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Some sixty years ago Buchdahl pioneered a program in search of static spherically symmetric metrics for
pureR2 gravity in vacuo [H. A. Buchdahl, Nuovo Cimento 23, 141 (1962).]. Surpassing several obstacles,
his work culminated in a nonlinear second-order ordinary differential equation (ODE) which required being
solved. However, Buchdahl deemed the ODE intractable and abandoned his pursuit for an analytical
solution. We have finally managed to overcome this remaining hurdle and bring his program to fruition.
Reformulating Buchdahl’s ODE, we obtain a novel class of metrics (which we shall call the Buchdahl-

inspired metrics hereafter) in a compact and transparent expression: ds2 ¼ ek
R

dr
rqðrÞfpðrÞ½− qðrÞ

r dt2 þ
r

qðrÞ dr
2� þ r2dΩ2g; in which the pair fp; qg are two functions of the radial coordinate r obeying the

evolution rules dp
dr ¼ 3k2

4r
p
q2 ;

dq
dr ¼ ð1 − Λr2Þp, and the Ricci scalar is RðrÞ ¼ 4Λe−k

R
dr

rqðrÞ. We are able to

verify ex post, via direct inspection, that the metric given above satisfies the R2 vacuo field equation
RðRμν − 1

4
gμνRÞ þ ðgμν□ −∇μ∇νÞR ¼ 0; hence establishing its validity. The compact form above casts

the Buchdahl-inspired metric in a parallel resemblance with the classic Schwarzschild–de Sitter (SdS)
metric, with the case k ¼ 0 corresponding to the SdS metric. We show why the Buchdahl-inspired metric,
which exhibits nonconstant scalar curvature when k ≠ 0, defeats a “no-go” theorem proved in Kehagias
et al. [J. High Energy Phys. 05 (2015) 143.], which posits that pure R2 gravity vacua are restricted to the
Einstein spaces, Rμν ¼ Λgμν, and the vanishing Ricci scalar spaces, R ¼ 0. The aforementioned “no-go”
theorem assumes a rapid asymptotic falloff for the metric as r → ∞. However, we find that the Buchdahl-
inspired metric evades that central assumption, which is overly restrictive. A product of a fourth-derivative
gravity, a Buchdahl-inspired metric is specified by four parameters: Λ measuring the scalar curvature at
largest distances, k effecting the variation of the curvature on the manifold, and fp0; q0g initiating the
“evolution” of fpðrÞ; qðrÞg along the radial direction, forming a two-dimensional phase space. The class of
Buchdahl-inspired metrics is exhaustive as it covers all “nontrivial” static spherically symmetric metrics
admissible for pureR2 gravity in vacuo, with the SdS metric being a special case, k ¼ 0. Transparently, the
quartet fΛ; k; p0; q0g spans a topological space with all members in the class of Buchdahl-inspired metrics
being smoothly connected to the SdS metrics when k is continuously tuned to 0. In this respect, the
Buchdahl-inspired metrics constitute a natural enlargement suitably regarded as a framework “beyond
Schwarzschild–de Sitter.” Our novel solution thereby completes Buchdahl’s six-decades-old program. We
also explore the mathematical properties of the Buchdahl-inspired metric in the limit of small k and in the
region around the coordinate origin.

DOI: 10.1103/PhysRevD.106.104004

I. MOTIVATION

In a seminal paper entitled “On the Gravitational Field
Equations Arising from the Square of the Gaussian
Curvature” completed in 1961 [1], Buchdahl pioneered—
yet left unfinished—a program to seek static spherically
symmetric metrics for pureR2 gravity in vacuo, a theory that
excludes the Einstein-Hilbert term at the outset. Back in his
time, Buchdahl was motivated to consider the pureR2 action

as an interesting prototype for modified gravity. Recently,
the quadratic action has witnessed resurgence [2–9]; one
attractive feature of the pure R2 action is that it is the only
theory that is both ghost-free and scale invariant [10].
Despite making significant progress, unfortunately,

Buchdahl discontinued his efforts toward the finish line
that was within striking distance. The purpose of our
current paper is to bridge the final remaining gap in
Buchdahl’s “abandoned” program. The ultimate outcome
is a family of static spherically symmetric vacua, express-
ible in a compact form, for the pure R2 action. We shall*HoangNguyen7@hotmail.com
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focus on the mathematical aspects of these vacua in this
paper, while leaving their potential implications in physics
for future research.
As Buchdahl indicated therein [1], if one were to adopt

the canonical metric using Schwarzschild coordinates

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

then from the R2 vacuo field equation one would confront
a coupled system of two equations for AðrÞ and BðrÞ, one
of fourth- and one of third-differential orders. Eliminating
one of the two functions would yield a highly nonlinear
seventh-order ordinary differential equation (ODE).
Nevertheless, Buchdahl was able to devise a judicious

choice for the metric alternative to (1) such that the
resulting ODE—albeit nonlinear—is only of second differ-
ential order which remained to be solved. For the reader’s
convenience, the original Buchdahl equation (as we shall
call it as such, hereafter) is

2t
d2q
dt2

þ
�
1þ t
1 − t

−
3

4

k2

q2

�
dq
dt

¼ 0; ð2Þ

see Eqs. (1.7) and (3.4) in his original paper [1]. The metric
he chose is then expressible in terms of the function qðtÞ
[NB: t is not the time coordinate], with the (Buchdahl)
parameter k rendering Eq. (2) nonlinear.
The Buchdahl equation (2) is very generic; it captures all

