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The dynamical evolution of the Hajicek 1-form is derived in the Einstein-Cartan (EC) theory. We find
that like the Einstein theory of gravity, the evolution equation is related to a projected part of the Einstein
tensor (Ĝab) on a generic null surface H, particularly Ĝablaqbc, where la and qac are the outgoing null
generators of H and the induced metric to a transverse spatial cross section of H, respectively. Under the
geodesic constraint, a possible fluid interpretation of this evolution equation is then proposed. We find that
it has the structure which is reminiscent to the Cosserat generalization of the Navier-Stokes fluid provided
we express the dynamical evolution equation of the Hajicek 1-form in a set of coordinates adapted toH and
in a local inertial frame. An analogous viewpoint can also be built under the motive that the usual material
derivative for fluids should be replaced by the Lie derivative. Finally, the tidal force equation in EC theory
on the null surface is also derived.
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I. INTRODUCTION

Over the past few decades, there have been mounting
theoretical evidence that the field equations of gravity could
be emergent in nature,much like that of elasticity theory, fluid
mechanics, or gas dynamics [1–15]. The macroscopic gravi-
tational dynamics can beviewed as a result of coarse-graining
leading to the thermodynamic limit of the underlying stat-
istical mechanics of the “atoms” of spacetime. Analogously,
the dynamics of gravity can also be considered as the long
wavelength hydrodynamic limit of the underlying “fluid/
elastic model” system. The phenomenon of emergence of
gravity is used in the specific context of the respective
gravitational field equations rather than that of emergence
of the geometry of space and time itself. For example, in the
gauge/gravity theory, it has been argued that classical space-
times emerge as a consequence of quantum entanglement
[16]. The indication of such an emergent nature (in the
purview of gravitational field equations) have been supported
in the literature through various directions by the works of
several authors (originating from thework of Sakharov [17]).
In this context, the emergence of gravitational dynamics

via the field equations from underlying thermodynamical
relations or fluid equations have been developed and
explored. It was shown by Jacobson [18] that the Einstein
field equations can be obtained from an underlying local
constitutive relation (specifically the Clausius identity
δS ¼ δQ

T ) applied to local causal Rindler horizons in equi-
librium. The temperature of the horizon is assumed to be the

Unruh temperature with the entropy variation being propor-
tional to the area change of the cross-sectional area of the
horizon. Jacobson’s formalism has also been extended for
local causal horizons in the nonequilibriumcase [19–21] and
for other modified theories of gravity [20,21].
Padmanabhan et al. [1,3,22–25] have interpreted in a

consistent fashion the gravitational field equations with
respect to a generic null hypersurface for a wide class of
gravity theories as thermodynamic relations. The action
functional of gravity lends itself a thermodynamic inter-
pretation [22,26–28], and the field equations can be
obtained from the extremization of a thermodynamic
extremum principle. Padmanabhan has shown [2,29] that
the Einstein and the Lanczos-Lovelock field equations can
be obtained via the extremization of an entropy functional
constructed from the null vectors in the spacetime.
In a relatively old work, Damour [30,31] showed that the

Einstein field equations have the same status as that of the
equations of fluid mechanics in the context of a black hole
event horizon. Projecting the Einstein field equations onto
the horizon, Damour showed that it took a form similar
(however not exactly) to the Navier-Stokes (NS) equation.
This allowed the interpretation of the black hole horizon as a
dissipativemembranewhich later gaveway to themembrane
paradigm [32]. The result was generalized to the case of a
generic null hypersurface in Einstein gravity. This led to
the Damour-Navier-Stokes (DNS) equation [33,34] for a
viscous null fluid. It was shown by Padmanabhan [34] that
when the DNS equation is viewed in a boosted inertial
frame, then it reduces exactly to the NS equation.
The identified fluid variables for the DNS equation are
related to the geometric/kinematical quantities of the null
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hypersurface constructed in the spacetime. This allows the
conceptualization that a general null hypersurface behaves
as a dissipative null fluid in Einstein gravity.
These thermodynamical/physical equivalences or con-

nections would possibly not have arisen had the gravita-
tional field equations not emerged from an underlying
microstructure. Now, if gravity is indeed emergent, then
such vivid equivalences/correspondences should transcend
to other other theories of gravity. In this paper, we focus
exclusively on the Einstein-Cartan (EC) theory [35,36]. The
Riemann-Cartan (RC) spacetime is the geometric backdrop
for the EC theory. The EC theory includes an additional
intrinsic spin of particle(s) in the geometrization of space-
time. This causes a nonzero torsion in the spacetime
geometry leading to the connection being not explicitly
symmetric. The geometry or the metric is sourced by the
energy-momentum tensor, whereas the spin degrees of
freedom or torsion is sourced by the spin-angular momen-
tum tensor. The relevant gravitational field equations in the
EC theory is the Einstein-Cartan-Kibble-Sciama (ECKS)
equations [37–47]. Our quest will be hinged on the fact as to
whether the ECKS equations have any thermodynamic or
fluid interpretation with respect to a general null hypersur-
face constructed in the RC spacetime. To that extent, the
following projections of the tensor Ĝab (analog of the
Einstein tensor Gab in the RC spacetime) on the null
hypersurface are very crucial.
(1) Ĝablalb (where la are the null generators of the null

surface) is related to the evolution of outgoing
expansion scalar and hence leads to the null Ray-
chaudhuri equation (NRE) [33,48]. The NRE was a
crucial input in Jacobson’s analysis to obtain the
Einstein field equations from the Clausius identity
[18]. The Raychaudhuri equation as well as the
dynamical evolution equations for the shear and
vorticity for both timelike and null curves estab-
lished for the RC spacetime have already been
explicitly derived in [21,49–52]. The corresponding
emergence of the ECKS field equations from a local
constitutive thermodynamical relation established
for causal Rindler horizons has been shown in
[21] and hence is not be pursued here.

(2) Ĝabkalb (where ka is the auxiliary null vector field to
the null surface) is related to the dynamical evolution
of the ingoing expansion scalar. The quantity
Gabkalb was a crucial input to show (in a covariant
fashion) that the Einstein field equations expressed
with respect to a generic null surface assumes a
thermodynamic identity very similar to the first law
of thermodynamics [53].1 Extending to the case of

EC theory, the authors of this paper showed that
such thermodynamical interpretation can indeed be
alluded to the ECKS equations [52]. Therefore, we
do not pursue this issue here. The thermodynamic
interpretation to the gravitational theory via Gabkalb

was also applied to scalar-tensor theory in [55].
(3) Ĝablaqbc (where qab is the induced metric on a

transverse spacelike cross section of the null surface)
is related to the dynamical evolution of the Hajicek
1-form of the null surface [33]. For the case of
Einstein gravity, Gablaqbc leads to the Lie evolution
of the Hajicek 1-form along the null generators (of
the null surface) which is then interpreted as the
DNS equation [33,34]. It also works in scalar-tensor
theory of gravity as well [56]. In this paper, we focus
exclusively whether Ĝablaqbc would enable us to
attribute to the ECKS field equations any fluid/
elastic continuum model interpretation. In particular,
under the geodesic constraint, we see when we write
down the dynamics of the Hajicek 1-form in a
coordinate system adapted to the null surface H
that the structure we get is quite similar to the
Cosserat generalization of the NS fluid (under
appropriate identifications of the fluid variables with
the kinematical variables ofH and the external force
density). In fact, we see that with respect to a local
inertial frame the above dynamical equation will
indeed reduce to the Cosserat fluid equation. The
Cosserat fluid is a real world fluid dynamical system
that incorporates intrinsic angular momentum.
Even though, much of our analysis is based on

providing a possible fluid interpretation for the
ECKS field equations, we also present the tidal
force equation for the null surface H in its most
generic sense. The only imposition that we have
made while arriving at the tidal equation is that the
geodesic null congruence generates an integrable
hypersurface; i.e., it satisfies the Frobenius identity.
In doing this analysis, we are also led to derive to the
NRE for the given integrable hypersurface H in the
RC spacetime. The tidal equation and the NRE
analyzed for the EC theory furnish a part of the
optical scalar equations obtained under the New-
man-Penrose formalism.
The organization of the paper is as follows. In the

next section, we provide a very brief review of the
RC spacetime, the construction of a generic null
hypersurface H in it, and the relevant kinematics of
H. In Sec. III, we spell out only the mere essentials
of the EC theory and its field equations that would
be required for our analysis. In Sec. IV, we begin our
in-depth analysis of the dynamical evolution of the
Hajicek 1-form and show that its dynamics is indeed
governed by the projection component Ĝablaqbc. In
Sec. V, we try to argue whether the ECKS field

1It is the covariant formulation of earlier investigations
[1,3,22–25]. In this connection the idea of assigning temperature
on a generic null surface has been put-forwarded from the
physical point of view in [54].
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equation with respect to H via the component
Ĝablaqbc can be attributed any possible fluid
dynamical/elastic theory interpretation. Here, we
come to the conclusion that the resulting dynamics
cannot be compared with the DNS fluid. The
dynamics has rather an analogy with the Cosserat
generalization of the NS fluid which we try to make
more precise in a boosted local inertial frame. We do
this to argue whether the dynamics of the “null fluid”
established on H has connections/analogy with
some real world fluid scenarios. For the sake of
completeness, we also present in Sec. VI the tidal
force equation governing a congruence of null
geodesics in the RC spacetime. We then conclude
in Sec. VII and in the Appendix provide detailed
derivations of some of the expressions used in the
text.
A note about our notations, dimensions, and

conventions. We adopt the metric signature
ð−;þ;þ;þÞ and work in d ¼ 4 spacetime dimen-
sions. We use the geometrized unit system where c,
ℏ, and G have been set to one. The bulk spacetime
indices are designated by the lowercase Latin
alphabets a; b; · · ·. The spatial coordinates on a time
constant slice are designated by the Greek alphabets
μ; ν; · · ·. The coordinates on the null hypersurface
are designated by Greek alphabets, with a tilde
on them, μ̃; ν̃; · · ·. The spatial coordinates on the
two-dimensional spatial cross section St of H are
designated by the uppercase Latin alphabets
A;B; · · ·. All kinematical and dynamical quantities
associated with H in the RC spacetime are desig-
nated with a hat on them. The equivalent quantities
in the usual spacetime without torsion will be
unhatted.

II. SUMMARY OF KINEMATICS OF AN
INTEGRABLE NULL HYPERSURFACE IN THE

RC SPACETIME: A SHORT REVIEW

In this section, we give a very brief overview of the
relevant kinematical quantities pertaining to the general
construction of an integrable null hypersurface in the RC
spacetime. The detailed description of the geometry of a
null hypersurface in RC spacetime has been carried
out in [33], and hence here, we are content in exposing
only the salient features. These are needed to achieve the
present goals.
Our ambient spacetime ðM;g; ∇̂Þ is the RC spacetime

provided with a general metric compatible affine connec-
tion, i.e., ∇̂agbc ¼ 0. In the coordinate basis, the torsion
tensor is defined as

Ta
bc ≡ Γ̂a

bc − Γ̂a
cb: ð2:1Þ

The contorsion tensor Ka
bc then follows as

Γ̂a
bc ¼ Γa

bc þ Ka
bc ¼ Γa

bc þ
1

2
ðTa

bc þ Tb
a
c þ Tc

a
bÞ:
ð2:2Þ

Another relevant quantity of interest is the modified torsion
tensor Sabc,

Sabc ≡ Ta
bc þ δabTc − δacTb; ð2:3Þ

where Tb ≡ gacTabc is the contraction of the first and third
indices of the torsion tensor. In our chosen convention, the
Riemann tensor of ðM;g; ∇̂Þ is defined with respect to the
affine connection Γ̂a

bc as

R̂a
bcd ≡ ∂cΓ̂a

db − ∂dΓ̂a
cb þ Γ̂a

ciΓ̂i
db − Γ̂a

diΓ̂i
cb: ð2:4Þ

Just like the case of the spacetime ðM; g;∇Þ provided with
the metric compatible symmetric Levi-Civita connection
(∇), we define the analog of the Einstein tensor in the RC
spacetime as

Ĝab ¼ R̂ab −
1

2
gabR̂: ð2:5Þ

Due to the presence of torsion, the tensor Ĝab fails to be
divergenceless,

∇̂aĜ
a
b ¼ −Tk

abR̂
a
k þ

1

2
TkadR̂adkb: ð2:6Þ

Now, we consider the decomposition of curvature tensor
R̂abcd in the RC spacetime into a Riemannian part (Rabcd)
and an extra part that involves the torsion contributions. It
can be shown that

R̂a
bcd ¼ Ra

bcd þ ð∇̂cKa
db − ∇̂dKa

cbÞ
þ Ti

cdKa
ib þ ðKi

cbKa
di − Ki

dbKa
ciÞ: ð2:7Þ

Similarly, taking the contraction to yield the Ricci tensor, it
can be easily verified that

R̂ab ¼ Rab þ ∇̂iKi
ba þ ∇̂bTa þ Ti

jbKj
ia

þ Ki
jaKj

bi þ TiKi
ba: ð2:8Þ

We now consider the construction of a general null
hypersurface H in this RC spacetime. The null hypersur-
face H is defined via the scalar field uðxaÞ ¼ 0, with the
null normal la to H being

la ¼ −eρ∂au ¼ −eρ∇̂au; ð2:9Þ

where ρ is a smooth scalar field defined on H. Following
Carter [57], we consider not just a single null hypersurface,
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but rather a family of such null hypersurfaces
uðxaÞ ¼ constant. Out of this family, our chosenH, defined
by uðxaÞ ¼ 0 is just a particular member. So, we have
foliated our spacetime ðM;g; ∇̂Þ in an open neighborhood
of H by a family of null hypersurfaces. The details of such
a construction have been explained in [33,52] and are not
be pursued here. The null generators l of H satisfy the
following relation:

la∇̂alb − Tabclalc ¼ la∇alb ¼ κlb; ð2:10Þ

where κ is the nonaffinity parameter associated with the
null geodesics l, and ∇ is the standard Levi-Civita con-
nection. We observe that the null generators l are not
autoparallel (with respect to ∇̂), even though they are
geodesics (with respect to ∇). Only when the condition
Tb ≡ Tabclalb ¼ 0 is satisfied do we have la∇̂alb ¼ κlb.
The restriction Ta ¼ 0 on the torsion tensor for null
generators l in the RC spacetime is what we call the
geodesic constraint. We also consider a 3þ 1 foliation of
the null family uðxaÞ ¼ constant by a stack of spacelike
hypersurfaces Σt defined as tðxaÞ ¼ kðconstantÞ. We
assume that these spacelike hypersurfaces do not intersect
with each other. Hence, an open neighborhood of
ðM;g; ∇̂Þ in the vicinity of H can be parametrized by
well defined local set of coordinates xa ¼ ðt; xμÞ, where
xμ ¼ ðx1; x2; x3Þ are the spatial coordinates installed on the
spacelike surface Σt. The coordinate time evolution vector
t ¼ ∂t that connects the same spatial points yμ on the
neighboring spacelike slices satisfy ta∂at ¼ 1. The inter-
section of the family Σt with our null hypersurfaceH is the
stack of transverse two-dimensional cross sections St
defined as St ≡H ∩ Σt. We also have a unique transverse
auxiliary null vector field k defined as

l · k ¼ −1; k · k ¼ 0 and k · eA ¼ 0; ð2:11Þ

where feAg denotes the set of basis vectors established on
the tangent space of St. It can be seen [33] that the null
generators l represents a notion of outgoing null vector field
with respect toH. On the other hand, the auxiliary null field
k denotes a notion of ingoing vector field with respect toH.
The orthogonal projection tensor onto the spacelike sub-
manifold St is defined as

qab ¼ gab þ lakb þ kalb: ð2:12Þ

Now, we come to the relevant kinematical description of
H. All such quantities have been developed in details in
[52]. The first such quantity that we are interested in is the
extended second fundamental form Θ̂ab which in essence
quantifies the extrinsic curvature of our null hypersurface.
This is defined as

