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We study the Einstein-Euler-Heisenberg theory in the presence of a self interacting scalar field,
minimally coupled to gravity. We solve analytically the field equations for the magnetically charged case
and we obtain novel magnetically charged hairy black holes. The scalar field dresses the black hole with a
secondary scalar hair. The hairy black hole develops three horizons when the Euler-Heisenberg parameter
and the magnetic charge are small and the horizon radius is getting large when the scalar charge and the
gravitational mass are large. The presence of matter and the magnetic field outside the horizon of the black
hole increases the temperature only for small black holes. Calculating the heat capacity we show that the
asymptotically anti–de Sitter (AdS) Euler-Heisenberg hairy black hole undergoes a second order phase
transition and then it is stabilized. Also the weak energy condition is violated for the asymptotically AdS
Euler-Heisenberg hairy black hole.
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I. INTRODUCTION

The no-hair theorem states that black holes are described
via charges that can be measured at infinity by an observer,
and as a result there can be no additional degrees of freedom to
characterize the black hole geometry. Hence, black holes are
described by their mass, angular momentum and electromag-
netic charges. The no-hair conjecture implies that a black
hole spacetime does not allow degrees of freedom that are
responsible for the formation of primary and secondary hair.
The first ones are not associatedwith the conserved black hole
parameters mentioned previously, while the second ones
concern nontrivial fields that interact with the black hole
parameters. The no-hair theorem affects all types of fields,
such as scalar, gauge, tensor etc. Wewill only discuss the no-
scalar hair theorem. The first proof of the no-scalar hair
theoremwasgivenbyBekenstein [1,2]. Themain result is that
a positive scalar potential such as amass termpotential cannot
support a hairyblackhole structure.As a result, if onewants to
violate the no-hair theorem, a negative potential has to be
considered for the scalar field [3].
The first hairy black hole which was an exact black hole

solution with scalar field, called BBMB black hole, was
found by Bocharova, Bronnikov and Melnikov and inde-
pendently by Bekenstein [4]. However, it was found that
the scalar field was divergent at the horizon and also the
stability analysis showed that they were unstable [5],
so these solutions were not physically acceptable. The

action of the BBMB black hole consists of the Ricci scalar,
a scalar field with a kinetic term and a conformal coupling
between matter and curvature. To cure the horizon-
divergence problem, a cosmological constant was consid-
ered which is introducing a length scale, and a self
interacting potential for the scalar field was considered
at first [6] and exact de Sitter black holes were obtained
with a regular scalar field at the horizon. However, the
solutions turned out to be unstable again [7]. In [8] a scale
in the form of nonlinear modification of gravity was
introduced and the scalar field has been shown to be finite
at the horizon. All these solutions consider a theory that is
conformally invariant and there is a nonminimal coupling
between matter and gravity.
Considering now the minimal coupling case, the first

exact black hole solution was presented in [9], the Martinez,
Troncoso, Zanelli (MTZ) black hole. The scalar potential is
fixed ad hoc, the geometry of the solution is hyperbolic and
the scalar field remains finite at the black hole event horizon.
This solution was generalized with the presence of an
electromagnetic field [10]. In [11], a potential that breaks
the conformal invariance of the action of the MTZ black hole
in the Jordan frame was considered and new black hole
solutions where derived. In [12] the scalar field was fixed
ad hoc and novel black hole solutions were investigated,
letting the scalar potential be determined from the equations.
The mass term comes as an independent integration constant
and, as a result, the length scale introduced by the scalar field
is a primary scalar hair. In [13] the electrically charged case
was considered and in [14] the solution was generalized in
the presence of nonlinear electrodynamics. In this case the
mass has contributions from both an integration constant and
the scalar length scale, so the scalar field dresses the black
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hole with secondary hair. Static black holes with a charged
scalar field and conformally invariant Maxwell electrody-
namics in D dimensions have also been obtained numeri-
cally in [15]. The shadow of hairy rotating black holes in
view of the results of the Event Horizon Telescope were
discussed in [16] and in [17] the shadow of slowly rotating
Gauss-Bonnet black hole with a dilaton field were
investigated.
One can introduce several couplings between matter

and curvature to evade the no-hair theorem, or consider
modified theories of gravity. Couplings motivated from
cosmology such as the nonminimal derivative coupling,
i.e., a coupling between the Einstein tensor and the kinetic
term of the scalar field have been investigated in [18–25].
These gravity theories are generated from the Horndeski
class Lagrangian, leading to second order differential
equations for the metric fields [26]. More black hole
solutions regarding Horndeski Lagrangian can be found
in Refs. [27–32]. The Gauss-Bonnet invariant coupled to
the scalar field has been also considered where it was
shown that the no-hair theorem can be evaded and
asymptotically flat and anti–de Sitter (AdS) black holes
carrying a scalar charge have been obtained [33–39], and
fðRÞ gravity black holes have also been discussed [46–48].
Couplings of the scalar field with electromagnetism has
also been used to construct hairy black holes [40–45].
The Euler-Heisenberg Lagrangian of electrodynamics was

