axial perturba-
tions with index l� 1), the axial perturbations with index
l − 1 can be set to zero.
With appropriate combinations of the perturbation equa-

tions, we can find Hlm
0 and Hlm

2 as algebraic expressions in
terms of Hlm

1 and Klm. Thus, calling ξlm ¼ d
drΦ

lm and
defining

Ψlm ¼

0
BBBBBBBBBBBBBBB@

Hlm
1

Klm

Φlm

ξlm

hlþ1m
0

hlþ1m
1

hl−1m0

hl−1m1

1
CCCCCCCCCCCCCCCA

ð36Þ

we can cast our equations (for given values of l, m) as

d
dr

Ψlm þ P̂lmΨlm ¼ 0 ð37Þ

where P̂lm ¼ P̂ð0Þ
lm þ āP̂ð1Þ

lm þ ā2P̂ð2Þ
lm is an eight-dimensional

square matrix. In the l ¼ 2 case, since axial perturbations
with l ¼ 1 can be set to zero,Ψ2m ¼ fH2m

1 ; K2m;Φ2m; ξ2m;
h3m0 ; h3m1 g and the matrix P̂lm is six-dimensional.
As discussed in Sec. III B, the perturbation functions

behave at the horizon and at infinity as in Eq. (19). The
QNMs are the perturbations satisfying ingoing boundary
conditions at the horizon (∼e−ikHr�) with kH given in
Eq. (20), and outgoing boundary conditions at infinity
(∼eiωr�). To find the QNM (complex) frequencies, we
follow the same approach as in Paper I (see also e.g.
[50,53]): we define an eight-dimensional (six-dimensional
for l ¼ 2) square matrix whose columns are four (three)

independent solutions satisfying the QNM boundary con-
ditions at the horizon (superscript ð−Þ), and four (three)
independent solutions satisfying the boundary conditions at
infinity (superscript ðþÞ), evaluated at a matching point rm:
for l ¼ 2, we can write

X ¼ ðΨ−
1a Ψ−

1b Ψ−
1c Ψþ

1a Ψþ
1b Ψþ

1c Þ: ð38Þ

The QNMs are found by imposing the condition

detXðωnlmÞ ¼ 0: ð39Þ

As discussed in Paper I (see also [19]), the gravitational
QNMs of black holes in EdGB gravity belong to two
classes: gravitational-led modes (which reduce to the
gravitational QNMs of GR as ζ ¼ 0) and scalar-led modes
(which reduce to the scalar QNMs of GR as ζ ¼ 0). In this
article we only consider gravitational-led modes, which are
expected to be excited with larger amplitudes by realistic
sources [19,54].

D. Spin expansion of the quasinormal modes

1. Taylor expansion

As discussed in Sec. III B, the QNM frequencies at
second order in the spin [see Eq. (26)] can be written as

ωnlmðā; ζÞ ¼ ωnl
0 ðζÞ þ āmωnl

1 ðζÞ
þ ā2½ωnl

2aðζÞ þm2ωnl
2bðζÞ� þOðā3Þ ð40Þ

where ωnl
0 ðζÞ is the QNM frequency in the static

case. Equation (40) is a Taylor expansion around ā ¼ 0.
Therefore, once the function ωnlmðā; ζÞ is found from the
numerical solution of the equation, its derivatives with
respect to ā yield the functions ωnl

r ðζÞ (r ¼ 0; 1; 2a; 2b).
The separation between ω2a and ω2b is obtained by
repeating the computation for different values of m.

2. Padé resummation

The Taylor expansions (40) can be resummed using
Padé approximants (see [55,56]). The Padé resummation,
which replaces polynomials with rational functions, often
improves the convergence of an expansion. This technique
has been applied, for instance, to post-Newtonian expan-
sions [55], and more recently in the computation of BH
sensitivities in EdGB gravity [57,58]. Padé resummation
also improves the convergence of the spin expansion of BH
QNMs [59], as we shall discuss in Sec. IVA.
Given a Taylor expansion TKðxÞ of order K around

x ¼ 0, we can construct a Padé approximant P½M;N�, with
M, N integer numbers such that M þ N ¼ K, given by

P½M;N�ðxÞ ¼ A0 þ A1xþ A2x2 þ � � � þ AMxM

B0 þ B1xþ B2x2 þ � � � þ BNxN
ð41Þ
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such that P½M;N�ðxÞ ¼ TKðxÞ up to order K. Solving
order by order in x, the coefficients A0;…AM, B0;…; BN
can be determined as combinations of the Taylor expansion
coefficients.
Since the Taylor expansion to second order is not

accurate for QNMs of rotating BHs with large spins (we
remind that a BH in the aftermath of a binary coalescence
has typically ā ∼ 0.7), we shall perform a Padé resumma-
tion of the second-order expansion (40). In this case the
Taylor approximant of ωnlmðā; ζÞ is of second order, and
(for each ζ, n, l, m ≠ 0) the possible choices of Padé
approximants are