Θ̂ab ¼ ðqcaqdb∇̂dlcÞ − ðqcakbT cÞ: ð2:13Þ

Notice that due to the presence of nontrivial torsion in the
spacetime the extended second fundamental form is not
symmetric [52], i.e.,

Θ̂ba − Θ̂ab ¼ qcaqdbTfdc lf þ ðkbqca − kaqcbÞT c: ð2:14Þ

It is also quite easy to verify that

Θ̂abla ¼ 0; Θ̂ablb ¼ qcaT c;

Θ̂abka ¼ 0 and Θ̂abkb ¼ 0: ð2:15Þ

The above relation clarifies the fact the second fundamental
form is orthogonal to both l and k only when the geodesic
constraint is satisfied. It is only then that the extended
second fundamental form becomes a completely spatial
bilinear.
Next, we come to the description of the rotation and the

Hajicek 1-form. The rotation 1-form ω̂ is related to the
Weingarten map for the null surface. As a very useful
working definition of the rotation 1-form, it can established
[52] that

ω̂a ¼ ðlb∇̂bkaÞ þ P̂a; ð2:16Þ

where we have P̂a ≡ Tbcdkblcqda. Another equivalent
definition is

ω̂a ¼ −ðkb∇̂albÞ − lakbð∇̂klbÞ: ð2:17Þ

Using the above definitions, it can quite easily be verified
that

ω̂aka ¼ 0 and ω̂ala ¼ κ − kaTa: ð2:18Þ

The projection of the rotation 1-form onto the transverse
spacelike submanifold ðSt; qÞ is defined to be the Hajicek
1-form Ω̂,

Ω̂a ≡ qbaω̂b: ð2:19Þ

The following relation between the rotation and the Hajicek
1-form can then be established:

ω̂a ¼ Ω̂a − κka þ ðkbTbÞka: ð2:20Þ

A quantity of significant interest while dealing with the
dynamics of our null hypersurface H (to be discussed in
the next section) is the spacetime covariant derivative of the
null normal lb. The fact that we have foliated an open
neighborhood of the spacetime in the vicinity of H, by a
family of null hypersurfaces, allows us to extend the
support of l to not just only on H, but rather to locally
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well defined open neighborhood of spacetime ðM;g; ∇̂Þ
about the hypersurface H. Thus the operation ∇̂alb can be
properly taken. It can be shown [52] that

∇̂alb ¼ Θ̂ba þ ω̂alb − lað∇̂klbÞ: ð2:21Þ

The next kinematical quantity that comes into our
discussion is the deformation rate tensor χ̂ab, which
quantifies the projection (onto St) of the rate of change
of the metric qab as its evolves along l of H,

χ̂ab ¼
1

2
qiaqjb£lqij: ð2:22Þ

As it can easily be observed from (2.22), the deformation
rate tensor is by definition symmetric and completely
orthogonal to l and k. The irreducible decomposition of
the spatial bilinear χ̂ab follows as

χ̂ab ¼
1

2
qab θ̂l

ðdÞ
þ ðl;dÞσab; ð2:23Þ

where θ̂l

ðdÞ
represents the outgoing expansion scalar corre-

sponding to the null generators l of H, and ðl;dÞσab is the
traceless symmetric shear tensor corresponding to χ̂ab. The

trace θ̂l
ðdÞ

of the deformation rate tensor is called the outgoing
expansion scalar because it correctly quantifies the frac-
tional rate of change of the area measure

ffiffiffi
q

p
of St along l

[52]. It can also be shown that

θ̂l

ðdÞ
¼ ∇̂ala þ Tala − κ ¼ ∇ala − κ: ð2:24Þ

The relation between the extended second fundamental
form and the deformation rate tensor is as follows [52]:

χ̂ab ¼ Θ̂ba þ kaqcbTc þ qcaqdbKfcdlf: ð2:25Þ

Finally, we express the spacetime covariant derivative of
the null normal lb in terms of the deformation rate tensor.
To that, it can be established via (2.25) and (2.21) that

∇̂alb ¼ χ̂ab þ ω̂alb − laðki∇̂ilbÞ− kaqcbTc − qcaqdbKfcdlf:

ð2:26Þ

The final kinematical quantity that is of interest to us in
our analysis is the transversal deformation rate tensor Ξ̂ab.
This measures the projection (onto St) of the rate of change
of the induced metric qab as it evolves along the transverse
auxiliary null vector field k,

Ξ̂ab ≡ 1

2
qcaqdb£kqcd: ð2:27Þ

Again, simply via the definition, it can be observed that the
transversal deformation rate tensor is symmetric and
orthogonal to l and k. Performing an irreducible decom-
position on the spatial bilinear Ξ̂ab, we see

Ξ̂ab ¼
1

2
qabθ̂k

ðdÞ
þ ðk;dÞσab: ð2:28Þ

The trace θ̂k

ðdÞ
of the bilinear Ξ̂ab is called the ingoing

expansion scalar as it correctly measures the fractional rate
of change of

ffiffiffi
q

p
as it evolves along k. Similarly, ðk;dÞσab is

the traceless shear part corresponding to Ξ̂ab. We would
also find it in our interest to compute the spacetime
covariant derivative of the auxiliary null field k. To that
end, it can seen [52] that

∇̂akb ¼ Ξ̂ab − Ω̂akb − kaω̂b − laðki∇̂ikbÞ
þ kaTcdfkcldqfa − qcaqdbKfcdkf: ð2:29Þ

III. THE GRAVITATIONAL ECKS FIELD
EQUATIONS

In the Einstein-Cartan (EC) field theory, both the metric
and the torsion tensor are treated as independent dynamical
variables. The gravitational action (denoted by AEC) for
this theory is simply [44,45]

AEC ¼ 1

16π

Z
V
d4x

ffiffiffiffiffiffi
−g

p
R̂: ð3:1Þ

The dynamics of the metric is sourced by the energy-

momentum tensor TðmÞ
ab , whereas the dynamics of torsion is

sourced by the spin-angular momentum tensor τabc. The
variation of the matter action is [44,45]

δAm ≡ −
1

2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ½TðmÞ
ab δgab þ τba

cδKa
bc�: ð3:2Þ

The resultant ECKS field equation obtained by varying the
total action (gravitation plus matter) with respect to the
metric is [44,45]

Ĝabþ
1

2
ð∇̂cþTcÞð−ScabþSabcþSbacÞ¼8πTðmÞ

ab : ð3:3Þ

Extremizing the total action with respect to the contorsion
tensor leads to

Sabc ¼ 8πτabc: ð3:4Þ

Having equipped ourselves with all the necessary machin-
eries, we are now in a position to proceed with our
investigation.
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IV. THE DYNAMICS PERTAINING TO Ĝablaqbc

Now, that we have pointed out the relevant kinematical
quantities of interest for our analysis, let us proceed to the
dynamical variables. By “kinematics”, we mean those
quantities obtainable as the first order spacetime derivative
of the null vector fields l and k and the null 1-forms l and k,
as well as the metric field g and q [33]. By “dynamics”, we
mean the quantities involving first derivatives of kinemati-
cal objects along a specified vector field in the spacetime.
The null generator l is related to the time evolution vector t,
and this is precisely why we call the first derivative (Lie or
covariant) of kinematical variables along l to be dynamical
quantities of interest. Now, as far Einstein’s theory of
gravity is concerned, the field equations expressed with
respect to a generic null hypersurface H give rise to
important physical interpretations. To look at this, consider
the expansion of the vector field Ga

blb in the basis
ðl; k; ∂AÞ,

Ga
blb ¼ ϕ1la þ ϕ2ka þ ϕAð∂AÞa; ð4:1Þ

with ϕ1 ¼ −Gabkalb, ϕ2 ¼ −Gablalb, and ϕA ¼
ðGablbqacÞecA. As has been mentioned in the
Introduction, these projection components have important
thermodynamic and fluid-dynamic interpretations as far as
Einstein gravity is concerned. It would be worthwhile to
investigate whether these physical notions carry forward to
other theories of gravity as well. It is in this context that we
are investigating the structure of the ECKS field equation
with respect to a generic null hypersurface H in the RC
spacetime. The corresponding NRE for the EC theory
(determined through −ϕ2) and its physical interpretation
has already been presented in [21,52] and is not be pursued
here. The thermodynamic interpretation provided to the
ECKS field equations via the component Ĝabkalb has
already been presented by the authors in [52]. In this work,

we try to establish and clarify the dynamics of the Hajicek
1-form Ω̂a. We indeed see that dynamical evolution of Ω̂a

along l is related to the projection component Ĝablaqbc.
Then, we try to answer the question as to whether it is even
possible to interpret the resulting equation as some kind of
(modified) DNS equation.
So, let us look at the dynamics of the generic null

hypersurface via the projection component Ĝablaqbc. Let
us begin with the null Ricci identity established for la,

½∇̂b; ∇̂a�lb ¼ R̂calc − Ti
bað∇̂ilbÞ: ð4:2Þ

We are interested in the projection of the above dynamical
equation on the transverse two surface St of H,

½∇̂b; ∇̂a�lbqat ¼ R̂ablaqbt − Ti
bað∇̂ilbÞqat: ð4:3Þ

From here along, our procedure follows [33]. In order to
remove the clutter of indices, let us define the following
spatial tensor:

t̃ij ≡ qjrqisKtrslt: ð4:4Þ

Let us also define the following quantity:

Φ̂b
a ≡ χ̂ba − qcaqdbKfcdlf ¼ χ̂ba − t̃ba: ð4:5Þ

Φ̂b
a is a completely spatial (1,1) tensor that is orthogonal to

both the l and k directions. It is easily verified that

Φ̂ab − Φ̂ba ¼ 2Φ̂½ab� ¼ qcaqdbTfcdlf: ð4:6Þ

It can be shown that the (Lie) evolution of the Hajicek
1-form Ω̂ along the null generator l is indeed related
to the quantity R̂ablaqbt ¼ Ĝablaqbt via the following
relationship:

qat£lΩ̂a þ D̂bΦ̂b
t − χ̂btP̂

b þ qctqdbðKfcdlfÞP̂b − Ξ̂tbTb

þ Ω̂t

�
θ̂l

ðdÞ
þ kbTb − Tblb

�
− D̂t

�
θ̂l

ðdÞ
þ κ − Tblb

�
þ qctqdbðKfdckfÞTb

¼ R̂ablaqbt − Tibaχ̂
biqat þ qatðTibakiqcbT cÞ þ qatðqciqdbTibaðKfcdlfÞÞ; ð4:7Þ

where D̂ is the spatial covariant derivative compatible with
the induced metric of the submanifold ðSt; qÞ, i.e.,
D̂aqbc ¼ 0. The explicit proof of the above equation (4.7)
has been provided in Appendix A. We now consider the
completely spatial tensor Φ̂bt and perform an irreducible

decomposition of it by breaking it up into a trace part ðθÞ
�
, a

symmetric traceless part (σ
�
bt), and an antisymmetric trace-

less part (ω
�
bt). The trace of this spatial tensor Φ̂bt is

θ
�
¼ qbtΦ̂bt ¼ qbtðχ̂bt − qctqdbKfcdlfÞ ¼ θ̂l

ðdÞ
− qdcKfcdlf

¼ θ̂l

ðdÞ
− ðgcd þ lckd þ kcldÞKfcdlf ¼ θ̂l

ðdÞ
− Tblb þ Tbkb:

ð4:8Þ
In arriving at the above result, we have used the anti-
symmetry of the contorsion tensor in the first and third
indices along with the fact that Ka

b
b ¼ Ta. The symmetric

traceless part of the tensor Φ̂bt is

SUMIT DEY and BIBHAS RANJAN MAJHI PHYS. REV. D 106, 104005 (2022)

104005-6



σ
�
bt ¼ Φ̂ðbtÞ −

1

2
qbtθ

�
¼ ðχ̂ðbtÞ − qctqdbKfðcdÞlfÞ −

1

2
qbtð θ̂l

ðdÞ
− Tblb þ TbkbÞ

¼
�
χ̂bt −

1

2
qbt θ̂l

ðdÞ�
−
�
qctqdbKfðcdÞlf −

1

2
qbtðTblb − TbkbÞ

�

¼ ðl;dÞσbt −
�
qctqdbKfðcdÞlf −

1

2
qbtðTblb − TbkbÞ

�
: ð4:9Þ

Similarly, the traceless antisymmetric part of Φ̂bt is

ω
�
bt ¼ Φ̂½bt� ¼ χ̂½bt� −

1

2
qctqdbðKfcd − KfdcÞlf

¼ 1

2
qctqdbTfdclf: ð4:10Þ

Using (4.8), (4.9), and (4.10), we obtain

Φ̂bt ¼
1

2
qbtð θ̂l

ðdÞ
− Tblb þ TbkbÞ þ σ

�
bt þ

1

2
qctqdbTfdclf:

ð4:11Þ

The above result allows us to have

D̂bΦ̂b
t ¼ D̂t

�
1

2
ð θ̂l
ðdÞ

− Tblb þ TbkbÞ
�
þ D̂bσ

�b
t

þ D̂b

�
1

2
qctqdbTfdclf

�
: ð4:12Þ

Using (4.12) in (4.7) and further simplifying, we end up
with

qat£lΩ̂a þ Ω̂tð θ̂l
ðdÞ

− Tblb þ kbTbÞ − D̂t

�
κ þ 1

2
ð θ̂l
ðdÞ

− Tblb − kbTbÞ
�
þ D̂bσ

�b
t

þ D̂b

�
1

2
qctqdbTfdclf

�
− χ̂btP̂

b þ qctqdbðKfcdlfÞP̂b − Ξ̂tbTb þ qctqdbðKfdckfÞTb

¼ R̂ablaqbt − Tibaχ̂
biqat þ qatðTibakiqcbT cÞ þ qatðqciqdbTibaðKfcdlfÞÞ: ð4:13Þ

The above geometrical relationship established in the RC spacetime relates the (Lie) evolution of the Hajicek 1-form Ω̂a

along the null generators in its full generality with the projection component R̂ablaqbt or Ĝablaqbt. Note that in arriving at
(4.13) we have not used the geodesic constraint condition Tb ¼ 0.
We can express the above relationship in a slightly different version by switching over to the extended second

fundamental form Θ̂bt. This we do by noticing via the relationship between the extended second fundamental form and the
deformation rate tensor, i.e., (2.25). We see that upon using (2.25) we have

−Θ̂baP̂
bqat ¼ −χ̂btP̂b þ qctqdbðKfcdlfÞP̂b: ð4:14Þ

Similarly, the last three terms on the rhs of (4.13) can be combined via (2.25) to get

− Tibaχ̂
biqat þ qatðTibakiqcbTcÞ þ qatðqciqdbTibaðKfcdlfÞÞ

¼ −Tibaqatðχ̂bi − kiqcbTc − qciqdbKfcdlfÞ
¼ −TibaqatΘ̂bi: ð4:15Þ

Using (4.14) and (4.15) in (4.13), we express the Lie evolution of the Hajicek 1-form in a slightly different form,

qat£lΩ̂a þ Ω̂tð θ̂l
ðdÞ

− Tblb þ kbTbÞ − D̂t

�
κ þ 1

2
ð θ̂l
ðdÞ

− Tblb − kbTbÞ
�

þ D̂bσ
�b

t þ D̂b

�
1

2
qctqdbTfdclf

�
− Θ̂baP̂

bqat − Ξ̂tbTb þ qctqdbðKfdckfÞTb

¼ R̂ablaqbt − TibaΘ̂biqat: ð4:16Þ
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Note that, in contrast to the deformation rate tensor, the
extended second fundamental form is not symmetric and
completely spatial as evidenced from the relations (2.15)
and (2.14).