at first considered in 1936 [49]. The Euler-Heinsenberg
theory is a more accurate classical approximation of QED
than Maxwell’s theory, when the fields have high intensity.
The vacuum is treated as a specific type of medium, and the
properties of polarization and magnetization are determined
by the clouds of virtual charges surrounding the real currents
and charges [50]. A way to detect the effect of the Euler-
Heisenberg theory has been proposed in [51]. Since the
Euler-Heisenberg theory has interesting physical features, it
was a natural consequence to couple the Euler-Heiseberg
Lagrangian to the Ricci scalar via the volume element to
search for black hole solutions. The first black hole solution
to the Euler-Heisenberg electrodynamics was derived in
[52], where analytical solutions were obtained for the
magnetically charged case, also discussing electric charges
and dyons. Electrically charged black holes were considered
in [53] and [54], while in [54] the geodesic structure was the
main study of the paper. In [55] motions of charged particles
around the Euler-Heisenberg AdS black hole were studied.
The thermodynamics of these black holes were studied in
[56,57], while the quasinormal modes were calculated in
[58]. Rotating black holes were found in [59,60], while the
Euler-Heisenberg Lagrangian was introduced along with
modified gravity theories in [61–63] and the corresponding
black holes were analyzed. Finally, the shadow of the Euler-
Heisenberg black hole was investigated in [64].
The Euler-Heisenberg theory describes accurately the

behavior of electric and magnetic charges. However, in the

presence of a strong gravitational field in a astrophysical
environment, for example near the horizon of a astrophysi-
cal black hole, the electric charge is considered to be
negligible due to the presence of plasma (electrically
charged particles result in electrically conductive plasma)
around astrophysical black holes that neutralizes any
electric charge carried by the black hole. For the upper
bounds of electric charge an astrophysical black hole can
carry we refer to [65]. On the other hand, magnetically
charged black holes cannot be neutralized with ordinary
matter [66]. Recent astrophysical observations showed that
many strong radio sources take the form of two emitting
regions situated on opposite sites of a galaxy. To explain
these astrophysical results a theory was proposed that the
magnetic fields and high energy particles responsible for
the synchrotron radiation were blown out of the galactic
halo in a giant explosion. Then, a possible explanation was
proposed that such explosions could be generated from
gravitational collapse and a model was used presented
in [67] which was composed by a configuration that
contains only an electromagnetic field in a form of a
collection of parallel magnetic lines which is held together
by its own gravitational attraction known as a static Melvin
Universe. This theory is described as a rigorous static
cylindrically symmetric solution of the combined source-
less Einstein-Maxwell equations [68–70].
From the above discussion it would be very helpful to

try to understand the behavior of a magnetic field in the
presence of matter. The Euler-Heisenberg theory can
provide a very reliable framework to study this effect.
Motivated by this fact, in this work, we generalize the
Einstein-Euler-Heisenberg black holes of [52] by introduc-
ing matter parametrized by a self interacting scalar field,
minimally coupled to gravity. By assuming only magnetic
charges, we integrate analytically the field equations and
discuss the corresponding solutions. We found that when
the Euler-Heisenberg parameter vanishes we obtain novel
magnetically charged hairy black holes, while when the
scalar charge vanishes, we get the solution of [52] while
when both the Euler-Heisenberg parameter and the mag-
netic charge vanishes we go back to the well known
hairy black hole solution of [12]. The scalar field dresses
the black hole with secondary scalar hair, since the
scalar charge is related to the mass parameter, while the
scalar potential is negative in order to support the hairy
structure and it possesses a mass term that satisfies the
Breitenlohner-Friedman bound that ensures the perturba-
tive stability of the AdS spacetime.
The black hole horizon shrinks as the magnitude of the

scalar field is getting larger, while the horizon is getting
larger as the gravitational mass is increasing. Calculating
thermodynamical quantities we found that the presence of
matter outside the horizon of the black hole and also the
presence of the magnetic field increases the temperature for
small black holes. We also found that the temperature
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develops a minima in the AdS case signalizing in this way a
second order phase transition, while the scalar field gains
entropy for the black hole by the addition of a linear term
in the entropy and hence the hairy black holes are
thermodynamically preferred. Calculating the weak energy
condition we find that it is violated in the case of
asymptotically AdS spacetime.
The work is organized as follows. In Sec. II we set up the

theory, derive the solution and discuss the effect of the
scalar field on the black hole. In Sec. III we write down
some limiting behaviors of the obtained black hole sol-
ution. In Sec. IV we discuss the thermodynamical proper-
ties, while in Sec. V we investigate the energy conditions
and finally in Sec. VI we conclude.

II. BLACK HOLE SOLUTIONS

We consider the Euler-Heisenberg action in the presence
of a scalar field

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
∂
μϕ∂μϕ−VðϕÞ−PþαP2þβQ2

�
;

ð1Þ

where L denotes the Lagrangian of the theory, P ¼ FμνFμν,
Q ¼ ϵμνρσFμνFρσ, Fμν ¼ ∂μAν − ∂νAμ is the Faraday tensor
(field strength) and ϵμνρσ is the Levi-Civita tensor that
satisfies