P½1;1�ðā;ζÞ

¼mωnl
0 ðζÞωnl

1 ðζÞþ ½m2ωnl
1
2ðζÞ−ωnl

0 ðζÞωnlm
2 ðζÞ�ā

mωnl
1 ðζÞ−ωnlm

2 ðζÞā ð42Þ

and

P½0;2�ðā;ζÞ

¼ ωnl
0
3ðζÞ

ωnl
0
2ðζÞþ ā2m2ωnl

1
2ðζÞ− āωnl

0 ðζÞ½mωnl
1 ðζÞþ āωnlm

2 ðζÞ�
ð43Þ

where we remind that ωnlm
2 ¼ωnl

2aþm2ωnl
2b. Note that since

the QNMs are complex, the coefficients of the Taylor and
Padé approximants are complex as well.
As suggested in [55], we shall use the “diagonal” Padé,

P½1; 1�, unless it is not accurate due to the presence of a pole
or a reduction of order in the polynomials, in which case we
instead use P½0; 2�. In practice, for the QNMs with n ¼ 0,
l ¼ 2, 3 we shall always use P½1; 1� except form ¼ 0 (since
Eq. (42) reduces to a constant) and for the imaginary parts
of the modes with m ¼ �1, for which P½1; 1� has a pole
close to the spin interval which we have considered. A
similar computation has been done in [59], where P½1; 1�
was used for all values of m.

IV. RESULTS

By performing the numerical integration explained in the
previous section, we find the functions ωnl

r ðζÞ, where r ¼
0; 1; 2a; 2b [see Eq. (40)]. As discussed in Sec. III C, we
focus on gravitational-led modes in the polar-led sector. We
have computed the fundamental (i.e., n ¼ 0) QNMs with
l ¼ 2, 3. We have not considered n > 0 QNMs because our
direct-integration approach it not accurate in the compu-
tation of overtones [60], and thus is not possible to extract
the EdGB correction for those modes.

A. Estimates of the truncation errors

In this work, we have expanded both the background
(Sec. II B) and the perturbation equations (Sec. III C) in the
spin ā, up to second order, and in the dimensionless

coupling constant ζ, up to sixth order. The QNMs have
then been expanded in the spin to second order, and
resummed using Padé approximants.

1. Expansion in the spin

In order to assess the accuracy of the expansion in the
spin, we have considered the slow-rotation expansion for
rotating BHs in GR (a similar approach has been followed
in [24]). We have computed the QNMs within the slow
rotation approximation, firstly to first order (neglecting
Oðā2Þ terms in the background and in the perturbation
equations) and then to second order; the QNMs have then
been Taylor-expended to the same order. Moreover, the
QNMs at second order in the spin have been resummed
using Padé approximants. Finally, we have compared the
frequencies of these modes with those of Kerr BHs (see e.g.
[61]), by computing the discrepancies

δωnlmðāÞ ¼ ωnlm
T;P − ωnlm

Kerr

ωnlm
Kerr

ð44Þ

where the subscripts “T” and “P” refer to the modes
(computed in slow-rotation expansion) Taylor-expanded
and Padé resummed, respectively, while the subscript
“Kerr” refers to the modes of Kerr BHs.
In Fig. 1 we show real and imaginary parts of the

discrepancies (44) as functions of ā, for the QNMs with
ðnlmÞ ¼ ð022Þ and ðnlmÞ ¼ ð033Þ, which are expected to
be the most excited in typical binary BH coalescences
[9,62–64]. The curves labeled O1, O2 show the discrep-
ancies between the modes of Kerr BHs and those computed
within the slow-rotation approximation, to OðāÞ and to
Oðā2Þ, respectively. The curves labeled Padé show the
discrepancies with the Oðā2Þ modes resummed using Padé
approximants (see Sec. III D). We see that at first order, the
discrepancy of the Taylor expansion is smaller than 1% as
long as ā≲ 0.22. Including the second order correction, the
discrepancy is smaller than 1% for ā≲ 0.4. The Padé
resummation improves the accuracy of the expansion,
which is accurate to ∼1% for ā≲ 0.6 and to ∼2%
for ā ≲ 0.7.
An analysis of the modes with different values of m

shows the same (or better) accuracy for the Padé-resummed
modes, but we need to employ the approximant P½0; 2�
instead of P½1; 1� in two cases: the modes with m ¼ 0 (for
which Eq. (42) reduces to a constant) and the imaginary
parts of the modes with m ¼ �1.4

4In the latter case, the Padé approximant P½1; 1� leads to a
larger error, compared with that of the Taylor approximant, for
ā ∼ 0.7; we think this is due to the presence of a pole close to the
considered range of values for the spin. If, instead, we use P½0; 2�
for the imaginary parts of the modes with n ¼ 0, l ¼ 2, 3,
m ¼ �1, the error is smaller than 1% for ā≲ 0.7.
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These results (which are similar to those found in [59],
with the exception of those for which we have used the
P½0; 2� approximant, finding better accuracy) provide an
indication that a second-order computation of QNMs may
be accurate for ā≲ 0.4 (ā≲ 0.7 with Padé resummation)
for EdGB gravity as well. In the following, then, we shall
mostly consider values of the spin in the range ā ∈ ½0; 0.7�.