Next, we have to use the gravitational field equations to
interpret (4.13) or (4.16) as a dynamical evolution equation
of the Hajicek 1-form Ω̂a. To this extent, we focus
exclusively on the EC theory, under which the relevant
equations are the ECKS field equations (3.3). We then have

R̂ablaqbt ¼ Ĝablaqbt ¼ 8πTðmÞ
ab laqbt −

1

2
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbt: ð4:17Þ

Note that in (4.16) or (4.13) we have related the dynamical evolution (along l) of Ω̂ with R̂ablaqbt ¼ Ĝablaqbt instead of
R̂abqatlb ¼ Ĝabqatlb as anticipated in the transverse projection component of the vector field Ĝa

blb. However, this is not a
matter of concern, since at this point we eventually use the field equations as seen in (4.17). Using (4.17) in (4.16), we have

qat£lΩ̂a þ Ω̂tð θ̂l
ðdÞ

− Tblb þ kbTbÞ − D̂t

�
κ þ 1

2
ð θ̂l
ðdÞ

− Tblb − kbTbÞ
�
þ D̂bσ

�b
t

þD̂b

�
1

2
qctqdbTfdclf

�
− Θ̂baP̂

bqat − Ξ̂tbTb þ qctqdbðKfdckfÞTb

¼ 8πTðmÞ
ab laqbt −

1

2
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbt − TibaΘ̂biqat: ð4:18Þ

The above relation reduces to Eq. (6.15) in [33] in the
absence of torsion in the spacetime and then hence defines
the Hajicek equation under the membrane paradigm. We
notice that the above general dynamical evolution law of
the Hajicek 1-form Ω̂a, i.e., (4.18), involves the transversal
deformation rate tensor Ξ̂tb. The transversal deformation
rate tensor in essence measures the projection of the Lie
derivative of the transverse induced metric qab along the
ingoing auxiliary null field k. So, the dynamics involving
the evolution of the Hajicek 1-form, i.e., (4.18), involves a
part that contains the evolution of qab along k. This is
however in stark contrast to the evolution equation of the
Hajicek 1-form in the Einstein spacetime [33]. Such a
dynamical evolution equation in the Einstein spacetime
involves the evolution of relevant kinematical quantities
along the outgoing null generator l and none so in the
direction of the ingoing field k. This can also be explicitly
seen from the corresponding NRE in the RC spacetime.
Without invoking the geodesic constraint, the most general
form of the NRE has been derived in [52] (see Eq. (A.18) of
[52]). A different variant of the NRE in RC spacetime has
been derived in the Appendix C [see Eq. (C25)]. It is quite
clear that in the presence of torsion in the spacetime the

dynamical evolution of the outgoing expansion scalar θ̂l

ðdÞ

along l encodes information about the uniquely defined

ingoing k field. This is again in contrast with the
Einstein spacetime, where the NRE carries no information
about the auxiliary k field. Coming back to the present
analysis, in the presence of torsion in the spacetime, i.e.,
in the RC spacetime, the evolution equation of the Hajicek
1-form Ω̂a involves terms like Ξ̂tb. This is preferably due to
the fact that in the RC spacetime the null generators
of our integrable null hypersurface H are not parallel
transported along themselves. However, these null gener-
ators are themselves null geodesics with respect to the Levi-
Civita connection ∇. This is quite evident from the relation
(2.10). However, if we impose the geodesic constraint, i.e.,
Tb ¼ Tabclalc ¼ 0, then we force the null generators to be
simultaneously autoparallel (with respect to the connection
∇̂) and extremal length geodesics (with respect to ∇).
Hence, we notice that under the geodesic constraint
we remove in Eqs. (4.13) and (4.16) any reference to
evolution of kinematical/geometrical quantities along the
auxiliary null field k. As a side note, this feature was also
shared by the NRE in the RC spacetime, where the
application of the geodesic constraint removed explicit
references of evolution of kinematical quantities along k.
Thus, under the geodesic constraint, we have our relevant
dynamical evolution laws for Ω̂a to be

qat£lΩ̂a þ Ω̂tð θ̂l
ðdÞ

− TblbÞ − D̂t

�
κ þ 1

2
ð θ̂l
ðdÞ

− TblbÞ
�
þ D̂bσ

�b
t þ D̂b

�
1

2
qctqdbTfdclf

�

− Θ̂baP̂
bqat ¼ 8πTðmÞ

ab laqbt −
1

2
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbt − TibaΘ̂biqat: ð4:19Þ

SUMIT DEY and BIBHAS RANJAN MAJHI PHYS. REV. D 106, 104005 (2022)

104005-8



The above can be expressed in the following alternative structure as well:

qat£lΩ̂a þ Ω̂tð θ̂l
ðdÞ

− TblbÞ − D̂t

�
κ þ 1

2
ð θ̂l
ðdÞ

− TblbÞ
�
þ D̂bσ

�b
t þ D̂b

�
1

2
qctqdbTfdclf

�
− χ̂btP̂

b þ qctqdbðKfcdlfÞP̂b

¼ 8πTðmÞ
ab laqbt −

1

2
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbt − Tibaχ̂

biqat þ qatðqciqdbTibaðKfcdlfÞÞ: ð4:20Þ

The above dynamical equations (4.19) and (4.20) are
completely covariant relations written in any arbitrary
coordinate system. It is this equation that in absence of
torsion in the spacetime reduces to the Damour-Navier-
Stokes (DNS) equation. So, in view of this, let us discuss
the structural aspects of this dynamical equation. First, note
that (4.19) contains the Lie derivative of the Hajicek 1-form
along the null generator l. In a coordinate system adapted to
the null hypersurface H, we have [33]

l¼H tþ V; ð4:21Þ

where t is the time evolution vector field (essentially
connecting similar spatial points on the t ¼ constant space-
like Σt slices foliating H), and V is a spacelike vector field
tangent to the two-surface St. For a coordinate system

ðt; xμ ¼ fx1; x2; x3gÞ adapted to the null hypersurface H,
its location is prescribed by say x1 ¼ 1, and hence, the
coordinates on the transverse two-surface are prescribed by
ðxA ¼ fx2; x3gÞ. For such an adapted coordinate system,

we hence have la ¼H ta þ VA
∂A and that qaA ¼ δaA. For

such a system, its quite easy to show that

qaA£lΩ̂a¼HqaA£tþVΩ̂a ¼
∂Ω̂A

∂t
þ VBD̂BΩ̂A þ Ω̂BD̂AVB

þ ð2ÞTB
CAVCΩ̂B; ð4:22Þ

where ð2ÞTA
BC is the induced torsion tensor on the trans-

verse submanifold ðSt; q; D̂Þ. Inserting the above relation
(4.22) into (4.19), we obtain

∂Ω̂A

∂t
þ VBD̂BΩ̂A þ Ω̂BD̂AVB þ ð2ÞTB

CAVCΩ̂B þ Ω̂Að θ̂l
ðdÞ

− TblbÞ

¼ 8πqbAT
ðmÞ
ab la −

1

2
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbA þ Θ̂baP̂

bqaA − TibaΘ̂biqaA

þ D̂Aκ − D̂Bσ
�B

A þ 1

2
D̂Að θ̂l

ðdÞ
− TblbÞ − D̂B

�
1

2
qcAqdBTfdclf

�
: ð4:23Þ

The initial two terms in the lhs of (4.23) denote the material
derivative of the Hajicek 1-form Ω̂A along V. In the context
of Einstein gravity, as applied to a black hole event horizon,
Damour interpreted V as the surface velocity of the
horizon. In this context, V is to be interpreted as the
surface velocity of the null hypersurface H with respect to
the adapted coordinates in the RC spacetime. The extra
term Ω̂BD̂AVB involving the derivative of the velocity field
VA is present (as in the DNS case) along with an extra term
ð2ÞTB

CAVCΩ̂B. This is because the ambient spacetime
ðM;g; ∇̂Þ carries intrinsic torsion that induces a non-
symmetric connection D̂ and hence torsion on the sub-
manifold ðSt; q; D̂Þ. It is worth mentioning that in analogy
with the membrane paradigm approach we can exchange

the Lie derivative operator with the operator D̂t̄ [58] such
that its operation on the Hajicek 1-form is given as

D̂t̄Ω̂i ≡ qai ðlj∇̂jΩ̂aÞ; ð4:24Þ

which quantifies the projection (onto St) of the covariant
derivative of the Hajicek 1-form along l. It can then quite
easily be seen that

qai£lΩ̂a ¼ D̂t̄Ω̂i þ Ω̂kΘ̂k
jqji þ TkjaljΩ̂kqai: ð4:25Þ

Using (4.25) in (4.19), we can also interpret the dynamical
evolution of the Hajicek 1-form in the following way:
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D̂t̄Ω̂i þ Ω̂ið θ̂l
ðdÞ

− TblbÞ − D̂i

�
κ þ 1

2
ð θ̂l
ðdÞ

− TblbÞ
�
þ D̂jσ

� j
t þ D̂j

�
1

2
qciqdjTfdclf

�
þ ðΩ̂k − P̂kÞΘ̂k

i

¼ 8πTðmÞ
jk ljqki −

1

2
ð∇̂j þ TjÞð−Sjmn þ Smn

j þ SnmjÞlmqni − TkjaðΘ̂jk þ ljΩ̂kÞqai: ð4:26Þ

In the absence of torsion in the spacetime, the above
equation reduces to the “Hajicek equation” arising in the
context of membrane paradigm approach [58]. Although
we have these two notions of the derivative operator acting
on Ω̂a, the Lie derivative presents itself as a natural
generalization to the material derivative in curved mani-
folds.

V. POSSIBLE CONNECTIONS WITH FLUID
DYNAMICS/GENERALIZED CONTINUUM

MECHANICS

A. Projected ECKS field equations on H are not
equivalent to DNS

It is quite well known that for the case of vanishing
torsion the DNS equation describes the dynamics of a two-
dimensional null viscous fluid living on H. In fact, it has
also been shown that the DNS equation is exactly identical
to the NS equation provided we view it in a boosted inertial
frame [34]. Much in the same way, we would like to have
an interpretation for the dynamical equations (4.19)
or (4.23).
We notice in (4.19) the presence of the spatial covariant

derivatives of σ
�
ab and ð1

2
qcaqdbTfdclfÞ which denote the

traceless symmetric and antisymmetric parts of Φ̂ab,
respectively. With respect to the adapted coordinate system
½xa ¼ ðt; xμÞ ¼ ðx0; xμÞ�, it can be shown that (for deriva-
tion, see Appendix B)

χ̂AB ¼H
1

2
ð∂tqABþD̂AVBþD̂BVAþðð2ÞTACBþð2ÞTBCAÞVCÞ;

ð5:1Þ

and

Φ̂AB ¼ χ̂AB − t̃AB ¼H
1

2
ð∂tqAB þ D̂AVB þ D̂BVA

− 2K0BA − ð2ÞTDBAVDÞ: ð5:2Þ

In the case of the geodesic constraint (Ta ¼ 0), it can easily

be verified that Θ̂ab ¼Ta¼0
χ̂ab − t̃ab ¼ Φ̂ab; i.e., the second

fundamental form of the null hypersurface H coincides
with the spatial tensor Φ̂ab. Hence, we have

Θ̂BA ¼Ta¼0Φ̂BA ¼ χ̂BA − t̃BA ¼H
1

2
ð∂tqAB þ D̂AVB þ D̂BVA

− 2K0AB − ð2ÞTDABVDÞ: ð5:3Þ

We do indeed see that with respect to the adapted
coordinate system Θ̂BA contains the term D̂AVB þ D̂BVA.
Let us mention the reason as to why we are looking at the
spatial tensor Θ̂BA. In the absence of torsion, for the case of
Einstein gravity, the second fundamental form of H in
ðM; g;∇Þ is of the form

ΘBA ¼ðM;g;∇Þ 1
2
ð∂tqAB þDAVB þDBVAÞ: ð5:4Þ

For the suitable choice case of an adapted coordinate
system on the null surface H, we can make the induced
metric qAB of St independent of the time evolution
parameter t, i.e., ∂tqAB ¼ 0. Then, we notice that the
second fundamental form of H in Einstein gravity has
the same form as that of the stress tensor of a viscous fluid
(having no internal angular momentum) with velocity VA.
The symmetric combination of the velocity gradient tensor,
i.e., 1=2ðDAVB þDBVAÞ, can as usually be broken down
into a trace part and a traceless shear part. The trace part
which contains the divergence of the velocity field VA is
necessarily interpreted as the expansion scalar correspond-
ing to the fluid flow lines. In that same respect, the trace of
the second fundamental form ΘAB ¼ ΘBA gives the true
expansion scalar of the null surface H. This is perhaps the
central reason as to why (in the absence of torsion) (4.19) or
(4.23) can be interpreted as the DNS equation or the NS
equation (in a boosted inertial frame) [34]. The viscous
stress tensor for a conventional two-dimensional NS fluid is
necessarily of the form 2ησAB þ ξδABθ, where η and ξ stand
for the shear and bulk viscosity coefficients, respectively.
For the NS fluid, the trace free shear tensor σAB is built from
the derivatives of the velocity field VA. In the case of a
vanishing torsion tensor, the spatial tensors Θ̂AB, Φ̂AB and
χ̂AB all coincide.
Coming back to the EC theory, we indeed see via (5.3)

that the second fundamental form of H as usual contains
the term D̂AVB þ D̂BVA. However, now for the generic RC
spacetime ðM;g; ∇̂Þ, Θ̂BA has the extra terms of ∂tqAB and
−2K0AB − ð2ÞTDABVD involving the contorsion and the
two-dimensional torsion tensor. These terms have no direct
interpretation of fluid variables. Via certain choices of the
metric and the adapted coordinate system along with the
freedom of rescaling l, one can make qAB independent of t.
However, the term involving the contorsion and torsion
tensor, i.e., −2K0AB − ð2ÞTDABVD cannot be set to zero for
the generic RC spacetime. Moreover, now in the RC
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spacetime, the second fundamental form Θ̂BA has both
symmetric as well as antisymmetric parts due to the
presence of the torsion tensor in its definition (5.3). This
is certainly a far cry from the usual spacetime without
torsion. It is precisely for this reason that, by a particular
choice of the metric and an adapted coordinate system, we
cannot set ∂tqAB − 2K0AB − ð2ÞTDABVD ¼ 0. It is not be
possible to compensate for the antisymmetric contribution.
The presence of the antisymmetric part in the definition
(5.3) of Θ̂BA is the reason as to why we have a term
D̂bð1

2
qctqdbTfdclfÞ involving the spatial derivative of an

antisymmetric tensor. This shows that in no way can (4.19)
or (4.23) be interpreted as some kind of (modified) DNS
equation in the RC spacetime. This is because the stress
tensor for the DNS fluid is by default symmetric. The
precise symmetry property of the Cauchy stress tensor is
intimately connected to the underlying assumption that the
material points describing the continuum (fluid) system
have no intrinsic angular momentum. But this does fly in
the face of the assumption underlying the RC spacetime in
the EC theory. The very source of torsion is the intrinsic
spin-angular momentum tensor describing the intrinsic spin
of particles in the geometrization of RC spacetime. Thus
there is a nonzero contribution involving the spatial
covariant derivative of a completely antisymmetric tensor
in (4.19) and (4.23). It is for this reason, we can safely
conclude that if we were to allude a fluid/elastic medium
interpretation to the dynamics of our null hypersurfaceH in
EC theory, its shear tensor would certainly not be sym-
metric in general. Hence it is quite certain that the projected
ECKS field equations on H (as observed via the projection
component Ĝablaqbc) cannot be interpreted as the DNS (or
NS) fluid equation.