ϵμν ρσϵ
μν ρσ ¼ −24: ð2Þ

The field equations are

Gμν ¼ Tμν ≡ Tϕ
μν þ TEM

μν ; ð3Þ

□ϕ ¼ dV
dϕ

; ð4Þ

∇μðFμν − 2αPFμν − 2βQϵμνξηFξηÞ ¼ 0; ð5Þ

Tϕ
μν ¼ ∂μϕ∂νϕ −

1

2
gμν∂αϕ∂αϕ − gμνVðϕÞ; ð6Þ

TEM
μν ¼ 2FμρFν

ρ þ 1

2
gμνð−Pþ αP2 þ βQ2Þ

− 4αPFμρF
ρ
ν − 8βQϵμζηρFζηFρ

ν: ð7Þ

We consider the following spherically symmetric ansatz for
the spacetime metric

ds2 ¼ −bðrÞdt2 þ bðrÞ−1dr2 þ b1ðrÞ2dΩ2; ð8Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 which allows us to consider
the following electromagnetic ansatz for the four-vector Aμ

Aμ ¼ ðAðrÞ; 0; 0; Qm cos θÞ; ð9Þ

where Qm is the magnetic charge of the black hole and
the magnetic part of the four-vector will be null at the
equatorial plane. Under these ansaetze, the scalar quantities
P, Q that enter the field equations read

P ¼ 2Q2
m

b1ðrÞ4
− 2A0ðrÞ2; ð10Þ

Q ¼ −
8QmA0ðrÞ
b1ðrÞ2

; ð11Þ

where it is clear that Q will vanish if we do not consider
dyons (both electric and magnetic charges).
The system of the field equations (3)–(7) admits an exact

magnetically charged solution given by

AðrÞ ¼ 0; ð12Þ

ϕðrÞ ¼ 1ffiffiffi
2

p ln

�
1þ ν

r

�
; ð13Þ

b1ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðνþ rÞ

p
; ð14Þ

while the metric function bðrÞ is obtained as

bðrÞ ¼ c1rðνþ rÞ þ ð2r − c2Þðνþ 2rÞ − 4Q2
m

ν2
þ 8αQ4

mð−ν2 þ 12r2 þ 12νrÞðν2 þ 3r2 þ 3νrÞ
3ν6r2ðνþ rÞ2 þ 2

ν8
ln

�
r

νþ r

�

�
�
−ν5rðc2 þ νÞðνþ rÞ − 2Q2

mrðνþ rÞðν4 − 24αQ2
mÞ ln

�
r

νþ r

�
þ 48ανQ4

mðνþ 2rÞ − 2ν5Q2
mðνþ 2rÞ

�
; ð15Þ

where c1, c2 are constants of integration and ν is the scalar charge, also a constant of integration which determines the
behavior of the scalar field. For a well behaved scalar field we will impose ν > 0. At large distances, the metric function
asymptotes to
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bðr → ∞Þ ∼ 1þ −c2 − ν

3r
þ c2νþ ν2 þ 6Q2

m

6r2
þ r2

�
c1 þ

4

ν2

�
þ rðc1ν2 þ 4Þ

ν
−
νðc2νþ ν2 þ 10Q2

mÞ
10r3

þO
��

1

r

�
4
�
: ð16Þ

We can see that the scalar charge ν is introducing a new scale in the theory which leads to the appearance of an effective
cosmological constant. Also the generated mass term is given by both an integration constant and the scalar charge ν, hence
the scalar field dresses the black hole with a secondary scalar hair. By redefining the integration constants, the asymptotic
relation yields

bðr → ∞Þ ∼ 1 −
2m
r

þmνþQ2
m

r2
−
Λeffr2

3
−
1

3
rðΛeffνÞ −

νð3mνþ 5Q2
mÞ

5r3
þO

��
1

r

�
4
�
; ð17Þ

where we have set m ¼ c2þν
6

and Λeff ¼ −ð3c1 þ 12
ν2
Þ. For small r the metric behaves as

bðr → 0Þ ∼ −
8αQ4

m

3ν4r2
þOðr−1Þ; ð18Þ

from which we can deduce that the solution always describes a black hole at least in asymptotically flat or AdS spacetime,
due to the fact that bðrÞ is continuous and changes sign in the range 0 < r < ∞. In the small scalar hair case (ν → 0), the
metric function yields

bðrÞ ¼
�
1 −

2m
r

þQ2
m

r2
−
2αQ4

m

5r6
−
Λeffr2

3

�
þ ν

�
m
r2

þ 6αQ4
m

5r7
−
Q2

m

r3
−
Λeffr
3

�
þOðν2Þ: ð19Þ

Using the metric function (15) and the scalar field function (13) from the system of the field equations (3)–(7) we can
specify the scalar potential