“nontrivial” static spherically symmetric vacua admissible
for the pure R2 action, besides the Einstein spaces (viz.
Rμν ¼ Λgμν) and the vanishing scalar curvature spaces (viz.
R ¼ 0). Accordingly, if an analytical solution to the
Buchdahl equation can be found, then it would yield a
powerful tool to tackle the new physics inherent in pureR2

gravity [11–13]. Crucially, as shall be shown in this paper,
the new (Buchdahl) parameter k in Eq. (2) would enable the
R2 vacua to develop nonconstant scalar curvature.
By and large, the Buchdahl equation was an impressive

achievement. Yet Buchdahl abandoned his pursuit for an
analytical solution as he judged his ODE intractable.1 This
is an unfortunate twist of events as we find that this is not
the case.2 In this paper, we shall advance a number of
mathematical maneuvers to reformulate the Buchdahl

equation (2) in a more accessible form. From there, we
are able to obtain a compact expression for a new class
of metrics, which we shall call the Buchdahl-inspired
metrics, thereby bringing his six-decades-old endeavor to
a successful outcome.
For the reader’s convenience, we shall briefly present our

result in what follows. The Buchdahl-inspired metric is
neatly expressible as

ds2 ¼ ek
R

dr
rqðrÞ

�
pðrÞ

�
−
qðrÞ
r

dt2 þ r
qðrÞ dr

2

�
þ r2dΩ2

�

ð3Þ

with the Ricci scalar equal to

RðrÞ ¼ 4Λ exp

�
−k

Z
dr

rqðrÞ
�

ð4Þ

and the two auxiliary functions pðrÞ and qðrÞ evolving
along the radial direction r per

dp
dr

¼ 3k2

4r
p
q2

; ð5Þ

dq
dr

¼ ð1 − Λr2Þp: ð6Þ

The deliberate resemblance of Eq. (3) to a Schwarzschild–de
Sitter (SdS) metric makes the meaning of terms transparent.
The compact form (3)–(6) automatically encompasses the
constant-curvature SdS when k equal zero,3 in which case
the nonlinear and singular relation in (5) stays silent. A
nonzero k, however, would trigger an interplay between p
and q via (5) and (6), in which case the Buchdahl-inspired
metric acquires a nonconstant scalar curvature per (4),
potentially offering a host of intricate phenomenology and
new physics.
Our paper is organized as follows. In Sec. II we shall

rework Buchdahl’s original paper in a simplified and
straightforward approach. Our twofold aim is to derive
the results directly from the R2 field equation and to arrive
at an ODE that is more generic than his original ODE. In
Sec. III we shall introduce a shortcut toward the (gener-
alized) Buchdahl equation while circumventing his original
Hamiltonian-based procedure. In Sec. IV we shall cast his
equation in a more transparent way, and then obtain a
compact solution describing the new class of Buchdahl-
inspired metrics. In Sec. V we shall outline the verification
process that confirms the validity of our Buchdahl-inspired
metrics. Between Secs. VI and IX, we shall investigate the
Buchdahl-inspired metrics in four situations: (i) recovering
the SdS metric at k ¼ 0; (ii) deriving a new metric for the
small-k limit; (iii) probing the behavior of the metrics

1To quote Buchdahl from his original paper (with notes in
square brackets ours). On page 4 of [1]: “Unfortunately the
simple appearance of [the nonlinear second order ODE] is
deceptive. The best I have been able to achieve is to obtain a
solution in the form of a sequence of polynomials of ascending
powers of t.” And on Page 8 of [1]: “[The ODE] does not appear
to be soluble in terms of known functions, nor does it appear to be
reducible to a simpler form. It therefore seems appropriate to
determine a solution in ascending power of t, or in some similar
form.”

2No further attempts either by Buchdahl or by others have been
made to solve his ODE since its publication. 3A fact to be shown in Sec. VI.
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around the coordinate origin; and (iv) uncovering a
degeneracy in the overall solution. Section X points out
an overly restrictive assumption in a proof proposed in [2]
against the existence of nonconstant curvature metrics
(and the class of Buchdahl-inspired metrics). The Sec. XI
summarizes our work.

II. GENERALIZING THE BUCHDAHL EQUATION:
A MORE DIRECT ROUTE

In his original work [1] Buchdahl followed an arduous
route. He designed a new Lagrangian, as a “surrogate” to
the pureR2 gravity action, and then applied the variational
principle on it. With the benefits of hindsight, we shall
rework Buchdahl’s formulation in a more straightforward
manner. We shall start directly from the R2 vacuo field
equation, conduct the standard calculations, and reach the
generalized Buchdahl equation. We shall try to retain as
much as possible Buchdahl’s notation for the reader’s
convenience.
Following Buchdahl’s notation, the metric in spherical

coordinate is written in the form

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ eμðrÞdΩ2;

dΩ2 ¼ dθ2 þ sin2θdϕ2: ð7Þ

The vacuo field equation in the pure R2 action is

R
�
Rμν −

1

4
gμνR

�
þ ðgμν□ −∇μ∇νÞR ¼ 0; ð8Þ

and the “trace” equation in vacuo is

□R ¼ 0: ð9Þ

Since R is a function of r only, we have4

∇μ∇νR ¼ ∂μ∂νR − Γr
μν∂rR: ð10Þ

The tt-, θθ-, and rr-components of the vacuo field
equation (8) read

Rtt −
1

4
gttR ¼ −Γr

tt
R0

R
; ð11Þ

Rθθ −
1

4
gθθR ¼ −Γr

θθ

R0

R
; ð12Þ

Rrr −
1

4
grrR ¼ −Γr

rr
R0

R
þR00

R
: ð13Þ

The relevant Christoffel symbols and components of the
Ricci tensors are

Γr
tteλ−ν ¼

ν0

2
; ð14Þ

Γr
θθe

λ−μ ¼ −
μ0

2
; ð15Þ

Γr
rr ¼

λ0

2
; ð16Þ

and

Rtteλ−ν ¼
ν00

2
þ ν02

4
−
ν0λ0

4
þ ν0μ0

2
; ð17Þ

−Rθθeλ−μ ¼ −eλ−μ þ μ00

2
þ μ02

2
þ ν0μ0

4
−
λ0μ0

4
; ð18Þ

−Rrr ¼
ν00

2
þ ν02

4
þ μ00 þ μ02

2
−
ν0λ0

4
−
λ0μ0

2
: ð19Þ

Furthermore, the Jacobian is

ffiffiffiffiffiffi
−g

p ≜ ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
¼ e

ν
2
þλ

2
þμ sin θ; ð20Þ

giving

ffiffiffiffiffiffi
−g

p
grr ¼ e

ν
2
−λ
2
þμ sin θ: ð21Þ

The three functions νðrÞ, λðrÞ, μðrÞ are subject to an
arbitrary coordinate transform. Buchdahl made a judicious
choice that

μðrÞ≡ 1

2
ðλðrÞ − νðrÞÞ; ð22Þ

thus making

ffiffiffiffiffiffi
−g

p
grr ¼ sin θ: ð23Þ

The “trace” equation (9)5

ð ffiffiffiffiffiffi
−g

p
grrR0Þ0 ¼ 0 ð24Þ

is vastly simplified to

R00 ¼ 0; ð25Þ

hence,

R ¼ Λþ kr ð26Þ

in which Λ and k are two constants. If k ¼ 0, the Ricci
scalar is a constant everywhere. For k ≠ 0 the Ricci scalar
deviates from constancy.