B. Any real life analogies possible?

Perhaps the most that we can stretch our imagination to
give a real life analogy with the dynamics of (4.19) or
(4.23) is that of Cosserat [59] fluids. In fact, Cosserat
theory describes a classical elastic continuum in which the

material point bodies have translation as well as rotational
degrees of freedom. Conventional Navier-Stokes dynamics
does not incorporate any intrinsic length scales. Each point
of the Cosserat medium can be visualized as an infinitesi-
mal rigid body. There exists both stress and couple stress as
responses to the translation and rotational degrees of
freedom, respectively.
Let us now briefly describe the Cosserat fluid in

Cartesian coordinates xμ. The particle velocity and spin
are designated as vμðt; xνÞ and wμðt; xνÞ, respectively. The
velocity gradient tensor can as usual be broken into a
symmetric and antisymmetric part,

∂μvν ¼ Dμν þWμν; ð5:5Þ

where Dμν ¼ 1
2
ð∂μvν þ ∂νvμÞ and Wμν ¼ 1

2
ð∂μvν − ∂νvμÞ

represent the strain rate (or classical deformation rate)
tensor and the rotation rate (or vorticity) tensor, respec-
tively. The Cosserat generalization to the NS equations is
then described as [59]

ρð∂tvαþvμ∂μvαÞ¼∂αPþγ∂μð∂μvαþ∂αvμÞ
þγc∂

μð½∂μvα−∂αvμ�−2ϵμαρwρÞþfextα :

ð5:6Þ

In the above Eq. (5.6), P stands for the fluid pressure, and γ
is identified as the classical macroscopic fluid viscosity and
is related to the symmetric part of the shear tensor. The
quantity γc represents an extra viscosity material parameter.
The relative spin of the Cosserat fluid particle with respect
to the background vorticity is accounted for by the extra
viscosity parameter γc [59]. fextα represents the external
volume or body force density that acts per unit volume of
the fluid.

1. In coordinates adapted to H

Let us rewrite (4.23) in the following suggestive way:

∂t

�
−Ω̂A

8π

�
þ VBD̂B

�
−Ω̂A

8π

�
þ
�
−Ω̂B

8π

�
D̂AVB þ ð2ÞTB

CAVC

�
−Ω̂B

8π

�
þ
�
−Ω̂A

8π

�
ð θ̂l
ðdÞ

− TblbÞ

¼ −qbAT
ðmÞ
ab la þ 1

16π
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbA −

1

8π
Θ̂baP̂

bqaA þ 1

8π
TibaΘ̂biqaA

− D̂A

�
κ

8π

�
þ D̂B

�
1

8π

�
σ
�
BA −

1

2
qABð θ̂l

ðdÞ
− TblbÞ

��
þ D̂B

�
1

8π

�
−
1

2
qdBqcATfcdlf

��
: ð5:7Þ

Now referring to (5.7), we make the following identification:

fextA ≡ −TðmÞ
ab qbAla þ

1

16π
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbA −

1

8π
ðΘ̂baP̂

bqaA − TibaΘ̂biqaAÞ; ð5:8Þ
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where fextA represents the surface force density on the two-
dimensional cross section St. It is the momentum per unit
area per unit coordinate time t. We notice that the definition
of force density includes the projection of matter energy-

momentum tensor onto the two surface St via −TðmÞ
ab qbAl

a.
However, it also includes contribution due to the torsion
tensor as well. Specifically, we note that in this identi-
fication that we have made for the force density there is the
existence of the terms Θ̂baP̂

bqaA and −TibaΘ̂biqaA. This
means that the torsion tensor coupled with the second
fundamental form Θ̂ab provides a kind of a force density on
the surface St. Once such identification has been made, we
make comparisons between (5.7) and (5.6). This allows us
to make the necessary identification for the description of
the two-dimensional viscous null fluid governed by (5.7).
The surface momentum density πA is related to the Hajicek
1-form as

πA ¼ −
1

8π
Ω̂A: ð5:9Þ

The velocity of our null fluid is VA, whereas κ=ð8πÞ
denotes the null fluid pressure. From the symmetric part
of the stress tensor, we note that 1=ð16πÞ is the shear
viscosity coefficient, whereas−1=ð16πÞ represents the bulk
viscosity coefficient. When comparing (5.6) and (5.7), we
notice that the comparative terms (for the antisymmetric
part of the stress tensor) are, respectively, γc∂

μð∂μvα −
∂αvμ − 2ϵμαρwρÞ and D̂B½ 1

8π ð− 1
2
qdBqcATfcdlfÞ�. It is clear

that on the side of the null fluid dynamics (5.7) there does
not exist any term of the form D̂BðD̂BVA − D̂AVBÞ. This is
also evident from the expansion the second fundamental
form Θ̂AB (5.3) which does not contain any antisymmetric
combination of D̂BVA. Given (5.6), the generic stress for
the Cosserat fluid has antisymmetric contribution.
The antisymmetric part of the Cauchy stress tensor
for the Cosserat fluid is γcð∂μvα − ∂αvμ − 2ϵμαρwρÞ. So,
the null fluid that we are trying to describe via (5.7) is a
special case of the Cosserat fluid in the sense that
the antisymmetric part of its own stress tensor will have
no contribution from D̂BVA − D̂AVB. Having decided
on this issue, we now compare 2γc∂

μð−ϵμαρwρÞ and
D̂B½ 1

8π ð− 1
2
qdBqcATfcdlfÞ�. Its clear that the spin wρ of

the Cosserat fluid particle is related to the torsion tensor on
the null fluid side. This was perhaps anticipated since the
origin of torsion is the spin-angular momentum density in
the matter action part. The extra material viscosity param-
eter γc for the null fluid is hence identified as γc ¼ 1=ð16πÞ.
This establishes the connection that ϵμαρwρ is related to
ð1=2ÞTfABlf. In the characterization of the two-dimen-
sional null fluid we have to take notice of the fact that there
exists the extra factor of Ω̂BD̂AVB þ ð2ÞTB

CAVCΩ̂B along
with the material derivative term in (4.23). The analog of

the first extra term in the case of Einstein gravity, i.e.,
ΩBDAVB, was already present in the DNS equation.
In Einstein’s gravity case, it has been observed that the

extra factors can be removed if the analysis is done in
locally constructed inertial frame related to the adapted
coordinates [34]. Then, the Hajicek 1-form equation
exactly maps to NS dynamics. Having this instance, next
we want to proceed our analysis in the local inertial frame.
This would make the analogy more transparent.

2. Analysis in a boosted local inertial frame constructed
in adapted coordinates

In this section, we want to look at the evolution
equation of Ω̂A in the adapted coordinate system
xi ¼ ðt; xμÞ, i.e., (4.23), from the perspective of a local
inertial observer. However, before we go over to that
particular analysis, we should comment on whether it is
indeed possible to construct a local inertial frame (LIF) in
the EC theory. The EC theory is provided with the
nonsymmetric, however metric compatible, Cartan con-
nection ∇̂. In fact, it has been pointed out that the only
connection (with torsion) that is compatible with the
Einstein equivalence principle is the Cartan connection
[21,60,61]. The equivalence principle in the context of EC
theory means the existence of a unique local frame where
all the components of the Cartan connection coefficients
vanish. If we insist on only holonomic or coordinate
bases, then the only possible way for the connection
coefficients (in the coordinate bases) to vanish is to
demand that the torsion tensor vanishes. However, one
can introduce a local Lorentz or orthonormal tetrad basis
at the point p in ðM;g; ∇̂Þ where we want to construct our
local inertial frame. The local orthonormal tetrad basis are
required to be locally Minkowskian at the point p. With
respect to this anholonomic tetrad bases, it has been
explicitly shown [21,61] that it is indeed possible to set the
Cartan connection coefficient (in the local orthonormal
tetrad bases) to zero at the point p, without demanding
that the torsion tensor also vanishes identically. We hence
do not repeat the argument here.
In order to study the dynamics of the null surface H via

(4.23) in the adapted coordinate system by constructing a
LIF at a point p on H, we need to revisit both the intrinsic
and the extrinsic geometry of the null surface. Let us again
reiterate the notion of the adapted coordinate system for
clarity. The fact that we have foliated a neighborhood of the
spacetime by a stack of spacelike tðxiÞ ¼ constant hyper-
surfaces Σt allows us to coordinatize the neighborhood by
xi ¼ ðt; xμÞ ¼ ðt; x1; x2; x3Þ. The notion of the coordinate
system being adapted or stationary with respect to the null
surface basically means that the location of H is fixed by
the spatial coordinates by some scalar function say
fðx1; x2; x3Þ ¼ 0 [33]. One specific choice would be to
set fðx1; x2; x3Þ ¼ x1 ¼ 0. We henceforth work with this
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choice where x1 ¼ 0 defines the transverse two-dimen-
sional cross section St on Σt. With this, the coordinates on
St surface are xA ¼ ðx2; x3Þ, and the coordinate basis
vectors of TpðStÞ are eA ¼ ∂A ¼ ðe2; e3Þ ¼ ð∂2; ∂3Þ. The
coordinate time evolution vector t ¼ ∂t connects same
spatial points along neighboring Σt hypersurfaces.
Hence, the coordinates defined on the null surface are xμ̃ ¼
ðt; xAÞ with the coordinate basis vectors on TpðHÞ being
eμ̃ ¼ ðt; eAÞ ¼ ð∂t;∂AÞ. On the null surface H, we have

l¼H tþ V, where V ∈ TpðStÞ. Hence, with respect to the

coordinates onH, we have lμ̃¼Hð1; VAÞ. It can be shown that
the metric of the null surface H with respect to the
coordinate system xμ̃ ¼ ðt; xAÞ is given by [33,34]

ds2jH ¼ qμ̃ ν̃dxμ̃dxν̃ ¼ qABðdxA − VAdtÞðdxB − VBdtÞ:
ð5:10Þ

Here, q represents the metric induced onH from the metric
g of the spacetime ðM;g; ∇̂Þ. q represents the first
fundamental form of H and provides a notion of the
intrinsic geometry of H. From (5.10), it can be easily

verified that lμ̃ ¼ qμ̃ ν̃lν̃ ¼ ðlt; flAgÞ¼Hð0; 0; 0Þ. The null
generator l belongs the tangent space TpðHÞ of H and
hence can be lowered with respect to the induced metric q.
The Weingarten map Hχij of H represents the notion of

the extrinsic curvature of H [33,52]. The Weingarten map
was defined for any vector field v ∈ TpðHÞ as

Hχijvj ¼ ∇̂vli: ð5:11Þ

Since the vector field v is arbitrary, we have as a result,
Hχij ¼ ∇̂jli. With respect to the coordinates on H, we

hence have, Hχα̃β̃ ¼ ∇̂β̃l
α̃. The second fundamental form

HΘ restricted to H is defined for arbitrary vectors ðu; vÞ ∈
TpðHÞ × TpðHÞ in the following way [33,52]:

HΘijuivj ≡ uHi χ
i
jvj: ð5:12Þ

Let us make the choice of the vectors u and v to be the
coordinate basis vectors eμ̃ and eν̃, respectively. Then,
we have

HΘijðeμ̃Þiðeν̃Þj ¼ ðeμ̃ÞiHχijðeν̃Þj ¼ ðeμ̃Þið∇̂jliÞðeν̃Þj ¼ ðeμ̃Þið∇̂jliÞδjν̃;
HΘijδ

i
μ̃δ

j
ν̃ ¼ ðeμ̃Þið∇̂ν̃liÞ ¼ −li∇̂ν̃ðeμ̃Þi ¼ −lið∇̂ν̃δ

i
μ̃Þ ¼ −liΓ̂i

ν̃jδ
j
μ̃;

HΘμ̃ ν̃ ¼ −liΓ̂i
ν̃ μ̃: ð5:13Þ

So, we see that the second fundamental form restricted to
the null surface H is proportional to the connection
coefficients of the RC spacetime. The nonsymmetric nature
of HΘ is also evident from the fact that the connection
coefficients are not symmetric. In fact, restricted to the
transverse space St, we see that HΘAB ¼ −liΓ̂i

BA. The above
analysis leading to (5.13) can also be arrived from the
relation (2.21). Expressing (2.21) with respect to the
coordinates xμ̃ on H, we have

∇̂ν̃lμ̃ ¼ Θ̂μ̃ ν̃ þ ω̂ν̃lμ̃ − lν̃ð∇̂klμ̃Þ ⇒ Θ̂μ̃ ν̃ ¼ −Γ̂i
ν̃ μ̃li: ð5:14Þ

In the above, we have used the fact that lμ̃ ¼H ð0; 0; 0Þ.
Next, we come to analysis of the rotation 1-form, again

restricted onH. In order to facilitate the form of the rotation
1-form restricted to H, we would require a knowledge of
the uniquely defined auxiliary null vector field k. The
auxiliary null vector field is not defined on the tangent
space ofH. Hence, we would now require to choose a basis
for TpðMÞ. Let us define the outward pointing spacelike
unit normal to the surface St by s [33]. Hence, the basis
vectors on TpðΣtÞ are eμ ¼ ðs; eAÞ. Extending the Σt

surfaces along the time evolution vector field, we have

that the basis for TpðMÞ is ei ¼ ðt; s; eAÞ. The covector ki
decomposed in such a basis is ki ¼ ðkt; ks; kAÞ. From the
condition that k · V ¼ 0, we have kA ¼ 0. Similarly, the
condition, k · l ¼ −1 leads us to have kt ¼ −1. Hence, the
expansion of the covector ki in the basis ðt; s; eAÞ is
ki ¼ ð−1; ks; 0Þ. From the working definition of the rota-
tion 1-form (2.17), we consider the projection of Ω̂i onto
the null surfaceH. The projection tensor ontoH is given by
Πi

j ¼ δij þ kilj [33]. The projected part of the rotation
1-form onto H is defined by

Hω̂i ≡ Πj
iω̂j ¼ −Πj

iðkm∇̂jlmÞ ¼ −km∇̂ilm þ likmkj∇̂jlm:

ð5:15Þ

In the above, we have used the fact that Πj
ilj ¼ 0. We now

specifically look at the components of Hω̂i in the coordinate
basis of TpðHÞ,
Hω̂α̃ ¼ −kmð∇̂α̃lmÞ þ lα̃kmðkj∇̂jlmÞ ¼ −kmð∇̂α̃lmÞ

¼H − k0∇̂α̃l0 − k1ð∇̂α̃l1Þ − kAð∇̂α̃lAÞ ¼H ∇̂α̃l0 − k1ð∇̂α̃l1Þ
Hω̂α̃ ¼H Γ̂0

α̃jlj − Γ̂1
α̃jljk1: ð5:16Þ
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The projection of the rotation 1-form onto the two-
surface St is the Hajicek 1-form Ω̂A. Its clear that
Hω̂α̃ ¼ ðHω̂0;Hω̂AÞ ¼ ðHω̂0; Ω̂AÞ. This allows us to identify

Ω̂A ¼ Hω̂A¼H Γ̂0
Ajl

j − Γ̂1
Ajl

jk1: ð5:17Þ

So, again with respect to the coordinate basis established on
H, we find that the rotation 1-form (restricted to H) is
proportional to the connection coefficients. Similar analysis
can also be brought through a tetrad basis ðn; s; eAÞ of
TpðMÞ, where n denotes the timelike unit normal to the
tðxiÞ ¼ constant surface. It can be shown that the Hajicek 1-
formwith respect to the above mentioned basis is associated
to the tetrad connection coefficients [62] as Ω̂A ¼ Γ̂1

