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We study the thermodynamic properties of a static electrically charged spherical thin shell in d
dimensions by imposing the first law of thermodynamics on the shell. The shell is at radius R, inside it the
spacetime is Minkowski, and outside it the spacetime is Reissner-Nordström. We obtain that the shell
thermodynamics is fully described by giving two additional reduced equations of state, one for the
temperature and another for the thermodynamic electrostatic potential. We choose the equation of state for
the temperature as essentially a power law in the gravitational radius rþ with exponent a, such that the a ¼ 1

case gives the temperature of a shell with black hole thermodynamic properties, and for the electrostatic
potential we choose an equation of state characteristic of a Reissner-Nordström spacetime. The entropy of
the shell is then found to be proportional to Aaþ, where Aþ is the gravitational area corresponding to rþ, with
the exponent a obeying a > 0 to have a physically reasonable entropy. We are then able to perform the black
hole limit R ¼ rþ, find the Smarr formula for d-dimensional electrically charged black holes, and
generically recover the thermodynamics of a d-dimensional Reissner-Nordström black hole. We further
study the intrinsic thermodynamic stability of the shell with the chosen equations of state. We obtain that for
0 < a ≤ d−3

d−2 all the configurations of the shell are thermodynamically stable, for d−3
d−2 < a < 1 stability

depends on the mass and electric charge, for a ¼ 1 the configurations are unstable, unless the shell is at its
own gravitational radius, i.e., at the black hole limit, in which case it is marginally stable, and that for
1 < a < ∞ all configurations are unstable. Rewriting the stability conditions with variables that can be
measured in the laboratory, it is found that the sufficient condition for the stability of these shells is when the
isothermal electric susceptibility χp;T is positive, marginal stability happening when this quantity is infinite,
and instability, and thus depart from equilibrium, arising for configurations with a negative electric
susceptibility.

DOI: 10.1103/PhysRevD.106.104008

I. INTRODUCTION

Self-gravitating thin shell physics in general relativity has
proved of great value in the understanding of the many
aspects involving the interaction between gravitational and
matter fields. We mention a few of these aspects. First, the
main features of gravitational collapse and black hole
formation has been described in detail from the dynamics
of thin shells in Schwarzschild and Reissner-Nordström
spacetimes, as well as in some of their generalizations to
higher dimensions [1–6]. Second, the issue of the compact-
ness of stars has been studied through the help of neutral and
electrically charged thin shells [7]. Third, the understanding
of stars with outer normals to their surface pointing to
decreasing radius can be clearly formulated through the
maximum analytical extensions of shell solutions and their
appearance in the other side of the Carter-Penrose diagram

[8]. Fourth, wormhole spacetimes can be constructed
through the support of thin shells [9,10], the complementary
of wormholes and bubble universes is clearly displayed with
the use of thin shells [11]. Fifth, regular black holes can be
found employing thin shells [12–14].
Self-gravitating thin shells allow a precise mathematical

treatment not only in a dynamic context, but also in a
thermodynamic framework embedded within general rela-
tivity, and as such they are of great interest in the under-
standing of the thermodynamics of matter in a gravitational
field, as well as in the understanding of the thermodynamics
of the gravitational field itself. Remarkably, general rela-
tivity by itself fixes the equation of state for pressure of the
matter in a static spherical shell. On the other hand, general
relativity does not determine an equation of state for the
temperature. To find one, the first law of thermodynamics,
valid for the matter on the shell, has to be postulated with
all thermodynamic quantities that enter into it having a
precise and correct meaning. Then, the integrability
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conditions applied to the first law of thermodynamics
restrict the form of the temperature equation of state,
leaving nonetheless some freedom for its choice, that can
be performed through some deduced reasonable guess or via
some more fundamental description of matter, and which, in
turn, narrows the possible types for the entropy function.
For a shell with an exterior given by a Schwarzschild
spacetime this was performed in [15], also treated in [16],
and generalized to d-dimensions in [17]. The inclusion
of electric charge means that the exterior spacetime is
Reissner-Nordström, and although one needs to take care of
a further equation of state for the thermodynamic electric
potential, it also allows an exact treatment as done in [18],
also studied in [19], and with the extremal state being
analyzed in [20,21]. One important fact about thermody-
namics of shells is that the shell can be put to its own
gravitational radius. One can then argue that at this stage its
properties should be black hole like, and indeed they are.
The interest in thermodynamics of spacetimes, in par-

ticular in thermodynamics of shell spacetimes, comes from
black holes. Black holes radiate at the Hawking temper-
ature, have the Bekenstein-Hawking entropy, and thus, in
appropriate settings, can be described as thermodynamic
objects. In a path integral statistical mechanics formulation
for spherical black holes, the suitable ensemble to use is the
canonical ensemble, where one fixes a temperature at a
cavity of a given radius, and from which the full thermo-
dynamic properties of the system can then be deduced. For a
Schwarzschild vacuum spacetime one finds a small black
hole solution which is thermodynamically unstable and a
large black hole solution, of radius near the cavity radius,
which is stable, see [22,23] and its d-dimensional gener-
alization [24,25]. In this path integral formulation, one can
include a matter shell surrounding the black hole [26], put
electric charge into the black hole spacetime [27], and work
with AdS spacetimes [28].
Alternatively, one can find black hole thermodynamics

through matter thermodynamics via the quasiblack hole
approach [29–32]. In general, to have a thermodynamic
formulation, knowledge of the matter equations of state is
required. However, using the quasiblack hole approach one
is able to skip the setting of specific equations of state. In
this approach, one keeps the gravitational radius fixed, and
changes the proper mass and the radius of the configuration,
maintaining it near the black hole threshold. One can then
integrate the first law of thermodynamics over this set of
configurations, finding that the result is indeed model
independent, and retrieving fully the black hole properties.
Thus, thin shells, black holes, and quasiblack holes are of

importance in the understanding of thermodynamics of
spacetimes. It is certainly of significance to proceed with
these themes. In particular, it is of interest to study further
thermodynamic shell properties. Here we analyze the
entropy and the thermodynamic stability of a static electri-
cally charged spherical thin shell in d dimensions, as well

as its black hole limit, extending the analysis and the results
given in [17,18]. The study of systems in d dimensions is of
relevance in obtaining knowledge of features that are
permanent, independent of dimension, and is of use as
several theories of gravitation imply the existence of extra
dimensions. To make progress in our analysis, we impose
an equation of state such that the entropy of the shell is a
power in the gravitational area, i.e., the area corresponding
to the gravitational radius, and find that stability requires
positive heat capacity, positive isothermal compressibility,
and positive isothermal electric susceptibility. Putting the
shell at its own gravitational radius we find the correspond-
ing black hole thermodynamic properties including the
Smarr formula and its thermodynamic stability. The essen-
tial thermodynamic formalism used is in the book by
Callen [33].
This paper is organized as follows. In Sec. II, we apply

the thin shell formalism to obtain the internal energy and the
pressure of the shell in terms of the spacetime variables. In
Sec. III, we apply the first law of thermodynamics to the
shell and compute its entropy after providing two equations
of state, and afterward we analyze the black hole limit. In
Sec. IV, we study the intrinsic stability of the shell with such
equations of state and entropy, analyzing when applicable
the black hole limit. In Sec. V, we establish the connection
of intrinsic stability to physical quantities such as the heat
capacity, the isothermal compressibility and the isothermal
electric susceptibility. In Sec. VI we conclude. There are
several appendices that complete the paper, including one
where all the necessary plots to understand the thermody-
namic stability of the shell are displayed.

II. ELECTRICALLY CHARGED SPHERICAL
SHELL SPACETIME

A. Thin shell spacetime formalism

General relativity coupled to Maxwell electromagnetism
has the equations

Gab ¼ 8πGTab; ð1Þ

∇bFa
b ¼ Ja; ð2Þ

where, Gab is the Einstein tensor given in terms of the
metric gab and its first two derivatives,G is the gravitational
constant in d dimensions, the speed of light c is set to one,
c ¼ 1, Tab is the stress-energy tensor, ∇b is the covariant
derivative of the metric gab, Fab is the Maxwell tensor, Ja is
the electric current, and indices a, b, are d-dimensional
indices, running from 0 to d − 1. The Maxwell tensor Fab
also obeys the internal equations ∇½cFab� ¼ 0, where
brackets in indices means total antisymetrization, and allow
us to write Fab in terms of an electromagnetic potential
vector Aa as Fab ¼ ∂Ab

∂xa −
∂Aa

∂xb
. For an electrovacuum space-

time the stress-energy tensor Tab is given by
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Tab ¼ ε

�
Fa

cFbc −
1

4
gabFcdFcd

�
; ð3Þ

where the parameter ε is defined as ε ¼ ϵ ðd−3Þ
Ω , with ϵ being

the electromagnetic coupling constant, and Ω ¼ π
d−2
2

Γðd
2
Þ is the

area of a d − 2 unit sphere, which in four dimensions yields
the usual 4π. In a thin shell spacetime, one has an interior
region, Vi say, that obeys Eqs. (1) and (2), an exterior
region, Ve, that also obeys Eqs. (1) and (2), and a boundary
surface, i.e., a thin shell, in-between these two regions that
has properties found by appropriate junction conditions to
match the two different spacetime regions.
The interior Vi has coordinates xai assigned to it and a

metric giab. We denote nia as the covector orthogonal to a
hypersurface. An important quantity is given by the way in
which nia changes along the hypersurface, i.e., ∇ianib,
where ∇ia is the covariant derivative in the interior region.
If the coordinates of the hypersurface are denoted by yα,
where Greek indices α, β, are d − 1-dimensional indices
and run from 0 to d − 2, then the tangent vectors at the

hypersurface are ðeiÞaα ¼ ∂xai
∂yα. The interior Vi is assumed to

have an electromagnetic vector potential Aia and a corre-
sponding field strength Fiab ¼ ∂Aib

∂xia
− ∂Aia

∂xib
.

The exterior Ve has coordinates xae assigned to it and a
metric geab. We denote nea as the covector orthogonal to a
hypersurface. An important quantity is related to how nea
changes along the hypersurface, ∇eaneb, where ∇ea is the
covariant derivative in the exterior region. If the coordinates
of the hypersurface are denoted by yα then the tangent
vectors at the hypersurface are ðeeÞaα ¼ ∂xae

∂yα. The exterior Ve

is assumed to have an electromagnetic vector potential Aea

and a corresponding field strength Feab ¼ ∂Aeb
∂xea

− ∂Aea

∂xeb
.

The boundary hypersurface, with coordinates yα assigned
to it, and which can be a thin shell, is assumed to be timelike
and common to Vi and Ve. The pull-back of a covariant
tensorial quantity in each region allows the definition of the
covariant tensorial quantity at this boundary hypersurface.
Then, the junction conditions give that tensorial quantity
uniquely at the common boundary hypersurface. For the
interior, the metric gi has the pull-back ðϕ�giÞαβ ¼
giabðeiÞaαðeiÞbβ ≡ hiαβ, the quantity ∇ini has a pull-back
yielding the hypersurface extrinsic curvature Kiαβ, namely,
ðϕ�∇iniÞαβ ¼ ∇ianibeaαebβ ¼ ∇iαniβ ≡ Kiαβ, Ai has the
pull-back ðϕ�AiÞα ¼ AiaðeiÞaα ≡ Aiα, Fi has the pull-
back ðϕ�FiÞαβ ¼ FiabðeiÞaαðeiÞbβ ≡ Fiαβ, and Fi defined
such that Fia ≡ Fiabnib has the pull-back ðϕ�FiÞα ¼
FiabnibðeiÞaα ≡ Fiα. For the exterior, the metric ge has the
pull-back ðϕ�geÞαβ ¼ geabðeeÞaαðeeÞbβ ≡ heαβ, the quantity
∇ene has a pull-back yielding the extrinsic curvature Keαβ,
namely, ðϕ�∇eneÞαβ ¼ ∇eanebeaαebβ ¼ ∇eαneβ ≡ Keαβ, Ae

has the pull-back ðϕ�AeÞα ¼ AeaðeeÞaα ≡ Aeα, Fe has the

pull-back ðϕ�FeÞαβ ¼ FeabðeeÞaαðeeÞbβ ≡ Feαβ, and Fe

defined such that Fea ≡ Feabneb has the pull-back
ðϕ�FeÞα ¼ FeabnebðeeÞaα ≡ Feα. The first junction condi-
tion is the continuity of the metric

½hαβ� ¼ 0; ð4Þ

where ½hαβ�means ½hαβ� ¼ heαβ − hiαβ, and the same for any
other quantity. Equation (4) means that one can define a
metric hαβ at the boundary surface with coordinates yα and
of course such that it obeys hαβ ¼ hiαβ ¼ heαβ. The second
junction condition is

−ð½Kαβ� − ½K�hαβÞ ¼ 8πGSαβ; ð5Þ

whereK is the trace of the extrinsic curvatureKαβ, and Sαβ is
the stress-energy tensor for matter in the shell. We consider
that the thin shell is made of a perfect fluid having the stress-
energy tensor

Sαβ ¼ ðσ þ pÞuαuβ þ phαβ; ð6Þ

where σ is the energy density, p is the pressure and uα is the
velocity of the fluid on the boundary.
There are also junction conditions for the pull backs of

the covector potential and of the electromagnetic field
strength. They are given by

½Aα� ¼ 0; ð7Þ

½Fαβ� ¼ 0; ½Fα� ¼ jα; ð8Þ

where Fα ¼ Fabnbeaα is defined on each side of the
boundary hypersurface, i.e., from the interior and exterior
region sides, and the electric current jα is given by

jα ¼ ζσeuα; ð9Þ

with ζ being defined as ζ ¼ Ω
ϵq
, ϵq being the electric

permittivity, and with σe being the electric charge density.
Now we apply this formalism to a particular d-

dimentional spacetime, namely, a Minkowski interior, a
thin shell, and a d-dimensional Reissner-Nordström, also
called Reissner-Nordström-Tangherlini, exterior. We use the
convention that the coupling constant ϵ appearing implicitly
in Eq. (3) and the electric permittivity ϵq appearing implicitly
in Eq. (9) are set to one, ϵ ¼ 1 and ϵq ¼ 1, and the
d-dimensional constant of gravitation G is not set to one,
it is left generic.
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B. The spacetime solution

1. The interior

The interior region Vi is a vacuum d-dimensional
spherically symmetric Minkowski region with spherical
coordinates xai assigned to it such that x

a
i ¼ ðti; ri; θAi Þ with

A ∈ f1;…; d − 2g, and with line element

ds2i ¼ −dt2i þ dr2 þ r2dΩ2; 0 ≤ ri ≤ Ri; ð10Þ

where we have put r≡ ri, dΩ2 is the line element of a
(d − 2) unit sphere, and Ri is the radius of the shell as
measured from the interior.
The Maxwell potential covector Aa is given in the

interior region as

ðAiÞti ¼ Ai; ð11Þ

where Ai is a constant and the other components are zero.

2. The exterior

The exterior region Ve is a vacuum d-dimensional
spherically symmetric Reissner-Nordström-Tangherlini
region with spherical coordinates xae assigned to it such
that xae ¼ ðte; re; θAe Þ, with A ∈ f1;…; d − 2g, and with
line element

ds2e¼−fðrÞdt2eþfðrÞ−1dr2þr2dΩ2; Re≤ re≤∞; ð12Þ

where we have put r≡ re, a redefinition that can be
done, Re is the radius of the shell as measured from the
exterior, and

fðrÞ ¼ 1 −
2μm
rd−3

þ qQ2

r2ðd−3Þ
; ð13Þ

where m is the spacetime, also called ADM, mass and Q
is the total electric charge, and with μ and q being given
by

μ ¼ 8πG
ðd − 2ÞΩ ; q ¼ 8πG

ðd − 2ÞΩ ; ð14Þ

with G being the d-dimensional gravitational constant,
and again Ω ¼ π

d−2
2 Γðd

2
Þ−1 is the area of a (d − 2) unit

sphere. Thus, μ ¼ q. Note that without putting ϵ and ϵq to
one, q in Eq. (14) is q ¼ 8πGϵ

ðd−2ÞΩϵ2q.