4Recall that for a scalar field ϕ: ∇μ∇νϕ ¼ ∂μ∂νϕ − Γλ
μν∂λϕ.

5Recall that for a scalar field ϕ: □ϕ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂νϕÞ.
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With Buchdahl’s choice (22), the relevant Ricci compo-
nents become

Rtt ¼
ν00

2
eν−λ; ð27Þ

Rθθ ¼ 1þ e−
ν
2
−λ
2

�
ν00

4
−
λ00

4

�
; ð28Þ

Rrr ¼ −
λ00

2
þ λ02

8
−
3ν02

8
þ ν0λ0

4
: ð29Þ

From (14), (26), (27) the tt-equation (11) reads

ν00

2
eν−λ þ 1

4
eνðΛþ krÞ ¼ −

ν0

2
eν−λ

k
Λþ kr

; ð30Þ

leading to

ν00 þ k
Λþ kr

ν0 þ 1

2
ðΛþ krÞeλ ¼ 0: ð31Þ

From (15), (26), (28) the θθ-equation (12) reads

1þ e−
ν
2
−λ
2

�
ν00

4
−
λ00

4

�
−
1

4
e

λ
2
−ν
2ðΛþ krÞ

¼
�
λ0

4
−
ν0

4

�
e−

ν
2
−λ
2

k
Λþ kr

; ð32Þ

leading to

λ00 − ν00 þ k
Λþ kr

ðλ0 − ν0Þ þ ðΛþ krÞeλ ¼ 4e
ν
2
þλ

2; ð33Þ

which, combined with (31), becomes

λ00 þ k
Λþ kr

λ0 þ 3

2
ðΛþ krÞeλ ¼ 4e

ν
2
þλ

2: ð34Þ

From (16), (26), (29) the rr-equation (13) reads

−
λ00

2
þ λ02

8
−
3ν02

8
þ ν0λ0

4
−
1

4
eλðΛþ krÞ ¼ −

λ0

2

k
Λþ kr

;

ð35Þ

leading to

λ00 −
k

Λþ kr
λ0 þ Λþ kr

2
eλ −

λ02

4
þ 3ν02

4
−
ν0λ0

2
¼ 0: ð36Þ

Now, eliminating λ00 from Eqs. (34) and (36), we get

2e
ν
2
þλ

2 −
k

Λþ kr
λ0 −

Λþ kr
2

eλ −
λ02

8
þ 3ν02

8
−
ν0λ0

4
¼ 0:

ð37Þ

Next, we make the following coordinate change, which
is slightly different from Buchdahl in his original paper:

Λþ kr ¼ Λekz: ð38Þ

The first and second derivatives acting on r become

d
dr

¼ dz
dr

d
dz

¼ e−kz

Λ
d
dz

; ð39Þ

d2

dr2
¼ dz

dr
d
dz

�
e−kz

Λ
d
dz

�
ð40Þ

¼ e−kz

Λ

�
−
ke−kz

Λ
d
dz

þ e−kz

Λ
d2

dz2

�
ð41Þ

¼ e−2kz

Λ2

�
d2

dz2
− k

d
dz

�
; ð42Þ

upon which Eqs. (31), (34), (37), respectively, become

e−2kz

Λ2
ðνzz − kνzÞ þ

ke−2kz

Λ2
νz þ

Λ
2
ekzþλ ¼ 0; ð43Þ

e−2kz

Λ2
ðλzz − kλzÞ þ

ke−2kz

Λ2
λz þ

3Λ
2

ekzþλ ¼ 4e
ν
2
þλ

2; ð44Þ

ke−2kz

Λ2
λzþ

Λ
2
ekzþλþe−2kz

8Λ2
λ2z−

3e−2kz

8Λ2
ν2zþ

e−2kz

4Λ2
νzλz¼2e

ν
2
þλ

2;

ð45Þ

hence giving

νzz þ
Λ3

2
e3kzþλ ¼ 0; ð46Þ

λzz þ
3Λ3

2
e3kzþλ ¼ 4Λ2e2kzþν

2
þλ

2; ð47Þ

λ2z − 3ν2z þ 2νzλz þ 8kλz þ 4Λ3e3kzþλ ¼ 16Λ2e2kzþν
2
þλ

2:

ð48Þ

Further define

ν ¼ −uþ v − kzþ ln 4; ð49Þ

λ ¼ 3uþ v − 3kzþ 3 ln 4; ð50Þ

μ ¼ λ

2
−
ν

2
¼ 2u − kzþ ln 4; ð51Þ

from which, together with (46)–(48), we obtain

uzz ¼ 16Λ2euð1 − Λe2uÞev; ð52Þ
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vzz ¼ 16Λ2euð1 − 3Λe2uÞev; ð53Þ

uzvz ¼ 16Λ2euð1 − Λe2uÞev þ 3k2

4
: ð54Þ

If Λ ¼ 1, these equations would be equivalent to Eqs. (3.1),
(3.3), and (3.4) in Buchdahl’s original paper [1].
Let us recap: So far, we have obtained the three

equations (52)–(54) for two unknown functions uðzÞ and
vðzÞ. However, the three equations are not independent.
Upon taking derivative with respect to z, Eq. (54) yields

uzzvz þ uzvzz ¼ 16ðeu − 3Λe3uÞevuz þ 16ðeu −Λe3uÞevvz;
ð55Þ

which is trivially satisfied by Eqs. (52) and (53). Therefore,
the system is not overdetermined. We shall discard Eq. (53)
while keeping Eqs. (52) and (54) from now on.