0A.
Having done this analysis, let us now look at the

evolution equation for Ω̂A, i.e., (5.7), in the adapted (or
stationary) coordinates xi ¼ ðt; xμÞ with respect to H. We
propose to consider this expression around the given event
point p ∈ H in a LIF. In the LIF, the connection coef-
ficients will vanish, but not their derivatives. We work with
a Lorentz boosted inertial frame given by the fact that the
metric coefficients are constant. The metric in this Lorentz
boosted LIF is diagonal in structure with VA ≠ 0. The

physical interpretation of such a boosted inertial frame has
been explained in detail in [34]. Under the consideration of
such a boosted LIF, all the terms that are proportional to the
connection coefficients vanish. Hence Ω̂A and Θ̂BA vanish
in the LIF, however not their derivatives. Let us remember
the fact that (5.7) has been derived under the geodesic
constraint. Under this assumption, the trace of the second

fundamental form Θ̂BA, which is ð θ̂l
ðdÞ

− TblbÞ, the shear

tensor σ
�
BA, and the antisymmetric part Θ̂½BA� ¼

1
2
qcAqdBTfdclf ¼ 1

2
½T0BA þ 2TDBAVD� all vanish in the

boosted LIF. Since we are working under the geodesic
constraint, the second fundamental form is completely a
spatial bilinear (given by the fact that Θ̂abla ¼ 0; Θ̂ablb ¼
0; Θ̂abka ¼ 0 and Θ̂abkb ¼ 0). Let us look at the term
− 1

8π ðΘ̂baP̂
bqaA − TibaΘ̂biqaAÞ in the external force density

term (5.8). The term within the parentheses (in the geodesic
constraint) evaluates to ðΘ̂CBP̂

CqBA − 2TCBDΘ̂BCqDAÞ
which naturally vanishes in the boosted LIF. Finally, under
these considerations, let us consider the evolution equa-
tion (5.7), which now becomes (remembering that in the
adapted coordinates qaA ¼ δaB)

∂t

�
−Ω̂A

8π

�
þ VB

∂B

�
−Ω̂A

8π

�
¼ −δbAT

ðmÞ
ab la þ 1

16π
ð∂c þ TcÞð−Scab þ Sabc þ SbacÞlaδbA

− ∂A

�
κ

8π

�
þ ∂

B

�
1

8π

�
σ
�
BA −

1

2
δABð θ̂l

ðdÞ
− TblbÞ

��
þ ∂

B

�
1

8π

�
−
1

2
δdBδ

c
ATfcdlf

��
: ð5:18Þ

Even though the term Ω̂Að θ̂l
ðdÞ

− TblbÞ is zero in the LIF, it
can be formally added so that its analogical structure with
the Cosserat generalization to the NS fluid equation
becomes evident. Now, in the boosted LIF, Eq. (5.18)
should be compared with the Cosserat fluid equation (5.6).
Here, we have the exact material derivative of the mo-
mentum density πA ¼ −Ω̂A=8π. The null fluid pressure is
κ=8π while the shear and extra material viscosity coef-
ficients are 1=16π. The bulk viscosity coefficient is

−1=16π. The external force density is fextA ≡ −TðmÞ
ab δbAla þ

1
16π ð∂c þ TcÞð−Scab þ Sabc þ SbacÞlaδbA which quite nat-
urally arises from the term −1=8πĜablaqbA once the ECKS
field equations are applied in the LIF. This completes our
analysis of the evolution equation (4.23) through an
adapted coordinate system with respect to H about the
point p ∈ H, where a boosted LIF has been constructed.
A few comments are in order. Let us discuss again about

the stress tensor of the Cosserat null fluid that we have been
considering. The analogy was complete under the consid-
eration that the stress tensor SAB for our two-dimensional

null fluid living on H in the EC theory has the form

SBA ¼ 2ησ
�
BA þ ξδBAð θ̂l

ðdÞ
− TblbÞ − 2γcð1=2ÞTfABlf. It is

obviously necessary that the trace free shear tensor is built
from the derivative of the velocity field VA, i.e., we must
have

D̂Bσ
�
BA¼

1

2
D̂B½ðD̂BVBþD̂AVBÞ−

1

2
qABðD̂CVCÞ�: ð5:19Þ

However, as evident from (5.3), that would be possible
only if ∂tqAB − 2K0ðABÞ ¼ ∂tqAB − K0AB − K0BA was
equal to zero. Now, it might be that in some choice of
the adapted coordinate system we might be able to set
∂tqAB ¼ K0AB þ K0AB. However, the interpretation of
∂tqAB in terms of fluid variables is under debate. This
issue was also present in the DNS case [34]. In terms of the
analogy, we pointed out that the momentum density of our
null fluid in the EC theory is proportional to the Hajicek 1-
form Ω̂a which a kinematical quantity. Its physical inter-
pretation would be clearer if it was shown that the
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momentum density πA is indeed proportional to the velocity
of the null fluid VA. For the case of Einstein gravity, via the
use of a particular adapted coordinate systemwith respect to
H, it was indeed shown that the Hajicek 1-form was
proportional to VA [8]. The same logic applies over here
except that in the case of EC theory we would have extra
terms involving the two-dimensional torsion tensor on St.
We notice that for our null fluid both the shear viscosity and
the extra material viscosity coefficients are positive.
However, the bulk viscosity coefficient is negative. This
featurewas also present for the case of Einstein gravity. This
is in contrast to the real world scenario where viscosity
coefficients are positive. In the case of hydrodynamics, a
negative bulk viscosity would lead to local entropy decrease
with time. Reasons for the negative sign in the bulk viscosity
has been attributed to the teleological nature of the horizon
[63–66]. Finally, while considering the antisymmetric part
of the stress tensor, we made the analogy that the quantity
ϵμαρwρ (5.6) is related to ð1=2ÞTfABlf for our null fluid (5.7).
One could have the viewpoint that it might be better to relate
TfAB to the intrinsic spin-angular momentum tensor for the
EC theory via the use of Tabc ¼ Sabc þ ð1=2ÞðgabSc −
gacSbÞ and Sabc ¼ 8πτabc, where Sb ¼ gacSabc. In that
sense, perhaps the connection between the spin wμ of the
Cosserat fluid particle and the intrinsic spin density of our

null fluid might have been more evident. This would have
naturally resulted in a different material viscosity parameter
γc. However, in dealing, with this analysis, we are of the
viewpoint that different kinematical quantities of H are
provided fluid interpretation (like −Ω̂A=8π as momentum
density, κ=8π as the pressure, etc). Similarly, here we adopt
the geometrical viewpoint of torsion rather than that of a
dynamical field. Such issues regarding whether torsion is to
be interpreted as a geometrical or dynamical field has been
explored in [21,52].

3. Covariant generalization of Cosserat fluid

Finally, let us note that we have made a formal
analogy between (4.23) and the Cosserat generalization
to the NS fluid equation (5.6). However, instead, we could
have taken the viewpoint that the natural generalization of
the material derivative (in real world fluids) to the case
of (hypersurface) null fluids on a genuinely curved
background is the notion of the Lie derivative. Under
that viewpoint, all the extra terms, i.e., Ω̂BD̂AVBþ
ð2ÞTB

CAVCΩ̂B, can be effectively incorporated in the Lie
derivative term as evident from (4.22). As a result, we have
from (4.22) and (4.23)

qaA£lΩ̂a þ Ω̂Að θ̂l
ðdÞ

− TblbÞ ¼ 8πqbAT
ðmÞ
ab la −

1

2
ð∇̂c þ TcÞð−Scab þ Sabc þ SbacÞlaqbA þ Θ̂baP̂

bqaA − TibaΘ̂biqaA

þ D̂Aκ − D̂Bσ
�B

A − D̂B

�
1

2
qcAqdBTfdclf

�
þ 1

2
D̂Að θ̂l

ðdÞ
− TblbÞ: ð5:20Þ

The above dynamical equation for our null fluid can then be compared with the Cosserat generalization of the NS
equation (5.6) with the identification that the material derivative has now been replaced with the Lie derivative term (for the
null fluid).

VI. THE TIDAL FORCE EQUATION IN THE RC SPACETIME ðM;g;∇̂Þ
We present the derivation of the tidal force equation in the RC spacetime for the sake of completeness. We see that the

tidal force equation is related to the evolution of the symmetric traceless shear tensor ðl;dÞσab along the null generators l.
Again, we begin with the Ricci identity,

lk½∇̂k; ∇̂j�li ¼ lkð−R̂m
ikjlm − Tm

kj∇̂mliÞ ⇒ lk∇̂k∇̂jli ¼ lk∇̂jð∇̂kliÞ − R̂mikjlmlk − Tm
kjlkð∇̂mliÞ: ð6:1Þ

Our analysis follows [33]. With respect to (4.5), we have the expansion for the covariant derivative of the null
generators as

∇̂alb ¼ Φ̂ba þ ω̂alb − laðki∇̂ilbÞ − kaqcbTc: ð6:2Þ

This allows us to have
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qimqjnlr∇̂rððl;dÞσij − t̃ijÞ þ ðl;dÞσmiqnjTirjlr − t̃miqnjTirjlr þ
1

2
θ̂l

ðdÞ�
2ðl;dÞσmn − t̃mn − qimqjnTjrilr þ

1

2
qmnðqrsTrtsltÞ þ t̃nm

�

− ðl;dÞσmit̃in − ðl;dÞσnit̃mi þ qmnððl;dÞσijt̃ijÞ þ t̃mit̃in −
1

2
qmnðt̃ijt̃jiÞ − ðκ − k · TÞ

�
1

2
qmnðqrsTrtsltÞ þ ðl;dÞσmn − t̃mn

�

þ 1

2
qmnðlk∇̂kðqrsTrtsltÞÞ −

1

2
qmnððl;dÞσijTjrilr − t̃ijTjrilrÞ þ qrmΩ̂nT r −

1

2
qmnðqijΩ̂iT jÞ − D̂nðqrmT rÞ þ

1

2
qmnD̂iðqijT jÞ

þ qbmqdnðð∇̂cKadb − ∇̂dKacbÞ þ Ti
cdKaib þ ðKi

cbKadi − Ki
dbKaciÞÞlalc

−
1

2
qmnð∇̂iKi

ca þ ∇̂cTa þ Ti
jcKj

ia þ Ki
jaKj

ci þ TiKi
caÞlalc ¼ −qbmqdnCabcdlalc: ð6:3Þ

A detailed derivation of the above result is shown in
Appendix C. Even though we are considering an integrable
null hypersurface H generated by l in the RC spacetime
ðM;g; ∇̂Þ, the null generators are themselves null geo-
desics in the sense that they satisfy lb∇bla ¼ κla. However,
in this general setup, the null generators are not autoparallel
along themselves. In the context of a congruence of
geodesic null curves, the term −qbmqdnCabcdlalc [present
on the rhs of (6.3)] is related to the geodesic deviation
equation [7,67] between two null geodesics. The driving
force behind the relative acceleration between two neigh-
boring null geodesics is directly related to the term
involving the Weyl tensor in the rhs of (6.3). It is in this
respect that in literature the above Eq. (6.3) is called the
tidal force equation [58]. Our analysis also allows us to
arrive at a different form of the NRE [as seen in (C25)]

corresponding to the outgoing expansion scalar θ̂l

ðdÞ
as

compared to the ones presented in [21,52]. Let us mention
that the tidal force equation for a null congruence has also
been derived in [49] (see Eq. (63) of [49]). However, the
traceless shear tensor considered in [49] is different from
ðl;dÞσmn analyzed over here. In [49], the shear tensor
considered is the traceless symmetric part of the projected
deviation tensor [52], i.e., B̂ab ¼ qaiqbjBij, where

Bij ¼ ∇̂jli þ Tiajla. As evident, from its definition, the
projected deviation tensor is not symmetric. Its decom-
position involves a nontrivial antisymmetric part. However,
our analysis leading to (6.3) deals with the deformation rate
tensor (2.22) which by definition is symmetric. It can be
shown that the trace part of both the deformation rate and
the projected deviation tensor are equivalent [52]. However,
owing to the difference in their definitions, the symmetric
traceless parts of these two projected tensors (B̂ab and χ̂ab)
are different.

VII. DISCUSSION AND COMMENTS

As pointed out in [25], in the case of Einstein gravity, the
structure of Einstein field equations near an arbitrary null
surface can be understood with respect to the components

of the vector field Ga
blb on the null surface. The compo-

nents turn out to have very precise physical and thermo-
dynamical interpretations. These insights have paved the
way to understand that the gravitational field equations (at
least in the context of Einstein gravity) are perhaps
emergent from underlying degrees of freedom associated
with the gravitational field. Here, we have studied and
tested the claim of emergence of the relevant gravitational
field equations of a different theory of gravity. Our object of
study has been the EC theory, which is the simplest of all
possible gravitational theories under the umbrella of
Poincaré gauge theory (PGT) of gravity [36,42,68–70].
The EC theory is a gravitational theory with nonpropagat-
ing torsion; i.e., torsion cannot propagate outside the matter
that sources the spin effects or the intrinsic angular
momentum. The geometrical backdrop of the EC theory
is the RC spacetime, in which our generic null hypersurface
H is constructed. Again, to understand the structure of the
ECKS gravitational field equations about H, we consider
the relevant projection components of Ĝa

blb. They, as
usual, turn out to be Ĝablalb, Ĝabkalb and Ĝabqaclb.
Naturally, the goal toward probing the emergent nature
of the ECKS field equations would be to find out and
analyze the physical underpinnings of these components.
Ĝablalb is related to the dynamical evolution rule (the NRE)
of the outgoing expansion scalar for the geodesic null
congruence generating the integrable null hypersurface H.
It was shown in [21] that the application of NRE to a local
thermodynamical constitutive relation about an approxi-
mate Rindler horizon established at any point p ∈
ðM;g; ∇̂Þ gave emergence to the ECKS field equations.
Similarly, it was shown by the authors of this paper in [52]
that the component Ĝabkalb is related to the dynamical
evolution law of the ingoing expansion scalar of the null
geodesic congruence forming H. Application of the proc-
ess of virtual displacement of H along the auxiliary null
vector field allowed the interpretation of the ECKS field
equations (via the component Ĝabkalb) as a structure
analogous to the first law of thermodynamics. The physical
interpretation of the component Ĝabqaclb was missing in
the literature.
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In this work, we have shown that the transverse spatial
component Ĝabqaclb or rather Ĝablaqbc is indeed related to
the dynamical evolution rule of the Hajicek 1-form for H.
In the case of Einstein gravity, the correspondence of the
dynamical evolution law for Ωa in a set of coordinates
adapted to H yields a structure called the DNS equation.
The DNS equation for the null fluid on H is structurally
very similar to the NS equation. The NS or the DNS
equation is marked by the fact that its Cauchy stress tensor
is symmetric by definition. This we expect, since the NS
equation describes a fluid with no intrinsic angular
momentum. This is, in turn, on the Einstein gravity side
is guaranteed by the fact that there does not exist any
contribution to the matter energy-momentum tensor due to
the spin degrees of freedom in the microscopic domain.
This we surely cannot neglect in the EC theory. The source
of torsion in the EC theory is precisely due to the intrinsic
spin-angular momentum tensor. The matter energy-
momentum sources the metric, whereas torsion as a geo-
metric field is sourced by the spin-angular momentum
tensor. Hence, if it were indeed possible to interpret the
evolution law for the Hajicek 1-form Ω̂a of H in terms of a
fluid/elastic model theory, then that particular theory must
have a stress tensor that has a nonzero antisymmetric
contribution. This we explicitly see from the term
D̂bð1