The Reissner-Nordström metric has its gravitational
radius and Cauchy radius at its coordinate singularities
given by

rd−3� ¼ μm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2m2 − qQ2

q
; ð15Þ

where rþ corresponds to the gravitational radius and r− to
the Cauchy radius. Note that the gravitational radius and the
Cauchy radius in general are not horizon radii, they are only
horizon radii for a full electrovacuum solution of the
Einstein-Maxwell system of equations, in which case they
are the event horizon radius and the Cauchy horizon radius.
From Eq. (15), one sees that the extremal case, defined as
rþ ¼ r− yields a mass to charge relation given byffiffiffi
μ

p
m ¼ Q, which from Eq. (14) yields in four dimensionsffiffiffiffi

G
p

m ¼ Q. One can put G ¼ 1 to give in four dimensions
m ¼ Q, but we keep the d-dimensional G in our calcu-
lations to not fall into awkward units along the calculations.
The area Aþ corresponding to the gravitational radius rþ is
an important quantity, defined as the gravitational area, and
given by

Aþ ¼ Ωrd−2þ : ð16Þ

One can invert Eq. (15), giving

m ¼ 1

2μ
ðrd−3þ þ rd−3− Þ; Q ¼ ðrþr−Þd−32ffiffiffi

q
p : ð17Þ

Note that q in Eq. (17) can be swapped for μ due to
Eq. (14), but we stick to q whenever the coefficient is
associated to the electric charge Q. Now, with the two
characteristic radii r� defined in Eq. (15) we can rewrite
Eq. (13) as

fðrÞ ¼
�
1 −

�
rþ
r

�
d−3

��
1 −

�
r−
r

�
d−3

�
: ð18Þ

The Maxwell potential covector Aa is given in the exterior
region as

ðAeÞte ¼ −
Q

ðd − 3Þrd−3e
; ð19Þ

where we have set without loss of generality a constant of
integration Ae to zero, Ae ¼ 0, and the other components
are zero. Note than that the outer electric field is
ðFeÞter ¼ Q

rd−2e
. If we do not set ϵq ¼ 1 then Eq. (19) is

ðAeÞte ¼ − Q
ðd−3Þϵqrd−3e

þ Ae and the outer electric field

is ðFeÞter ¼ Q
ϵqrd−2e

.

3. The thin shell

The boundary hypersurface Σ is spherically symmetric
and has in principle a thin shell in it and it is useful to
give to it an intrinsic metric hαβ such that its line element
ds2 ¼ hαβdxαdxβ can be written as

TIAGO V. FERNANDES and JOSÉ P. S. LEMOS PHYS. REV. D 106, 104008 (2022)

104008-4



ds2Σ ¼ −dτ2 þ RðτÞ2dΩ2; ð20Þ

where the coordinate system yα ¼ ðτ; θAÞ has been chosen,
with A ∈ f1;…; d − 2g, the coordinate τ is the proper time
of the shell, and RðτÞ is the radius of the shell. The Maxwell
potential covector Aα is given at the thin shell as

ðAΣÞτ ¼ AΣ; ð21Þ

respectively, where AΣ is a constant and the other compo-
nents are zero. Recall that we use the latin indices to
designate quantities in the regions Ve and Vi whereas greek
indices designate quantities at the hypersurface. The pull-
back of the metric in the region Vi on the hypersurface Σ,
ðϕ�giÞαβ, assumes the line element form

ds2i;Σ ¼ ð−_t2i þ _R2
i Þdτ2 þ RiðτÞ2dΩ2; ð22Þ

where the boundary hypersurface Σ has an history defined
in the interior by RiðtiÞ and · ¼ d

dτ. The pull-back of the
metric in the region Ve on the hypersurface Σ, ðϕ�geÞαβ, is
needs to be symmetric. Since from

ds2e;Σ ¼
h
−fðReðτÞÞ_t2e þ fðReðτÞÞ−1 _R2

e

i
dτ2 þ ReðτÞ2dΩ2;

ð23Þ

where the boundary hypersurface Σ has an history defined
in the exterior by ReðteÞ. Now, we apply the first junction
condition, Eq. (4). i.e., ½hαβ� ¼ ðϕ�geÞαβ − ðϕ�giÞαβ ¼ 0 to
Eqs. (10), (12), and (20), to give two equations,

ReðτÞ ¼ RiðτÞ ¼ RðτÞ; ð24Þ

−_t2i þ _R2 ¼ −fðRÞ_t2e þ fðRÞ−1 _R2 ¼ −1: ð25Þ

Clearly, Eq. (24) entitles us to use the same radial
coordinate r for the interior, the boundary surface, and
the exterior, as we did a priori, and permits to define a
unique area A to the shell,

A ¼ ΩRd−2: ð26Þ

The extrinsic curvature of the hypersurface in both regions
can be computed from Kαβ ¼ ðϕ�∇nÞαβ ¼ ∇anbeaαebβ ,
where n is the unit outward normal covector to the
hypersurface. For the interior, ni is given by

ni ¼
�
1 −

�
dR
dti

�
2
�

−1
2

�
− dR

dti
dti þ dri

�
. In the hypersur-

face, it is useful to write these components in terms of τ, so

using Eq. (25), we have

�
1 −

�
dR
dti

�
2
�

−1
2jΣ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
and dR

dti
jΣ ¼ _Rffiffiffiffiffiffiffiffi

1þ _R2
p , so that ni ¼ ð− _R;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
; 0; 0Þ. For

the exterior, ne is given by ne ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p �
fðreÞ2−�

dR
dte

�
2
�

−1
2

�
− dR

dte
dte þ dre

�
. In the hypersurface, it is

useful to write these components in terms of τ, so

using Eq. (25) we have
ffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p �
fðreÞ2 −

�
dR
dte

�
2
�

−1
2jΣ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

fðRÞþ _R2
p

fðRÞ and dR
dte

jΣ ¼ fðRÞ _Rffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞþ _R2

p , so that ne ¼�
− _R;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞþ _R2

p
fðRÞ ; 0; 0

�
, where from Eq. (13) one has

fðRÞ ¼ 1 − 2μm
Rd−3 þ qQ2

R2ðd−3Þ. Then, for the interior the nonzero
components of the extrinsic curvature are

ðKiÞττ ¼
R̈ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _R2
p ; ðKiÞθAθA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
R

; ð27Þ

and for the exterior are

ðKeÞττ ¼
R̈þ ∂RfðRÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞþ _R2

q ; ðKeÞθAθA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞþ _R2

q
R

: ð28Þ

We assume that the shell is static and in equilibrium, thus
_R ¼ 0, R̈ ¼ 0, and uα ¼ ð1; 0; 0Þ. From Eqs. (5) and (6),
and Eqs. (27) and (28), the energy density and the pressure
of the shell are obtained as σ ¼ d−2

8πGR ð1 −
ffiffiffiffiffiffiffiffiffiffi
fðRÞp Þ and

p ¼ d−3
8πGR ð

ffiffiffiffiffiffiffiffiffiffi
fðRÞp

− 1Þ þ f0ðRÞ
16πG

ffiffiffiffiffiffiffi
fðRÞ

p , respectively, where

0 ¼ ∂

∂R. These two expressions for σ and p can be put
in the form

σ ¼ 1 − k
μΩR

; ð29Þ

p ¼ 1

2μΩR2d−5k
d − 3

d − 2
½ð1 − kÞ2R2ðd−3Þ − qQ2�; ð30Þ

where here k is the redshift function evaluated at R, i.e.,

k ¼
ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
: ð31Þ

Note also that q in Eq. (30) could be swapped for μ due to
Eq. (14), but again, we keep q whenever the coefficient is
associated to the electric charge Q. It is useful to define the
rest mass of the shell by

M ¼ ΩRd−2σ: ð32Þ

Then, knowing the energy density σ from Eq. (29) and
using Eq. (32) one gets M ¼ Rd−3

μ ð1 − kÞ. This in turn can
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be manipulated to give a relation for the spacetime massm,
namely,

m ¼ M −
μM2

2Rd−3 þ
Q2

2Rd−3 ; ð33Þ

where Eq. (31) in the form kðM;R;QÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μm

Rd−3 þ qQ2

R2ðd−3Þ

q
has been used, see Eq. (13). We see

that the total energym of the shell is given by the rest mass
M plus a second and third terms that represent the
gravitational potential energy and the electric potential
energy, respectively. For generic ϵ and ϵq, i.e., not set to

one, Eq. (33) is m ¼ M − μM2

2Rd−3 þ ϵQ2

2ϵ2qRd−3.

Since the shell is static, the junction condition for the
covector field Aa given in Eq. (7), i.e., ½Aτ� ¼ 0, together
with Eqs. (11) and (19) yield − Q

ðd−3ÞRd−3k
− Ai ¼ 0, or

Ai ¼ −
Q

ðd − 3ÞRd−3k
: ð34Þ

For generic ϵ and ϵq, Eq. (34) is Ai ¼ − Q
ðd−3ÞϵqRd−3k

So,

Eq. (34) sets the constant value of the potential in the
region Vi as a function of the electric charge, the position
of the shell and the electric potential at infinity which we
have put to zero, Ae ¼ 0, and moreover gives the value of
the electric potential at the hypersurface, see Eq. (21),
AΣ ¼ Ai. In Eq. (8), the relevant condition for the Faraday
tensor is ½Fα� ¼ jα, which upon using Eq. (9) becomes
−ðFeÞtrk_te ¼ ζσe, with ζ ¼ Ω

ϵq
, see Eq. (9), and since we

are putting ϵq ¼ 1, ζ ¼ Ω. Then, from Fab ¼ ∂Ab
∂xa −

∂Aa

∂xb

together with Eqs. (11) and (19) implies

Q ¼ Rd−2σe: ð35Þ

This is the relation between the total electric charge and its
corresponding charge density.

III. ENTROPY OF THE CHARGED THIN SHELL

A. The first law of thermodynamics

The analysis of the thermodynamics of an electrically
charged thin shell is performed by imposing the first law of
thermodynamics on the shell. Noting that the internal
energy of the shell is its rest mass, the first law of
thermodynamics is

TdS ¼ dM þ pdA −ΦdQ; ð36Þ

where T is the local temperature throughout the shell, S is
the entropy of the shell, M is the rest mass of the shell
calculated in the last subsection, p is the pressure on the
shell calculated in the last subsection, A is the area of the

shell,Φ is the thermodynamic electric potential at the shell,
and Q is the electric charge of the shell. Defining the
inverse temperature β as

β ¼ 1

T
; ð37Þ

the first law can be written as

dS ¼ βdM þ βpdA − βΦdQ: ð38Þ

To solve the first law, three equations of state have to be
provided. A first equation of state is for the inverse
temperature in terms of M, A, and Q,

β ¼ βðM;A;QÞ: ð39Þ

A second equation of state is for the pressure in terms ofM,
A, and Q,

p ¼ pðM;A;QÞ: ð40Þ

This equation of state has already been found. Indeed,
Eq. (30) is a dynamic as well as a thermodynamic equation,
it is pðM;A;QÞ ¼ 1

2μΩR2d−5k
d−3
d−2 ½ð1 − kÞ2R2ðd−3Þ − qQ2�, as

k is a function ofM, A, andQ, and R can be swapped for A.
A third equation of state is for the thermodynamic electric
potential Φ in terms of M, A, and Q,

Φ ¼ ΦðM;A;QÞ: ð41Þ

Note that β and Φ are restricted by the integrability
conditions but otherwise free, and p is fixed by the
equations of motion, showing that Einstein equations have
already thermodynamics in-built into them. Given the
functions βðM;A;QÞ, pðM;A;QÞ, and ΦðM;A;QÞ of
Eqs. (39)–(41) we are interested in calculating the entropy
S as a function ofM, A, andQ, i.e., SðM;A;QÞ, through the
first law of thermodynamics given in Eq. (38).

B. Integrability conditions

The entropy S is a function of the thermodynamic
parameters ðM;A;QÞ and its differential is exact by
definition. This places the condition that the Hessian matrix
of S needs to be symmetric. Since from Eq. (38) the first
derivatives of SðM;A;QÞ are�

∂S
∂M

�
A;Q

¼ β;

�
∂S
∂A

�
M;Q

¼ βp;

�
∂S
∂Q

�
M;A

¼ −βΦ; ð42Þ
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the condition on the Hessian of S is explicitly�
∂β

∂A

�
M;Q

¼
�
∂βp
∂M

�
A;Q

;

�
∂β

∂Q

�
M;A

¼ −
�
∂βΦ
∂M

�
A;Q

;

�
∂βp
∂Q

�
M;A

¼ −
�
∂βΦ
∂A

�
M;Q

: ð43Þ

These are the integrability conditions, necessary to have the
entropy S as an exact differential.

C. Parameter transformation and the entropy

In order to compute S, we can make parameter trans-
formations to simplify the differential. The parameter space
(M, A, Q) can be easily transformed into (M, R, Q) since A
depends solely on R through Eq. (26), i.e., A ¼ ΩRd−2. We
can also express S in the parameters (rþ; r−; R), which will
be more convenient. This transformation can be performed
by using Eq. (17). Then, we can use Eq. (32) together
with (29) and with the redshift function k ¼ ffiffiffiffiffiffiffiffiffiffi

fðRÞp
of Eq. (31) put in the form kðrþ; r−; RÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 −
�

rþ
R

�
d−3

��
1 −

�
r−
R

�
d−3

�s
, see Eq. (18). The

derivatives of the entropy Sðrþ; r−; RÞ can be found by

the chain rule, so that
�
∂S
∂R

�
rþ;r−

¼ β
�
∂M
∂R

�
rþ;r−

þ
βp

�
∂A
∂R

�
r−;rþ

and
�

∂S
∂r�

�
r∓;R

¼ β
�
∂M
∂r�

�
r∓;R

− βΦ
�
∂Q
∂r�

�
r∓;R

.

Moreover, from Eqs. (26), (30), and (32), we can find

that
�
∂M
∂R

�
rþ;r−

¼ −p
�
∂A
∂R

�
rþ;r−

. So, clearly, the partial

derivative in R vanishes, ð∂S
∂RÞrþ;r− ¼ 0. This means that

the entropy that in general is a function S ¼ Sðrþ; r−; RÞ in
this case has no dependence on R, only in rþ and r−, and so

S ¼ Sðrþ; r−Þ; ð44Þ

i.e., the entropy is independent of R in this parameter space.

D. The temperature and the electric potential

The integrability conditions or Euler relations impose
restrictions on the expressions of β and Φ, that can be
worked out in the parameters ðrþ; r−; RÞ.
Beginning with β, we can calculate by the chain rule its

derivative with respect to R with rþ and r− fixed, i.e.,�
∂β
∂R

�
rþ;r−

¼
�

∂β
∂M

�
A;Q

�
∂M
∂R

�
rþ;r−

þ
�
∂β
∂A

�
M;Q

�
∂A
∂R

�
rþ;r−

. Using

the first equation in Eq. (43) and that
�
∂M
∂R

�
rþ;r−

¼
−p

�
∂A
∂R

�
rþ;r−

, which comes from Eqs. (26), (30), and

(32), and that
�
∂p
∂M

�
A;Q

¼ 1
ðd−2ÞΩkRðd−3Þ

�
∂k
∂R

�
rþ;r−

, which

comes from Eq. (30), we find
�
∂β
∂R

�
rþ;r−

¼ β
k

�
∂k
∂R

�
rþ;r−

,

which upon integration gives

βðrþ; r−; RÞ ¼ bðrþ; r−Þk; ð45Þ

where bðrþ; r−Þ is a reduced equation of state, an intrinsic
quantity that will depend solely on the nature of the
matter in the shell. From Eq. (45) one sees that
bðrþ; r−Þ ¼ βðrþ; r−;∞Þ. The redshift function k ¼ffiffiffiffiffiffiffiffiffiffi
fðRÞp

of Eq. (31) here is put in the form

k

�
rþ; r−; R

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

�
rþ
R

�
d−3

��
1 −

�
r−
R

�
d−3

�s
, see

Eq. (18). The dependence of β on k just found is in
agreement with the Tolman’s formula for the temperature in
a static gravitational field.
Now, for the case of Φðrþ; r−; RÞ, the chain rule for the

derivative in R together with
�
∂M
∂R

�
rþ;r−

¼ −p
�
∂A
∂R

�
rþ;r−

gives
�
∂Φ
∂R

�
rþ;r−

¼
�
∂A
∂R

�
rþ;r−

�
∂Φ
∂A

�
Q;M

−p
�
∂A
∂R

�
rþ;r−

�
∂Φ
∂M

�
A;Q

.

The three equations in Eq. (43) can be rearranged to
substitute the right-hand side of the latter equation

into
�
∂Φ
∂R

�
rþ;r−

¼−
�
∂A
∂R

�
rþ;r−

�
∂p
∂Q

�
M;A

−Φ
�
∂A
∂R

�
rþ;r−

�
∂p
∂M

�
A;Q

.

Then, we can use Eqs. (26) and the expressions of

the derivatives of the pressure, i.e.,
�
∂p
∂M

�
A;Q

¼
1

ðd−2ÞΩkRðd−3Þ

�
∂k
∂R

�
rþ;r−

and
�
∂p
∂Q

�
M;A

¼ − Qðd−3Þ
ðd−2ÞΩkR2d−5, to find

explicitly the equation for Φðrþ; r−; RÞ, which becomes�
∂kΦ
∂R

�
rþ;r−

¼ ðd−3ÞQ
Rd−2 . Upon integration one finds

Φðrþ; r−; RÞ ¼
Q
k

�
cðrþ; r−Þ −

1

Rd−3

�
; ð46Þ

where cðrþ; r−Þ is a reduced equation of state, an intrinsic
quantity that will depend solely on the nature of the
matter in the shell. From Eq. (46) one sees that

cðrþ; r−Þ ¼ Φðrþ;r−;∞Þ
Q .