VðϕÞ ¼ 1

3ν8
ðν8Λeffðcosh ð

ffiffiffi
2

p
ϕÞ þ 2Þ − 36mν5ð

ffiffiffi
2

p
ϕðcosh ð

ffiffiffi
2

p
ϕÞ þ 2Þ − 3 sinh ð

ffiffiffi
2

p
ϕÞÞ

− 4αQ4
m � ð288ϕ2 þ 2ð72ϕ2 þ 71Þ cosh ð

ffiffiffi
2

p
ϕÞ − 432

ffiffiffi
2

p
ϕ sinh ð

ffiffiffi
2

p
ϕÞ þ 100 cosh ð2

ffiffiffi
2

p
ϕÞ

− 14 cosh ð3
ffiffiffi
2

p
ϕÞ þ cosh ð4

ffiffiffi
2

p
ϕÞ − 229Þ þ 6ν4Q2

mð8ϕ2 þ 4ðϕ2 þ 2Þ cosh ð
ffiffiffi
2

p
ϕÞ

− 12
ffiffiffi
2

p
ϕ sinh ð

ffiffiffi
2

p
ϕÞ þ cosh ð2

ffiffiffi
2

p
ϕÞ − 9ÞÞ: ð20Þ

For small ϕ we have

VðϕÞ ∼ Λeff þ
ϕ2Λeff

3
þ ϕ4Λeff

18
−
4ð ffiffiffi

2
p

mÞϕ5

5ν3
þOðϕ6Þ: ð21Þ

We can also express the potential as a function of r

VðrÞ ¼ 1

6ν8r4ðνþ rÞ4
�
6ν6Q2

mr2ðνþ rÞ2ðν2 þ 12r2 þ 12νrÞ þ ν6r3ðνþ rÞ3ð108mðνþ 2rÞ þ Λeffν
2ðν2 þ 6r2 þ 6νrÞÞ

− 4αν2Q4
mðν6 þ 1332ν2r4 þ 504ν3r3 þ 30ν4r2 þ 1296νr5 þ 432r6 − 6ν5rÞ

þ 12r3ðνþ rÞ3 ln
�

r
νþ r

��
3mν5ðν2 þ 6r2 þ 6νrÞ þQ2

mðν2 þ 6r2 þ 6νrÞðν4 − 24αQ2
mÞ ln

�
r

νþ r

�

− 144ανQ4
mðνþ 2rÞ þ 6ν5Q2

mðνþ 2rÞ
��

; ð22Þ

and for small scalar hair (ν → 0):

VðrÞ ¼ Λeff þ
ν2ð25r8Λeff − 18αQ4

m þ 25r4Q2
m − 30mr5Þ

150r10
þOðν3Þ: ð23Þ
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As expected, at the zeroth order one obtains the cosmo-
logical constant. Its asymptotic behavior at large distances
reads

Vðr → ∞Þ ∼ Λeff þ
Λeffν

2

6r2
−
Λeffν

3

6r3
þO

��
1

r

�
4
�
: ð24Þ

There is also a mass term in the potential

m2 ¼ V 00ðϕ ¼ 0Þ ¼ 2

3
Λeff ; ð25Þ

which in the case of AdS spacetime is negative and the
scalar field is a tachyon, however in this case it still respects
the Breitenlohner-Freedman bound that ensures the per-
turbative stability of the AdS spacetime [71]. The Kretsch-
mann scalar is singular at the origin

Rμνχψ Rμνχψðr → 0Þ ∼ 304α2Q8
m

ν8r8
−
7520ðα2Q8

mÞ
3ν9r7

þO
�
1

r

�
6

;

ð26Þ
while it is regular for any r > 0 and at infinity its
behavior is

RμνχψRμνχψðr→∞Þ∼8Λ2
eff

3
þ2Λ2

effν
2

3r2
þO

��
1

r

�
3
�
; ð27Þ

RμνχψR
μνχψ
Λeff¼0ðr→∞Þ∼48m2

r6
−
8ð18νm2þν2mþ12mQ2

mÞ
r7

þO
�
1

r

�
8

: ð28Þ

Thus the solution is valid for any r > 0 and describes a
black hole in asymptotically (A)dS or flat spacetime for
appropriate relations between the parameters. Wewill focus
on the AdS case in order to make comparisons with the
uncharged AdS hairy black hole and the flat case which is
also of great interest. As can be seen from the definition of
Λeff in order to obtain a flat spacetime the scale introduced
by the presence of the scalar field has to be canceled by
the integration constant c1. In Fig. 1 we plot the metric
function bðrÞ and the potential VðrÞ for the asymptotically
AdS and flat spacetimes for a fixed scalar charge while
changing α. The α ¼ 0 case differs in structure with the
α ≠ 0 cases, having an inner horizon and an event horizon.
The Euler-Heisenberg parameter α does not affect the
horizon radius of the black hole as we can see. Moreover,
the potentials are negative in order to support the hairy
structure and violate the no-hair theorem. It is worth noting
that, as we can see from the figures, α acts in favor of the
no-hair theorem, since the existence of α ensures a negative
potential everywhere, while for α ¼ 0 there is a small
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FIG. 1. Hairy black hole configurations for asymptotically AdS Λeff ¼ −1 (left) and flat Λeff ¼ 0 (right) spacetimes, where we have
fixed m ¼ 1, Qm ¼ 0.5, ν ¼ 1, while changing the Euler-Heisenberg parameter α.
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region where the potential can be positive. In Fig. 2 we also
plot bðrÞ, VðrÞ while chancing ν having set α ¼ 0.5. We
can see that for bigger ν (stronger scalar field) the black
hole horizon radius is smaller. We also evaluate numerically
and plot in Fig. 3 the horizon radius as a function of ν for
both AdS and flat cases to visualize how the horizon
changes as a function of the scalar charge.
To have a better understanding of the hairy Euler-