III. OUR SHORTCUT LEADING TO THE
GENERALIZED BUCHDAHL EQUATION

Note that Eq. (52) is of second differential order and
Eq. (54) is of first differential order. Eliminating one of
the functions u or v would in principle produce a third
differential order ODE.
To proceed, Buchdahl next exploited some clever anal-

ogy of Eqs. (52)–(54) with a Hamiltonian dynamics.
However, with the benefit of hindsight, we have found a
shortcut to be presented in what follows.
Define q as a function of u:

q ≔ uz; ð56Þ

giving

uzz ¼ qz ¼ quuz ¼ quq: ð57Þ

Also, by viewing v as a function of u, we have

vz ¼ vuuz ¼ vuq: ð58Þ

Combining (52) and (57), we get

qqu ¼ 16Λ2euð1 − Λe2uÞev: ð59Þ

Combining (54), (56), and (58), we get

q2vu ¼ 16Λ2euð1 − Λe2uÞev þ 3k2

4
: ð60Þ

Now, make a substitution

u ¼ ln x; ð61Þ

which leads to

qu ¼
qx
ux

¼ xqx; ð62Þ

vu ¼
vx
ux

¼ xvx: ð63Þ

From Eqs. (59) and (60) we thus get

qqx ¼ 16Λ2ð1 − Λx2Þev; ð64Þ

q2vx ¼ 16Λ2ð1 − Λx2Þev þ 3k2

4x
¼ qqx þ

3k2

4x
: ð65Þ

Differentiating Eq. (64) with respect to x,

q2x þ qqxx ¼ 16Λ2ð1 − Λx2Þevvx − 32Λ3xev; ð66Þ

and rewriting it as

q2x þ qqxx ¼ qqxvx −
2Λxqqx
1 − Λx2

: ð67Þ

Substituting Eq. (65) into the right-hand side (RHS) of
Eq. (67),

q2x þ qqxx ¼ q2x þ
3k2qx
4xq

−
2Λxqqx
1 − Λx2

; ð68Þ

which leads to

qxx þ
2Λx

1 − Λx2
qx ¼

3k2

4xq2
qx: ð69Þ

At Λ ¼ 1, it duly recovers

xqxx þ
�

2x2

1 − x2
−
3k2

4q2

�
qx ¼ 0; ð70Þ

which is precisely Eqs. (4.8) and (3.4) in Buchdahl’s 1962
Nuovo Cimento paper [1].
Remarkably, the resulting ODE is of second (instead of

third) differential order. Finally, upon substituting x ≔
ffiffi
t

p
,

Eq. (69) becomes

2tqtt þ
�
1þ Λt
1 − Λt

−
3k2

4q2

�
qt ¼ 0; ð71Þ

which, at Λ ¼ 1, recovers Eqs. (4.10) and (3.4) in
Buchdahl’s paper [1].
We shall call Eq. (70) the generalized Buchdahl equation

hereafter. Our next task is to make further progress with this
equation.
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IV. A NEW CLASS OF BUCHDAHL-INSPIRED
METRICS

As we alluded to in the Motivation, Buchdahl deemed
that his nonlinear ODE (71)—although “deceptively
simple”—was insoluble and irreducible to simpler forms.
He discontinued his pursuit for an analytical solution and
instead sought a power-expansion solution; see Footnote 1
in our current paper for his reasoning.
We find that this is not the case. The task of this section is

to reformulate the generalized Buchdahl equation in a more
transparent way, via which the final metric can be attained.
We shall consider Λ ∈ R in general. It turns out that the
generalized Buchdahl ODE (69) can be cast in a more
convenient form as

d
dx

�
qx

1 − Λx2

�
¼ 3k2

4xq2

�
qx

1 − Λx2

�
: ð72Þ

Next, let us define a new function pðxÞ per

pðxÞ ≔ qx
1 − Λx2

; ð73Þ

which, upon combining with (72), produces a set of two
coupled nonlinear first-order ODEs:

px ¼
3k2

4x
p
q2

; ð74Þ

qx ¼ ð1 − Λx2Þp: ð75Þ

In terms of x, the functions u and v are, using Eqs. (61)
and (64),

eu ¼ x; ð76Þ

ev ¼ qqx
16Λ2ð1 − Λx2Þ ¼

qp
16Λ2

; ð77Þ

and the functions ν, λ, and μ are, using Eqs. (49)–(51),

eν ¼ e−uþv−kzþln 4 ¼ 4

Λ2ekz
qp
16x

; ð78Þ

eλ ¼ e3uþv−3kzþ3 ln 4 ¼ 64

Λ2e3kz
x3qp
16

; ð79Þ

eμ ¼ e2u−kzþln 4 ¼ 4

ekz
x2: ð80Þ

From (38) we have

dr ¼ Λekzdz; ð81Þ

and since we also know from (56) and (61) that

q ¼ uz ¼
du
dx

dx
dz

¼ 1

x
dx
dz

; ð82Þ

which leads to

dz ¼ dx
xq

; ð83Þ

we thus have

dr ¼ Λekz
1

xq
dx: ð84Þ

The metric initially expressed in (7) becomes

ds2 ¼ −eνdt2 þ eλdr2 þ eμdΩ2

¼ −
pq

4Λ2ekzx
dt2 þ 4pqx3

Λ2e3kz

�
Λekz

xq
dx

�
2

þ 4x2

ekz
dΩ2

ð85Þ

¼ 4

ekz

�
p
4

�
−

q
4x

dt2

Λ2
þ 4x

q
dx2

�
þ x2dΩ2

�
: ð86Þ

Finally, using the notation of r in place of x, and making the
following replacements:

8>>>>><
>>>>>:

p → 4p

q → 4q

k → −4k
kz → −kzþ ln 4

t → Λt

; ð87Þ

we arrive at the family of Buchdahl-inspired metrics
presented below.