E. The differential of the entropy

The differential dS in the parameters ðrþ; r−; RÞ can be
written considering Eqs. (45) and (46). It follows that

dS ¼ ðd − 3Þbðrþ; r−Þ
2μ

½ð1 − rd−3− cðrþ; r−ÞÞrd−4þ drþ

þ ð1 − rd−3þ cðrþ; r−ÞÞrd−4− dr−�: ð47Þ

To ensure the integrability of the differential, we apply once
again the symmetric characteristic of the Hessian matrix in
these coordinates, which gives the condition
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∂b
∂r−

ð1 − crd−3− Þrd−4þ −
∂b
∂rþ

ð1 − crd−3þ Þrd−4−

¼ ∂c
∂r−

brd−3− rd−4þ −
∂c
∂rþ

brd−3þ rd−4− : ð48Þ

Hence, the entropy Sðrþ; r−Þ will depend on two functions
bðrþ; r−Þ and cðrþ; r−Þ that are related by a partial differ-
ential equation, Eq. (48). These functions cannot be
specified by the first law of thermodynamics together with
general relativity as they depend on the class of matter that
composes the shell. To make progress we need to specifiy
the two reduced equations of state for bðrþ; r−Þ
and cðrþ; r−Þ.
It is also interesting to notice that the differential for the

entropy can be rewritten in a simpler form as
dS ¼ b

2μ dðrd−3þ þ rd−3− Þ − b
2μ cd½ðrþr−Þd−3�, and thus from

Eq. (17) one has dS ¼ bdm − bϕdQ, where we have
defined the electric potential ϕ ¼ Qc, and have used our
convention q ¼ μ. So the entropy and its derivatives are
functions of the ADM mass m and the modulus of the
electric charge of the shell, i.e., S ¼ Sðm;QÞ, and, as well,
the equations of state will be functions ofm andQ, namely,
b ¼ bðm;QÞ and c ¼ cðm;QÞ, where Q here means
the modulus of the electric charge. This shows that the
dependence on the rest mass and on the pressure and the
area in the first law of thermodynamics as given in Eq. (38),
i.e., βdM þ βpdA, comes from the ADM mass m, since in
this version these terms are compressed to bdm, and is
aligned with the fact that rest mass and pressure are forms
of energy in general relativity.

F. The reduced equations of state: Specific choice

To proceed, we have now to give the two reduced
equations of state, one for bðrþ; r−Þ and the other
for cðrþ; r−Þ.
We choose the reduced equation of state for the temper-

ature of the shell, or better, for its inverse temperature as

bðrþ; r−Þ ¼
aγΩa−1

d − 3

raðd−2Þþ
rd−3þ − rd−3−

; ð49Þ

where a is a free exponent and γ is a free parameter. The
reduced equation of state given in Eq. (49) imposes the
restriction r− ≤ rþ, i.e., rþ and r− have real values. This
means that the shell can be undercharged or, in the limit,
extremely charged, but not overcharged. Thus, this reduced
equation of state cannot be applied to overcharged shells.
Inserting the bðrþ; r−Þ given in Eq. (49) into the

integrability condition given in Eq. (48), one finds that
one of the solutions for cðrþ; r−Þ is

cðrþ; r−Þ ¼
1

rd−3þ
; ð50Þ

which yields the typical Reissner-Nordström equation of
state for the electric potential, and so we choose it as the
second equation of state.
The equation of state for the temperature, Eq. (49),

introduces two free parameters, namely, a and γ, which
can be chosen at will as long as the choice is physically
reasonable, with the power law exponent a being the more
relevant. Envisaging the equation of state for the temperature
as arising from quantum effects in the matter of the shell, it
implies that the Planck constant ℏ appears intrinsically in the
formula for b, as well as Boltzmann constant kB since the
whole setup involves thermodynamics. In this case b is a
length scale, a thermal one. We set ℏ ¼ 1 and kB ¼ 1, so the
parameter γ has units of length to the power ðd − 2Þð1 − aÞ,
and in this case, incidentally, the d-dimensional constant of
gravitation G has units of length to the power d − 2. The
equation of state for the electric potential, Eq. (50), has no
new free parameters. Both equations of state have another
parameter which is the dimension of spacetime d. Being a
special parameter, it can nonetheless be treated as a free one,
if one wishes. As long as the dimension d is finite one can
put the desired dimension, be it d ¼ 4, d ¼ 11, or any other
finite d, into the formulas to obtain the corresponding
expressions for the physical quantities for that dimension.
The infinite d limit is a specific case that depends on how the
limit is taken and so requires special attention. Here, we are
just interested in finite d however large it is.

G. The entropy formula

The differential equation for the entropy given in
Eq. (47) can then be integrated to yield S ¼

γ
2μðd−2ÞΩ ðΩrd−2þ Þa where we have chosen the constant of

integration to be zero, and using Eq. (16), it gives,
S ¼ γ

2μðd−2ÞΩA
aþ, or restoring the constant of gravitation

G from Eq. (14), one has

S ¼ γ

16πG
Aaþ; ð51Þ

i.e., the entropy of the shell, a dimensionless quantity, is
proportional to a power of the gravitational area Aþ. Due to
the chosen equations of state, namely Eqs. (49) and (50),
the generic dependence of S on rþ and r−, S ¼ Sðrþ; r−Þ,
see Eq. (44), is now reduced to a dependence on rþ alone,
S ¼ SðrþÞ or, adopting the gravitational area instead of the
gravitational radius as the variable for the entropy, one has
S ¼ SðAþÞ. Furthermore, in Eq. (51), we should perhaps
impose that a > 0 so that the entropy does not diverge in
the no black hole limit rþ → 0. Note that here Aþ is not the
event horizon area since there is no event horizon, there is
no black hole, there is only the spacetime gravitational
radius rþ.
We can now see the motivation for the choice of the

reduced equations of state given in Eqs. (49) and (50).
It is twofold. First, power laws in thermodynamics and
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statistical mechanics are ubiquitous, so it is natural to take
for the reduced equations of state bðrþ; r−Þ and cðrþ; r−Þ
power laws in rþ and r−, which themselves are functions of
M, A, and Q. Second, there is the motivation that by
choosing such equations of state they give the possibility of
taking the black hole limit R ¼ rþ. Thus, bðrþ; r−Þ given in
Eq. (49) has that, for a ¼ 1, one gets a functional
dependence equal to the Hawking temperature of the black
hole. The equation for the reduced potential Eq. (50), is
simply the same as the corresponding black hole. These
two choices yield in the a ¼ 1 case S ¼ γ

16πGAþ, see
Eq. (51), i.e., an entropy for the shell proportional to the
gravitational radius, which has the same functional depend-
ence as the Bekenstein-Hawking black hole entropy. Note
that other power laws could be chosen. For instance, one
could choose a power of Eq. (49) itself and another
different power of Eq. (50), and these equations would
still yield black hole features for the appropriate choice of
the exponents. Yet a different equation of state for the
reduced inverse temperature b, is to choose b as a power
law in the ADM mass, in which case it permits to treat not
only undercharged and extremal charged shells, but also
overcharged shells, see Appendix A for such a choice. Of
course, other choices with physical meaning can be
thought of.
Another important point brought about by Eq. (51)

is that as long as rþ is fixed, the entropy is the same
for any radius R of the shell. To understand the
process involved we use Eq. (32), or better, the
equation before it, namely, M ¼ Rd−3

μ ð1 − kÞ, in full,

M ¼ Rd−3

μ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

�
rþ
r

�
d−3

��
1 −

�
r−
r

�
d−3

�s �
. To

simplify the discussion, put d ¼ 4 and r− ¼ 0, i.e.,

Q ¼ 0. Then, M ¼ R

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − rþ

R

q �
. For rþ fixed we

see that for R ¼ rþ one has M ¼ R ¼ rþ, and for R → ∞
one has M ¼ 1

2
rþ, plus the derivative of M in R is strictly

negative. So, for fixed rþ, as R increases the rest massM of
the shell decreases. In this process of changing the radius of
the shell maintaining rþ fixed, one has, from Eq. (51), that
the entropy does not change. Since the size and the energy of
the system change, one increases, the other decreases, or
vice versa, but the entropy does not change, one is in the
presence of an isentropic process.

H. Euler theorem

According to Eq. (29) together with (32), the rest massM
can be written in terms of rþ, r−, and R, see also Eq. (33).
Moreover, using Eqs. (16) and (51) the gravitational radius,

rþ, can be written in terms of S as rþ ¼ 1

Ω
1

d−2

�
16πGS

γ

� 1
aðd−2Þ,

then using Eq. (17) the Cauchy radius, r−, can be written in

terms of S and Q as r− ¼ ðqQ2Þ 1
d−3Ω

1
d−2�

16πGS
γ

� 1
aðd−2Þ

, and finally using

Eq. (26) R can be written in terms of A as R ¼
�
A
Ω

� 1
d−2.

Substituting these latter three results into Eq. (32) together
with (29), i.e., M ¼ Rd−3

μ ð1 − kÞ, one has that the rest mass
M seen as a function of S, A, and Q, i.e., MðS; A;QÞ, is
given by M ¼ 1

μ

�
A
Ω

�d−3
d−2½1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − s1Þð1 − s2Þ

p �, where we

have defined s1 ¼
�
16πGS
γAa

� d−3
aðd−2Þ and s2 ¼ qQ2Ω2d−3d−2�

16πGSAa
γ

� d−3
aðd−2Þ

.

Now, from this expression for MðS; A;QÞ one can see that
MðλS1

a; λA; λQ
d−2
d−3Þ ¼ λ

d−3
d−2MðS1

a; A;Q
d−2
d−3Þ, for some arbitrary

factor λ. Since the derivatives of M are described by the
differential dM ¼ TdS − pdAþΦdQ, i.e., the first law of
thermodynamics, one obtains by the Euler relation theorem
for homogeneous functions that

d − 3

d − 2
M ¼ aTS − pAþ d − 3

d − 2
ΦQ: ð52Þ

This relation is an integrated version of the first law of
thermodynamics for the thin shell with the specific entropy
given in Eq. (51).

I. Shell with black hole features, the black hole limit,
and Smarr formula

1. Shell with black hole features

To get a shell with black hole features we see that
taking a ¼ 1 we obtain from Eq. (49) that

bðrþ; r−Þ ¼ γ
d−3

rðd−2Þþ
rd−3þ −rd−3−

, so that T0 defined as T0 ¼ 1
b is

given by T0ðrþ; r−Þ ¼ d−3
γ

rd−3þ −rd−3−

rd−2þ
. With the Planck length

defined as lp ¼
�
ℏG
c3

� 1
d−2, and since here we have c ¼ 1 and

ℏ ¼ 1, we have lp ¼ G
1

d−2. Putting in addition γ ¼ 4π one

gets T0ðrþ; r−Þ ¼ d−3
4π

rd−3þ −rd−3−

rd−2þ
, which is the Hawking tem-

perature Tþ for the matter on the shell. The reduced electric
potential is still given by Eq. (50), cðrþ; r−Þ ¼ 1

rd−3þ
. Thus,

for the shell with black hole features, one has that
the reduced inverse temperature and electric potential are
given by

bþðrþ;r−Þ¼
4π

d−3

rd−2þ
rd−3þ − rd−3−

; cþðrþ;r−Þ¼
1

rd−3þ
; ð53Þ

where a subscriptþ are for quantities characteristic of
black holes. Then, the entropy of the shell given in
Eq. (51) turns into
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Sþ ¼ 1

4

Aþ
Ap

; ð54Þ

where Ap is the Planck area defined as Ap ¼ ld−2p ¼ G.
Thus, for the shell’s matter equations of state given in
Eqs. (49) and (50) with in addition a ¼ 1 and γ ¼ 4π, one
finds that the shell at radius R and with area A, has black
hole features, it has precisely the Bekenstein-Hawking
entropy, as given in Eq. (54). So, thermodynamically, this
spacetime being not a black hole spacetime, rather it is a
shell spacetime, actually mimics thermodynamically the
corresponding black hole spacetime, i.e., the black hole that
has the same gravitational radius rþ. Indeed, for any radius
R greater than the shell’s gravitational radius rþ, R ≥ rþ,
the shell’s entropy is always the same, it is the Bekenstein-
Hawking entropy.

2. Black hole limit and Smarr formula

To get a shell which not only has black hole features but
is almost a black hole, i.e., a quasiblack hole, we have to
take the precise limit of the shell radius R going into the
shell gravitational radius rþ, R → rþ. In this case, in order
to not have divergences in the quantum state of the matter
and to maintain thermal equilibrium, the temperature of the
shell must be precisely the Hawking temperature,

Tþðrþ; r−Þ ¼ d−3
4π

rd−3þ −rd−3−

rd−2þ
, in which case the entropy of

the shell at its own gravitational radius has to be
Bekenstein-Hawking entropy, Sþ ¼ 1

4

Aþ
Ap
, see Eq. (54).

When the shell is at its own gravitational radius, the shell
spacetime is in a quasiblack hole state, the gravitational
radius being now a quasihorizon radius. This limit can be
thought of as a sequence of quasistatic thermodynamic
equilibrium states of the shell that reach the equilibrium
state of the black hole. Note that the pressure in Eq. (30)
diverges in this limit. In a sense this means that all degrees
of freedom are excited in this limit and the entropy is
maximal. Clearly the shell formalism, that provides an
exact solution for its dynamics and its thermodynamics,
yields in the appropriate limit the black hole features,
notably, the Bekenstein-Hawking entropy of a black hole.
The quasiblack hole formalism, different from the shell
formalism and with some correspondence to the membrane
paradigm formalism, deals with generic matter systems on
the verge of becoming a black hole and is also able to bring
out all the thermodynamic properties of black holes
[30–32].
The extremal electrically charged black hole merits a

complete investigation. Here, we mention some important
points connected to the entropy and thermodynamics of an
extremal Reissner-Nordström shell solution in d-dimensions
and the corresponding Reissner-Nordström black hole. The
extremal Reissner-Nordström spacetime obeys the relation
rþ ¼ r−, and so for a reduced equation of state of the form
given in Eq. (49) one has that the extremal charged shell case

has zero temperature, whereas the reduced electric potential
still has the form given also in Eq. (50), and so both are well
defined in the extremal case. On the other hand, the entropy
of such a shell is a subtle issue. If from a nonextremal shell,
with R > rþ we take the limit rþ ¼ r−, then one obtains by
continuity directly that the entropy for the shell is given by
Eq. (51). On the other hand, if we start with an extremal shell
a priori then the entropy of the shell is some function of Aþ,
SðAþÞ, that is not specified, i.e., one is free to choose it [20].
At the black hole limit in the extremal case, i.e., when the
radius R of the shell approaches its gravitational radius
rþ ¼ r−, and the reduced equations of state are given in
Eq. (53), the situation is even more subtle. Besides the two
possible cases similar to the two shell cases just mentioned,
namely, the shell is nonextremal and is then put to its
gravitational radius, and the shell is extremal and is then put
to its extremal radius, there is a third case when the shell is
turning to being extremal and simultaneously it is approach-
ing its own gravitational radius [21]. The first case gives the
Bekenstein-Hawking entropy for the shell, Sþ ¼ 1

4

Aþ
Ap
, the

second case gives that the entropy is some unspecified

function of Aþ, Sþ ¼ Sþ
�
Aþ
Ap

�
, and the third case gives again

the Bekenstein-Hawking entropy for the shell, Sþ ¼ 1
4

Aþ
Ap
.

Thus, if we take the entropy of an extremal shell at its own
gravitational radius as representative of the entropy of an
extremal black hole, then the entropy of an extremal black
hole depends on its past, specifically, on the way it was
formed, see also [31] where the quasiblack hole approach is
applied.
Now, we turn to the Smarr formula. It will be derived

from the Euler relation for the shell, Eq. (52), in the black
hole limit. The shell with black hole properties has a ¼ 1
and is given by Eqs. (53) and (54). Multiplying the Euler
relation, Eq. (52), by the factor k, one obtains for a shell with
black hole properties d−3

d−2 kM ¼ TþSþ − kpAþ d−3
d−2 kΦþQ,

where Φþ is Φ defined in Eq. (46) with black hole

characteristics, i.e., Φþðrþ; r−; RÞ ¼ Q r−ðd−3Þþ −R−ðd−3Þ

k . One
can now take the black hole limit, R ¼ rþ. Then the redshift
function is zero, k ¼ 0. This means that kM ¼ 0. One also

has kΦþðrþ; r−; RÞ ¼ Qðr−ðd−3Þþ − R−ðd−3ÞÞR¼rþ ¼ 0. So,
the nonzero terms are TþSþ and −kpA. Then using
Eqs. (26) and (30) for −kpA, we obtain putting R ¼ rþ,
0 ¼ TþSþ − 1

2μ
d−3
d−2 ðrd−3þ − rd−3− Þ or, upon rearrangements,

0 ¼ TþSþ − 1
2μ

d−3
d−2 ðrd−3þ þ rd−3− Þ þ 1

μ
d−3
d−2 r

d−3
− . From Eqs.