Heisenberg black hole we found, we studied the horizon
structure of the various solutions and their dependence on
the gravitational mass. In Fig. 4 we show the dependence of

the horizons on the gravitational mass for Λeff ¼ 0. The
Euler-Heisenberg parameter is small (α ¼ 0.05) and the
magnetic field is fairly large, Qm ¼ 5. We find that, in
the interval of black hole masses between 5.5 and 8.0
(or 8.5), there are three possible solutions of the metric
function, signaling one outer the two inner horizons. The
influence of the scalar field is not large. The extreme
solutions where we get just two horizons correspond to
vanishing temperatures.
In Fig. 5 we show the horizon structures for asymptoti-

cally AdS spaces with ðΛeff ¼ −1Þ. The Euler-Heisenberg

eff=–1
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FIG. 3. The horizon radius rh as a function of ν having setm ¼ 1,Qm ¼ 0.5, α ¼ 0.5, for asymptotically AdS Λeff ¼ −1 (left) and flat
Λeff ¼ 0 (right) spacetimes.
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FIG. 2. Hairy black hole configurations for asymptotically AdS Λeff ¼ −1 (left) and flat Λeff ¼ 0 (right) spacetimes, where we have
fixed m ¼ 1, Qm ¼ 0.5, α ¼ 0.5, while changing the scalar charge ν.
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parameter is small (α ¼ 0.05) and the magnetic field is
fairly large, Qm ¼ 5. We find that, in the interval of black
hole masses between 8.5 and 9.0, there are three possible
roots again. The influence of the scalar field is not large
here either. We observe that the range of variation of the
horizons is considerably smaller than the previous case: it
varies between 1.0 and 3.5, which is an order of magnitude

smaller than before. The extreme solutions where we get
just two solutions correspond to vanishing temperatures.
Finally in Fig. 6 we show once more the behavior of the

horizons for a large scalar charge (ν ¼ 10). It contains both
the asymptotically flat case and the asymptotically AdS
case. We see the remarkable characteristic that the horizon
(just one solution for each m) starts off with very small

FIG. 5. Horizons versus black hole mass. The asymptotically AdS case ðΛeff ¼ −1Þ is depicted. The Euler-Heisenberg parameter α
equals 0.05. Left panel: No scalar field (ν ¼ 0). Right panel: Small scalar field (ν ¼ 1).

FIG. 6. Horizons versus black hole mass. Large scalar field charge (ν ¼ 10). Left panel: Asymptotically flat case ðΛeff ¼ 0Þ. Right
panel: Asymptotically AdS case ðΛeff ¼ −1Þ.

FIG. 4. Horizons versus black hole mass. The asymptotically flat case ðΛeff ¼ 0Þ is depicted. The Euler-Heisenberg parameter α
equals 0.05. Left panel: No scalar field (ν ¼ 0). Right panel: Small scalar field (ν ¼ 1).
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values, while, when m is large enough, it jumps to a much
larger value. That is, a large black hole gets suddenly large
horizon values. In addition, the horizon radii for Λeff ¼ −1
are almost one order of magnitude smaller than the ones
for Λeff ¼ 0.
To summarize our results: The structure of three roots, as

well as the existence of points with T ¼ 0, appears when a
is small. To have this behavior of the horizons, the magnetic
charge Qm should be large enough. The structure disap-
pears when Λeff takes on large negative values. The horizon
radius is getting large when the scalar charge and the
gravitational mass are large.
The no-hair theorem by Bekenstein states that for an

asymptotically flat spacetime, a positive definite potential
cannot violate the no-hair theorem. For this reason we
multiply the Klein-Gordon equation (4) by VðϕÞ and we
integrate over the black hole exterior region

Z
d4x

ffiffiffiffiffiffi
−g

p ðVðϕÞ□ϕ − VðϕÞV 0ðϕÞÞ

¼ 0 →
Z

d4x
ffiffiffiffiffiffi
−g

p ð∇μðVðϕÞ∇μϕÞ

− V 0ðϕÞ∇μϕ∇μϕ − VðϕÞV 0ðϕÞÞ ¼ 0: ð29Þ

For an asymptotically flat spacetime, we can ignore the first
term which is a total derivative and this relation becomes

Z
d4x

ffiffiffiffiffiffi
−g

p
V 0ðϕÞð∇μϕ∇μϕþ VðϕÞÞ ¼ 0: ð30Þ

It is clear that the kinetic term above is always positive
outside the black hole region. In order for the integral to be

zero, we want a negative potential in order to counterbalance
the positive kinetic term, which will result in a zero area
between the curve of the integrand and the r axis. The
presence of the scalar field introduces a matter distribution
outside the horizon of the black hole. The condition (30)
guarantees that the kinetic energy of the scalar field has to
counterbalance the potential energy of the scalar field in
order to have a stable matter distribution outside the horizon
of the black hole. Therefore we have to find regions of
spacetimewhere the potentials are negative to violate the no-
hair theorem and to support the hairy structure.