2. Expansion in the coupling constant

To assess the accuracy of the expansion in the dimen-
sionless coupling ζ, we have computed the functions

ωnlðsÞ
r ðζÞ (40), by expanding the background and the

perturbation equations up to order s in ζ and up to second
order in ā; we have repeated the computation for
s ¼ 2;…; 6, denoting the functions computed in this

way as ωnlðsÞ
r ðζÞ. We then define the truncation error at

order s of ωnl
r ðζÞ as:

ϵnlðsÞrR;I ðζÞ ¼
jωnlðsþ1Þ

rR;I ðζÞ − ωðsÞ
rR;IðζÞj

jωnlðsÞ
rR;I ðζÞj

ð45Þ

where r ¼ 0; 1; 2a; 2b and the subscripts R, I refer to the
real and imaginary parts of the complex frequencies.
This analysis has been performed in Paper I to first

order in the spin, i.e. for r ¼ 0, 1. We here extend this
computation to the discrepancies of the Oðā2Þ contribu-
tions, i.e. for r ¼ 2a, 2b. The truncation errors for these
functions are shown in Fig. 2. We see that (as for r ¼ 0, 1,
see Paper I) the expansion in ζ is accurate within 1% as
long as ζ < 0.4 for the real parts of the modes, and ζ < 0.3
for the imaginary parts. Thus, in the rest of the paper we
shall consider these ranges for the coupling ζ. In Fig. 2
we also show the relative shift between the functions ωnl

r in
GR and in EdGB gravity; we can see that the truncation

error ϵnlðsÞr at s ¼ 5 is significantly smaller than the EdGB
contribution.

B. Quasinormal modes

The Padé QNMs with ðnlmÞ ¼ ð022Þ; ð033Þ are shown
in Fig. 3, as functions of the spin, for different values of ζ.
We can see that (for these modes) while at low values of the
spin the EdGB corrections increase (in modulus) both the
real and imaginary parts of the QNMs, when the spin is

FIG. 2. Truncation errors at order s ≤ 5 for ω2aðζÞ (upper panels) and ω2bðζÞ (lower panels), for the ðnlÞ ¼ ð02Þ QNM. The real and
imaginary parts are shown in left panels and right panels, respectively. The truncation error is always smaller than the relative correction
due to gravity modifications (solid curves).
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larger the EdGB correction increases the real parts of the
modes, decreases the imaginary parts.
In order to understand the effect of the EdGB correc-

tions, it is useful to define the relative differences between
the QNMs in EdGB gravity and in GR:

Δωnlm
R;I ðā; ζÞ ¼

ωnlm
R;I ðā; ζÞ − ωnlm

R;I ðā; 0Þ
ωnlm
R;I ðā; 0Þ

ð46Þ

where R, I refer to the real and imaginary parts, respec-
tively. These quantities are shown in Fig. 4, for different
values of ζ, as functions of ā, and in Fig. 5 for different
values of ā, as functions of ζ. The spin expansion is
performed to first and second order, and resummed using
Padé approximants; in Fig. 5 it is only resummed using
Padé approximants.
We note that (as argued in Paper I) the Oðā2Þ terms

enhance the EdGB corrections to the QNMs; moreover, the
corrections are further enhanced by the Padé resummation.
For ā ¼ 0.7, the l ¼ 2 fundamental mode is shifted of
∼0.5% for ζ ¼ 0.2, and of ∼2.5% for ζ ¼ 0.4. We also note
that the EdGB relative corrections of the imaginary parts
change sign for large values of the spins; this explain the
decreasing of the EdGB correction discussed above.

From Fig. 5 we note that when ζ ≲ 0.3, the contribution
of the GR deviations to the QNMs is typically smaller than
2%, which is the error we expect from the slow-rotation
expansion (see Fig. 1). Therefore, the slow-rotation expan-
sion to Oðā2Þ discussed in this paper should only be used
for the EdGB corrections [(Oðζ2Þ], while Kerr modes (or a
slow-rotation expansion to a high order) should be used to
compute the GR contribution [Oðζ0Þ]. In this way, the error
due to the Oðā2Þ truncation would only affect the EdGB
part of the modes. Finally, in Fig. 6 we show the EdGB
relative corrections for the fundamental modes with l ¼ 2,
3, for different values of m.