2
qctqdbTfdclfÞ in (4.19). However, we reiterate that

the evolution law had been derived under the geodesic
constraint that forces the null generators of H to be
simultaneously autoparallel and geodesic.
We note that the presence of the antisymmetric contri-

bution to the stress tensor in the case of EC theory hinted
for us to look at any real life scenario of fluids/elastic model
systems with built in intrinsic angular momentum. One
such hint came from [59,71]. The Cosserat generalization
to the NS equation describes a continuum fluid system in
which the constituent material point bodies have translation
as well as rotational degrees of freedom. Hence, the
Cosserat fluid does have an antisymmetric contribution
to its stress tensor. Next, in order to furnish the analogy of
the dynamical evolution equation of Ω̂a with that of fluid
dynamical equation of the Cosserat fluid, we adopted two
ways. In the first approach, we expressed the evolution
equation of Ω̂a in terms of a coordinate system ðt; xμÞ
adapted to the null hypersurface H (4.23). Making suitable
identification of the external body force density (5.8), we
compared our resulting equation with the Cosserat fluid
equation (5.6). The momentum density of our null fluid on
H turned out to be −Ω̂A=ð8πÞ. The comparison allowed us
to extract the viscosity coefficients with the shear and the
extra material viscosity parameter γc turning out to be
positive. The bulk viscosity coefficient of our null fluid as
in the Einstein case remains negative. We then performed
the analysis in a boosted LIF which made the analogy of
our dynamical evolution equation of Ω̂A with the Cosserat
fluid more evident. In the second approach, we made the

identification that the material derivative of the Cosserat
fluid (written in Cartesian coordinates in Galilean space-
time) should be replaced by the Lie derivative. This is on
the basis that the Lie derivative of the momentum density
should be the natural generalization of the material deriva-
tive in a genuinely curved background.
Having done this analysis, we should be cautious

about the analogy brought in. There are certain issues
regarding the fluid interpretation of the gravitational field
equations which are in still under debate. First, with respect
to (5.3), consider the quantity, ∂tqAB. It is with respect to a
convenient choice of the adapted coordinates with respect
to H that we can set ∂tqAB to zero. However, the physical
interpretation of this quantity in terms of fluid variables is
still lacking. This was also the case for Einstein gravity.
In addition, for the case of the ECKS theory, we
understand, with respect to (5.3), there is an extra con-
tribution to the extended second fundamental form Θ̂BA
written in the adapted set of coordinates ðt; xμÞ, i.e.,
1
2
ð−2K0AB − ð2ÞTDABVDÞ. The antisymmetric part of the

second fundamental form, i.e., Θ̂½BA� ¼ 1=2ðT0BAþ
ð2ÞTDBAVDÞ ¼ 1=2ðqdBqcAÞTfdclf, should be related to
spin wμ of the Cosserat fluid particle (5.6). However, the
symmetric part of Θ̂BA barring aside the term 1=2ðD̂AVB þ
D̂BVAÞ [analogous to the strain rate or classical
deformation rate tensor Dμν in (5.5)], i.e., the term
∂tqAB − K0AB − K0BA, does not have direct fluid interpre-
tation. It is again only by a convenient choice of the adapted
coordinates that we can set this extra term to zero. Hence,
the correspondence of the dynamical evolution law for Ω̂a
with the Cosserat fluid is in no way watertight. Further
scrutiny and insight into the analogy is desired.
For a real world fluid, a negative value of the bulk

viscosity coefficient would imply a dilation or contraction
instability. This would translate to the fact that the global
null surfaceH is unstable under external perturbations. The
fact that the bulk viscosity coefficient is negative is in
agreement with the fact that a generic hypersurface has the
tendency to continually contract to expand. For the case of
event horizon, the expansion vanishes under the equilib-
rium condition attained at a far future, and hence, it
stabilizes [63]. In any case, the event horizon is a global
concept that requires full knowledge of the spacetime or
complete future predictability of any Cauchy surface. There
are local concepts of horizons which are bereft of this
teleological property. It has been shown that the generalized
DNS equation applied to a future outer trapping horizon
and dynamical horizon in ðM; g;∇Þ leads to a positive bulk
viscosity coefficient [62,63]. It is also desirable to see
whether we encounter the same positive bulk viscosity
coefficient for such local horizons in the RC spacetime.
This “completes” the physical interpretation for the

trifecta of the relevant projection components of the vector
field Ĝa

blb in the EC theory. The fact that the ECKS field
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equations expressed with respect to a generic null surface
H has both thermodynamic (via Ĝablalb and Ĝabkalb) and
fluid dynamic (via Ĝabqaclb) interpretations lends strength
to the concept of the emergent paradigm of gravity.
For the sake of completeness, we also computed the tidal

force equation for a null geodesic congruence in the RC
spacetime. Here, we did not employ the geodesic constraint
and kept the analysis general. The only assumption that
went into the tidal force equation was that the geodesic null
congruence forms an integrable hypersurface; i.e., the
Frobenius identity is satisfied.
A very natural question that may arise is whether the

same analysis would be possible in the language of tetrad
variables. In the tetrad approach, the veilbein and Lorentz
spin connection are the dynamical variables in place of
metric and torsion. In the EC theory, the connection is
metric compatible which translates to the spin connection
being antisymmetric in the tetrad language. Even though
we have not worked out explicitly the details, the analysis
in terms of the tetrad variables should finally result in the

same dynamical evolution law for the Hajicek 1-form. In
fact, it would be worthwhile to carry out the analysis in
PGT, which naturally uses the language of tetrads. In that,
the EC and teleparallel gravity theory are the most
discussed ones. We hope to come back to this analysis
in a future work.
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APPENDIX A: DERIVATION
OF THE RELATION (4.7)

Let us begin with the first term within the parentheses in
the lhs of (4.2). Using (2.26) in this term, one finds

∇̂bð∇̂albÞ ¼ ∇̂b½χ̂ab þ ω̂alb − laðki∇̂ilbÞ − kaqcbTc − qcaqdbKfcdlf�: ðA1Þ

Then, we make use of (2.29) and (2.24) in (A1) for the spacetime covariant derivative of the ingoing auxiliary null vector
field ka and the covariant divergence of the null generator la, respectively. Upon simplification, this leads to

∇̂bð∇̂albÞ ¼ ∇̂bχ̂
b
a þ lb∇̂bω̂a þ ω̂að θ̂l

ðdÞ
þ κ − TiliÞ − χ̂abðkj∇̂jlbÞ þ qcaTcðkbðkj∇̂jlbÞÞ

þ qdaqcbKfcdlfðkj∇̂jlbÞ − Ξ̂a
cT c þ qdaqciT iKfcdkf − ∇̂bðqcaqdbKfcdlfÞ

− laðω̂bðkj∇̂jlbÞ þ ∇̂bðkj∇̂jlbÞÞ þ kaðΩ̂cTc − ∇̂bðqcbTcÞÞ: ðA2Þ

Similarly, taking on the second term in the commutator bracket of the lhs of (4.2), we have upon using (2.24)

∇̂að∇̂blbÞ ¼ ∇̂að θ̂l
ðdÞ

þ κÞ − ð∇̂aTiÞli − Tiχ̂ia − ω̂aðTiliÞ þ laðTiðkj∇̂jliÞÞ þ kaðqciT cTiÞ þ qcaqdbTbðKfcdlfÞ: ðA3Þ

Using the above results, we compute the quantity ½∇̂b; ∇̂a�lb. We then project it on the two-surface St and have the
expression for the lhs of (4.3),

½∇̂b; ∇̂a�lbqat ¼ qat∇̂b½χ̂ba − qcaqdbKfcdlf� þ qatðlb∇̂bω̂aÞ þ Ω̂að θ̂l
ðdÞ

þ κÞ − χ̂tbðkj∇̂jlbÞ

þ qctTckbðkj∇̂jlbÞ − Ξ̂c
tTc − D̂tð θ̂l

ðdÞ
þ κÞ þ qatð∇̂aTiÞli þ χ̂tiTi

þ qctqdb½ðKfdclfÞðkj∇̂jlbÞ þ ðKfdckfÞTb − ðKfcdlfÞTb�: ðA4Þ
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Let us now focus on the term qat∇̂b½χ̂ba − qcaqdbKfcdlf� in the rhs of (A4) and try to manipulate it. We see then

qat∇̂b½χ̂ba − qcaqdbKfcdlf� ¼ qat∇̂bΦ̂b
a ¼ qat δjbδkað∇̂jΦ̂b

kÞ
¼ qatðqjb − ljkb − kjlbÞðqka − lkka − kklaÞ∇̂jΦ̂b

k

¼ qjbqatqka∇̂jΦ̂b
k − qktljkb∇̂jΦ̂b

k − qktkjlb∇̂jΦ̂b
k

¼ D̂bΦ̂b
t þ qktΦ̂b

kðlj∇̂jkbÞ þ qktΦ̂b
kðkj∇̂jlbÞ ¼ D̂bΦ̂b

t þ qktΦ̂b
kðω̂b − P̂bÞ þ qktΦ̂b

kðkj∇̂jlbÞ
¼ D̂bΦ̂b

t þ Φ̂b
tðΩ̂b − P̂bÞ þ χ̂btðkj∇̂jlbÞ − qctqdbðKfcdlfÞðkj∇̂jlbÞ: ðA5Þ

In the above, we define the spatial covector P̂a as P̂a ≡ Tbcdkblcqda. In arriving at (A5), we have used orthogonality
relations of the spatial tensor Φ̂a

b (with respect to l and k) and (2.16) in the third line. Similarly, we have used (2.19) in the
final fourth line. Next, we focus on the term qat ðlb∇̂bω̂aÞ of (A4). Using (2.20), we have

qatðlb∇̂bω̂aÞ ¼ qatlb∇̂bðΩ̂a − κka þ ðk · TÞkaÞ ¼ qatðlb∇̂bΩ̂aÞ − ðκ − k · TÞqbtðΩ̂b − P̂bÞ: ðA6Þ

In the above, we have as usual used (2.16) and (2.19). Note that by using (2.26) for the expansion of the spacetime covariant
derivative of the null generator in terms of the deformation rate tensor, it can quite easily be shown that

qatðlb∇̂bΩ̂aÞ ¼ qat£lΩ̂a − χ̂tbΩ̂b þ qctΩ̂dKfcdlf − qatTbcaΩ̂blc: ðA7Þ

Using this in (A6), we finally obtain

qatðlb∇̂bω̂aÞ ¼ qat£lΩ̂a − χ̂tbΩ̂b − ðκ − k · TÞðΩ̂t − P̂tÞ þ qatΩ̂blcðKcab − TbcaÞ: ðA8Þ

Upon using (A8) and (A5) in (A4), we obtain, after a little simplification,

½∇̂b; ∇̂a�lbqat ¼ D̂bΦ̂b
t þ Φ̂b

tðΩ̂b − P̂bÞ þ qat£lΩ̂a þ χ̂tiðTi − Ω̂iÞ

− Ξ̂tiT i − ðκ − k · TÞðΩ̂t − P̂tÞ þ qatΩ̂blcðKcab − TbcaÞ þ Ω̂tð θ̂l
ðdÞ

þ κÞ þ qctTckbðkj∇̂jlbÞ

− D̂tð θ̂l
ðdÞ

þ κÞ þ qatð∇̂aTiÞli þ qctqdb½ðTfdclfÞðkj∇̂jlbÞ þ ðKfdckfÞTb − ðKfcdlfÞTb�: ðA9Þ

We manipulate further a few terms on the rhs of (A9). We note that upon using the definition (4.5), we have

Φ̂btðΩ̂b − P̂bÞ þ χ̂btðTb − Ω̂bÞ ¼ χ̂btðTb − P̂bÞ − qctΩ̂dðKfcdlfÞ þ qctP̂
dðKfcdlfÞ: ðA10Þ

Next, we manipulate the term qatð∇̂aTbÞlb in the rhs of (A9) via using (2.26),

qatð∇̂aTbÞlb ¼ qatð∇̂aðTblbÞ − Tbð∇̂albÞÞ
¼ D̂tðTblbÞ − χ̂taTa − Ω̂tðTalaÞ þ qctqdbTbðKfcdlfÞ: ðA11Þ

Finally, using the relations (A10) and (A11) in (A9), we obtain, after simplification,

½∇̂b; ∇̂a�lbqat ¼ D̂bΦ̂b
t þ qat£lΩ̂a − χ̂btP̂

b þ qctP̂
dðKfcdlfÞ − Ξ̂tiT i

− ðκ − k · TÞΩ̂t þ ðκ − k · TÞP̂t − qatΩ̂blcTbca þ Ω̂tð θ̂l
ðdÞ

þ κÞ þ qctTckbðkj∇̂jlbÞ

− D̂tð θ̂l
ðdÞ

þ κ − TblbÞ − Ω̂tðTalaÞ þ qctqdbðTfdclfÞðkj∇̂jlbÞ þ qctqdbðKfdckfÞTb: ðA12Þ

Now, we bring our focus to the rhs of (4.3). As usual, we use (2.26) for the expansion of the covariant derivative of the
null generator. This yields

POSSIBLE FLUID INTERPRETATION AND TIDAL FORCE … PHYS. REV. D 106, 104005 (2022)

104005-19



R̂ablaqbt − Ti
bað∇̂ilbÞqat ¼ R̂ablaqbt − Ti

baχ̂
b
iqat − ðTibaω̂

ilbÞqat þ ðTibaliÞðkj∇̂jlbÞqat
þ TibakiqcbT cqat þ Ti

baqciqdbðKfcdlfÞqat: ðA13Þ

We now express the term ðTibaliÞðkj∇̂jlbÞqat in the rhs of (A13) in a different way,

ðTibaliÞðkj∇̂jlbÞqat ¼ qctqdbðTfdclfÞðkj∇̂jlbÞ ¼ qctðqdb − kdlb − ldkbÞðTfdclfÞðkj∇̂jlbÞ
¼ qctqdbðTfdclfÞðkj∇̂jlbÞ þ qctkbTcðkj∇̂jlbÞ: ðA14Þ

Upon using (A14) in (A13) and using (2.20), we obtain

R̂ablaqbt − Ti
bað∇̂ilbÞqat ¼ R̂ablaqbt − Tibaχ̂

biqat − TibaΩ̂ilbqat þ ðκ − k · TÞP̂t

þ qctqdbðTfdclfÞðkj∇̂jlbÞ þ qctkbTcðkj∇̂jlbÞ þ TibakiqcbTcqat

þ qatqciqdbTibaKfcdlf: ðA15Þ

Now, all we have to do is to equate (A12) and (A15) via
(4.3) and simplify. To this effect, we obtain (4.7).