III. SPECIAL CASES FOR BLACK HOLE
SOLUTIONS

In this section we will present special cases for the black
hole solutions we found in the previous section depending
on the choice of the parameters.
For the case ν → 0 we have the Euler-Heisenberg black

hole [52]

bðrÞ ¼ 1 −
2m
r

−
2αQ4

m

5r6
þQ2

m

r2
−
Λeffr2

3
; ð31Þ

while the potential gives the cosmological constant
V ¼ Λeff . As it is expected, because the scalar field is
decoupled, if we set the Euler-Heisenberg parameter equal to
zero we can obtain the (A)dS RN spacetime, the magneti-
cally charged RN spacetime by also setting Λeff ¼ α ¼ 0,
and the Schwarzschild one by further imposing Qm ¼ 0.
For the case α ¼ 0we obtain novel magnetically charged

hairy black hole solutions where the metric function is
given by

bðrÞ ¼ 1−
4Q2

m

ν2
−
6mðνþ 2rÞ

ν2
−
1

3
Λeffrðνþ rÞ− 4

ν4
ln

�
r

νþ r

��
3mνrðνþ rÞ þ νQ2

mðνþ 2rÞ þQ2
mrðνþ rÞ ln

�
r

νþ r

��
;

ð32Þ

while the potential will be given by

VðϕÞ ¼ 1

3ν8
ðν8Λeffðcosh ð

ffiffiffi
2

p
ϕÞ þ 2Þ − 36mν5ð

ffiffiffi
2

p
ϕðcosh ð

ffiffiffi
2

p
ϕÞ þ 2Þ − 3 sinh ð

ffiffiffi
2

p
ϕÞÞ

þ 6ν4Q2
mð8ϕ2 þ 4ðϕ2 þ 2Þ cosh ð

ffiffiffi
2

p
ϕÞ − 12

ffiffiffi
2

p
ϕ sinh ð

ffiffiffi
2

p
ϕÞ þ cosh ð2

ffiffiffi
2

p
ϕÞ − 9ÞÞ: ð33Þ

For the case α ¼ Qm ¼ 0we turn back to the well known asymptotically AdS black hole solutions with a scalar hair [12]
where the metric function will be given by

bðrÞ ¼ 1 −
1

3
rΛeffðνþ rÞ − 6mðνþ 2rÞ

ν2
−
12mr
ν3

ðνþ rÞ ln
�

r
νþ r

�
; ð34Þ

with potential

VðϕÞ ¼ 1

3
Λeffðcosh ð

ffiffiffi
2

p
ϕÞ þ 2Þ − 12mð ffiffiffi

2
p

ϕðcosh ð ffiffiffi
2

p
ϕÞ þ 2Þ − 3 sinh ð ffiffiffi

2
p

ϕÞÞ
ν3

: ð35Þ
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IV. THERMODYNAMICS

In this section we will discuss the thermodynamical properties of the hairy black hole solution. We will study the
temperature first. To do so we perform a Wick rotation t → −iτ, and move to Euclidean time. Imposing periodicity of the
Euclidean time we can obtain the black hole temperature as

TðrhÞ ¼
b0ðrhÞ
4π

¼ −
1

12πν5r3hðνþ rÞ3ðνðνþ 2rhÞ þ 2rhðνþ rhÞ lnð rh
νþrh

ÞÞ
�
−8αν2Q4

mðν2 − 6r2h − 3νrhÞð2ν2 þ 6r2h þ 9νrhÞ

þ 12ν6Q2
mr2hðνþ rhÞ2 þ ν6r3hðΛeffν

2 þ 12Þðνþ rhÞ3

þ 6rhðνþ rhÞ ln
�

rh
νþ rh

��
νðνþ 2rhÞ

�
8αQ4

mð−ν2 þ 6r2h þ 6νrhÞ þ ν4r2hðνþ rhÞ2
�

− 2Q2
mr2hðνþ rhÞ2ðν4 − 24αQ2

mÞ ln
�

rh
νþ rh

���
; ð36Þ

where we have already substituted the mass parameter
using the horizon condition bðrhÞ ¼ 0 and rh denotes the
event horizon. For small black holes, the Euler-Heisenberg
parameter α plays a decisive role since

Tðrh ≪ 1Þ ∼ 4αQ4
m

3πν4r3h
þO

�
lnðrhÞ
r2h

�
; ð37Þ

while for large black holes the effect of α is negligible

Tðrh ≫ 1Þ ∼ −
Λeffrh
4π

−
Λeffν

8π
þ Λeffν

2 þ 20

80πrh
þO

�
1

r2h

�
:

ð38Þ

We can see this behavior in Fig. 7 where we plot the
temperature of the black hole while changing the Euler-
Heisenberg parameter α. We observe that α increases the
temperature in the case of small black holes. In Fig. 8
we plot the black hole temperature having fixed the

Euler-Heisenberg parameter α ¼ 0.5, while we vary the
scalar charge of the solution both for asymptotically AdS
and flat cases. The temperature of the asymptotically AdS
case develops a minimum which can be obtained numeri-
cally. For example forQm¼0.5, α ¼ 0.5, ν ¼ 1, Λeff ¼ −1
we find that T 0ðrmin

h Þ ¼ 0 → rmin
h ¼ 0.543748 which cor-

responds to Tðrmin
h Þ ¼ 0.147635.