C. Fits and Taylor expansions in the coupling constant

We have fitted the functions ωnl
r ðζÞ defined in Eq. (40)

with sixth-order polynomials in ζ (ζ ∈ ½0.0.4� for the real
parts, ζ ∈ ½0; 0.3� for the imaginary parts):

Mωnl
r ðζÞ ¼

X6
i¼0

ζiCnl
ri : ð47Þ

Since for gravitational-led modes the EdGB correction is of
Oðζ2Þ, we have set Cnl

r1 ¼ 0 [19]. We have estimated the

FIG. 3. Real (upper panels) and imaginary (lower panels) parts of the ðnlmÞ ¼ ð022Þ (left panels) and ðnlmÞ ¼ ð033Þ (right panels)
QNMs, evaluated using Padé approximants, as functions of the spin, for different values of ζ.
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FIG. 5. Same as Fig. 4, as a function of ζ, with QNMs computed with Padé resummation.

FIG. 4. Real (left panels) and imaginary (right panels) parts of the relative difference of EdGB QNMs with respect to GR, as a function
of ā. We consider the ðnlmÞ ¼ ð022Þ (upper panels) and ðnlmÞ ¼ ð033Þ (lower panels) QNMs computed up to the first order in the spin,
up to second order, and with Padé resummation.
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relative error of the fit (47), δf , as the mean over 100
attempts of the relative difference between the fit, com-
puted from randomly selected 80% of the data points, and
the remaining 20% of the data. For l ¼ 3 and r ¼ 2a2b, the
functions have been fitted with fourth-order polynomials,
because the error δf is smaller.
In Tables I–IV we show the coefficients of the fit (47) for

the (gravitational-led, polar-led) fundamental modes with
l ¼ 2, 3. We also show the corresponding relative errors δf .
These fits are very accurate to describe the functions

ωnl
r ðζÞ in the entire range ζ ∈ ½0; 0.4� ([0, 0.3] for the

imaginary parts). If we are interested in these functions for

ζ ≪ 1, we should instead compute a Taylor expansion of
them around ζ ¼ 0. A Taylor expansion is also useful for
data analysis techniques based on QNM expansions in the
spin, like PARSPEC [10,65,66]. Therefore, we performed a
Taylor expansion of the functions ωnl

r ðζÞ to Oðζ2Þ:

ωnl
r ðζÞ ¼ ωnl

rð0Þ þ ζ2ωnl
rð2Þ þOðζ3Þ ð48Þ

(as mentioned above, since we are considering gravita-
tional-led modes, the first-order contributions ωnl

rð1Þ iden-

tically vanish). The coefficients of the expansion (48), for
the ðnlÞ ¼ ð02Þ; ð03Þ modes, are given in Table V.

FIG. 6. Real (upper panels) and imaginary (lower panels) of the relative difference of EdGB QNMs with respect to GR as a function of
ā, for ζ̄ ¼ 0.2 and different values of m. We consider ðnlÞ ¼ ð02Þ (left panels) and ðnlÞ ¼ ð03Þ (right panels) QNMs.

TABLE I. Coefficients of the fit (47) of ω0l
r for gravitational-led, polar-led modes, with r ¼ 0, l ¼ 2, 3, up to i ¼ 6. In the last line we

show the relative error of the fit, δf .

Re (l ¼ 2) Im (l ¼ 2) Re (l ¼ 3) Im (l ¼ 3)

C0 0.37367 −0.08896 0.59944 −0.09270
C2 −1.406 × 10−2 −4.70 × 10−3 −5.453 × 10−2 −7.19 × 10−3

C3 −7.53 × 10−3 −6.10 × 10−3 −3.093 × 10−2 −1.098 × 10−2

C4 1.35 × 10−3 −3.22 × 10−3 6.419 × 10−2 1.001 × 10−2

C5 7.09 × 10−3 −1.61 × 10−3 2.417 × 10−2 2.158 × 10−2

C6 −2.03 × 10−3 −2.8 × 10−4 −5.215 × 10−2 −3.345 × 10−2

δf 2 × 10−9 3 × 10−8 10−7 2 × 10−7
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TABLE IV. As in Table III, with r ¼ 2b.

Re (l ¼ 2) Im (l ¼ 2) Re (l ¼ 3) Im (l ¼ 3)

C0 0.00896 −0.00031 0.00661 0.00006
C2 −8.37 × 10−3 3.13 × 10−3 −9.95 × 10−3 7.0 × 10−4

C3 −1.201 × 10−2 2.95 × 10−3 −4.90 × 10−3 −2.27 × 10−3

C4 2.67 × 10−3 −1.046 × 10−2 4.78 × 10−3 −1.57 × 10−3

C5 −5.926 × 10−2 3.088 × 10−2

C6 8.254 × 10−2 −6.819 × 10−2

δf 5 × 10−6 5 × 10−4 2 × 10−4 4 × 10−2

TABLE II. As in Table I, with r ¼ 1.

Re (l ¼ 2) Im (l ¼ 2) Re (l ¼ 3) Im (l ¼ 3)

C0 0.06289 0.00100 0.06737 0.00065
C2 −1.048 × 10−2 2 × 10−5 −2.156 × 10−2 1.18 × 10−3

C3 −1.074 × 10−2 −2.69 × 10−3 −2.056 × 10−2 −3.19 × 10−3

C4 −1.53 × 10−3 −9.86 × 10−3 4.465 × 10−2 3.9 × 10−4

C5 −2.40 × 10−3 8.90 × 10−3 2.341 × 10−2 −1.224 × 10−2

C6 1.433 × 10−2 −3.773 × 10−2 −6.800 × 10−2 1.056 × 10−2

δf 5 × 10−8 2 × 10−5 10−6 10−4

TABLE III. As in Table I, with r ¼ 2a. The fit for l ¼ 3 stops at fourth order in ζ.