APPENDIX B: DERIVATION OF THE
RELATIONS (5.1) and (5.2)

We now expand the deformation rate tensor χ̂ij ¼
1
2
qimqjm£lqmn with respect to the coordinate system

ðt; xμÞ generated by the foliation of ðM;g; ∇̂Þ by the stack
of spacelike hypersurfaces Σt. Our analysis follows [33].
With respect to the (3þ 1) foliation, we have that
l ¼ tþ V þ ðN − bÞs, where N is the lapse function,
and s is the outward pointing spacelike unit normal to
transverse cross section St on Σt. The orthogonal decom-
position of the time evolution vector field t is given by
t ¼ Nnþ β. The spatial shift vector β can again be
provided an orthogonal decomposition on Σt via
β ¼ bs − V, where V is a vector field established on the
tangent space of St. As a consequence, we have

χ̂ij ¼
1

2
qirqjs½£tqrs þ £Vqrs þ £ðN−bÞsqrs�: ðB1Þ

Expanding the term £Vqrs in terms of the spacetime
covariant derivative, we have

£Vqrs ¼ Vi∇̂iqrs þ qrið∇̂sViÞ þ qisð∇̂rViÞ
þ Tk

irqksVi þ Tk
isqrkVi: ðB2Þ

The same expansion for the term £ðN−bÞsqrs leads us to

£ðN−bÞsqrs ¼ ðN − bÞsi∇̂iqrs þ qri∇̂s½ðN − bÞsi�
þ qis∇̂r½ðN − bÞsi� þ Tk

isqksðN − bÞsi
þ Tk

isqrkðN − bÞsi: ðB3Þ

Putting relations (B2) and (B3) in (B1), and using the fact
that qirqjsVi∇̂iqrs ¼ 0 and ðN − bÞqirqjssi∇̂iqrs ¼ 0, we
simplify the resulting expression for χ̂ij to have

χ̂ij ¼
1

2
½qirqjs£tqrs þ D̂jVi þ D̂iVj þ ð2ÞTjliVl þ ð2ÞTiljVl

þ ðN − bÞðĤij þ Ĥji þ qirqjkTklrsl þ qikqjrTklrslÞ�:
ðB4Þ

In the above, we have used the following definitions. The
spatial covariant derivative (compatible with the induced
metric q of St) of any vector field V lying in the tangent
space of St is given by D̂iVj ≡ qirqjkð∇̂rVkÞ. The two-
dimensional torsion tensor ð2ÞTa

bc as result of the induced
connection D̂ on the submanifold ðSt; qÞ is given via the
relation

ð2ÞTa
bc ¼ qamqbdqcfTm

df: ðB5Þ

The proof of (B5) has been presented in [52]. Similarly, the
extrinsic curvature Hij of the two-surface St viewed as
embedded hypersurface in the three-dimensional spacelike
surface Σt is given by

Hij ¼ qirqjkð∇̂rskÞ: ðB6Þ

Now, for an adapted coordinate system with respect to H,

we have b¼HN and qiA ¼ δiA [33]. Thus, on the null

hypersurface, we have l¼H tþ V. As a result, from (B4),
we have

χ̂ij¼H
1

2
½qirqjs£tqrs þ D̂jVi þ D̂iVj þ ðð2ÞTjli þ ð2ÞTiljÞVl�:

ðB7Þ
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Similarly, the spatial tensor t̃ij can be expressed in the
following way on the null surface H:

t̃ij ¼ qisqjrKtrslt¼HqisqjrKtrsðtt þ VtÞ
¼ ðqisqjrKmrstmÞ þ 2KtjiVt: ðB8Þ

Finally, the spatial tensor Φ̂ij, turns out to be

Φ̂ij ¼ χ̂ij − t̃ij¼H
1

2
½qirqjs£tqrs þ D̂jVi þ D̂iVj þ ðð2ÞTjli

þ ð2ÞTiljÞVl − 2qisqjrKmrstm − 2ð2KljiÞVj�: ðB9Þ

Using the fact that for the adapted coordinate system
qiA ¼ δiA, we have via (B9)

Φ̂AB¼H
1

2
½£tqAB þ D̂AVB þ D̂BVA þ ð2TADB þ 2TBDAÞ
× VD − 2K0BA − 2ð2KDBAÞVD�: ðB10Þ

Using the definition of contorsion tensor, we easily arrive at
(5.2). A similar analysis on (B7) leads us to (5.1).

APPENDIX C: DERIVATION OF (6.3)

Let us manipulate the first term in the rhs of (6.1) by
repeated use of (2.26). Upon using (2.26) on the term
lm∇̂jð∇̂mliÞ, we have

lm∇̂jð∇̂mliÞ ¼ lm∇̂jðΦ̂imÞ þ ðlm∇̂jω̂mÞli þ ðκ − k · TÞð∇̂jliÞ − ðlm∇̂jkmÞqriT r

þ ∇̂jðqriT rÞ − Φ̂imð∇̂jlmÞ þ ðlm∇̂jω̂mÞli þ ðκ − k · TÞð∇̂jliÞ − lmð∇̂jkmÞqriT r þ ∇̂jðqriT rÞ: ðC1Þ

We now use the fact that the (0,2) tensor Φ̂ij is a completely spatial tensor, and hence, lm∇̂jðΦ̂imÞ ¼ −Φ̂i
mð∇̂jlmÞ, upon

which we again make use of (2.26). This leads us to

lm∇̂jð∇̂mliÞ ¼ −Φ̂i
mΦ̂mj þ ljΦ̂imðkr∇̂rlmÞ þ kjqsmT sΦ̂i

m − qriT rω̂j − ljðqriT rkmðks∇̂slmÞÞ
þ liðlm∇̂jω̂mÞ þ ðκ − k · TÞΦ̂ij þ liðκ − k · TÞω̂j − lj½ðκ − k · TÞðks∇̂sliÞ�
− kj½ðκ − k · TÞqsiT s� þ ∇̂jðqriT rÞ: ðC2Þ

Let us look at the third term −Tm
kjlkð∇̂mliÞ in the rhs of (6.1). Again, upon use of the relation (2.26) and the symmetry

property of the torsion tensor, we have

−Tm
kjlkð∇̂mliÞ ¼ −Φ̂imTm

kjlk − T jðks∇̂sliÞ þ P̂jqriT r − ðTmkjω̂
mlkÞli þ ljðTmkskmlkksÞqriT r: ðC3Þ

In principle, we would like to project the Eq. (6.1) onto the two-surface St. As a consequence, we have

qimqjnlk∇̂jð∇̂kliÞ ¼ −Φ̂mtΦ̂t
n − Ω̂nðqrmT rÞ þ ðκ − k · TÞΦ̂mn þ qimqjn∇̂jðqriT rÞ: ðC4Þ

Similarly,

−qimqjnTr
kjlkð∇̂rliÞ ¼ −Φ̂mrTr

kjlkqjn − ðqjnT jÞðqimks∇̂sliÞ þ P̂nqrmT r: ðC5Þ
Thus, upon using (C4) and (C5), we have

qimqjnðlk∇̂jð∇̂kliÞ − R̂mikjlmlk − Tr
kjlkð∇̂rliÞÞ ¼ −Φ̂mtΦ̂t

n − Ω̂nðqrmT rÞ þ ðκ − k · TÞΦ̂mn þ qimqjn∇̂jðqriT rÞ
− qimqjnR̂risjlrls − Φ̂mrTr

kjlkqjn − ðqjnT jÞðqimks∇̂sliÞ þ P̂nqrmT r:

ðC6Þ

Let us focus back on the term in the lhs of (6.1). As usual, use of (2.26) and (2.16) on the term lk∇̂kð∇̂jliÞ leads to

lk∇̂kð∇̂jliÞ ¼ lk∇̂kΦ̂ij þ liðlk∇̂kω̂jÞ þ ω̂jðκli þ T iÞ − κljðks∇̂sliÞ − T jðks∇̂sliÞ
− ljðlr∇̂rðks∇̂sliÞÞ − ðω̂j − P̂jÞqriT r − kjðls∇̂sðqriT rÞÞ: ðC7Þ

Projection of the above Eq. (C7) onto the two-surface St leads to
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qimqjnlk∇̂kð∇̂jliÞ ¼ qimqjnðlk∇̂kΦ̂ijÞ − ðqjnT jÞðqimks∇̂sliÞ þ P̂nðqrmT rÞ: ðC8Þ

We equate the Eqs. (C8) and (C6) following (6.1). Upon using the fact that

qimqjn∇̂jðqriT rÞ ¼ D̂nðqrmT rÞ; ðC9Þ

we end up, after some simplification, with the following result:

qimqjnðlk∇̂kΦ̂ijÞ ¼ −Φ̂mtΦ̂t
n þ ðκ − k · TÞΦ̂mn − qimqjnR̂risjlrls − Ω̂nðqrmT rÞ þ D̂nðqrmT rÞ − Φ̂mrTr

kjlkqjn: ðC10Þ

Essentially, we would want to convert the covariant derivative of the spatial tensor Φ̂ab along the null generator into its Lie
derivative counterpart. To that effect, in theRC spacetime ðM;g; ∇̂Þ, it is quite easy to establish that for any spatial tensorwe have

£lΦ̂ij ¼ lr∇̂rΦ̂ij þ lrΦ̂kjTk
ri þ lrΦ̂ikTk

rj þ Φ̂kjð∇̂ilkÞ þ Φ̂ikð∇̂jlkÞ: ðC11Þ
This leads to

qimqjn£lΦ̂ij ¼ qimqjnðlr∇̂rΦ̂ijÞ þ Φ̂knTk
rilrqim þ Φ̂mkTk

rjlrqjn þ qimΦ̂k
nð∇̂ilkÞ þ qjnΦ̂k

mð∇̂jlkÞ: ðC12Þ

Again, using the relation for the covariant derivative of the null generator, i.e., (2.26), and the fact that Φ̂ij is a completely
transverse spatial tensor, we can easily show that

qimΦ̂k
nð∇̂ilkÞ þ qjnΦ̂k

mð∇̂jlkÞ ¼ Φ̂imΦ̂i
n þ Φ̂miΦ̂i

n: ðC13Þ
Using (C13) in (C12), we hence have

qimqjnðlr∇̂rΦ̂ijÞ ¼ qimqjn£lΦ̂ij − Φ̂knTk
rilrqim − Φ̂mkTk

rjlrqjn − Φ̂imΦ̂i
n − Φ̂miΦ̂i

n: ðC14Þ
Employing (C14) in (C10) and simplifying a bit, we end up having

qimqjn£lΦ̂ij ¼ Φ̂imΦ̂i
n þ ðκ − k · TÞΦ̂mn − qimqjnR̂risjlrls þ Φ̂knTk

rilrqim − Ω̂nðqrmT rÞ þ D̂nðqrmT rÞ: ðC15Þ

TheaboveEq. (C15)defines the dynamical (Lie) evolution (along the null generator l ofH) of the spatial tensor Φ̂ij as projectedon
to the two surfaceSt. On taking the trace of (C15), it can perhaps be anticipated that it leads to the dynamical evolution equation of
the trace of Φ̂ij along the null generator. Thiswe proceedwith and carry out explicitly. Let us then take the trace of the lhs of (C15),
i.e., qij£lΦ̂ij. Let us note that the trace of the spatial tensor Φ̂ij is

gijΦ̂ij ¼ qijΦ̂ij ¼ qijðχ̂ij − t̃ijÞ ¼ θ̂l

ðdÞ
− qrsKtrslt ¼ θ̂l

ðdÞ
− qrsTrtslt: ðC16Þ

Computing the trace of the lhs of (C15), we have

qij£lΦ̂ij ¼ qijlr∇̂rΦ̂ij þ lrΦ̂jiTjri þ lrΦ̂jiTirj þ Φ̂ijð∇̂jliÞ þ Φ̂jið∇̂jliÞ
¼ lr∇̂rðgijχ̂ijÞ þ lrðχ̂ji − t̃jiÞðTjri þ TirjÞ þ ðχ̂ij − t̃ijÞðχ̂ij − t̃ijÞ

ðχ̂ji − t̃jiÞðχ̂ij − t̃ijÞ ¼ lk∇̂kð θ̂l
ðdÞ

− qrsKtrsltÞ þ 2lrχ̂ijTirj − lrt̃ijðTirj þ TjriÞ þ 2χ̂ijχ̂ij − t̃ijð2χ̂ijÞ
− ðt̃ijχ̂ij þ t̃jiχ̂jiÞ þ t̃ijðt̃ij þ t̃jiÞ: ðC17Þ

Upon using the irreducible decomposition of the deformation rate tensor χ̂ij, i.e., (2.23), the above relation (C17) can be
expanded to

qij£lΦ̂ij ¼ lk∇̂kð θ̂l
ðdÞ

− qrsKtrsltÞ þ ðltqrsTrtsÞ θ̂l
ðdÞ

þ 2lrððl;dÞσijTirjÞ − lrt̃ijðTirj þ TjriÞ

þ ð θ̂l
ðdÞ
Þ2 þ 2ððl;dÞσijÞððl;dÞσijÞ − 2ðqrsKtrsltÞ θ̂l

ðdÞ
− 4ððl;dÞσijÞt̃ij þ t̃ijðt̃ij þ t̃jiÞ: ðC18Þ
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Let us then compute the trace of the terms present in the rhs of (C15). We have then

qmnΦ̂imΦ̂i
m ¼ 1

2
ð θ̂l
ðdÞ
Þ2 þ ððl;dÞσijÞððl;dÞσijÞ − ðqrsKtrsltÞ θ̂l

ðdÞ
− 2ððl;dÞσijÞt̃ij þ t̃ijt̃ij; ðC19Þ

qmnðκ − k · TÞΦ̂mn ¼ ðκ − k · TÞð θ̂l
ðdÞ

− qrsKtrsltÞ; ðC20Þ

−qmnqimqjnR̂risjlrls ¼ −R̂ijlilj; ðC21Þ

qmnΦ̂knTk
rilrqim ¼ 1

2
ðltqrsTrtsÞ θ̂l

ðdÞ
þ ððl;dÞσijÞTirjlr − t̃ijTirjlr; ðC22Þ

−qmnΩ̂nðqrmT rÞ ¼ −Ω̂nðqrnT rÞ; ðC23Þ

qmnD̂nðqrmT rÞ ¼ D̂iðqijT jÞ: ðC24Þ

We then add up (C19), (C20), (C21), (C22), (C23), and (C24) to obtain the trace of the rhs of (C15). Equating the resultant relation
with (C18), we end up after some simplification with

lk∇̂k θ̂l

ðdÞ
¼ −

1

2
ð θ̂l
ðdÞ
Þ2 − ððl;dÞσijÞððl;dÞσijÞ þ ðκ − k · TÞð θ̂l

ðdÞ
− qrsTrtsltÞ − R̂ijlilj þ lk∇̂kðqrsTrtsltÞ

þ 1

2
ðqrsTrtsltÞ θ̂l

ðdÞ
− ððl;dÞσijÞTirjlr þ t̃ijTjrilr þ 2ððl;dÞσijÞt̃ij − t̃ijt̃ji − qijΩ̂iT j þ D̂jðqijT iÞ: ðC25Þ

The resulting equation provides the geometrical dynamics of the evolution of the expansion scalar θ̂l
ðdÞ

(corresponding to the
outgoing null generators) along l and relates it to the quantity R̂ijlilj. This equation (C25) can hence be identified as the null
Raychaudhuri equation corresponding to a congruence of hypersurface orthogonal null generators l. The above form of the NRE
shouldbe comparedwithEq. (A18)of [52].Let usmentiona fewstructural differencesbetween them.Here, the constructionof the
NRE has been done via the taking the irreducible decomposition of the deformation rate tensor χ̂ij, i.e., (2.23). The deformation
rate tensor by construction is a symmetric spatial tensor, and hence, ðl;dÞσij represents its symmetric traceless part. As contrasted
with Eq. (A18) of [52], this form the NRE does not incorporate any antisymmetric rotation terms. Equation (A18) has been
constructed with the dynamical variable B̂ij which is the projected deviation tensor. The irreducible decomposition of the
projected deviation tensor involves an antisymmetric traceless part ðl;BÞωab, and hence, in principle, ðl;dÞσab ≠ ðl;BÞσab.
Let us get back to the dynamical equation involving the spatial tensor Φ̂ij, i.e., (C15). We focus on the term qimqjn£lΦ̂ij

in the lhs of (C15). Using the definition of the deformation rate tensor χ̂ij (2.22) and its irreducible decomposition (2.23) its
quite easy to show that

qimqjn£lΦ̂ij ¼
1

2
qmnð θ̂l

ðdÞ
Þ2 þ θ̂l

ðdÞ
ððl;dÞσmnÞ þ

1

2
qmnðlr∇̂r θ̂l

ðdÞ
Þ þ qimqjn£lððl;dÞσij − t̃ijÞ: ðC26Þ

Now, we incorporate the form of the NRE given in (C25) to put down the value of lr∇̂r θ̂l