A. The Buchdahl-inspired metrics

ds2 ¼ ek
R

dr
rqðrÞ

�
pðrÞ

�
−
qðrÞ
r

dt2 þ r
qðrÞ dr

2

�
þ r2dΩ2

�

ð88Þ

in which the evolution rules are

dp
dr

¼ 3k2

4r
p
q2

; ð89Þ

dq
dr

¼ ð1 − Λr2Þp; ð90Þ

and, using (26), (38), (83), and (87), the Ricci scalar equals
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RðrÞ ¼ 4Λe−k
R

dr
rqðrÞ: ð91Þ

There are two separate sets of metrics depending on the
sign of Λ:

(i) Asymptotically de Sitter: Λ > 0 and r ∈ ½0;Λ−1
2�,

RðrÞ ¼ 4Λ exp
�
k
Z

Λ−1
2

r

dr0

r0qðr0Þ
�
: ð92Þ

(ii) Asymptotically anti–de Sitter: Λ < 0 and
r ∈ ½0;∞Þ,

RðrÞ ¼ 4Λ exp

�
k
Z

∞

r

dr0

r0qðr0Þ
�
: ð93Þ

Note that, in the two expressions above, r is used as the
lower bound in the integrals, hence the flip in the sign of k.
In either case, the upper bound for the integral in RðrÞ is
chosen such that, at the largest distance allowable, the Ricci
scalar converges to 4Λ.
Compatible with a fourth-derivative action, each metric

is specified by four parameters: Λ (the large-scale curva-
ture), k (the deviation from constant curvature), pðr0Þ and
qðr0Þ at a reference distance r0.
We shall tentatively call the class of metrics represented

in (88)–(93) the Buchdahl-inspired metrics and the coor-
dinate system ðt; r; θ;ϕÞ used therein the Buchdahl coor-
dinates. The Buchdahl-inspired metrics are complete and
exhaustive. All “nontrivial” static spherically symmetric
vacuo metrics in pureR2 gravity fall under the umbrella of
the Buchdahl-inspired metrics.

V. VERIFYING OUR SOLUTION VIA DIRECT
INSPECTION

It is desirable to confirm ex post that our solution
expressed in (88)–(91) obeys the R2 vacuo field equation.
We shall carry out this due diligence exercise via direct
inspection. The task is nontrivial because of the cross
dependence between pðrÞ and qðrÞ. Below is our maneuver.
First, we consider the line element

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ eμðrÞdΩ2; ð94Þ

in which, by virtue of (88),

νðrÞ ≔ ln

�
fðrÞpðrÞqðrÞ

r

�
; ð95Þ

λðrÞ ≔ ln

�
fðrÞpðrÞr

qðrÞ
�
; ð96Þ

μðrÞ ≔ ln ðfðrÞr2Þ: ð97Þ

We further equate

fðrÞ ≔ exp

�
k
Z

dr
rqðrÞ

�
; ð98Þ

while leaving pðrÞ and qðrÞ unspecified at the moment.
The relevant Christoffel symbols and Ricci tensor

components are given in (14)–(19). We use the symbolic
manipulator MAXIMA ONLINE interface to compute these
six components and the Ricci scalar R. They are found to
contain pðrÞ and qðrÞ and their higher-differential order
terms up to the fourth order.
Next, we specify

p0ðxÞ ¼ 3k2

4r
pðrÞ
q2ðrÞ ; ð99Þ

q0ðxÞ ¼ ð1 − Λr2ÞpðrÞ; ð100Þ

and then use MAXIMA ONLINE to compute p00ðrÞ, q00ðrÞ,
p000ðrÞ, q000ðrÞ, p0000ðrÞ, q0000ðrÞ and express each of them
solely in terms of pðrÞ and qðrÞ. We then substitute these
quantities into the Christoffel symbols, the Ricci tensor
components, and the Ricci scalar obtained above. Despite
their cumbersome appearances, after all the dust settles,
MAXIMA ONLINE determines that

R
�
Rtt −

1

4
gttR

�
þ Γr

ttR0 ≡ 0; ð101Þ

R
�
Rθθ −

1

4
gθθR

�
þ Γr

θθR
0 ≡ 0; ð102Þ

R
�
Rrr −

1

4
grrR

�
þ Γr

rrR0 −R00 ≡ 0 ð103Þ

identically. In addition, it produces

RðrÞ≡ 4Λ
fðrÞ ∀ r: ð104Þ

These outcomes solidly validate that our solution given
in (88)–(91) satisfies the R2 vacuo field equation.
Our MAXIMA codes used for this section are available

in [14]. We must note that another researcher independ-
ently and successfully verified our solution using
Mathematica; his working notebook is accessible in the
public domain [15].

VI. RECOVERING SCHWARZSCHILD–DE SITTER
METRIC AS SPECIAL CASE AT k= 0

Consider a metric with constant curvature, R≡4Λ ∀ r.
This requires k ¼ 0 and, from (89),

dp
dr

¼ 0 ð105Þ
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or p ¼ p0 ≡ 1 without loss of generality. Then, from (90),
we subsequently have

dq
dr

¼ 1 − Λr2; ð106Þ

q ¼ r −
Λ
3
r3 − rs; ð107Þ

q
r
¼ 1 −

Λ
3
r2 −

rs
r
; ð108Þ

with rs being a constant of integration. The metric in (88)
becomes

ds2 ¼ −
�
1 −

Λ
3
r2 −

rs
r

�
dt2 þ dr2

1 − Λ
3
r2 − rs

r

þ r2dΩ2;

ð109Þ

which is nothing but the classic SdS metric. This result also
means that the SdS metric is the only vacuo metric with
constant curvature available in pure R2 gravity.
A Buchdahl-inspired metric can be made arbitrarily

close to the SdS metric by tuning the parameter k to zero.
Hence, the quartet fΛ; k; p0; q0g spans a topological space
where all members in the space are smoothly connected to
the k ¼ 0 member (namely, the set of SdS metrics).