Re (l ¼ 2) Im (l ¼ 2) Re (l ¼ 3) Im (l ¼ 3)

C0 0.03591 0.00638 0.04755 0.00659
C2 1.348 × 10−2 6.50 × 10−3 2.941 × 10−2 1.857 × 10−2

C3 1.051 × 10−2 8.48 × 10−3 2.354 × 10−2 8.93 × 10−3

C4 1.051 × 10−2 5.06 × 10−3 −2.391 × 10−2 −2.78 × 10−3

C5 4.85 × 10−3 1.402 × 10−2

C6 1.037 × 10−2 −2.24 × 10−3

δf 7 × 10−7 2 × 10−6 10−4 10−3

TABLE V. Coefficients ωnl
rðAÞ of the Taylor expansion (48), for the gravitational-led, polar-led fundamental (n¼0) modes with l¼2, 3.

rA Re (l¼2) Im (l¼2) Re (l¼3) Im (l¼3)

00 0.37367 −0.08896 0.59944 −0.09270
10 6.289×10−2 1.00×10−3 6.737×10−2 6.5 × 10−4

2a0 3.591×10−2 6.38×10−3 4.755×10−2 6.59×10−3

2b0 8.96×10−3 −3.1×10−4 6.61 × 10−3 6 × 10−5

rA Re (l¼2) Im (l¼2) Re (l¼3) Im (l¼3)

02 −1.411 × 10−2 −4.70×10−3 −5.463×10−2 −7.21×10−3

12 −1.049 × 10−2 4 × 10−5 −2.166×10−2 1.17 × 10−3

2a2 1.340×10−2 6.54×10−3 2.947 × 10−2 1.777×10−2

2b2 −8.42×10−3 3.19×10−3 −9.50×10−3 4.3×10−4
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V. CONCLUSIONS AND OUTLOOK

In this article we have computed the QNMs of a rotating
BH in EdGB gravity. Strictly speaking, this is a slow-
rotation computation, since it is based on an expansion in
the spin ā up to second order. However, the use of Padé
approximants enhances the range of validity of the expan-
sion: an analysis of the general relativistic case suggests
that the QNMs derived with this approach are accurate
within ∼2% up to phenomenologically relevant values of
the spin, i.e. for ā≲ 0.7 (see also [59]).
We find that (as argued in Paper I) the second-

order contribution greatly enhances the EdGB correction
to the QNMs. For instance, for the real part of the
ðnlmÞ ¼ ð022Þ—which is the mode typically excited with
largest amplitude in actual BH ringdowns (see e.g. [64])—
assuming a BH spin of ā ¼ 0.7, the EdGB correction
estimated to OðāÞ for ζ ≃ 0.4 (ζ ≃ 0.3 for the imaginary
part) is of ≃1%, while that estimated to Oðā2Þ (with Padé
resummation) is of ≃2.5% (see Fig. 5).5

Our computation has been performed expanding the
background and the perturbation equations in the coupling
constant to Oðζ6Þ. An analysis of the truncation error
indicates that our results are accurate for ζ ≲ 0.4 for the real
parts of the modes, ζ ≲ 0.3 for the imaginary parts. We
provide analytical fits of the modes in this range of the
coupling constant. We also provide a Taylor expansion
around ζ ¼ 0, which can be useful in the data analysis of
ringdown signals.
Concerning the detectability of the EdGB deviations, we

note that Oð10Þ detections of binary BH ringdowns with
signal-to-noise ratios (SNRs) of the order of ∼30 are
expected to be sufficient to measure BH QNMs with an
accuracy of few percent (see e.g. [67]). Since third-gen-
eration detectors, like the Einstein Telescope [4], are
expected to reach even larger SNRs, they could be sensitive
enough to find the deviations studied in this article, at least
for the largest values of the coupling. This, however, is just
an order-of-magnitude estimate: in order to assess the
detectabilty of EdGB corrections in the BH QNMs by
third-generation detectors we need to know the SNR and
the number of events required to measure the EdGB shifts,
as functions of the coupling constant. This can only be
found with a proper sensitivity analysis of the combined
detections of several oscillating BHs, with different masses
and spins. Such analysis, based on the PARSPEC framework
[10], is currently in preparation [66].
This is the first computation, in a modified gravity

theory, of the QNMs of BHs to second order in rotation.
Although EdGB gravity is an interesting theory by itself for
a number of reasons, this can also be considered as a study

case, to understand which kind of deviation we may expect
in the ringdown signal. The mode corrections in specific
theories of gravity are a necessary ingredient of gravita-
tional spectroscopy, using future GW data to perform tests
of gravity which go beyond null tests of GR [10,65,66]. Of
course, the next step will to extend this computation to
other classes of possible GR deviations.
The computation presented here will also be useful, once

fully numerical simulations of BH coalescences in EdGB
gravity will be available [36,68–70], as a benchmark to test
the numerical codes.
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APPENDIX: EQUATIONS FOR GRAVITATIONAL
PERTURBATIONS AT SECOND ORDER