ðdÞ
. This leads us to

qimqjn£lΦ̂ij ¼ qimqjn£lððl;dÞσij − t̃ijÞ þ
1

4
qmnð θ̂l

ðdÞ
Þ2 þ θ̂l

ðdÞ
ððl;dÞσmnÞ −

1

2
qmnððl;dÞσijðl;dÞσijÞ þ

1

2
qmnðκ − k · TÞð θ̂l

ðdÞ
− qrsTrtsltÞ

−
1

2
qmnR̂ijlilj þ

1

2
qmnðlk∇̂kðqrsTrtsltÞÞ þ

1

4
qmnð θ̂l

ðdÞ
ðqrsTrtsltÞÞ −

1

2
qmnððl;dÞσijTirjlrÞ

þ 1

2
qmnðt̃ijTjrilrÞ þ qmnððl;dÞσijt̃ijÞ −

1

2
qmnðt̃ijt̃jiÞ −

1

2
qmnðqijΩ̂iT jÞ þ

1

2
qmnðD̂iðqijT jÞÞ: ðC27Þ

POSSIBLE FLUID INTERPRETATION AND TIDAL FORCE … PHYS. REV. D 106, 104005 (2022)

104005-23



Next, along the same lines as above, using (4.5) and (2.23), we can expand the rhs of (C15). We have, as a result,

Φ̂imΦ̂i
n þ ðκ − k · TÞΦ̂mn − qimqjnR̂risjlrls þ Φ̂knTk

rilrqim − Ω̂nðqrmT rÞ þ D̂nðqrmT rÞ

¼ 1

2
θ̂l

ðdÞ
ðqimqjnTjrilrÞ þ ðqimðl;dÞσjnTjrilrÞ − ðqimt̃jnTjrilrÞ þ

1

4
qmnð θ̂l

ðdÞ
Þ2 þ θ̂l

ðdÞ
ððl;dÞσmnÞ

−
1

2
θ̂l

ðdÞ
ðt̃mn þ t̃nmÞ þ ðl;dÞσimðl;dÞσin − ððl;dÞσimt̃in þ ðl;dÞσin t̃imÞ þ t̃imt̃in

þ 1

2
ðκ − k · TÞqmn θ̂l

ðdÞ
þ ðκ − k · TÞðl;dÞσmn − ðκ − k · TÞt̃mn − qimqjnR̂risjlrls − Ω̂nqrmT r þ D̂nðqrmT rÞ: ðC28Þ

Now, all that we need to do is to invoke (C15) and hence equate (C27) and (C28). After the necessary simplification, we end
up with

qimqjn£lððl;dÞσij − t̃ijÞ ¼ qmnððl;dÞσijðl;dÞσijÞ þ ðκ − k · TÞ
�
1

2
qmnðqrsTrtsltÞ þ ðl;dÞσmn − t̃mn

�

−
1

2
qmnðlk∇̂kðqrsTrtsltÞÞ þ

1

2
θ̂l

ðdÞ�
qimqjnTjrilr −

1

2
qmnðqrsTrtsltÞ − ðt̃mn þ t̃nmÞ

�

þ
�
qimðl;dÞσjnTjrilr þ

1

2
qmnððl;dÞσijTjrilrÞ

�
−
�
qimt̃jnTjrilr þ

1

2
qmnðt̃ijTjrilrÞ

�

− ððl;dÞσimt̃in þ ðl;dÞσint̃im þ qmnððl;dÞσijt̃ijÞÞ þ
�
t̃imt̃in þ

1

2
qmnðt̃ijt̃jiÞ

�

−
�
qrmΩ̂nT r −

1

2
qmnðqijΩ̂iT jÞ

�
þ
�
D̂nðqrmT rÞ −

1

2
qmnD̂iðqijT jÞ

�

− qbmqdnR̂abcdlalc þ
1

2
qmnR̂aclalc: ðC29Þ

In the above, we have used the result that for a spatial two-dimensional symmetric tensor one has
ðl;dÞσimðl;dÞσin ¼ 1

2
qmnððl;dÞσijðl;dÞσijÞ. Now, we break the curvature tensor R̂abcd in ðM;g; ∇̂Þ into the Riemannian part

Rabcd and the torsion part and similarly for the Ricci tensor R̂ij. The decomposition of the Riemannian curvature tensor
Rabcd reads as

Ra
bcd ¼ Ca

bcd þ
1

2
ðRa

cgbd − Ra
dgbc þ Rbdδ

a
c − Rbcδ

a
dÞ þ

1

6
Rðgbcδad − gbdδacÞ; ðC30Þ

where Cabcd is the traceless part of Rabcd called the Weyl tensor. Employing (2.7), (2.8), and (C30), its quite easy to verify
that

−qbmqdnR̂abcdlalc þ
1

2
qmnR̂aclalc ¼ −qbmqdnCabcdlalc − qbmqdnðð∇̂cKadb − ∇̂dKacbÞ

þ Ti
cdKaib þ ðKi

cbKadi − Ki
dbKaciÞÞlalc

þ 1

2
qmnð∇̂iKi

ca þ ∇̂cTa þ Ti
jcKi

ia þ Ki
jaKj

ci þ TiKi
caÞlalc: ðC31Þ

Equation (C29) coupled with Eq. (C31) would then define the dynamical evolution of the shear tensor ðl;dÞσij corresponding
to the deformation rate tensor. Our final goal of arriving at the tidal equation involves converting the projected (onto the two-
surface St) Lie derivative (along l) of the quantity ððl;dÞσij − t̃ijÞ into the covariant directional derivative counterpart. To that
end, after a few trivial manipulations involving (2.26) and (2.23), it can be shown that
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qimqjn£lððl;dÞσij − t̃ijÞ ¼ qimqjnlr∇̂rððl;dÞσij − t̃ijÞ þ qimððl;dÞσkn − t̃knÞTkrilr

þ ððl;dÞσmk − t̃mkÞqnjTkrjlr þ θ̂l

ðdÞ
ððl;dÞσmn − t̃mnÞ þ 2ðl;dÞσmk

ðl;dÞσkn
− 2ðl;dÞσmkt̃kn − ðl;dÞσknðt̃mk þ t̃kmÞ þ ðt̃mk þ t̃kmÞt̃kn: ðC32Þ

Finally, we equate (C32) with (C29) and use the relation (C31). After some simplification, we finally end up with (6.3).

[1] T. Padmanabhan, Gravity and the thermodynamics of
horizons, Phys. Rep. 406, 49 (2005).

[2] T. Padmanabhan and A. Paranjape, Entropy of null surfaces
and dynamics of spacetime, Phys. Rev. D 75, 064004
(2007).

[3] T. Padmanabhan, Thermodynamical aspects of gravity: New
insights, Rep. Prog. Phys. 73, 046901 (2010).

[4] T. Padmanabhan, Equipartition of energy in the horizon
degrees of freedom and the emergence of gravity, Mod.
Phys. Lett. A 25, 1129 (2010).

[5] T. Padmanabhan, Lessons from classical gravity about the
quantum structure of spacetime, J. Phys. Conf. Ser. 306,
012001 (2011).

[6] T. Padmanabhan, Surface density of spacetime degrees of
freedom from equipartition law in theories of gravity, Phys.
Rev. D 81, 124040 (2010).

[7] T. Padmanabhan, Gravitation: Foundations and Frontiers
(Cambridge University Press, New York, 2010).

[8] S. Kolekar and T. Padmanabhan, Action principle for the
fluid-gravity correspondence and emergent gravity, Phys.
Rev. D 85, 024004 (2012).

[9] S. Kolekar, D. Kothawala, and T. Padmanabhan, Two
aspects of black hole entropy in Lanczos-Lovelock models
of gravity, Phys. Rev. D 85, 064031 (2012).

[10] T. Padmanabhan and D. Kothawala, Lanczos-Lovelock
models of gravity, Phys. Rep. 531, 115 (2013).

[11] T. Padmanabhan, General relativity from a thermodynamic
perspective, Gen. Relativ. Gravit. 46, 1673 (2014).

[12] S. Chakraborty and T. Padmanabhan, Evolution of space-
time arises due to the departure from holographic equi-
partition in all Lanczos-Lovelock theories of gravity, Phys.
Rev. D 90, 124017 (2014).

[13] K. Parattu, B. R. Majhi, and T. Padmanabhan, Structure of
the gravitational action and its relation with horizon
thermodynamics and emergent gravity paradigm, Phys.
Rev. D 87, 124011 (2013).

[14] S. Chakraborty and T. Padmanabhan, Geometrical variables
with direct thermodynamic significance in Lanczos-Love-
lock gravity, Phys. Rev. D 90, 084021 (2014).

[15] T. Padmanabhan, Emergent gravity paradigm: Recent
progress, Mod. Phys. Lett. A 30, 1540007 (2015).

[16] M. Van Raamsdonk, Building up spacetime with quantum
entanglement, Gen. Relativ. Gravit. 42, 2323 (2010).

[17] A. D. Sakharov, Vacuum quantum fluctuations in curved
space and the theory of gravitation, Dokl. Akad. Nauk, Ser.
Fiz. 177, 70 (1967).

[18] T. Jacobson, Thermodynamics of Space-Time: The Einstein
Equation of State, Phys. Rev. Lett. 75, 1260 (1995).

[19] C. Eling, R. Guedens, and T. Jacobson, Non-Equilibrium
Thermodynamics of Spacetime, Phys. Rev. Lett. 96, 121301
(2006).

[20] G. Chirco and S. Liberati, Non-equilibrium thermodynam-
ics of spacetime: The role of gravitational dissipation, Phys.
Rev. D 81, 024016 (2010).

[21] R. Dey, S. Liberati, and D. Pranzetti, Spacetime thermo-
dynamics in the presence of torsion, Phys. Rev. D 96,
124032 (2017).

[22] T. Padmanabhan, Classical and quantum thermodynamics
of horizons in spherically symmetric space-times, Classical
Quantum Gravity 19, 5387 (2002).

[23] D. Kothawala, S. Sarkar, and T. Padmanabhan, Einstein’s
equations as a thermodynamic identity: The cases of sta-
tionary axisymmetric horizons and evolving spherically
symmetric horizons, Phys. Lett. B 652, 338 (2007).

[24] A. Paranjape, S. Sarkar, and T. Padmanabhan, Thermody-
namic route to field equations in Lancos-Lovelock gravity,
Phys. Rev. D 74, 104015 (2006).

[25] S. Chakraborty, K. Parattu, and T. Padmanabhan, Gravita-
tional field equations near an arbitrary null surface ex-
pressed as a thermodynamic identity, J. High Energy Phys.
10 (2015) 097.

[26] T. Padmanabhan, Holographic gravity and the surface term
in the Einstein-Hilbert action, Braz. J. Phys. 35, 362 (2005).

[27] A. Mukhopadhyay and T. Padmanabhan, Holography of
gravitational action functionals, Phys. Rev. D 74, 124023
(2006).

[28] S. Kolekar and T. Padmanabhan, Holography in action,
Phys. Rev. D 82, 024036 (2010).

[29] T. Padmanabhan, Dark energy and gravity, Gen. Relativ.
Gravit. 40, 529 (2008).

[30] T. Damour, Quelques proprietes mecaniques, electromagnet
iques, thermodynamiques et quantiques des trous noir,
Ph.D. thesis, Paris University, VI-VII, 1979.

[31] T. Damour, Surface effects in black hole physics, https://
www.ihes.fr/ damour/Articles/surfaceeffects.pdf (1982).

[32] K. S. Thorne, K. S. Thorne, R. H. Price, and D. A.
MacDonald, Black Holes: The Membrane Paradigm (Yale
University Press, New Haven, CT, 1986).

[33] E. Gourgoulhon and J. L. Jaramillo, A 3þ 1 perspective on
null hypersurfaces and isolated horizons, Phys. Rep. 423,
159 (2006).

POSSIBLE FLUID INTERPRETATION AND TIDAL FORCE … PHYS. REV. D 106, 104005 (2022)

104005-25

https://doi.org/10.1016/j.physrep.2004.10.003
https://doi.org/10.1103/PhysRevD.75.064004
https://doi.org/10.1103/PhysRevD.75.064004
https://doi.org/10.1088/0034-4885/73/4/046901
https://doi.org/10.1142/S021773231003313X
https://doi.org/10.1142/S021773231003313X
https://doi.org/10.1088/1742-6596/306/1/012001
https://doi.org/10.1088/1742-6596/306/1/012001
https://doi.org/10.1103/PhysRevD.81.124040
https://doi.org/10.1103/PhysRevD.81.124040
https://doi.org/10.1103/PhysRevD.85.024004
https://doi.org/10.1103/PhysRevD.85.024004
https://doi.org/10.1103/PhysRevD.85.064031
https://doi.org/10.1016/j.physrep.2013.05.007
https://doi.org/10.1007/s10714-014-1673-7
https://doi.org/10.1103/PhysRevD.90.124017
https://doi.org/10.1103/PhysRevD.90.124017
https://doi.org/10.1103/PhysRevD.87.124011
https://doi.org/10.1103/PhysRevD.87.124011
https://doi.org/10.1103/PhysRevD.90.084021
https://doi.org/10.1142/S0217732315400076
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1070/PU1991v034n05ABEH002498
https://doi.org/10.1070/PU1991v034n05ABEH002498
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1103/PhysRevLett.96.121301
https://doi.org/10.1103/PhysRevLett.96.121301
https://doi.org/10.1103/PhysRevD.81.024016
https://doi.org/10.1103/PhysRevD.81.024016
https://doi.org/10.1103/PhysRevD.96.124032
https://doi.org/10.1103/PhysRevD.96.124032
https://doi.org/10.1088/0264-9381/19/21/306
https://doi.org/10.1088/0264-9381/19/21/306
https://doi.org/10.1016/j.physletb.2007.07.021
https://doi.org/10.1103/PhysRevD.74.104015
https://doi.org/10.1007/JHEP10(2015)097
https://doi.org/10.1007/JHEP10(2015)097
https://doi.org/10.1590/S0103-97332005000200023
https://doi.org/10.1103/PhysRevD.74.124023
https://doi.org/10.1103/PhysRevD.74.124023
https://doi.org/10.1103/PhysRevD.82.024036
https://doi.org/10.1007/s10714-007-0555-7
https://doi.org/10.1007/s10714-007-0555-7
https://www.ihes.fr/ damour/Articles/surfaceeffects.pdf
https://www.ihes.fr/ damour/Articles/surfaceeffects.pdf
https://www.ihes.fr/ damour/Articles/surfaceeffects.pdf
https://www.ihes.fr/ damour/Articles/surfaceeffects.pdf
https://www.ihes.fr/ damour/Articles/surfaceeffects.pdf
https://doi.org/10.1016/j.physrep.2005.10.005
https://doi.org/10.1016/j.physrep.2005.10.005


[34] T. Padmanabhan, Entropy density of spacetime and the
Navier-Stokes fluid dynamics of null surfaces, Phys. Rev. D
83, 044048 (2011).

[35] E. Cartan, Sur les variétés à connexion affine et la théorie de
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