VII. THE SMALL k LIMIT

For k ¼ 0 we already have the solution considered in the
preceding section:

pðrÞ≡ 1 ðwithout loss of generalityÞ; ð110Þ

qðrÞ ¼ r −
Λ
3
r3 − rs: ð111Þ

Let us consider up to OðkÞ,

pðrÞ ¼ 1þOðkÞ; ð112Þ

qðrÞ ¼
�
r −

Λ
3
r3 − rs

�
þOðkÞ: ð113Þ

Plugging them into (89) leads to

dp
dr

¼ Oðk2Þ; ð114Þ

which then means

pðrÞ ¼ 1þOðk2Þ: ð115Þ

Note that this expression is valid up to Oðk2Þ instead of
merely OðkÞ as in (112). Plugging (115) into (90) yields

dq
dr

¼ ð1 − Λr2Þ þOðk2Þ; ð116Þ

and then

q ¼
�
r −

Λ
3
r3 − rs

�
þOðk2Þ: ð117Þ

Once again, this expression is valid up to Oðk2Þ instead of
merelyOðkÞ as in (113). The conformal factor in the metric
is thus

ek
R

dr
rqðrÞ ¼ e

k
R

dr
r2ð1−rsr −Λ3r

2ÞþOðk3Þ
: ð118Þ

The metric in (88) becomes

ds2 ¼ e
k
R

dr
r2ð1−rsr −Λ3r

2Þ
�
−
�
1 −

rs
r
−
Λ
3
r2
�
dt2

þ dr2

1 − rs
r −

Λ
3
r2

þ r2dΩ2

�
þOðk2Þ; ð119Þ

and the Ricci scalar is

R ¼ 4Λ
�
1 − k

Z
dr

r2ð1 − rs
r −

Λ
3
r2Þ

�
þOðk2Þ: ð120Þ

This new metric is valid up to Oðk2Þ and would be useful
for physical situations with small k, i.e., with a weak
deviation from constant scalar curvature. The metric is
determined by three parameters Λ, rs, and k, each repre-
senting a length scale.
AtOðk2Þ, the new metric (119) only differs from the SdS

metric (109) by the conformal factor e
k
R

dr
r2ð1−rsr −Λ3r

2Þ. Note that
the pure R2 action is not subject to the conformal
symmetry. As a result, the conformal factor is a physical
quantity; it explicitly participates in the Ricci scalar
rendering the latter nonconstant as is evident in (120).

VIII. BEHAVIOR OF BUCHDAHL-INSPIRED
METRIC AROUND THE COORDINATE ORIGIN

For any metric, the most interesting behavior should be
around the origin where singularities might occur. In the
limit of r → 0, the “evolution” rules (89) and (90) become

dp
dr

¼ 3k2

4r
p
q2

; ð121Þ

dq
dr

≈ p: ð122Þ

The sign of p solely determines the direction of flows
for both pðrÞ and qðrÞ. Figure 1 shows the phase space
spanned by fp; qg with q the horizontal axis and p the
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vertical axis. As r moves toward the coordinate origin,
Quadrants (I) and (II) correspond to monotonic decreasing
p and q; Quadrants (III) and (IV) to monotonic increasing
p and q. Figure 1 shows the direction of the flow if we start
from a reference distance r0 > 0 and move toward the
origin. The SdS flows correspond to k ¼ 0 [thus, p≡ 1 and
qðrÞ ¼ r − rs þ Λ

3
r3 making limr→0qðrÞ ¼ −rs]; thus their

end points belong to Quadrants (II) or (III).
The horizontal axis is an attractor for all quadrants (note:

we let r move toward the coordinate origin). This can be
shown below.
We shall let p and q converge to p� and q� when r → 0

in the following manner:

p ≈ p� þ p̄rη; ð123Þ

q ≈ q� þ q̄rζ; ð124Þ

with η> 0 and ζ > 0. First, let us assume p� ≠ 0; from (121)

dp
dr

¼ 3k2

4r
p
q2

≈
3k2p�
4q2�

1

r
; ð125Þ

making

p ≈ −
3k2p�
4q2�

1

r2
þ const; ð126Þ

which would diverge as r → 0 in contradiction with the
requirement (123). Hence, p� must equal 0. This means that

every trajectory must hit the horizontal axis as r → 0 from
above. We shall only consider q� ≠ 0 to this end. Since
p� ¼ 0, the evolution rules (121) and (122) become

ηp̄rη−1 ≈
3k2

4

p̄
q2�

rη−1; ð127Þ

ζq̄rζ−1 ≈ p̄rη; ð128Þ

giving

η ¼ 3k2

4q2�
> 0; ð129Þ

ζ ¼ ηþ 1 > 0; ð130Þ

p̄ ¼ ζq̄: ð131Þ

Close to the origin, the functions thus are

pðrÞ ≈ ðηþ 1Þq̄rη; ð132Þ

qðrÞ ≈ q� þ q̄rηþ1: ð133Þ

The scalar curvature close to the origin behaves as

RðrÞ ≈ 4Λ exp

�
−k

Z
dr
rq�

�
¼ 4Λr−

k
q� : ð134Þ

As r → 0þ, the Ricci scalar vanishes or diverges depending
on the sign of k=q�.
As r → 0þ, the metric is approximately

ds2 ≈ r
k
q�

�
ðηþ 1Þ q̄

k
rη
�
−
q�
kr

dt̃2 þ kr
q�

dr2
�
þ r2dΩ2

�
;

ð135Þ

which is specified by exactly three parameters fΛ; q�k ; q̄kg
with η ¼ 3

4
ð kq�Þ2 and t̃ ≔ kt.