IN THE SPIN

The field equations (2), (3), linearized in the perturbation
around the stationary BH solution discussed in Sec. II, can
be written as follows (we follow the same notation as [49],
and leave implicit the sum over l, m):

½AðIÞ
lm þ ÃðIÞ

lm cos θ þ ÂðIÞ
lmcos

2θ�YðθÞ
þ im½CðIÞ

lm þ C̃ðIÞ
lm cos θ�YlmðθÞ þm2EðIÞ

lmY
lmðθÞ

þ ½BðIÞ
lm þ B̃ðIÞ

lm cos θ þ imDðIÞ
lm � sin θY 0lmðθÞ ¼ 0; ðA1Þ

½αðJÞlm þ α̃ðJÞlm cos θ þ α̂ðJÞlm cos2 θ� sin θYlmðθÞ;θ
− im½βðJÞlm þ β̃ðJÞlm cos θ þ β̂ðJÞlm cos2 θ�YlmðθÞ
þ ½ηðJÞlm þ η̃ðJÞlm cos θ� sin2 θYlmðθÞ
þ ½ξðJÞlm þ ξ̃ðJÞlm cos θ� sin θXlmðθÞ
þ ½γðJÞlm þ γ̃ðJÞlm cos θ� sin2 θWlmðθÞ ¼ 0 ðA2Þ

− ½βðJÞlm þ β̃ðJÞlm cosθþ β̂ðJÞlm cos2θþΔ̃ðJÞ
lm sin2θ�sinθYlmðθÞ;θ

−im½αðJÞlm þ α̃ðJÞlm cosθþ α̂ðJÞlm cos2θþΔðJÞ
lm sin2θ�YlmðθÞ

− ½ζðJÞlm þ ζ̃ðJÞlm cosθ�sin2θYlmðθÞ
− ½γðJÞlm lþ γ̃ðJÞlm cosθ�sinθXlmðθÞ
þ½ξðJÞlm þ ξ̃ðJÞlm cosθ�sin2θWlmðθÞ¼0; ðA3Þ

5Note that in the Conclusions of Paper I, due to a typographical
error, we wrote that the EdGB correction of the (022) mode for a
BH with ā ¼ 0.7, estimated to first order in the spin, is 18% while
the correct number was 1.8%.
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½flm þ f̃lm cos θ� sin θYlmðθÞ;θ þ im½glm þ g̃lm cos θ�YlmðθÞ

þ klm sin2 θYlmðθÞ þ ½slm þ ŝlm cos2 θ�X
lmðθÞ
sin θ

þ ½tlm þ t̂lm cos2 θ�WlmðθÞ ¼ 0; ðA4Þ
½glm þ g̃lm cos θ� sin θYlmðθÞ;θ − im½flm þ f̃lm cos θ�YlmðθÞ

þ k̂lm sin2 θYlmðθÞ − ½tlm þ t̂lm cos2 θ�X
lmðθÞ
sin θ

þ ½slm þ ŝlm cos2 θ�WlmðθÞ ¼ 0; ðA5Þ
where in Eq. (A1), I ¼ 0, 1, 2, 3 correspond to the
components of Einstein’s field equations behaving as
scalars under rotations, and I ¼ 4 corresponds to the scalar
field equation; J ¼ 0, 1 in Eqs. (A2), (A3) correspond to
the components of Einstein’s field equations behaving as
vectors under rotations; and Eqs. (A4), (A5), correspond to
the components of Einstein’s field equations behaving as
rank-two tensors under rotations. We have defined

Xlmðθ;φÞ≡ 2Ylm
;θφ − 2

cos θ
sin θ

Ylm
;φ ðA6Þ

Wlmðθ;φÞ≡ −2
cos θ
sin θ

Y;θ − lðlþ 1ÞYlm − 2
Ylm
;φφ

sin2 θ
: ðA7Þ

The coefficients
(i) AðIÞ

lm , α
ðJÞ
lm , βðJÞlm , slm, tlm contain both zeroth order and

second order in the spin terms;
(ii) ÃðIÞ

lm , C
ðIÞ
lm , B

ðIÞ
lm , α̃

ðJÞ
lm , β̃ðJÞlm , ηðJÞlm , ξðJÞlm , γðJÞlm , ζðJÞlm , flm, glm

are of order OðāÞ;
(iii) ÂðJÞ

lm , C̃ðJÞ
lm , EðJÞ

lm , B̃ðJÞ
lm , DðJÞ

lm , α̂ðJÞlm , β̂ðJÞlm , η̃ðJÞlm , ξ̃ðJÞlm ,

γ̃ðJÞlm ,ζ̃ðJÞlm , ΔðJÞ
lm , Δ̃ðJÞ

lm , f̃ðJÞlm , g̃ðJÞlm , kðJÞlm , k̂ðJÞlm , ŝðJÞlm , t̂ðJÞlm
are of the second order in the spin.