(14) and (17) one has 1
2μ ðrd−3þ þ rd−3− Þ ¼ m. The last term

can be written as 1
μ
d−3
d−2 r

−ðd−3Þ
þ ðrþr−Þd−3, and from Eq. (17)

this is d−3
d−2r

−ðd−3Þ
þ Q2¼ d−3

d−2 ½Qr−ðd−3Þþ �Q¼ d−3
d−2ϕþQ, where

the black hole potential ϕþ is naturally defined as

ϕþ ¼ Qr−ðd−3Þþ . Then, the Euler relation becomes
0 ¼ TþSþ − d−3

d−2mþ d−3
d−2ϕþQ, i.e.,
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m ¼ d − 2

d − 3
TþSþ þ ϕþQ; ð55Þ

which is the Smarr formula for a d-dimensional Reissner-
Nordström, i.e., a Reissner-Nordström-Tangherlini black
hole. This relation is the integral version of the first law of
thermodynamics for black holes, which can be picked up
from the first law formula dS ¼ bdm − bϕdQ or, swapping
places, dm ¼ T0dSþ ϕdQ, with T0 ¼ 1

b, found after
Eq. (47) for thin shells, when applied to black holes. For
the extremal case, rþ ¼ r−, one has Tþ ¼ 0 and

ϕþQ ¼ Qr−ðd−3Þþ Q ¼ Qffiffi
q

p ¼ Qffiffi
μ

p , where Eq. (17) has been

used, and the equality μ ¼ q in our convention of units has
been applied. Thus, for the extremal case, the Smarr formula
given in Eq. (55) turns into

ffiffiffi
μ

p
m ¼ Q as it should be. Now,

in four dimensions, d ¼ 4, Eq. (55) gives m ¼ 2TþSþ þ
ϕþQ which is the original Smarr formula for a four-
dimensional Reissner-Nordström black hole. Still in
d ¼ 4, the extremal case gives

ffiffiffiffi
G

p
m ¼ q, or m ¼ q if

one puts G ¼ 1, which is the usual mass formula for an
extremal four-dimensional Reissner-Nordström black hole.

IV. INTRINSIC THERMODYNAMIC STABILITY
FOR THE GIVEN EQUATIONS OF STATE

A. Stability conditions

The shell with generic equations of state given in
Eqs. (39)–(41) will have its thermodynamic equilibrium
state for some entropy SðM;A;QÞ found from the first law
of thermodynamics Eq. (36). We now look at the intrinsic
thermodynamic stability of the shell, see Callen’s thermo-
dynamics book for the formalism.
In general, a system in thermodynamic equilibrium is

susceptible to perturbations. Let the system with entropy S
be split into two subsystems. Then, the fluctuations of the
matter in the boundary between the subsystems will allow
exchanges in the thermodynamic variables, in this case
ðM;A;QÞ. The entropy of the system after those exchanges,
Sþ ΔS, will be the sum of the entropy of the two
subsystems. By the second law of thermodynamics, if
Sþ ΔS ≤ S, i.e., ΔS ≤ 0, then the system will stay in
equilibrium, hence the system is stable. Otherwise, the
system will evolve away from equilibrium, building up
inhomogeneities, and therefore the equilibrium is unstable.
For very small fluctuations, the conditions of intrinsic
stability are given by dSðM;A;QÞ ¼ 0 and d2SðM;A;QÞ ≤
0, i.e., S is a maximum with the Hessian of S being
seminegative definite. Notice that in general the quantities
ðM;A;QÞ do not have a relation between themselves.
However, in our case there is a relation between those
quantities since first, S is solely a function of rþ, and so the
equilibrium configurations are given by rþðM;A;QÞ, and
second, since the condition dSðM;A;QÞ ¼ 0 holds it
implies that rþðM;A;QÞ ¼ constant, so ðM;A;QÞ are tied
by a relation between themselves.

The stability conditions with respect to the second
derivatives of S, denominated by Shihj ¼ ∂

2S
∂hi∂hj

, are

SMM ≤ 0; SAA ≤ 0; SQQ ≤ 0;

SMMSAA − S2MA ≥ 0;

SMMSQQ − S2MQ ≥ 0;

SQQSAA − S2QA ≥ 0;

ðSMMSAQ − SMASMQÞ2
− ðSAASMM − S2AMÞðSQQSMM − S2QMÞ ≤ 0; ð56Þ

which have to be employed with care for each appropriate
physical situation as it is detailed below. Note that there is a
freedom on the choice of sufficient conditions for each
physical situation, which depends on the order of the
variables that one chooses. Here, we are choosing the
order h1 ¼ M, h2 ¼ A and h3 ¼ Q. The derivation of these
conditions and the explanation of the redundancy of these
conditions are present in the Appendix B.

B. Entropy and equations of state

Now, we apply the formalism above. For that, we rewrite
Eq. (51) for the entropy as

SðM;A;QÞ ¼ γ

16πG
Aaþ; ð57Þ

to emphasize that we are dealing with the variables M, A,
andQ. Clearly, Aþ is a function ofM, A, andQ, since Aþ is
a function of rþ, see Eq. (16), which is a function of M, A,
and Q through Eqs. (15), (33), and (26).
There are three equations of state that must be provided,

one for the temperature, one for the pressure, and one for
the electric potential. These already have been found in the
previous section.
For the temperature, or better, for the inverse temper-

ature, one has Eq. (45), and using the specific choice of the
reduced equation of state given in Eq. (49), one finds the
explicit form of the generic equation given in Eq. (39),
namely,

βðM;A;QÞ ¼ aγΩa−1

d − 3

raðd−2Þþ
rd−3þ − rd−3−

k; ð58Þ

where clearly it is a function of M, A, and Q.
For the thermodynamic pressure, the equation of state is

given by Einstein equations, so it is also a dynamic
pressure. Then, Eq. (30) is indeed the explicit form of
the generic equation given in Eq. (40), namely,

pðM;A;QÞ ¼ 1

2μΩ
d − 3

d − 2
½ð1 − kÞ2R2ðd−3Þ − qQ2� 1

R2d−5k
;

ð59Þ
where clearly it is a function of M, A, and Q.
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For the potential, one has Eq. (46), and using the specific
choice for the reduced equation of state given in Eq. (50)
one finds the explicit form of the generic equation given in
Eq. (41), namely,

ΦðM;A;QÞ ¼ Q

�
1

rd−3þ
−

1

Rd−3

�
1

k
; ð60Þ

where clearly it is a function of M, A, and Q.

C. First and second derivatives of the entropy

For the equations of state we use, the final form of the
entropy of the shell is given in Eq. (57). Then, the first
derivatives of the entropy can be computed either directly,
or more easily through the first law given in Eq. (36)
together with Eqs. (58)–(60). They are

SM ¼ aγΩa−1

d − 3

raðd−2Þþ
rd−3þ − rd−3−

k;

SA ¼ aγΩa−2raðd−2Þþ ½ð1 − kÞ2R2ðd−3Þ − qQ2�
2μðd − 2ÞR2d−5ðrd−3þ − rd−3− Þ ;

SQ ¼ −
aγΩa−1Q
ðd − 3Þ

�
r3−dþ − R3−d

rd−3þ − rd−3−

�
raðd−2Þþ : ð61Þ

For the calculation of the second derivatives of the entropy,
it is useful to consider that ∂r�

∂M ¼ �2μ r�k
ðd−3Þðrd−3þ −rd−3− Þ,

∂r�
∂R ¼ �μ r�

rd−3þ −rd−3−

μM2−Q2

Rd−2 , and ∂r�
∂Q ¼∓ 2qQr�ðr3−d� −R3−dÞ

ðd−3Þðrd−3þ −rd−3− Þ . The

components of the Hessian are then

SMM ¼ aγΩa−28πGraðd−2Þþ
ðd − 3Þðd − 2Þðrd−3þ − rd−3− ÞRd−3 S1;

SAA ¼ aγΩa−3raðd−2Þþ
2μðd − 2Þ2ðrd−3þ − rd−3− ÞRd−1 S2;

SQQ ¼ aγΩa−1raðd−2Þþ ð1 − xÞ
ðd − 3Þðrd−3þ − rd−3− Þrd−3þ

S3;

SMA ¼ aγΩa−2raðd−2Þþ
ðd − 2Þðrd−3þ − rd−3− ÞRd−2 S12;

SMQ ¼ −
2μaγΩa−1raðd−2Þþ Qk

ðd − 3Þ2ðrd−3þ − rd−3− Þr2d−6þ
S13;

SAQ ¼ −
aγΩa−2raðd−2Þþ Q

ðd − 2Þðrd−3þ − rd−3− Þrd−3þ Rd−2 S23; ð62Þ

where

S1 ¼
2k2G

ðd − 3Þx − 1;

S2 ¼ F
�
FG
x

− 2dþ 5

�
;

S3 ¼ −1þ 2y
d − 3

�
Gð1 − xÞ − 2ðd − 3Þ

1 − y

�
;

S12 ¼ 1 − kþ kG
xðd − 3ÞF ;

S13 ¼ Gð1 − xÞ − ðd − 3Þ
1 − y

;

S23 ¼ xþ F
xðd − 3Þ

�
Gð1 − xÞ − ðd − 3Þ

1 − y

�
; ð63Þ

with the auxiliary functions G, F , and k, being given by

G ¼ 1

1 − y

�
aðd − 2Þ − ðd − 3Þ 1þ y

1 − y

�
;

F ¼ 2 − 2k − xð1 − yÞ;
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞð1 − xyÞ

p
; ð64Þ

and we have made use of the definitions

x ¼ rd−3þ
Rd−3 ; y ¼ rd−3−

rd−3þ
: ð65Þ

The set of inequalities in Eq. (56) with the entropy
equation given in Eq. (57) and the equations of state given
in Eqs. (58)–(60) can be written as restricting conditions in
terms of the functions given in Eq. (63). The conditions will
then restrict the parameter space described by the points
ðd; a; x; yÞ constrained by

d ≥ 4; a > 0; 0 < x < 1; 0 < y < 1: ð66Þ

Here, d ≥ 4 since for lower d there is no proper Reissner-
Nordström solution, a > 0 because in the no black hole
limit, Aþ ¼ 0, i.e., rþ ¼ 0, the entropy expression,
Eq. (57), should not diverge, 0 < x < 1 because the shell
has to be in the limits between no shell, x ¼ 0, and the
black hole state, x ¼ 1, 0 < y < 1 because the electric
charge state of the shell considered here can run from an
uncharged one, y ¼ 0, to an extremally charged one, y ¼ 1,
overcharged shells are not treated here since the equations
of state, Eqs. (58)–(60), do not apply to overcharged shells.
In what follows we deal with the algebraic conditions

that arise from the conditions given in Eq. (62) together
with the auxiliary functions Eqs. (63)–(65). In the
Appendix C we make plots to help in the understanding
of these conditions.

TIAGO V. FERNANDES and JOSÉ P. S. LEMOS PHYS. REV. D 106, 104008 (2022)

104008-12



D. Mass fluctuations only

A shell with only mass fluctuations will have the stability
condition given by SMM ≤ 0, see Eq. (56). For the equa-
tions of state we are using, and with the help of Eq. (62),
one has that SMM ≤ 0 can be written as

S1 ≤ 0: ð67Þ

Then, from Eq. (63) this inequality can be rearranged as

a ≤
xðd − 3Þð1 − yÞ
2ðd − 2Þk2 þ ðd − 3Þ

ðd − 2Þ
ð1þ yÞ
ð1 − yÞ ; ð68Þ

where Eqs. (64) and (65) have been used. From a quick
analysis, the right hand side tends to infinity at the points
x ¼ 1 or y ¼ 1. It has its minimum value at ðx; yÞ ¼ ð0; 0Þ,
corresponding to a ¼ d−3

d−2. A detailed analysis of Eq. (68)
can be seen in Fig. 1 which is itself split into four plots (a),
(b), (c), and (d). It is interesting to comment on the case of
the shell with thermodynamic black hole features, i.e., the
case with a ¼ 1. For an uncharged shell, y ¼ 0, the range
of x for thermodynamic stability is given by 2

d−1 < x < 1, in
agreement with [30]. Increasing the value of y will also
increase the range of x for thermodynamic stable configu-
rations, i.e., if the shell has more electric charge then a
higher radius R is allowed for stability. The stability is
guaranteed in the full range of x if y ≥ 1

2d−5, see also Fig. 1
(d) top for this a ¼ 1 case. It is also interesting to see the
stability with respect to the variables M

Rd−3 and
Q

Rd−3. We do
this below and one can also refer to Fig. 1(d) bottom.

E. Area fluctuations only

A shell with only area fluctuations will have the stability
condition given by SAA ≤ 0, see Eq. (56). For the equations
of state we are using, and with the help of Eq. (62), one has
that SAA ≤ 0 can be written as

S2 ≤ 0: ð69Þ

Then, from Eq. (63) this inequality can be rearranged as

a ≤
ð2d − 5Þxð1 − yÞ

ðd − 2ÞF þ ðd − 3Þ
ðd − 2Þ

ð1þ yÞ
ð1 − yÞ ; ð70Þ

where Eqs. (64) and (65) have been used, and employed the
fact that the multiplication factor F is always positive for
0 < x < 1 and 0 < y < 1, it is also proportional to M −m.
The right-hand side of Eq. (70) has the minimum at
ðx ¼ 1; y ¼ 0Þ, with the value a ¼ 3 − 2

d−2. The function
then increases in the direction of x → 0 or y → 1, where it
tends to infinity. A detailed analysis of Eq. (70) can be seen
in Fig. 2 which is itself split into three plots (a), (b), and (c).
The case of the shell with thermodynamic black hole
features, i.e., the case with a ¼ 1, does not need a more

detailed analysis since all the configurations with a ¼ 1 are
below the surface of marginal stability, therefore they are
stable to these thermodynamic perturbations.

F. Charge fluctuations only

A shell with only electric charge fluctuations will have
the stability condition given by SQQ ≤ 0, see Eq. (56). For
the equations of state we are using, and with the help of
Eq. (62), one has that SQQ ≤ 0 can be written as

S3 ≤ 0: ð71Þ

Then, from Eq. (63) this inequality can be rearranged as

a ≤
ðd− 3Þð1− yÞ
2ðd− 2Þyð1− xÞ þ

2ðd− 3Þ
ðd− 2Þð1− xÞ þ

ðd− 3Þ
ðd− 2Þ

ð1þ yÞ
ð1− yÞ ;

ð72Þ

where Eqs. (64) and (65) have been used. The right-hand
side of Eq. (72) describes a concave surface, faced to
a → þ∞. The minimum, restricted to the parameter space,

resides in
�
x ¼ 0; y ¼ 1

3

�
, where its value is a ¼ 5 d−3

d−2. It

diverges to infinity at the axes x ¼ 1, y ¼ 0 and y ¼ 1. A
detailed analysis of Eq. (72) can be seen in Fig. 3 which is
itself split into three plots (a), (b), and (c). The case of the
shell with thermodynamic black hole features, i.e., the case
with a ¼ 1, does not need a more detailed analysis since
all the configurations with a ¼ 1 are below the surface
of marginal stability, therefore they are stable to these
thermodynamic perturbations.

G. Mass and area fluctuations together

A shell with mass and area fluctuations will have the
stability conditions given by SMM ≤ 0, SAA ≤ 0, and
SMMSAA − S2MA ≥ 0, see Eq. (56). Note, however, that
there is redundancy on this system of inequations, see
Appendix B. The sufficient conditions can be chosen to be
SMM ≤ 0 and SMMSAA − S2MA ≥ 0. For the equations of
state we are using, one has that SMM ≤ 0 yields Eq. (68),
and with the help of Eq. (62) one has that SMMSAA − S2MA ≥
0 can be written as

S4 ¼ −
1

2ðd − 3Þ S1S2 þ S212 ≤ 0: ð73Þ

Then, from Eq. (63) this inequality can be rearranged as
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a ≤
ð1 − yÞx

��
d − 5

2

�
F − ðd − 3Þð1 − kÞ2

�

ðd − 2ÞF
�

k2
d−3 þ 2kþ F

2

�

þ ðd − 3Þ
ðd − 2Þ

ð1þ yÞ
ð1 − yÞ ; ð74Þ

where Eqs. (64) and (65) have been used. The right-hand
side of Eq. (74) is minimum at x ¼ 1, where a ¼ 1. From
there toward x ¼ 0, the function will bend into a ¼ d−3

d−2
1þy
1−y.