IX. A DEGENERACY IN PARAMETER SPACE
OF BUCHDAHL-INSPIRED METRIC

As the limit k → 0 corresponds to the SdS metric, we
shall consider only k ≠ 0 herein. If we make the following
substitutions:

q ≔ kq̃; ð136Þ

p ≔ kp̃; ð137Þ

t ≔ k−1 t̃; ð138Þ

then the metric in (88) becomes

FIG. 1. Evolution of fpðrÞ; qðrÞg as r approaches 0. Points A
and B are the end points of SdS flows (i.e., k ¼ 0). Points C, D, E,
and F are the end points of Buchdahl flows (k ≠ 0), each starting
from one of the four quadrants.
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ds2 ¼ e
R

dr
rq̃ðrÞ

�
p̃ðrÞ

�
−
q̃ðrÞ
r

dt̃2 þ r
q̃ðrÞ dr

2

�
þ r2dΩ2

�
;

ð139Þ

in which

RðrÞ ¼ 4Λ exp

�
−
Z

dr
rq̃ðrÞ

�
; ð140Þ

dp̃
dr

¼ 3

4r
p̃
q̃2

; ð141Þ

dq̃
dr

¼ ð1 − Λr2Þp̃: ð142Þ

Accordingly, despite being a product of a fourth-derivative
action, a Buchdahl-inspired metric is effectively charac-
terized by only three parameters. This degeneracy helps
simplify the classification of Buchdahl-inspired metrics.
We shall carry out this task in a companion paper [16].
Note that in Sec. VII when treating the weak non-

constancy for the Ricci scalar, we made k explicit.
Nevertheless, the metric obtained therein was specified
by three length scales fjΛj−1

2; rs; kg in perfect agreement
with the number of degrees of freedom allowable by the
degeneracy uncovered in this section.

X. HOW DOES BUCHDAHL-INSPIRED METRIC
CIRCUMVENT A “PROOF” OF NONEXISTENCE?

In [2] Kehagias et al. sought black hole solutions for the
pure quadratic action. Curiously, they omitted the Buchdahl
equation and consequently overlooked the new class of
Buchdahl-inspired metrics uncovered in our current paper.
They considered only the two “automatic” vacuo configu-
rations: (i) the zero-Ricci-scalar spaces,R ¼ 0, and (ii) the
Einstein spaces, Rμν ¼ Λgμν. Therein, they offered a neat
proof that apparently rules out the existence of nonconstant
curvature metrics (to which Buchdahl-inspired metrics
belong). However, the class of Buchdahl-inspired metrics
defeat their proof by evading its central assumption. Below
is how it happens.
Let us first recap the essence of the proof of Kehagias

et al. Their proof is a type of no-go, stating that all
admissible R2 vacua must have constant scalar curvature.
The authors in [2] started with the trace equation of the
pure R2 action in vacuo

□R ¼ 0: ð143Þ

For the following metric:

ds2 ¼ −μðrÞdt2 þ dr2

νðrÞ þ r2dΩ2; ð144Þ

the trace equation takes the form6

ðr2 ffiffiffiffiffi
μν

p
R0Þ0 ¼ 0: ð145Þ

This leads to

ðr2 ffiffiffiffiffi
μν

p
R0RÞ0 ¼ ðr2 ffiffiffiffiffi

μν
p

R0Þ0Rþ r2
ffiffiffiffiffi
μν

p ðR0Þ2 ð146Þ

from which one obtains the following identity:

Z
∞

0

dr r2
ffiffiffiffiffi
μν

p ðR0Þ2 ¼
Z

∞

0

drðr2 ffiffiffiffiffi
μν

p
R0RÞ0: ð147Þ

The RHS of (147) can be cast into a three-volume integral,
which then turns into a two-dimensional (2D) surface
integral at infinity by virtue of the Gauss-Ostrogradsky
divergence theorem7:

Z
∞

0

drðr2 ffiffiffiffiffi
μν

p
R0RÞ0

¼ 1

4π

Z
dΩ

Z
∞

0

dr r2∇⃗ð ffiffiffiffiffi
μν

p
Rð∇⃗RÞÞ ð148Þ

¼ 1

4π

Z
d3V∇⃗ð ffiffiffiffiffi

μν
p

Rð∇⃗RÞÞ ð149Þ

¼ 1

4π

I
S
dS⃗

ffiffiffiffiffi
μν

p
Rð∇⃗RÞ ð150Þ

¼ lim
r→∞

r2
ffiffiffiffiffi
μν

p
RR0: ð151Þ

Now, the authors of [2] posited that if R0 falls to zero
rapidly enough at large distances, then the limit in (151)
vanishes, making

Z
∞

0

dr r2
ffiffiffiffiffi
μν

p ðR0Þ2 ¼ 0: ð152Þ

Because of the non-negativity of the left-hand side (LHS)
of (152), this would force R0 ¼ 0 everywhere. QED.
However, Buchdahl-inspired metrics invalidate this very

assumption: their Ricci scalar decays not as rapidly to
warrant (152). As a counterexample, in Sec. VII we
obtained a metric with the Ricci scalar behaving at large
distances as, per Eq. (120),

R ≈ 4Λ −
4k
r3

; ð153Þ

making

6Recall that for a scalar field ϕ: □ϕ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂νϕÞ.

7Recall that in spherical coordinates, for ϕðrÞ and A⃗ ¼ AðrÞr̂:
∇⃗ϕ ¼ ∂rϕðrÞr̂ and ∇⃗:A⃗ ¼ 1

r2 ∂rðr2AðrÞÞ. The 3D divergence

theorem for a generic vector field A⃗:
R
V d

3V∇⃗:A⃗ ¼ H
S dS⃗:A⃗.
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R0 ≈
12k
r4

; ð154Þ

thence

lim
r→∞

jr2 ffiffiffiffiffi
μν

p
RR0j ¼ lim

r→∞

				 48Λkr2
ffiffiffiffiffi
μν

p 				 ¼ 16Λ2jkj ≠ 0;

ð155Þ

given that μ ≃ ν ≃ 1 − Λ
3
r2 as large distances. In general,

the growth in μ and ν balances out the decay in R0; the
proof in [2] overlooked this compensation effect.
The nonzero value in (155) renders the no-go proof in [2]

inapplicable for the Buchdahl-inspired metric.8

Before closing this section, we must make two additional
comments:
First, the no-go proof provided in [2] was previously

offered by Nelson for the RþR2 þ CμνρσCμνρσ action [3].
Nelson’s proof similarly relied on an overly restrictive
assumption on the asymptotic falloff for R0 as r → ∞.
Second, in a 2015 paper [4], Lü et al. reported the

existence of further black hole solutions (above the
Schwarzschild solution) for the Einstein-Weyl gravity,
Rþ CμνρσCμνρσ, viz. with the R2 term being suppressed.
These solutions—albeit not in an analytical form—would
be in defiance of Nelson’s no-go proof [3]. The authors
therein [4] identified a (sign) error in Nelson’s proof
rendering it inapplicable for the Einstein-Weyl gravity.
However, these authors did not refute Nelson’s proof for the
pureR2 gravity; they did not point out the problem with the
asymptotic falloff assumed in Nelson’s no-go proof, which
would have precluded the existence of Buchdahl-inspired
metrics, as we have shown in this section.