All of them are linear combinations of the perturbation
functions hlm0 ðrÞ, hlm1 ðrÞ, Hlm

0 ðrÞ, Hlm
1 ðrÞ, Hlm

2 ðrÞ, KlmðrÞ,
ΦlmðrÞ and their derivatives, with coefficients that depend
on l but not onm. Their explicit expansions in the coupling
parameter ζ, up to Oðζ6Þ, are given in the Supplemental
Material [46].
We project Eqs. (A1)–(A5) on the complete set of tensor

spherical harmonics, as in [49], decoupling the angular
variables:

AðIÞ
lm þ ÂðIÞ

lm ½Q2
lm þQ2

lþ1m� þ B̃ðIÞ
lm ½lQ2

lþ1m − ðlþ 1ÞQ2
lm� þ imCðIÞ

lm þm2EðIÞ
lm þQlmf½ÃðIÞ

l−1m þ ðl − 1ÞBðIÞ
l−1m�

þ im½C̃ðIÞ
l−1m þ ðl − 1ÞDðIÞ

l−1m�g þQlþ1mf½ÃðIÞ
lþ1m − ðlþ 2ÞBðIÞ

lþ1m� þ im½C̃ðIÞ
lþ1m − ðlþ 2ÞDðIÞ

lþ1m�g
þQlmQl−1m½ÂðIÞ

l−2m þ ðl − 2ÞB̃ðIÞ
l−2m� þQlþ1mQlþ2m½ÂðIÞ

lþ2m − ðlþ 3ÞB̃ðIÞ
lþ2m� ¼ 0; ðA8Þ

lðlþ 1ÞαðJÞlm − im½β̃ðJÞlm þ ζðJÞlm − ðl − 1Þðlþ 2ÞξðJÞlm � þ ½ðlþ 1Þðl − 2ÞQ2
lm þ lðlþ 3ÞQ2

lþ1m�α̂ðJÞlm

þm2ΔðJÞ
lm þ ½lQ2

lþ1m − ðlþ 1ÞQ2
lm�η̃ðJÞlm þ ½2m2 þQ2

lmðlþ 1Þðl2 − lþ 4Þ −Q2
lþ1mlðl2 þ 3lþ 6Þ�γ̃ðJÞlm

þQlmfðl − 1Þðlþ 1Þα̃ðJÞl−1m − ðlþ 1ÞηðJÞl−1m þ ðl − 2Þðl − 1Þðlþ 1ÞγðJÞl−1m

− im½2β̂ðJÞl−1m þ ðl − 1ÞΔ̃ðJÞ
l−1m þ ζ̃ðJÞl−1m − ðl − 2Þðlþ 3Þξ̃ðJÞl−1m�g

þQlþ1mflðlþ 2Þα̃ðJÞlþ1m þ lηðJÞlþ1m − lðlþ 2Þðlþ 3ÞγðJÞlþ1m − im½2β̂ðJÞlþ1m − ðlþ 2ÞΔ̃ðJÞ
lþ1m þ ζ̃ðJÞlþ1m − ðl − 2Þðlþ 3Þξ̃ðJÞlþ1m�g

þQl−1mQlmfðl − 2Þðlþ 1Þα̂ðJÞl−2m − ðlþ 1Þη̃ðJÞl−2m þ ðl − 2Þðlþ 1Þðl − 3Þγ̃ðJÞl−2mg
þQlþ1mQlþ2mflðlþ 3Þα̂ðJÞlþ2 þ lη̃ðJÞlþ2m − lðlþ 3Þðlþ 4Þγ̃ðJÞlþ2mÞg ¼ 0; ðA9Þ

lðlþ 1ÞβðJÞlm þ im½α̃ðJÞlm þ ηðJÞlm þ ðl − 1Þðlþ 2ÞγðJÞlm � þ ½ðlþ 1Þðl − 2ÞQ2
lm þ lðlþ 3ÞQ2

lþ1m�β̂ðJÞlm þ ½l2Q2
lþ1m

þ ðlþ 1Þ2Q2
lm�Δ̃ðJÞ

lm þ ½lQ2
lþ1m − ðlþ 1ÞQ2

lm�ζ̃ðJÞlm − ½2m2 þQ2
lmðlþ 1Þðl2 − lþ 4Þ −Q2

lþ1mlðl2 þ 3lþ 6Þ�ξ̃ðJÞlm

þQlmfðl − 1Þðlþ 1Þβ̃ðJÞl−1m − ðlþ 1ÞζðJÞl−1m − ðl − 2Þðl − 1Þðlþ 1ÞξðJÞl−1m

þ im½2α̂ðJÞl−1m − ðlþ 1ÞΔðJÞ
l−1m þ η̃ðJÞl−1m þ ðl − 2Þðlþ 3Þγ̃ðJÞl−1m�g

þQlþ1mflðlþ 2Þβ̃ðJÞlþ1m þ lζðJÞlþ1m þ lðlþ 2Þðlþ 3ÞξðJÞlþ1m þ im½2α̂ðJÞlþ1m þ lΔðJÞ
lþ1m þ η̃ðJÞlþ1m þ ðl − 2Þðlþ 3Þγ̃ðJÞlþ1m�g