The entropy of the black hole may be obtained using
Wald’s formula [72] which for our action reads

SðrhÞ ¼ −2π
I

d2x
ffiffiffi
h

p �
∂L

∂Rαβγδ

�����
r¼rh

ϵ̂αβϵ̂γδ; ð39Þ

where ϵ̂αβ is the binormal to the horizon surface normalized
to satisfy ϵ̂αβϵ̂

αβ ¼ −2 and h is the induced metric on the
horizon. Since the only quantity in the Lagrangian that
involves the Riemann tensor is the Ricci scalar, we can
obtain the standard Bekenstein-Hawking area law [73]

FIG. 7. The temperature of the hairy black hole configurations for asymptotically AdS Λeff ¼ −1 (left) and flat Λeff ¼ 0 (right)
spacetimes, where we have fixed Qm ¼ 0.5, ν ¼ 1, while changing the Euler-Heisenberg parameter α.
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SðrhÞ ¼ 2πA; ð40Þ

whereA ¼ 4π½b1ðrhÞ�2 is the area of the black hole. Hence

SðrhÞ ¼ 8π2rhðrh þ νÞ; ð41Þ

with the scalar charge appearing in the entropy, resulting in
higher entropy in comparison with the nonhairy black hole,
since ν > 0.
To study the possibility of phase transitions, we will

calculate the heat capacity. A positive heat capacity
indicates that the black hole is thermodynamically stable.
Nonstable black holes may undergo a phase transition in
order to be stabilized. Phase transitions occur at the points
where the heat capacity vanishes or diverges. A vanishing
point in the heat capacity indicates a first order phase
transition, while a divergence point indicates a second order
phase transition. The first order phase transition occurs
at high Gibbs energy and it does not change the favored
configuration while a second order phase transition occurs
at lower Gibbs energy and allows the coexistence of two
configurations.

The heat capacity is given by

CðrhÞ ¼
∂m
∂T

����
r¼rh

¼ m0ðrhÞ
T 0ðrhÞ

; ð42Þ

where mðrhÞ is the mass as a function of the event horizon
of the black hole, obtained from the relation bðrhÞ ¼ 0.
The explicit expression is too complicated to be given here.
For AdS spacetime, for large rh, the heat capacity is
positive, since

Cðrh ≫ 1Þ ∼ 2πr2h þ 2πνrh þ
πðν2Λeff − 20Þ

5Λeff
þO

�
1

r2h

�
;

ð43Þ

and the AdS black holes are stable. However, in order to
see if the black hole undergoes a phase transition before it
gets stabilized we will plot the heat capacity in Fig. 9. The
fact is that the asymptotically AdS Euler-Heisenberg hairy
black holes undergo a second order phase transition and
then they are stabilized. The phase transition point occurs at

FIG. 9. The heat capacity for asymptotically AdS Λeff ¼ −1 and flat Λeff ¼ 0 spacetimes, where we have fixed Qm ¼ 0.5, α ¼ 0.5,
while changing the scalar charge ν.

FIG. 8. The temperature of the hairy black hole configurations for asymptotically AdS Λeff ¼ −1 (left) and flat Λeff ¼ 0 (right)
spacetimes, where we have fixed Qm ¼ 0.5, α ¼ 0.5, while changing the scalar charge ν.
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the minima of temperature. For a flat spacetime, the heat
capacity asymptotes to

Cðrh ≫ 1Þ ∼ −2πr2h − 2ðπνÞrh þO
�
1

r2h

�
; ð44Þ

where we can see that the flat black holes are thermody-
namically unstable and there exists no phase transition to
make the black holes stable as we can deduce from Fig. 9.

V. ENERGY CONDITIONS

In this section we will discuss the energy conditions of
the hairy black hole. For this reason, we will use the
Einstein equation in the appropriate reference frame, where
we can identify the energy density, the radial and tangential
pressure as

Gμ
ν ¼ Tμ

ν; ð45Þ

ρ ¼ −Tt
t; ð46Þ

pr ¼ Tr
r; ð47Þ

pθ ¼ pφ ¼ Tθ
θ: ð48Þ

The weak energy condition (WEC) states that given a
timelike vector field ta, the quantity Tabtatb is positive, i.e.,
Tabtatb ≥ 0 → ρ ≥ 0. The null energy condition (NEC)
states that Tablalb ≥ 0 → ρþ pr > 0, where lala ¼ 0,
so that the geometry will have a focusing effect on null
geodesics. For the energy momentum tensor of the scalar
field, we have

ρϕ ¼ 1

2
bðrÞϕ0ðrÞ2 þ VðrÞ ¼ −pϕ

θ ; ð49Þ

pϕ
r ¼ 1

2
bðrÞϕ0ðrÞ2 − VðrÞ; ð50Þ

while for the energy momentum tensor of the Euler-
Heisenberg theory we obtain

ρEM ¼ −
2αQ4

m

b1ðrÞ8
þQ2

mð1 − 4ðα − 32βÞA0ðrÞ2Þ
b1ðrÞ4

þ 4βQmA0ðrÞ
b1ðrÞ2

þ 6αA0ðrÞ4 þA0ðrÞ2 ¼ −pEM
r ;

ð51Þ

pEM
θ ¼ −

6αQ4
m

b1ðrÞ8
þQ2

mð4ðα − 32βÞA0ðrÞ2 þ 1Þ
b1ðrÞ4

−
4βQmA0ðrÞ

b1ðrÞ2
þ 2αA0ðrÞ4 þA0ðrÞ2: ð52Þ

Wewill at first discuss the NEC, which implies ρþ pr ≥ 0.
By adding the energy densities and radial pressures,
we have