At y ¼ 1, it will tend to infinity. When compared with
Eq. (68), the right-hand side of Eq. (74) is always lower and
thus Eq. (74) is sufficient to describe the stability region, in
this case. A detailed analysis of Eq. (74) can be seen in
Fig. 4 which is itself split into four plots (a), (b), (c), and
(d). The case of the shell with thermodynamic black hole
features, i.e., the case with a ¼ 1, shows that increasing the
value of y will decrease the range of x for thermodynamic
stable configurations, i.e., if the shell has more electric
charge then it needs to have lower R for stability, see also
Fig. 1(d) for this a ¼ 1 case.

H. Mass and charge fluctuations together

A shell with mass and charge fluctuations will have the
stability conditions given by SMM ≤ 0, SQQ ≤ 0, and
SMMSQQ − S2MQ ≥ 0, see Eq. (56). Note, however, that
there is redundancy on this system of inequations, see
Appendix B. The sufficient conditions can be chosen to be
SMM ≤ 0 and SMMSQQ − S2MQ ≥ 0. For the equations of
state we are using, one has that SMM ≤ 0 yields Eq. (68),
and with the help of Eq. (62) one has that SMMSQQ −
S2MQ ≥ 0 can be written as

S5 ¼ −xð1 − xÞS1S3 þ
4yk2

ðd − 3Þ2 S
2
13 ≤ 0: ð75Þ

Then, from Eq. (63) this inequality can be rearranged as

a ≤
ðd − 3Þ
2ðd − 2Þ

2 − xð1þ yÞ
1 − x

; ð76Þ

where Eqs. (64) and (65) have been used. The condition
given in Eq. (76) is sufficient to describe the stability, since
the right-hand side of it is lower than the condition given by
Eq. (68), in the respective parameter space. The inequality
is quite simple enough for analytical treatment. The
function set by the right-hand side at x ¼ 0 or y ¼ 1 takes
the value a ¼ d−3

d−2. At x ¼ 1, the function diverges to
infinity. Thus, the function bends from a constant value
to a ¼ d−3

2ðd−2Þ
2−x
1−x, going from y ¼ 1 to y ¼ 0. A detailed

analysis of Eq. (76) can be seen in Fig. 5 which is itself split
into four plots (a), (b), (c), and (d). The case of the shell

with thermodynamic black hole features, i.e., the case with
a ¼ 1, shows that increasing the value of y will decrease
the range of x for thermodynamic stable configurations,
i.e., if the shell has more electric charge, then it must have
lower radius R for stability, see also Fig. 1(d) for this a ¼
1 case.

I. Area and charge fluctuations together

A shell with area and charge fluctuations will have the
stability conditions given by SAA ≤ 0, SQQ ≤ 0, and
SAASQQ − S2AQ ≥ 0, see Eq. (56). Note, however, that there
is redundancy on this system of inequations, see
Appendix B. The sufficient conditions can be chosen to
be SAA ≤ 0 and SAASQQ − S2AQ ≥ 0. For the equations of
state we are using, one has that SAA ≤ 0 yields Eq. (70), and
with the help of Eq. (62) one has that SAASQQ − S2AQ ≥ 0

can be written as

S6 ¼ −
ð1 − xÞ
2ðd − 3Þ S2S3 þ xyS23 ≤ 0: ð77Þ

Then, from Eq. (63) this inequality can be rearranged as

a ≤
ð1−xÞF ð2d−5Þ

2ðd−3Þ ð1þ 3yÞ − x3yð1 − yÞ þ 2Fxy − yF 2

xð1−yÞ

ðd − 2Þð1 − xÞ
�

F 2

2xðd−3Þ þ 2d−5
ðd−3Þ2 yð1 − xÞF þ 2Fxy

ðd−3Þ

�

þ ðd − 3Þ
ðd − 2Þ

1þ y
1 − y

:

ð78Þ

where Eqs. (64) and (65) have been used. The condition
given in Eq. (78) is sufficient to describe the stability, since
the right hand side of it is lower than the condition given by
Eq. (70), in the respective parameter space. At y ¼ 0, the
function set by the right-hand side intersects S2. The
function then grows without bound at ðx ¼ 0; y ¼ 0Þ or
y ¼ 1. In the limit of x → 1, the function approaches the

value of a ¼ 8þ6y−3dð1þyÞ
ðd−2Þð1þ3yÞ . At x ¼ 0, the right-hand side

approaches S3 from below. A detailed analysis of Eq. (78)
can be seen in Fig. 6 which is itself split into three plots (a),
(b), and (c). The case of the shell with thermodynamic
black hole features, i.e., the case with a ¼ 1, does not need
a more detailed analysis since all the configurations with
a ¼ 1 are below the surface of marginal stability, therefore
they are stable to these thermodynamic perturbations.

J. Mass, area, and charge fluctuations altogether

A shell with mass, area, and charge fluctuations will have
the stability conditions given by all the inequalities in
Eq. (56). Note, however, that there is redundancy on this
system of inequations, see Appendix B. The sufficient
conditions can be chosen to be SMM≤0, SMMSAA−
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S2MA ≥ 0, and ðSMMSAQ−SMASMQÞ2−ðSAASMM−S2AMÞ
ðSQQSMM−S2QMÞ≤0. For the equations of state we are
using, one has that SMM ≤ 0 yields Eq. (68), SMMSAA −
S2MA ≥ 0 yields Eq. (74), and with the help of Eq. (62)
one has that ðSMMSAQ − SMASMQÞ2 − ðSAASMM − S2AMÞ
ðSQQSMM − S2QMÞ ≤ 0 can be written as

S7 ¼
�
xS1S23 −

2k
d − 3

S12S13

�
2

y − S4S5 ≤ 0: ð79Þ

Then, even though Eq. (79) appears to be a polynomial on a
of degree 4, from Eq. (63) this inequality can be rearranged as

a ≤
d − 3

d − 2

�
4 − 4kþ x2ðdð1 − yÞ2 þ CÞ
4 − 4kþ x2dð1 − yÞ2 þ xD

�
; ð80Þ

where C ¼ 2xð1þ yÞðk − 2Þ − 2 − 2ðy − 4Þy, and D ¼
4k − 2y − 6 − xð1þ yð3y − 8ÞÞ, and Eqs. (64) and (65)
have been used. The right-hand side of Eq. (80) when
compared with the conditions in Eqs. (68) and (74) assumes
always lower values, in the respective parameter space,
therefore Eq. (80) is the sufficient condition of stability.
The equality in the condition given in Eq. (80) has its lowest
value of a ¼ d−3

d−2 at x ¼ 0, for every y. It then increases
toward x ¼ 1, where the limit gives a ¼ 1. At the limit of
y ¼ 1, the equality is given by the lowest value of a ¼ d−3

d−2 for
every x except x ¼ 1 where the limit gives a ¼ 1. Thus, the
condition for stability in Eq. (80) implies that every con-
figuration with a ≤ d−3

d−2 is stable. On the other hand, for
d−3
d−2 <

a < 1 the stability region decreases with increasing y, being
zero in the limit of y ¼ 1. This means that shells with more
electric charge will have less configurations of stability. The
space of stable configurations in the a–d plane can also be
made and is similar to the analysis made for the uncharged
case in [17]. A detailed analysis of Eq. (80) can be seen in
Fig. 7 which is itself split into three plots (a), (b), and (c). The
case of the shell with thermodynamic black hole features, i.e.,
the case with a ¼ 1, does not need a more detailed analysis
since all the configurations with a ¼ 1 are above the surface
of marginal stability, hence unstable, except for the points
with x ¼ 1 which lie on the limit of the surface, hence
marginally stable. In the black hole limit, i.e., not only a ¼ 1

but also x ¼ 1, the configurations for every value of y are
marginally stable.

K. Further comments on the behavior of intrinsic
stability with a

We now make some important comments, leftovers from
the previous sections.
When discussing mass fluctuations only, Sec. IV D, we

mentioned that one can make a corresponding stability
analysis in terms of the variables M

Rd−3 and
Q

Rd−3, instead of

x ¼ rd−3þ
Rd−3 and y ¼ rd−3−

rd−3þ
of Eq. (65). The analysis in M

Rd−3 and
Q

Rd−3 yields some interesting insight. The condition given in
Eq. (68) becomes

a ≤
μ

2

ðd − 3Þ
ðd − 2Þ

�
Q2

R2ðd−3Þ þ μM2

R2ðd−3Þ − 2M
Rd−3

�
�
1 − μM

Rd−3

�
2

×

�
2μM
Rd−3 þ μðQ2−M2μ2Þ

R2ðd−3Þ − 2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμM2−Q2Þ

R2ðd−3Þ

��
2 − μM

Rd−3

�
2

− μQ2

R2ðd−3Þ

�s : ð81Þ

The possible physical values of M
Rd−3 and

Q
Rd−3 are restricted

by the condition of subextremality, i.e.,
ffiffiffi
μ

p
M > Q, and the

condition of no trapped surfaces, i.e., rþ
R < 1. One finds

from Eq. (81) that for small values of M
Rd−3, the shell needs

some minimum charge Q, or correspondingly a minimum
value of Q

Rd−3, for it to be stable. When M
Rd−3 has a value that

corresponds to x ¼ 2
d−1, the minimum charge for the shell to

be stable reaches zero, which means y ¼ 0. For higher M
Rd−3,

the region of stability is restricted by the physically possible

values, namely,
ffiffi
μ

p
M

Rd−3 >
Q

Rd−3 and
rþ
R < 1. Thus, in brief, for

M
Rd−3 small, thermodynamic stability exists only for suffi-
ciently large electric charge. For M

Rd−3 having a value such
that x ¼ 2

d−1when y ¼ 0, i.e.,Q ¼ 0, the shell is marginally
stable. Here, it is important to note that the value of x ¼ 2

d−1
for Q ¼ 0 means that the shell is at the photonic orbit. For
higher values of x, maintaining Q ¼ 0, the shell is inside
the photonic orbit, and it is stable. This means that for M

Rd−3

yielding values higher than x ¼ 2
d−1 when y ¼ 0, i.e.,

Q ¼ 0, the shell is thermodynamically stable, see also
[17]. This latter behavior, i.e., the behavior for M

Rd−3 yielding
values of x equal or higher than x ¼ 2

d−1, is precisely the
same behavior of the large black hole in the canonical
ensemble found by York [22,23] and generalized to d
dimensions in [24,25]. For higher values of M

Rd−3 increasing

the electrically charge Q, and so essentially increasing Q
Rd−3,

does not alter the stability, the solutions are all thermody-
namically stable. The result can be interpreted heuristically.
To understand it, note that the reduced inverse temperature
b, can be envisaged as a length scale, a thermal one. The
inverse temperature b here is the one given in Eq. (49). For
small M

Rd−3 and Q ¼ 0 one has that the shells have radii
higher than the photonic orbit and are thermodynamically
unstable. What happens is that the thermal length b being
proportional to M, still in the uncharged case, is smaller
than or of the order of the radius of the shell, and thus the
shell loses energy and mass along these thermal lengths.
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Losing mass, means that the thermal length b decreases,
and so the process is a runaway process and thus unstable.
If the charge Q increases, or more correctly if the ratio Q

Rd−3

increases, the thermal length b gets correspondingly higher,
and for a certain sufficiently high electric charge Q, or
better for a sufficiently high Q

Rd−3, b is now sufficiently
greater than the radius of the shell, so that it is not possible
to lose energy anymore. Thus, the electric shell is stable for
charges higher than this minimum electric charge. For
higher electric charge, i.e., higher Q

Rd−3, such that one is near
the extremal limit, one has that b is proportional to 1ffiffiffiffiffiffiffiffi

M−Q
p

and so it is indeed divergingly larger than R. ForQ ¼ 0 and
a value of M

Rd−3 such that x ¼ 2
d−1, one has a shell with radius

equal to the photonic orbit. In this case the thermal length b,
as the calculations show, is barely sufficiently to not allow
thermal loss from the shell, and so maintain the shell in
thermodynamic equilibrium. For higher M

Rd−3 andQ ¼ 0, the
shell is inside the photonic orbit, and the thermal length b is
now sufficiently large relatively to the radius of the shell to
not allow thermal loss from the shell, and this holds even
truer for higher Q, i.e., higher Q

Rd−3, where b gets even larger
and thus the shell in all these cases is thermodynamically
stable. The comments made here for generic dimensions d,
apply to the d ¼ 4 electric charged case studied in [18] and
are exemplified for d ¼ 5 in Fig. 1(d) bottom.
Another important point, is that in Sec. IV J we have

pointed out that for mass, area, and charge fluctuations
altogether, shells with more electric charge will have less
configurations of stability. This behavior differs from the
case of mass fluctuations only of Sec. IV D that was also
commented in the previous paragraph, where, for certain
configurations, more electric charge aids to the stability.
There is no contradiction between the two cases. The mass,
area, and charge fluctuations altogether is much more
restrictive than the mass fluctuations only case, in the
sense that stable points in the former fluctuations are also
stable points in the latter fluctuations, but the converse is
not true.
There is still another point worth noting. In the case of

one or two fixed quantities, Secs. IV D–IV I, there are shell
configurations with a ≥ 1 that are stable. But one notices
that the higher the a the higher the entropy S since it goes
with a power of a. For instance, for the area fluctuations
only of Sec. IV E, we have seen that Eq. (70) has its
minimum at rþ

R ¼ 1 for zero charge, i.e., ðx ¼ 1; y ¼ 0Þ,
with the value for a given by a ¼ 3 − 2

d−2. Since values of
a ¼ 3 − 2

d−2 are always greater than one, this could mean
that a shell with lower a would tend to settle into a shell
with higher a since the latter would have higher entropy.
One could think that a change of a could be achieved by
some rearrangement of the material on the shells and in this
way higher entropies could be attained. However, the
stability analysis performed is for fixed a, since the very

exponent a gives a precise temperature equation of state for
the matter, and to treat changes in the exponent a onewould
have perhaps to envisage some type of phase transition.
Having worked out the thermodynamic stability criterion

for all types of fluctuation in Secs. IV D–IV J through the
parameter a, it begs now the question of what is the
physical reason for the behavior of the intrinsic stability
with a itself. We now turn into this point.

V. INTRINSIC THERMODYNAMIC STABILITY
IN LABORATORY VARIABLES

A. The rational to introduce laboratory variables

It begs now the question of what is the physical reason
for the behavior of intrinsic stability with a. In order to
understand the physical meaning of the intrinsic thermo-
dynamic stability associated to this self-gravitating thin
shell, we rewrite the stability conditions with variables that
can be measured in the laboratory. One of these variables
that we are going to define gives a good example of the way
the stability conditions get clearer when written in terms of
thermodynamic coefficients. The heat capacity at constant

area and charge, CA;Q, can be defined as C−1
A;Q ¼

�
∂T
∂M

�
.

This variable is important since we also have
SMM ¼ −β2C−1

A;Q ≤ 0, and so the stability condition for
changes in proper mass only is that the heat capacityCA;Q is
positive. The aim is to generalize this reasoning for two
types of fluctuations which seem the most interesting,
namely, the mass and charge fluctuations studied in Sec. IV
H, and mass, area, and charge fluctuations studied in
Sec. IV J.