XI. SUMMARY

In this paper, we show that pure R2 gravity admits
nontrivial vacuo configurations beyond the vanishing Ricci
scalar spaces ðR ¼ 0Þ and the Einstein space ðRμν¼ΛgμνÞ.
The new solutions are inherent in a program which

Buchdahl originated circa 1962. In a seminal—yet
obscure—Nuovo Cimento paper [1], Buchdahl set forth to
seek static spherically symmetric solutions for the pure R2

action. His work culminated in a nonlinear second-order
ODE that remained to be solved. If a solution to his ODE can
be found, then a complete set of vacua for pure R2 gravity
would be readily obtained.
Despite its importance and potential, the Buchdahl

equation has largely escaped the attention of the gravitation
research community since its inception. Among the mere

40þ publications that cited Buchdahl’s original Nuovo
Cimento work, none have attempted to solve his ODE.9 In
this paper, we have finally obtained a novel set of compact
solutions to the Buchdahl equation, thereby accomplishing
his six-decades-old goal seeking nontrivial vacuo metrics
for pure R2 gravity.
Our main result: We reformulated Buchdahl’s original

work via a more straightforward route starting directly
from the R2 vacuo field equation; we thus departed from
Buchdahl’s arduous route that used the variational principle
on a “surrogate” Lagrangian. Along theway, we introduced a
few shortcuts.We are able to arrive at a generalizedBuchdahl
equation in the form of a nonlinear second-order ODE:

d2q
dr2

þ 2Λr
1 − Λr2

dq
dr

¼ 3k2

4rq2
dq
dr

: ð156Þ

This ODE embodies the four parameters, fΛ; k; qðr0Þ;
dq
dr jr¼r0g, of the fourth-order R2 theory.
Next, in place of the second-order ODE (156), we are

able to recast it in terms of two coupled nonlinear first-order
ODEs:

dp
dr

¼ 3k2

4r
p
q2

; ð157Þ

dq
dr

¼ ð1 − Λr2Þp: ð158Þ

From here, we are able to express the final solution in a neat
resemblance to the SdS metric to make the terms trans-
parent and self-explanatory. The Buchdahl-inspired metrics
are in a compact representation:

ds2 ¼ ek
R

dr
rqðrÞ

�
pðrÞ

�
−
qðrÞ
r

dt2 þ r
qðrÞ dr

2

�
þ r2dΩ2

�

ð159Þ
with the Ricci scalar equal

RðrÞ ¼ 4Λ exp

�
−k

Z
dr

rqðrÞ
�
: ð160Þ

As is generally expected from a fourth-order theory, a
Buchdahl-inspired metric is specified by four parameters:
Λ as the large-distance scalar curvature, the (Buchdahl)
parameter k controlling the deviation of the Ricci scalar
from constancy, fp0; q0g initiating the “evolution” flow.
Validity of our solution: To allay any doubts, in Sec. V,

we verified by direct inspection that the metric given
in (157)–(160) obeys the R2 vacuo field equation

R
�
Rμν −

1

4
gμνR

�
þ ðgμν□ −∇μ∇νÞR ¼ 0; ð161Þ8As an aside comment, the proof in [2] was not watertight. It

should also have handled the intricacy introduced into the 3D
divergence theorem by way of the curved space (which in general
is not 3D Euclidean). 9Based on NASA ADS and InspireHEP citation trackers.
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hence establishing the validity of our solution. The veri-
fication process will be detailed in [14]. Note that another
researcher also successfully carried out his own verification
of our results, with hisMathematica notebook accessible in
the public domain [15].
Circumventing a no-go theorem: In [2] it was proved

that pure R2 vacua were restricted to the vanishing Ricci
scalar spaces,R ¼ 0, and the Einstein spaces,Rμν ¼ Λgμν.
This no-go proof, if it were correct, would rule out the
existence of vacua with nonconstant scalar curvature. Since
Buchdahl-inspired metrics project nonconstant scalar cur-
vature, as is evident per (160) for k ≠ 0, we must identify
the cause of the conflict. In Sec. X we found that the no-go
proof in [2] imposed a rapid asymptotic falloff for the
metric at largest distances. Buchdahl-inspired metrics,
however, evade this overly restrictive assumption, thereby
being able to circumvent the proof.
Recovering the SdS metric at k ¼ 0: The case of k ¼ 0

corresponds to the SdS metric in which pðrÞ can be set
identically equal to 1 and qðrÞ contains a Schwarzschild
radius; see Sec. VI.
Properties of the Buchdahl-inspired metrics: We exam-

ined the metrics in three situations: (i) the small k limit;
(ii) the region around the coordinate origin; and (iii) a
degeneracy in the parameter space of the metrics. These
results are shown in Secs. VII, VIII, and IX, respectively.
A thorough systematic study of the metrics shall be
provided in [16].

A framework “beyond Schwarzschild–de Sitter”: The
family of Buchdahl-inspired metrics (157)–(160) is exhaus-
tive: it covers all nontrivial static spherically symmetric
vacuo configurations admissible in pure R2 gravity. Its
parameters fΛ; k; p0; q0g form a topological space that
encloses the constant-curvature SdS metrics (k ¼ 0) and
smoothly connects each nonconstant curvature member to
an SdS metric when k is tuned to 0.
The Buchdahl-inspired metrics thus constitute a bona

fide enlargement of the SdS metric. It offers a nontrivial
example in the context of 3þ 1 higher-order gravity that
encompasses the SdS metric yet—at the same time—
transcends it. Hence the Buchdahl-inspired metrics
embody a framework “beyond Schwarzschild–de Sitter.”
In closing, the compact representation (157)–(160) of the

Buchdahl-inspired metrics should equip future researchers
with a powerful tool to explore new physics in pure R2

gravity with relative ease.
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