þQl−1mQlmfðl − 2Þðlþ 1Þβ̂ðJÞl−2m − ðlþ 1Þζ̃ðJÞl−2m − ðl − 2Þðlþ 1Þðl − 3Þξ̃ðJÞl−2m − ðl − 2Þðlþ 1ÞΔ̃ðJÞ
l−2mg

þQlþ1mQlþ2mflðlþ 3Þβ̂ðJÞlþ2m þ lζ̃ðJÞlþ2m þ lðlþ 3Þðlþ 4Þξ̃ðJÞlþ2m − lðlþ 3ÞΔ̃ðJÞ
lþ2mg ¼ 0; ðA10Þ
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lðl − 1Þðlþ 1Þðlþ 2Þslm − imðl − 1Þðlþ 2Þflm þ ½2m2 þQ2
lmðlþ 1Þðl2 − lþ 4Þ −Q2

lþ1mlðl2 þ 3lþ 6Þ�g̃lm
þ ½2m2 − lðlþ 1Þ þ ðlþ 1Þðlþ 2ÞQ2

lm þ lðl − 1ÞQ2
lþ1m�k̂lm

þ f8m2 − 2lðlþ 1Þ −Q2
lmðlþ 1Þ½4ðl − 2Þ − lðlþ 1Þðlþ 4Þ� −Q2

lþ1ml½4ðlþ 3Þ − lðlþ 1Þðl − 3Þ�gŝlm
−Qlmfðl − 1Þðlþ 1Þðlþ 2Þgl−1m þ im½ðl − 3Þðlþ 2Þf̃l−1m − 2ðlþ 2Þkl−1m þ 4ðl − 2Þðlþ 2Þt̂l−1m�g
þQlþ1mflðl − 1Þðlþ 2Þglþ1m − im½ðl − 1Þðlþ 4Þf̃lþ1m þ 2ðl − 1Þklþ1m þ 4ðl − 1Þðlþ 3Þt̂lþ1m�g
þQl−1mQlmðlþ 1Þðlþ 2Þf−ðl − 2Þg̃l−2m þ k̂l−2m þ ðl − 3Þðl − 2Þŝl−2mg
þQlþ1mQlþ2mlðl − 1Þfðlþ 3Þg̃lþ2m þ k̂lþ2m þ ðlþ 3Þðlþ 4Þŝlþ2mg ¼ 0; ðA11Þ

0 ¼ lðl − 1Þðlþ 1Þðlþ 2Þtl þ imðl − 1Þðlþ 2Þglm þ ½2m2 þQ2
lmðlþ 1Þðl2 − lþ 4Þ −Q2

lþ1mlðl2 þ 3lþ 6Þ�f̃lm
þ ½2m2 − lðlþ 1Þ þ ðlþ 1Þðlþ 2ÞQ2

lm þ lðl − 1ÞQ2
lþ1m�klm

þ f8m2 − 2lðlþ 1Þ −Q2
lmðlþ 1Þ½4ðl − 2Þ − lðlþ 1Þðlþ 4Þ� −Q2

lþ1ml½4ðlþ 3Þ − lðlþ 1Þðl − 3Þ�gt̂lm
−Qlmfðl − 1Þðlþ 1Þðlþ 2Þfl−1m − im½ðl − 3Þðlþ 2Þg̃l−1m − 2ðlþ 2Þk̂l−1m þ 4ðl − 2Þðlþ 2Þŝl−1m�g
þQlþ1mflðl − 1Þðlþ 2Þflþ1 þ im½ðl − 1Þðlþ 4Þg̃lþ1m þ 2ðl − 1Þk̂lþ1m þ 4ðl − 1Þðlþ 3Þŝlþ1m�g
þQl−1mQlmðlþ 1Þðlþ 2Þf−ðl − 2Þf̃l−2m þ kl−2m þ ðl − 3Þðl − 2Þt̂l−2mg
þQlþ1mQlþ2mlðl − 1Þfðlþ 3Þf̃lþ2m þ klþ2m þ ðlþ 3Þðlþ 4Þt̂lþ2mg; ðA12Þ

where l ≥ 2 and

Qlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmÞ
ð2l − 1Þð2lþ 1Þ

s
: ðA13Þ

As discussed in Sec. III C, for polar-led perturbations with l ¼ 2 some of the terms in Eqs. (A8)–(A12) vanish, thus they
reduce to Eqs. (29)–(35).
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