B. Laboratory variables for mass and charge
fluctuations together

Here we discuss the new laboratory variables for mass
and charge fluctuations, see Sec. IV H. It emerges that the
heat capacities at fixed area play an important role when
treating mass and charge fluctuations together. There are
two such heat capacities, namely, the heat capacity at
constant area and electric charge CA;Q, and the heat
capacity at constant area and electric potential CA;Φ.
The three equations of state TðM;A;QÞ, pðM;A;QÞ,

andΦðM;A;QÞ, given in Eqs. (58)–(60) are to be rewritten
in laboratory variables, which are also called thermody-
namic coefficients. In fact, for mass and charge fluctua-
tions, one only needs two equations of state, the ones for
the temperature TðM;A;QÞ and for the thermodynamic
electric potential ΦðM;A;QÞ. Since the area is kept fixed
here we do not need to use the equation of state for the
pressure, pðM;A;QÞ. The equations for TðM;A;QÞ and
ΦðM;A;QÞ will allow us to establish the stability con-
ditions for mass and charge fluctuations in the new
variables.
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For the equation of state for temperature, TðM;A;QÞ,
we want to define the laboratory variables in terms of
the derivatives of SðT; A;QÞ. For that, note that one is able
to write the differential dSðT; A;QÞ as dS ¼�
∂S
∂T

�
A;Q

dT þ
�
∂S
∂A

�
T;Q

dAþ
�
∂S
∂Q

�
T;A

dQ. Now, the heat

capacity CA;Q is defined as C−1
A;Q ¼

�
∂T
∂M

�
A;Q

which is

equivalent to 1
T CA;Q ¼

�
∂S
∂T

�
A;Q

. The latent heat capacity

at constant temperature and charge, λT;Q, is defined as

λT;Q ¼
�
∂S
∂A

�
T;Q

. The latent heat capacity at constant tem-

perature and area, λT;A, is defined as λT;A ¼
�
∂S
∂Q

�
T;A

. One

can then change the equality for dS into an equality for dT,
such that T ¼ TðS; A;QÞ, to obtain dT ¼ T

CA;Q
dS−

T λT;Q
CA;Q

dA − TλT;A
CA;Q

dQ. One can now use the first law,

Eq. (36), i.e., TdS ¼ dM þ pdA −ΦdQ, substitute for
the variation of the entropy dS above and put the equation
found as an equality for dT, namely,

dT ¼ 1

CA;Q
dM −

TλT;Q − p
CA;Q

dA −
TλT;A þΦ

CA;Q
dQ; ð82Þ

So, dT is written in terms of the laboratory variables,
namely, the heat capacity CA;Q, the latent heat capacity at
constant temperature and charge λT;Q, and the latent heat
capacity at constant temperature and area λT;A. For the
equation of state for the thermodynamic electric potential
ΦðM;A;QÞ, we define the laboratory variables with respect
toΦðS; A;QÞ so that, with the aid of SðM;A;QÞ, we obtain
ΦðM;A;QÞ. Now, note that one is able to write the

differential dΦðS; A;QÞ as dΦ ¼
�
∂Φ
∂S

�
A;Q

dSþ
�
∂Φ
∂A

�
S;Q

dAþ
�
∂Φ
∂Q

�
S;A

dQ. We define the adiabatic electric suscep-

tibility, χS;A, as 1
χS;A

¼
�
∂Φ
∂Q

�
S;A

, and define the electric

pressure at constant entropy and charge, PS;Q, as

PS;Q ¼
�
∂Φ
∂A

�
S;Q

. The remaining derivative of Φ is given

by the Maxwell relation
�
∂Φ
∂S

�
A;Q

¼
�
∂T
∂Q

�
S;A

¼ − TλT;A
CA;Q

,

which was calculated using the definitions given above
for CA;Q, λT;Q, and λT;A, and swapping the equality for
dSðT; A;QÞ into an equality for dΦðS; A;QÞ, i.e.,

dΦ ¼ − TλT;A
CA;Q

dSþ PS;QdAþ 1
χS;A

dQ. One can now use

the first law, Eq. (36), i.e., TdS ¼ dM þ pdA −ΦdQ,
substitute for the variation of the entropy dS above and
the equation found as an equality for dΦ, namely,

dΦ ¼ −
λT;A
CA;Q

dM þ
�
PS;Q − p

λT;A
CA;Q

�
dA

þ
�

1

χS;A
þΦλT;A

CA;Q

�
dQ: ð83Þ

So, dΦ is written in terms of the laboratory variables,
namely, the heat capacity, CA;Q, the latent heat capacity at
constant temperature and area, λT;A, the electric pressure at
constant entropy and charge, PS;Q, and the adiabatic
electric susceptibility, χS;A. Finally, it is useful to define
also the heat capacity at constant area and constant electric

potential, CA;Φ, defined by CA;Φ ¼ T
�
∂S
∂T

�
A;Φ

which can be

written in terms of the coefficients in Eqs. (82) and (83)

as CA;Φ ¼ CA;Q

�
1 − Tλ2T;A

CA;Q
χS;A

�
−1
.

The intrinsic thermodynamic stability of a thin shell for
mass and charge fluctuations together can be determined by
considering the two sufficient stability conditions which
can be taken from Eq. (56), yielding SMM ≤ 0 and
SMMSQQ − S2MQ ≥ 0. The first condition is almost imme-
diate since with the definition in Eq. (82) we obtain SMM ¼
−β2 1

CA;Q
and so it implies that CA;Q ≥ 0. The second

condition requires some more care and some more algebra,
yielding in the end SMMSQQ − S2MQ ¼ β2 1

CA;ΦχS;A
, and so it

implies CA;ΦχS;A ≥ 0. The stability conditions in the
laboratory variables can then be written as

CA;Q ≥ 0;

CA;ΦχS;A ≥ 0: ð84Þ

For the specific equations of state we used, Eqs.
(58)–(60), the coefficient χS;A is always positive. Hence,
from the two equations given in Eq. (84), the stability
conditions become CA;Q ≥ 0 and CA;Φ ≥ 0, respectively.
Moreover, we have found in Sec. IV H that for these
equations of state the condition SMMSQQ − S2MQ ≥ 0 is the
sufficient condition for stability. Therefore, the thin shell
considered is thermodynamic stable for mass and charge
fluctuations together if

CA;Φ ≥ 0: ð85Þ

This occurs precisely when Eq. (76) is satisfied, i.e.,
Eq. (85) is equivalent to Eq. (76), as for a thin shell with
the equations of state given in Eqs. (58)–(60). Note that,
when there is equality in Eq. (76), one must be careful in
regard to the value of the heat capacity at constant area and
constant electric potential, CA;Φ. If one performs the limit to
the equality as a succession of stable configurations, by
starting from a configuration with the exponent a satisfying
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Eq. (85) and then increasing a, the coefficientCA;Φ becomes
infinite and positive. If, on the contrary, one performs the
limit to the equality as a succession of unstable configu-
rations, by starting from a configuration with the exponent a
not satisfying Eq. (85) and then decreasing a, the coefficient
CA;Φ becomes infinite and negative.
The details of all the calculations presented in this

section are shown in Appendix D 1.

C. Laboratory variables for mass, area, and charge
fluctuations altogether

Here we discuss the new laboratory variables for mass,
area, and charge fluctuations, see Sec. IV J. The analysis in
Sec. V B highlights the importance of the specific heat
capacities CA;Q and CA;Φ in the intrinsic stability of
thermodynamic systems with fixed area. Nevertheless,
there are other important quantities playing a role in the
intrinsic stability for the case of mass, area and charge
fluctuations. In this case the important laboratory quantities
are the heat capacity at constant area and electric charge
CA;Q again, the expansion coefficient at constant temper-
ature and electric charge κT;Q, and the electric susceptibility
at constant pressure and temperature χp;T .
The three equations of state TðM;A;QÞ, pðM;A;QÞ, and

ΦðM;A;QÞ are to be rewritten in laboratory variables. This
will allow us to establish the stability conditions in these
new variables for mass, area, and charge fluctuations, and so
no fixed quantities. We now want to define the laboratory
variables in terms of the derivatives of SðT; p;QÞ,
AðT; p;QÞ, and ΦðT; p;QÞ, for convenience, since these
variables will simplify the considered stability conditions.
Notice that the three functions SðT; p;QÞ, AðT; p;QÞ, and
ΦðT; p;QÞ are the derivatives of the Gibbs potential, i.e.,
dG ¼ −SdT þ AdpþΦdQ. Let us start with the area dA
for which the coefficients have a direct physical meaning.

We write dA ¼
�
∂A
∂T

�
p;Q

dT þ
�
∂A
∂p

�
T;Q

dpþ
�
∂A
∂Q

�
T;p

dQ,

such that αp;Q ¼ 1
A

�
∂A
∂T

�
p;Q

is the expansion coefficient,

κT;Q ¼ − 1
A

�
∂A
∂p

�
T;Q

is the isothermal compressibility, and

κp;T ¼ − 1
A

�
∂A
∂Q

�
T;p

is the electric compressibility. Now, dS

is written as dS ¼
�
∂S
∂T

�
p;Q

dT þ
�
∂S
∂p

�
T;Q

dpþ
�
∂S
∂Q

�
T;p

dQ,

where
�
∂S
∂T

�
p;Q

can be written in terms of previously defined

coefficients, specifically,
�
∂S
∂T

�
p;Q

¼ CA;Q

T þ A
α2p;Q
κT;Q

,
�
∂S
∂p

�
T;Q

can be written using the Maxwell relation�
∂S
∂p

�
T;Q

¼ −
�
∂A
∂T

�
T;Q

¼ Aαp;Q, and λp;T ¼
�
∂S
∂Q

�
p;T

is a

new coefficient, the latent heat capacity. Finally, dΦ is

written as dΦ¼
�
∂Φ
∂T

�
p;Q

dTþ
�
∂Φ
∂p

�
T;Q

dpþ
�
∂Φ
∂Q

�
T;p

dQ,

where two of the derivatives are written using Maxwell

relations, i.e.,
�
∂Φ
∂T

�
p;Q

¼−
�
∂S
∂Q

�
p;T

¼ λp;T and
�
∂Φ
∂p

�
T;Q

¼�
∂A
∂Q

�
p;T

¼ −Aκp;T as defined above, and 1
χp;T

¼
�
∂Φ
∂Q

�
p;T

is a

new coefficient, the isothermal electric susceptibility. With
the differentials dAðT; p;QÞ, dSðT; p;QÞ defined above in
terms of physical coefficients, we are able to invert the
system composed by these two differentials in order to
obtain dTðS; A;QÞ and dpðS; A;QÞ. Then, using Eq. (36),
i.e., TdS ¼ dM þ pdA −ΦdQ, we are able to obtain the
differentials of the two equations of state in the desired
form, i.e., dTðM;A;QÞ and dpðM;A;QÞ. Inserting
dTðM;A;QÞ and dpðM;A;QÞ into dΦðT; p;QÞ, we find
the differential of the remaining equation of state,
dΦðM;A;QÞ. Thus, these differentials are written in terms
of the defined laboratory variables and the differentials of
dM, dA, and dQ, as

dT ¼ dM
CA;Q

þ
�

p
CA;Q

− T
αp;Q

CA;QκT;Q

�
dA

−
�

Φ
CA;Q

þ T
λp;T
CA;Q

þ A
αp;Tκp;T
κT;QCA;Q

�
dQ; ð86Þ

dp¼ αp;Q
CA;QκT;Q

dM−
�

1

AκT;Q
−

αp;Q
CA;QκT;Q

�
p−T

αp;Q
κT;Q

��
dA

−
�
κp;T
κT;Q

−
αp;Q

CA;QκT;Q
C
�
dQ; ð87Þ

dΦ ¼ −BdM þ
�
κp;T
κT;Q

−
�
p − T

αp;Q
κT;Q

�
B
�
dA

þ
�
BC þ 1

χp;T
þ A

κ2p;T
κT;Q

�
dQ; ð88Þ

where B is defined as B ¼ A κp;Tαp;Q
CA;QκT;Q

þ λp;T
CA;Q

, and C is defined

as C ¼ TA κp;Tαp;Q
κT;Q

þ Tλp;T þΦ. With the differentials

dTðM;A;QÞ, dpðM;A;QÞ, and dΦðM;A;QÞ in
Eqs. (86)–(88), and the first law of thermodynamics,
Eq. (36), i.e., TdS ¼ dM þ pdA −ΦdQ, the second deriv-
atives of the entropy that enter into the thermodynamic
stability problem and are given in Eq. (62) can be calculated
directly.
The intrinsic thermodynamic stability of a thin shell for

generic mass, area, and charge fluctuations, is given by the
three sufficient stability conditions which can be taken from
Eq. (56), yielding SMM ≤ 0, SMMSAA − S2MA ≥ 0, and
ðSMMSAQ−SMASMQÞ2−ðSAASMM−S2AMÞðSQQSMM−S2QMÞ
≤0. Now, having the second derivatives of the entropy
written in terms of the laboratory variables defined in this
section, one finds that SMM ≤ 0 is equivalent to β2 1

CA;Q
≥ 0,

SMMSAA − S2MA ≥ 0 is equivalent to β3 1
AκT;QCA;Q

≥ 0, and

ðSMMSAQ−SMASMQÞ2−ðSAASMM−S2AMÞðSQQSMM−S2QMÞ
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≤0 is equivalent to β6 1
AC2

A;QκT;Qχp;T
≥ 0. We then have that the

stability conditions for generic mass, area, and charge
fluctuations are given by the following three equations,

CA;Q ≥ 0;

κT;Q ≥ 0;

χp;T ≥ 0; ð89Þ

i.e., all three laboratory quantities have to be positive,
specifically, the heat capacity CA;Q which is related to
changes in temperature, the isothermal compressibility
κT;Q which is related to changes in the pressure, and the
isothermal electric susceptibility χp;T which is related to
changes in the electric charge, have to be positive, with the
case of marginal stability corresponding to these physical
variables going to infinity.
For the specific equations of state we use, Eqs. (58)–(60),

for T, p, and Φ, respectively, one finds that the most
restrictive condition is for χp;T,

χp;T ≥ 0; ð90Þ

so the positivity of the isothermal electric susceptibility
χp;T is the sufficient condition in the case of the thin shell
we are considering, with marginal stability happening when
this quantity is infinite, and with the unstable configura-
tions having a negative electric susceptibility and thus
departing from equilibrium. Making the connection to
Sec. IV J, Eq. (90) is equivalent to Eq. (80) and one finds
that for a < d−3

d−2 the isothermal electric susceptibility χp;T
will always be positive, for d−3

d−2 < a < 1 it will be positive
for some values of ðrþ; r−; RÞ, for a ¼ 1 and R > rþ it will
be negative with the case R ¼ rþ having to be treated with
care, and for a > 1 it will always be negative. The shell
with black hole features, namely, a ¼ 1 and R ¼ rþ, is
thermodynamic unstable if the shell approaches its own
gravitational radius rþ, R → rþ, since in this case
χp;T → −∞. But there is the possibility, of having a
configuration with R ¼ rþ that is created from the start,
i.e., a configuration not belonging to a sequence of
quasistatic configurations that has its radius R decreased
up to rþ. In this case the stability depends on whether the
exponent a of the equation of state approaches a ¼ 1 from
below or from above. If the exponent a of the equation of
state approaches a ¼ 1 from below then the R ¼ rþ
configuration is marginally stable with χp;T → þ∞, which
means that changes in the electric charge of the configu-
ration will not have any impact on the electric potential. If
the exponent a of the equation of state approaches a ¼ 1
from above then the R ¼ rþ configuration is unstable,
χp;T → −∞. Moreover, in the region of d−3d−2 < a < 1, shells
with more electric charge show more difficulty in having
positive isothermal electric susceptibility χp;T, a property

that can be deduced from Fig. 7 by the decreasing amount
of stable configurations with electric charge.
The details of all the calculations presented in this

section are shown in Appendix D 2.

VI. CONCLUSIONS

We have used the thin shell formalism to determine the
mechanics of a static charged spherical thin shell in d
dimensions in general relativity and studied its thermody-
namics by imposing the first law. The fact that the rest mass
density and so the rest mass behaves as a thermal quasilocal
energy and that the pressure is determined just by general
relativity indicates there is a relation between general
relativity and thermodynamics as one equation of state
of the shell becomes fixed. We computed the entropy in
terms of the thermodynamic quantities of the shell, namely,
the rest massM, the area A and the electric charge Q of the
shell. The derivatives of the entropy are directly related to
the temperature and the electric potential. Indeed, with the
first law of thermodynamics and general relativity alone,
we were able to restrict the expressions for the equations of
state for the temperature and the thermodynamic electric
potential. These equations of state in turn imply that the
entropy S depends solely on the two natural radius of the
Reissner-Nordström shell spacetime, the gravitational
radius rþ and the Cauchy radius r−, which in turn depend
on M, A, and Q. That the entropy S of the d dimensional
shell spacetime does not depend on the radius of the shell,
R, is a remarkable fact, which nevertheless has been found
for other thin shell spacetimes.
To calculate an exact expression for the entropy of the

shell, one still needs full expressions for the temperature
and the thermodynamic electric potential equations of state.
We used a power law in rþ with exponent a for the
temperature, and opted for the characteristic electric poten-
tial of a Reissner-Nordström shell spacetime, to obtain that
the entropy S of the shell is proportional to Aaþ, where Aþ is
the gravitational area corresponding to rþ. Shells with such
entropy are of great interest as it is possible to obtain the
black hole limit and recover the thermodynamics of
black holes.
We have then studied the thermodynamic intrinsic

stability of thin shells with such an entropy equation.
The shell is stable if the Hessian of the entropy is negative
semidefinite. We analyzed the Hessian for seven possible
types of fluctuations that can occur in the shell.
Fluctuations of the shell with one free and two fixed
thermodynamic quantities are of three types, fluctuations of
the shell with two free and one fixed quantities are also of
three types, and fluctuations of the shell with three free
quantities, i.e., no fixed quantities, are of one type. The
most important and general type of fluctuations are the ones
with no fixed quantities. In the case of our entropy
equation, we have found that only one condition is
sufficient for the shell to be stable. This condition
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establishes that for 0 < a ≤ d−3
d−2 all the configurations of the

shell are thermodynamic stable, for d−3
d−2 < a < 1 stability

depends on the mass and electric charge, for a ¼ 1 the
configurations are unstable, unless the shell is at its own
gravitational radius, i.e., at the black hole limit, in which
case it is marginally stable, and that for 1 < a < ∞ all
configurations are unstable.
The physical interpretation for the stability is analyzed

through new thermodynamic variables that can be mea-
sured in the laboratory. One finds that, generically, stable
shells have positive heat capacity, positive isothermal
compressibility, and positive isothermal electric suscep-
tibility. For the specific equations of state that we gave, and
so for our entropy equation, it is found that every shell with
positive electric susceptibility has positive heat capacity
and positive isothermal compressibility, which is an inter-
esting property of the shells with the considered entropy. In
addition, marginal stability means that the electric suscep-
tibility is infinite, which seems to be the case in the black
hole limit. Shells with negative electric susceptibility depart
from the initial state and they should rearrange themselves
until the susceptibility becomes positive or the shell
breaks down.
This work has derived some thermodynamic properties

for electrically charged spherical matter shells in higher
dimensions and complements a set of works in the thermo-
dynamics of thin shells. Still, more future work should be
done in the investigation of the link between thermody-
namics and general relativity, and hopefully contribute to
the understanding of black hole physics and with it trying to
grasp gravitation at the tiniest possible scales.