ρþ pr ¼ ρϕ þ ρEM þ pϕ
r þ pEM

r

¼ ρϕ − pEM
r þ pϕ

r þ pEM
r ¼ bðrÞϕ0ðrÞ2: ð53Þ

First of all ϕ0ðrÞ2 > 0 for any r > 0. bðrÞ is negative inside
the black hole, resulting in the violation of the NEC, zero at
the event horizon resulting to ρþ pr ¼ 0, while after the
event horizon bðrÞ is positive, hence, the NEC is protected,
regardless of the asymptotic nature of spacetime. For the
contribution of the scalar field to the total energy density,
we can see that inside the event horizon, where bðrÞ < 0,
the WEC is violated by the scalar field, since VðrÞ is also
negative, i.e., VðrÞ < 0 regardless of the asymptotic nature
of spacetime. On the event horizon bðrhÞ ¼ 0 and since
VðrhÞ < 0 the WEC is also violated. Caution must be given
for the contribution of the scalar field to the energy density
in the causal region of the black hole, i.e., r > rh. For
asymptotically AdS spacetimes, outside of the event
horizon we have bðrÞ > 0 and VðrÞ < 0, however, the
scalar potential is too negative, hence as we can see in
Fig. 10, the scalar field part of the energy momentum tensor
will always violate the WEC. For the asymptotically flat
case, at large distances, the kinetic energy of the scalar field
T ðrÞ ¼ bðrÞϕ0ðrÞ2=2 asymptotes to

T ðr → ∞Þ ∼ ν2

4r4
þ −5ν3 − 7mν2

10r5
þO

��
1

r

�
6
�
; ð54Þ

while the potential behaves as

Vðr → ∞Þ ∼ −
mν2

5r5
þO

��
1

r

�
6
�
: ð55Þ

It is clear that their sum T ðrÞ þ VðrÞ will be positive at
large distances, since the kinetic energy surpasses the
contribution of the potential. It is therefore evident that
for a region outside of the black hole horizon ρϕ > 0. The
electromagnetic part of the energy density yields

ρEMðrÞ ¼ Q2
m

r2ðνþ rÞ2 −
2αQ4

m

r4ðνþ rÞ4 : ð56Þ

There will be regions of negative energy density due to the
Euler-Heisenberg modified electromagnetism parameter α.
We plot ρEMðrÞ in Fig. 10 where we can see that ρEMðrÞ can
be positive, however it does not contribute much in the total
energy density, hence ρ < 0 everywhere and the WEC is
violated in the case of AdS spacetime. However in the
asymptotically flat case, it is obvious from (54), (55) and
FIG. 10, that, for a region outside of the event horizon to
infinity ρ > 0 and the WEC holds.
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VI. CONCLUSIONS

We studied the Einstein-Euler-Heisenberg theory in the
presence of a minimally coupled to gravity, self interacting
scalar field. We solved analytically the field equations and,
assuming an electromagnetic field with magnetic charge, we
obtained novel magnetically charged hairy black holes. The
scalar field dresses the black hole with secondary scalar hair,
while the scalar potential is negative in order to support the
hairy structure and it possesses a mass term that satisfies the
Breitenlohner-Freedman bound that ensures the perturbative
stability of the AdS spacetime. The presence of the scalar
charge is introducing a new scale in the theory which leads to

the appearance of an effective cosmological constant. The
hairy black hole develops three horizons when Euler-
Heisenberg parameter and the magnetic charge Qm are
small and the horizon radius is getting large when the scalar
charge and the gravitational mass are large.
We also studied the thermodynamics of the hairy Euler-

Heisenberg black hole. We found that the presence of
matter outside the horizon of the black hole increases the
temperature only for small black holes. Also we found
the same behavior for the magnetic field, it increases the
temperature only for small black holes. Calculating the
heat capacity we found that the asymptotically AdS Euler-
Heisenberg hairy black hole undergoes a second order

FIG. 10. Several energy densities are plotted. In the first row, we have the energy density of the scalar field for AdS (left) and flat
spacetimes (right). In the second row, we plot the energy density of the electromagnetic part of the energy momentum tensor (left) and
the total energy density for AdS spacetime (right). In the third row we plot the total energy density of the asymptotically flat case. For the
AdS cases we have set Λeff ¼ −1, for the flat spacetimes Λeff ¼ 0, while we have fixed m ¼ 1, Qm ¼ 0.5, α ¼ 0.5, and we vary the
scalar charge ν.
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phase transition and then it is stabilized. The phase
transition point occurs at the minimum of the temperature
while the scalar field gains entropy for the black hole by the
addition of a linear term in the entropy and hence the hairy
black holes are thermodynamically preferred.
We found that the WEC is violated on the horizon of the

hairy Euler-Heisenberg black hole. For asymptotically AdS
spacetimes, outside of the event horizon the scalar field part
of the energy momentum tensor will always violate the
WEC. However in the asymptotically flat case, we found
that for a region outside of the event horizon to infinity the
WEC holds.
It would be interesting to extend this work to the case

that the scalar field is magnetically charged. Then we

expect that the magnetized scalar field will interact with the
magnetic field, so that the magnetized scalar charge, the
magnetic charge and the Euler-Heisenberg parameter will
play a decisive role in the structure and properties of the
magnetized hairy Euler-Heisenberg black hole. It would
also be of interest to study the shadow of the obtained
spacetime and to constrain the modified Euler-Heisenberg
parameter along with the scalar charge from the results of
the Event Horizon Telescope [74] in the astrophysical
scenario Qm ≪ m. In [75] it was found that considering
Maxwell electrodynamics there is a threshold value for
the electric charge Q, above which any value of the scalar
charge is allowed. It would be worth investigating the same
possibility in our case.
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