ACKNOWLEDGMENTS

We thank financial support from Fundação para a
Ciência e Tecnologia—FCT through the Project
No. UIDB/00099/2020.

APPENDIX A: TEMPERATURE AS A POWER
LAW IN THE ADM MASS AND

CORRESPONDING THERMODYNAMIC
ELECTRIC POTENTIAL AS ALTERNATIVE
TO THE EQUATIONS OF STATE OF SEC. III

The reduced equations of state for the inverse temper-
ature and thermodynamic electric potential given in
Eqs. (49) and (50) of Sec. III are a good choice for reduced
equations of state as they yield naturally the black hole
equations of state. But there are alternatives to these
equations of state.
In d ¼ 4, an alternative was provided in [18], where

the reduced inverse temperature was chosen to be
bðrþ; r−Þ ¼ 2aðrþ þ r−Þα, for some constant a and expo-
nent α. Thus, b, which represents the inverse temperature at
infinity, is given as a power law depending on the ADM

mass, since in d ¼ 4, one has rþ þ r− ¼ 2Gm. The solution
for the reduced thermodynamic electric potential cðrþ; r−Þ
is then cðrþ; r−Þ ¼ 2γ ðrþr−Þδ

ðrþþr−Þα for some γ, δ, and so is a

power law in the chargeQ combined with a power law in m
[18]. For this d ¼ 4 case, it is possible analytically to study
its stability.
Motivated by this choice for a reduced equation of state

for d ¼ 4, we consider for a reduced equation of state for
the temperature in generic d dimensions, the following
expression

bðrþ; r−Þ ¼ aðrd−3þ þ rd−3− Þα; ðA1Þ

where a and α are arbitrary real numbers, and such a choice
means that b is indeed a power law in the d-dimensional
ADM mass m. With the chosen reduced equation of state
for the inverse temperature, the condition in Eq. (48) can be
used to restrict the form of cðrþ; r−Þ, which is given in this

case by ∂c
∂r−

r−
d−3 −

∂c
∂rþ

rþ
d−3 ¼ αc rd−3þ −rd−3−

rd−3þ þrd−3−
. The general solution

for cðrþ; r−Þ is

cðrþ; r−Þ ¼
fðrþr−Þ

ðrd−3þ þ rd−3− Þα ; ðA2Þ

where fðrþr−Þ is an arbitrary function depending only on
the charge of the shell. This generalizes to d dimensions the
cðrþ; r−Þ obtained in [18]. The choices for the reduced
equations of state provided, namely, Eqs. (A1) and (A2),
permit to treat overcharged shells, i.e., shells with Q > m.
The thermodynamic stability can be performed, but we will
not do it here.

APPENDIX B: THERMODYNAMIC STABILITY:
GENERIC AND SPECIFIC CONSIDERATIONS

TO BE ADDED TO SEC. IV

1. Seminegative definite Hessian

Here we establish the rules that lead to the stability
conditions in Eq. (56) of Sec. IV. A thermodynamic system
is in equilibrium if it reaches a maximum of entropy, i.e.,
dS ¼ 0, and it obeys d2S ≤ 0.
Let us assume that the system is in the state dS ¼ 0. To

understand what d2S ≤ 0 leads to, it is important to write
the Hessian matrix of the entropy, Sij, i.e., Sij ¼ ∂

2S
∂hi∂hj

, hi
being a set of unfixed independent parameters. Then d2S ≤
0 means that Sij has to be semidefinite negative, and so for
any arbitrary vector v, one has

X
ij

Sijvivj ≤ 0: ðB1Þ
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2. 1-parameter case

In the 1-parameter case, the entropy S is a function of
one unfixed parameters h1, i.e., the system is allowed to
change very small amounts in h1. The thermodynamic
stability condition, Eq. (B1), turns into Sh1h1v

2
1 ≤ 0, for an

arbitrary vector v ¼ ðv1Þ, and so one finds

Sh1h1 ≤ 0: ðB2Þ

3. 2-parameter case

In the 2-parameter case, the entropy S is a function of
two unfixed parameters h1 and h2. Thus, the generic
stability condition, Eq. (B1), states Sh1h1v

2
1 þ 2Sh1h2v1v2þ

Sh2h2v
2
2 ≤ 0, for an arbitrary vector v ¼ ðv1; v2Þ. One can

choose the vector v ¼ ðv1; 0Þ, which yields Sh1h1v21 ≤ 0, for
any v1, and so a necessary condition is

Sh1h1 ≤ 0: ðB3Þ

One can choose the vector v ¼ ð0; v2Þ, which for any v2,
yields Sh2h2v

2
2 ≤ 0, and so another necessary condition is

Sh2h2 ≤ 0: ðB4Þ

The third condition comes from completing the square
of the stability condition for this 2-parameter case,

yielding
ðSh1h1v1þSh1h2v2Þ2

Sh1h1
þ
�
Sh2h2 −

S2h1h2
Sh1h1

�
v22 ≤ 0. Thus,

since Sh1h1 ≤0, the third necessary condition is

Sh1h1Sh2h2 − S2h1h2 ≥ 0: ðB5Þ

4. 3-parameter case

In the 3-parameter case, the entropy S is a function of
three unfixed parameters h1, h2, and h3. Thus, the generic
stability condition, Eq. (B1), states Sh1h1v

2
1 þ Sh2h2v

2
2

þSh3h3v
2
3 þ 2Sh1h2v1v2 þ 2Sh1h3v1v3 þ 2Sh3h2v2v3 ≤ 0,

for an arbitrary vector v ¼ ðv1; v2; v3Þ. Analogous to the
2-parameter case above, one can set components of v to be
zero. This will give the 2-parameter conditions for each pair
of parameters. Thus, one has

Shihi ≤ 0; ðB6Þ

ShihiShjhj − S2hihj ≥ 0; i ≠ j; ðB7Þ

for i, j ¼ 1, 2, 3, i.e., there are six conditions. The seventh
condition can be obtained by multiplying the generic
stability condition Sh1h1 and once again completing the

square in the following way, ðSh1h1v1þSh1h2v2þ
Sh1h3v3Þ2þðSh2h2Sh1h1 −S2h2h1Þv22þðSh3h3Sh1h1 −S2h1h3Þv23þ
2ðSh3h2Sh1h1 −Sh1h2Sh1h3Þv3v2≥0. Now one can again per-
form the square completion but it is more simple to
consider the roots of the polynomial Pðv2; v3Þ composed
by the second, third and fourth terms. Since Pðv2; v3Þ ≥ 0

and its second derivatives are positive, the polynomial must
have only one root or no roots. Thus, the following
inequality holds

ðSh3h2Sh1h1 − Sh1h2Sh1h3Þ2 − ðSh2h2Sh1h1 − S2h2h1Þ
× ðSh3h3Sh1h1 − S2h1h3Þ ≤ 0: ðB8Þ

5. Redundancy

By the method above, it seems one needs 3 conditions
for the 2-parameter case and 7 conditions for the 3-
parameter case. Since the number of conditions is higher
than the number of eigenvalues of the Hessian, there are
redundant conditions. For any specific choice of hi, the
sufficient conditions for the 2-parameter case are Eqs. (B2)
and (B5). For the 3-parameter case, the sufficient con-
ditions are Eqs. (B2), (B5), and (B8). Another method to
determine the conditions is to consider only the pivots of
the Hessian.

6. The case studied

There is still the freedom to choose the order of
parameters in the construction of the Hessian. For example,
one can pick h1 ¼ M, h2 ¼ A and h3 ¼ Q, which has been
our choice, but of course any permutation of parameters is
allowed.
For the static thin shell system we studied, the first

condition for stability, dS ¼ 0, imposes that rþ ¼ const
case, as the entropy is proportional to a power of rþ,
S ¼ γ

16πGA
aþ, see Eq. (51), with rþ itself being a function of

M, A, and Q. The other condition d2S ≤ 0 leads to
Eqs. (B2)–(B8) which are essential the set of equations
given in Eq. (56) with the choice h1 ¼ M, h2 ¼ A and
h3 ¼ Q. The stability analysis itself is then performed
through Eqs. (62)–(80).

APPENDIX C: GRAPHICS RELEVANT
TO SEC. IV

This appendix is dedicated to the display of the plots of
the marginal stability of the shell with the entropy given by
Eq. (51) that were discussed in Sec. IV. Each figure has
plots of the marginal condition for each seven types of
fluctuations, which are all the possible combinations of
mass, area and charge fluctuations. The correspondence is
the following: Fig. 1 corresponds to Sec. IV D and to
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Sec. IV K, Fig. 2 to Sec. IV E, Fig. 3 to Sec. IV F, Fig. 4 to
Sec. IVG, Fig. 5 to Sec. IV H, Fig. 6 to Sec. IV I, and Fig. 7
to Sec. IV J. The surfaces of marginal stability are
3-surfaces lying in R4 with coordinates ðx; y; a; dÞ, with
x ¼ rd−3þ

Rd−3 and y ¼ rd−3−
rd−3þ

, where rþ and r− are the gravitational

radius and the Cauchy radius of the Reissner-Nordström
shell spacetime, R is the radius of the shell, a is the
exponent of the equation of state of the shell that appears in
Eq. (49), and d is the number of spacetime dimensions.
Each point inR4 corresponds to a configuration of the shell
for a fixed value of rþ. The subset ofR4 that corresponds to
physical configurations is described by x ∈�0; 1½, y ∈�0; 1½,
a ∈ ½0;∞½ and d ∈ ½4;∞½. The intersection of the 3-surface
with this subset separates the subset of physical configu-
rations that are stable from the ones that are unstable.
For reasons of presentation, we display cuts of the

3-surface of marginal stability. In each figure, we display a
plot of the 3-surface as aðxÞ for different values of y with
d ¼ 5, as aðyÞ for different values of x with d ¼ 5 and as
aðdÞ for different values of x and y. We choose d ¼ 5
since it is the closest generalization of the 4-dimensional
case and has implications in holography and unified
theories. Also, we only display the curve of marginal

stability with a ¼ 1 in three cases: the case of mass
fluctuations in Fig. 1, the case of mass and area fluctua-
tions in Fig. 4 and the case of mass and charge fluctuations
in Fig. 5. The plot of the 3-surface with a ¼ 1 has physical
importance since these configurations correspond to a
shell with black hole features, in particular, a shell with
the same entropy as a black hole with same mass and
charge. However, displaying this plot for the other cases
would have no interest for the following reasons. For the
cases of Figs. 2, 3, and 6, there would be simply no curve.
All the configurations with a ¼ 1 are below the 3-surface
and therefore are stable. For the case of Fig. 7, the plot
would be of a straight line in x ¼ 1, hence only the
configurations with x ¼ 1 are marginally stable with the
others being unstable.
From the analysis in Sec. IV, we must note that at least

Figs. 1, 4, and 7 have a physical interpretation. The surface
of marginal stability in Fig. 1 describes configurations with
an infinite heat capacity, whereas stable configurations
have positive heat capacity and unstable ones have negative
heat capacity. The analogous happens in Figs. 4 and 7, that
describe respectively infinite isothermal compressibility
and isothermal electric susceptibility.

FIG. 1. Thermodynamic stability of the shell considering only mass fluctuations is described, see Sec. IV D and Eqs. (67), (68), and
(81). Plots of S1ðd; a; x; yÞ ¼ 0 with d being the number of spacetime dimensions, a being the exponent of the equation of state of the

shell, x ¼ rd−3þ
Rd−3, and y ¼ rd−3−

rd−3þ
, where rþ and r− are the gravitational radius and the Cauchy radius of the Reissner-Nordström shell

spacetime, respectively, and R is the radius of the shell, are shown. The equality S1ðd; a; x; yÞ ¼ 0 describes marginal stability of the
shell considering only mass fluctuations. (a) The function is plotted as aðxÞ with d ¼ 5 and for fixed values of y, with points with lower
a than the function corresponding to stable configurations; (b) The function is plotted as aðyÞ with d ¼ 5 and for fixed values of x, with
points with lower a corresponding to stable configurations; (c) The function is plotted as aðdÞ for fixed values of the pair ðx; yÞ, with
points with lower a corresponding to stable configurations; (d) In the top plot, for a ¼ 1 with fixed values of d the function is plotted as
yðxÞ, with configurations with higher x than the curve being stable; in the bottom plot, one uses the function in the form

S1
�
d ¼ 5; a ¼ 1; MR ;

Q
R

�
¼ 0, where M is the rest mass of the shell and Q is the charge of the shell, see Sec. IV K and Eq. (81), to plot,

for a ¼ 1 with μ ¼ 1 and d ¼ 5, the function QðMÞ in the blue curve, the region of stability in the yellow line filled area, Q ¼ M in the
black line, and rþ ¼ R in the red curve.
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FIG. 3. Thermodynamic stability of the shell considering only charge fluctuations is described, see Sec. IV F and Eqs. (71) and (72).
Plots of S3ðd; a; x; yÞ ¼ 0, with d being the number of spacetime dimensions, a being the exponent of the equation of state of the shell,

x ¼ rd−3þ
Rd−3, and y ¼ rd−3−

rd−3þ
, where rþ and r− are the gravitational radius and the Cauchy radius of the Reissner-Nordström shell spacetime,

respectively, and R is the radius of the shell, are shown. The equality S3ðd; a; x; yÞ ¼ 0 describes marginal stability of the shell
considering charge fluctuations only. (a) The function is plotted as aðxÞ with d ¼ 5 and for fixed values of y; (b) The function is plotted
as aðyÞwith d ¼ 5 and for fixed values of x; (c) The function is plotted as aðdÞ for fixed values of the pair ðx; yÞ. Points with lower a than
the given function correspond to stable configurations in all three plots. All the configurations with a ¼ 1 are below the surface of
marginal stability, therefore they are stable so there is no need for a plot (d).

FIG. 2. Thermodynamic stability of the shell considering only area fluctuations is described, see Sec. IV E and Eqs. (69) and (70).
Plots of S2ðd; a; x; yÞ ¼ 0, with d being the number of spacetime dimensions, a being the exponent of the equation of state of the shell,

x ¼ rd−3þ
Rd−3, and y ¼ rd−3−

rd−3þ
, where rþ and r− are the gravitational radius and the Cauchy radius of the Reissner-Nordström shell spacetime,

respectively, and R is the radius of the shell, are shown. The equality S2ðd; a; x; yÞ ¼ 0 describes marginal stability of the shell
considering area fluctuations only. (a) The function is plotted as aðxÞ with d ¼ 5 and for fixed values of y; (b) The function is plotted as
aðyÞ with d ¼ 5 and for fixed values of x; (c) The function is plotted as aðdÞ for fixed values of the pair ðx; yÞ. Points with lower a than
the given function correspond to stable configurations in all three plots. All the configurations with a ¼ 1 are below the surface of
marginal stability, therefore they are stable so there is no need for a plot (d).

FIG. 4. Thermodynamic stability of the shell considering mass and area fluctuations together is described, see Sec. IV G and Eqs. (73)
and (74). Plots of S4ðd; a; x; yÞ ¼ 0, with d being the number of spacetime dimensions, a being the exponent of the equation of state of

the shell, x ¼ rd−3þ
Rd−3, and y ¼ rd−3−

rd−3þ
, where rþ and r− are the gravitational radius and the Cauchy radius of the Reissner-Nordström shell

spacetime, respectively, and R is the radius of the shell, are shown. The equality S4ðd; a; x; yÞ ¼ 0 describes marginal stability of the
shell considering together mass and area fluctuations. (a) The function is plotted as aðxÞwith d ¼ 5 and for fixed values of y, with points
with lower a than the function corresponding to stable configurations; (b) The function is plotted as aðyÞ with d ¼ 5 and for fixed values
of x, with points with lower a corresponding to stable configurations; (c) The function is plotted as aðdÞ for fixed values of the pair
ðx; yÞ, with points with lower a corresponding to stable configurations; (d) The function is plotted as yðxÞ for a ¼ 1 with fixed values of
d, with configurations with higher x than the curve being stable.
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FIG. 5. Thermodynamic stability of the shell considering mass and charge fluctuations together is described, see Sec. IV H and
Eqs. (75) and (76). Plots of S5ðd; a; x; yÞ ¼ 0, with d being the number of spacetime dimensions, a being the exponent of the equation of

state of the shell, x ¼ rd−3þ
Rd−3, and y ¼ rd−3−

rd−3þ
, where rþ and r− are the gravitational radius and the Cauchy radius of the Reissner-Nordström

shell spacetime, respectively, and R is the radius of the shell, are shown. The equality S5ðd; a; x; yÞ ¼ 0 describes marginal stability of
the shell considering together mass and charge fluctuations. (a) The function is plotted as aðxÞ with d ¼ 5 and for fixed values of y, with
points with lower a than the function corresponding to stable configurations; (b) The function is plotted as aðyÞ with d ¼ 5 and for fixed
values of x, with points with lower a corresponding to stable configurations; (c) The function is plotted as aðdÞ for fixed values of the
pair ðx; yÞ, with points with lower a corresponding to stable configurations; (d) The function is plotted as yðxÞ for a ¼ 1 with fixed
values of d, with configurations with higher x than the curve being stable.

FIG. 6. Thermodynamic stability of the shell considering area and charge fluctuations together is described, see Sec. IV I and Eqs. (77)
and (78). Plots of S6ðd; a; x; yÞ ¼ 0, with d being the number of spacetime dimensions, a being the exponent of the equation of state of

the shell, x ¼ rd−3þ
Rd−3, and y ¼ rd−3−

rd−3þ
, where rþ and r− are the gravitational radius and the Cauchy radius of the Reissner-Nordström shell

spacetime, respectively, and R is the radius of the shell, are shown. The equality S6ðd; a; x; yÞ ¼ 0 describes marginal stability of the
shell considering together area and charge fluctuations. (a) The function is plotted as aðxÞ with d ¼ 5 and for fixed values of y; (b) The
function is plotted as aðyÞ with d ¼ 5 and for fixed values of x; (c) The function is plotted as aðdÞ for fixed values of the pair ðx; yÞ.
Points with lower a than the given function correspond to stable configurations in all three plots. All the configurations with a ¼ 1 are
below the surface of marginal stability, therefore they are stable and there is no need for a plot (d).

FIG. 7. Thermodynamic stability of the shell considering mass, area, and charge fluctuations altogether is described, see Sec. IV J and
Eqs. (79) and (80). Plots of S7ðd; a; x; yÞ ¼ 0, with d being the number of spacetime dimensions, a being the exponent of the equation of

state of the shell, x ¼ rd−3þ
Rd−3, and y ¼ rd−3−

rd−3þ
, where rþ and r− are the gravitational radius and the Cauchy radius of the Reissner-Nordström

shell spacetime, respectively, and R is the radius of the shell, are shown. The equality S7ðd; a; x; yÞ ¼ 0 describes marginal stability of
the shell considering mass, area, and charge fluctuations altogether. (a) The function is plotted as aðxÞ with d ¼ 5 and for fixed values of
y; (b) The function is plotted as aðyÞ with d ¼ 5 and for fixed values of x; (c) The function is plotted as aðdÞ for fixed values of the pair
ðx; yÞ. Points with lower a than the given function correspond to stable configurations in all three plots. All the configurations with
a ¼ 1 are above the surface of marginal stability, hence they are unstable, except for the points with x ¼ 1 which lie on the limit of the
surface, hence they are marginally stable, therefore they are stable and there is no need for a plot (d).

TIAGO V. FERNANDES and JOSÉ P. S. LEMOS PHYS. REV. D 106, 104008 (2022)

104008-24



APPENDIX D: LABORATORY VARIABLES:
DETAILS FOR SEC. V

1. Mass and charge fluctuations together:
Second derivatives of the entropy in terms

of laboratory quantities

Here we show the detailed calculations of the stability
conditions in terms of laboratory quantities presented in
Sec. V B for the study of mass and charge fluctuations
together. The idea is that the second derivatives of the
entropy can be written in terms of variables that one can
measure in the laboratory, i.e., thermodynamic coefficients.
We start from the two equations of state dT and dΦ, seen as
functions of S, A, and Q. They are given by

dT ¼ T
CA;Q

dS − T
λT;Q
CA;Q

dA −
TλT;A
CA;Q

dQ; ðD1Þ

dΦ ¼ −
TλT;A
CA;Q

dSþ PS;QdAþ 1

χS;A
dQ; ðD2Þ

where CA;Q is the specific heat capacity at constant area and
electric charge, λT;Q is the latent heat capacity at constant
temperature and charge associated to the area, λT;A is the
latent heat capacity at constant temperature and area
associated to the charge, PS;Q is the electric pressure at
constant entropy and charge, and χS;A is the adiabatic
electric susceptibility at constant area. We then write the
differentials dTðM;A;QÞ and dΦðM;A;QÞ by using
Eq. (36), i.e., TdS ¼ dM þ pdA −ΦdQ, in Eqs. (D1)
and (D2), yielding

dT ¼ 1

CA;Q
dM −

TλT;A þΦ
CA;Q

dQ −
TλT;Q − p

CA;Q
dA; ðD3Þ

dΦ ¼ −
λT;A
CA;Q

dM þ
�

1

χS;A
þΦλT;A

CA;Q

�
dQ

þ
�
κp;S
κS;Q

− p
λT;A
CA;Q

�
dA: ðD4Þ

Now, Eq. (36), i.e., TdS ¼ dM þ pdA −ΦdQ, and

Eq. (D3), yield SMM ¼ −β2
�
∂T
∂M

�
A;Q

¼ −β2C−1
A;Q. Thus,

the first condition for stability, SMM ≤ 0, can be written
as C−1

A;Q ≥ 0, or equivalently,

CA;Q ≥ 0: ðD5Þ

In addition, one can write SMMSQQ − S2MQ as SMMSQQ

−S2MQ ¼ −
�

∂β
∂M

�
A;Q

�
∂βΦ
∂Q

�
M;A

−
�
∂β
∂Q

�
2

M;A
¼ −β4

�
∂T
∂M

�
A;Q�

∂T
∂Q

�
M;A

Φ − β3
�
∂T
∂M

�
A;Q

�
∂Φ
∂Q

�
M;A

− β4
�
∂T
∂Q

�
2

M;A
, where Eq.

(36), i.e., TdS ¼ dM þ pdA −ΦdQ, has been of help.
Then, putting Eqs. (D3) and (D4) into this latter equation,

one finds SMMSQQ − S2MQ ¼ β3
�

1
CA;QχS;A

− Tλ2T;A
C2
A;Q

�
. Thus, the

second and necessary condition for stability, namely,
SMMSQQ − S2MQ ≥ 0, can be written as

β3
�

1

CA;QχS;A
−
Tλ2T;A
C2
A;Q

�
≥ 0: ðD6Þ

This can be further simplified. If we introduce the heat
capacity at constant electric potential and constant area,

CA;Φ ¼ T
�
∂S
∂T

�
Φ;A

. This coefficient can be written as

C−1
A;Φ ¼ β

�
∂T
∂S

�
A;Φ

¼ β
��

∂T
∂S

�
Q;A

þ
�
∂T
∂Q

�
S;A

�
∂Q
∂S

�
Φ;A

�
¼

βC−1
A;Q

�
1 − Tλ2T;A

CA;Q
χS;A

�
¼ βχS;A

�
1

CA;QχS;A
− Tλ2T;A

C2
A;Q

�
, where

we have used Eqs. (D1) and (D2) to compute the deriv-

atives. Also, we used that
�
∂Q
∂S

�
Φ;A

¼ TχS;A
λT;A
CA;Q

, that comes

from inverting Eq. (D2) to obtain dQðS; A;ΦÞ. Thus,

β3
�

1
CA;QχS;A

− Tλ2T;A
C2
A;Q

�
¼ β2 1

CA;ΦχS;A
, and Eq. (D6) can be rewrit-

ten as 1
CA;ΦχS;A

≥ 0, or, equivalently, as

CA;ΦχS;A ≥ 0; ðD7Þ

which is the upshot of the second condition for stability
SMMSQQ − S2MQ ≥ 0 in the physical variables.
Now, we consider the particular case of the thin shell

with the equations of state given by Eqs. (49) and (50). The
first condition for stability, Eq. (D5), holds without further
ado. The second condition for stability, Eq. (D7) can be
improved for the equations of state used. The coefficient
χS;A can be calculated using the differential in Eq. (D4)

through χ−1S;A ¼
�
∂Φ
∂Q

�
M;A

þΦ
�
∂Φ
∂M

�
A;Q

. The equation of

state in consideration is given by Eqs. (46) and (50),

Φ ¼ Q

�
r−ðd−3Þþ −R−ðd−3Þ

1− μM

Rd−3

�
, with rþ ¼ rþðM;A;QÞ defined by

Eqs. (15) and (33). Thus, the coefficient χ−1S;A for this case is
χ−1S;A ¼ Φ2 μ

Rd−3

�
1−μ M

Rd−3

�þ Φ
Q, which is positive for values of

ðM;A;QÞ that are physical. This means that the second
condition for stability given in Eq. (D7) is reduced to

CA;Φ ≥ 0; ðD8Þ

for the equations of state we have used.
Here we have deduced in detail the stability conditions in

physical variables for mass and charged fluctuations
presented in the main text in Sec. V B. So, Eqs. (D3)
and (D4) are Eqs. (82) and (83) of the main text,
respectively, Eqs. (D5) and (D7) are the two equations
given in Eq. (84) of the main text, and Eq. (D8) is Eq. (85)
of the main text.
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2. Mass, area, and charge fluctuations altogether:
Second derivatives of the entropy in terms

of laboratory quantities

Here we show the detailed calculations of the stability
conditions in terms of laboratory quantities presented in
Sec. V C for the study of mass, area, and charge fluctua-
tions altogether. The idea is that the second derivatives of
the entropy can be written in terms of variables one can
measure in the laboratory, i.e., thermodynamic coefficients.
We start from the three equations of state dSðT; p;QÞ,
dAðT; p;QÞ and dΦðT; p;QÞ, seen as functions of T, p,
and Q. They are given by

dS ¼
�
CA;Q

T
þ A

α2p;Q
κT;Q

�
dT

− Aαp;Qdpþ λp;TdQ; ðD9Þ

dA
A

¼ αp;QdT − κT;Qdp − κp;TdQ; ðD10Þ

dΦ ¼ −λp;QdT − Aκp;Tdpþ 1

χT;p
dQ; ðD11Þ

where CA;Q is the heat capacity at constant area and charge,
αp;Q is the thermal expansion coefficient, κT;Q is the
isothermal compressibility, λp;T is a latent heat capacity,
κp;T is the electric compressibility, λp;Q is another latent
heat capacity, and χT;p is the isothermal electric suscep-
tibility. We can invert Eqs. (D9) and (D10) to obtain
dTðS; A;QÞ and dpðS; A;QÞ. This is accomplished by
rewriting Eqs. (D9) and (D10) in matrix form, i.e.,

�
dS − λp;TdQ

dAþ Aκp;TdQ

�
¼ M

�
dT

dp

�
; ðD12Þ

where

M ¼

0
BB@

�
CA;Q

T þ A
α2p;Q
κT;Q

�
−Aαp;T

Aαp;Q −AκT;Q

1
CCA: ðD13Þ

The matrix M can be inverted to yield

M−1 ¼

0
BB@

T
CA;Q

−T αp;Q
CA;QκT;Q

T αp;Q
CA;QκT;Q

−
�

1
AκT;Q

þ T
α2p;Q

κ2T;QCA;Q

�
1
CCA: ðD14Þ

Applying M−1 on both sides of Eq. (D12), we obtain
dTðS; A;QÞ and dpðS; A;QÞ as

dT ¼ T
CA;Q

dS − T
αp;Q

CA;QκT;Q
dA − TBdQ; ðD15Þ

dp ¼ Tαp;Q
CA;QκT;Q

dS −
�

1

AκT;Q
þ T

α2p;Q
κ2T;QCA;Q

�
dA

−
�
κp;T
κT;Q

þ T
αp;Q
κT;Q

B
�
dQ; ðD16Þ

where B ¼ λp;T
CA;Q

þ A αp;Qκp;T
CA;QκT;Q

. We can then compute directly

dTðM;A;QÞ and dpðM;A;QÞ by substituting the differ-
ential dS given in Eq. (36), i.e., TdS ¼ dM þ pdA −ΦdQ,
into Eqs. (D15) and (D16), yielding

dT ¼ dM
CA;Q

þ
�

p
CA;Q

− T
αp;Q

CA;QκT;Q

�
dA

−
�

Φ
CA;Q

þ T
λp;T
CA;Q

þ A
αp;Tκp;T
κT;QCA;Q

�
dQ; ðD17Þ

dp ¼ αp;Q
CA;QκT;Q

dM

−
�

1

AκT;Q
−

αp;Q
CA;QκT;Q

�
p − T

αp;Q
κT;Q

��
dA

−
�
κp;T
κT;Q

−
αp;Q

CA;QκT;Q
C
�
dQ; ðD18Þ

where C ¼ TA κp;Tαp;Q
κT;Q

þ Tλp;T þΦ. Then, substituting dT

and dp given in Eqs. (D15) and (D16), respectively, into
dΦðT; p;QÞ, written in Eq. (D11), we obtain

dΦ ¼ −BdM þ
�
κp;T
κT;Q

−
�
p − T

αp;Q
κT;Q

�
B
�
dA

þ
�
BC þ 1

χp;T
þ A

κ2p;T
κT;Q

�
dQ: ðD19Þ

With dTðM;A;QÞ, dpðM;A;QÞ and dΦðM;A;QÞ, we can
write the second derivatives of the entropy since these are
derivatives of βðM;A;QÞ, βpðM;A;QÞ and βΦðM;A;QÞ.
The second derivatives are explicitly SMM ¼ − β2

CA;Q
,

SAA ¼ −
�

1
AκT;Q

þ β2

CA;Q
ðp − T αp;Q

κT;Q
Þ2
�
, SQQ ¼ −β

�
C2β
CA;Q

þ

1
χp;T

þ A
κ2p;T
κT;Q

�
, SMA ¼ β2

CA;Q

�
T αp;Q

κT;Q
− p

�
, SMQ ¼ β2

CA;Q
C,

SAQ ¼ −β
�
κp;T
κT;Q

− β2

CA;Q

�
p − T αp;Q

κT;Q

�
C
�
. Thus, the relevant

combinations of the second derivatives for the stability

conditions are SMM ¼ − β2

CA;Q
, SMMSAA − S2MA ¼ β3

ACA;QκT;Q
,

and ðSMMSAQ − SMASMQÞ2 − ðSMMSAA − S2MAÞðSMMSQQ−
S2MQÞ ¼ − β6

AC2
A;QκT;Qχp;T

. For stability one has SMM ≤ 0,
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SMMSAA − S2MA ≥ 0, and ðSMMSAQ − SMASMQÞ2 − ðSMM

SAA − S2MAÞðSMMSQQ − S2MQÞ ≤ 0, which translates into

CA;Q ≥ 0; ðD20Þ

κT;Q ≥ 0; ðD21Þ

χp;T ≥ 0: ðD22Þ

These are the stability conditions for mass, area, and charge
fluctuations. In words, the heat capacity at constant area and
charge, the isothermal compressibility associated to the

pressure, and the isothermal electric susceptibility must be
positive.
The particular case of the thin shell with the equations of

state given by Eqs. (49), (50), and (30) can be also worked
out in detail, we will not do it here.
Here, we have deduced in detail the stability conditions

in physical variables for mass, area, and charged fluctua-
tions presented in the main text in Sec. V C. So, Eqs. (D17)
and (D18) are Eqs. (86) and (87) of the main text,
respectively, Eq. (D19) is Eq. (88) of the main text, and
Eqs. (D20), (D21), (D22) are the three equations given in
Eq. (89) of the main text.
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