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We study the generation and propagation of gravitational waves in scalar-tensor gravity using numerical
relativity simulations of scalar field collapses beyond spherical symmetry. This allows us to compare the
tensor and additional massive scalar waves that are excited. As shown in previous work in spherical
symmetry, massive propagating scalar waves decay faster than 1=r and disperse, resulting in an inverse
chirp. These effects obscure the ringdown in any extracted signal by mixing it with the transient responses
of the collapse during propagation. In this paper we present a simple method to rewind the extracted signals
to horizon formation, which allows us to clearly identify the ringdown phase and extract the amplitudes
of the scalar quasinormal modes, quantifying their excitation in strong gravity events and verifying the
frequencies to perturbative calculations. The effects studied are relevant to any theories in which the
propagating waves have a dispersion relation, including the tensor case.

DOI: 10.1103/PhysRevD.106.104002

I. INTRODUCTION

The advanced LIGO and Virgo network have given us,
for the first time, a window onto the inspiral and merger of
black hole binaries and neutron star binaries [1,2]. The
hope is that these instruments will allow us to find and
characterize other, more exotic, events that generate gravi-
tational waves—opening a window onto new physics that
comes to the fore in strong gravity [3].
Of particular interest is the possibility that there are new

fields that interact with gravity and, to some extent, modify
it. These new fields may lead to long range forces, which
complement the gravitational force, or they may propagate,
adding an additional channel for energy loss and potentially
altering the waveforms that emerge from gravitational
events. Scalar-tensor theories [4–11], with one or more
scalar fields, have a well-posed Cauchy problem [12–16]
that permits a numerical evolution [17],1 and are of
particular interest as they arise as effective field theories
in a number of different contexts. The workhorse of such
theories is Jordan-Brans-Dicke theory with a potential [35],
but it can be generalized to the Horndeski theories [36,37]
and beyond.

Although massless scalar-tensor theories are severely
constrained both by solar system experiments [38,39] and
binary pulsar observations [40,41], their massive counter-
parts remain widely unexplored [42,43]. For scalar-tensor
theories satisfying the GW170817 constraint on the speed
of gravitational waves [44–46] and in which the scalar field
plays a significant cosmological role (i.e., in which the
energy density of the scalar field is comparable with other
dominant constituents of the Universe), black holes will
look very much like those in general relativity [47]—they
won’t have “hair”. The standard lore is, then, that it will be
impossible to detect any evidence of new physics, through
signatures of the scalar field.
However, even if the endpoint of gravitational collapse is

a black hole with no hair, fluctuations in the scalar field are
still possible [48,49]. This is the case if the starting point
that leads to black hole formation had some nontrivial
profile in the scalar field—there can then be an imprint in
the transient behavior towards the final black hole. In the
case of a binary, a scalar environment could affect the
inspiral, merger, and the ringdown stages of the event.
During the ringdown phase, which is primarily character-
ized in terms of a superposition of damped exponentials
with complex frequencies known as quasinormal modes
(QNMs) [50–52], there will be a set of additional scalar
modes with frequencies that are determined by properties
of the scalar field. These can be found using the standard
methods for calculating quasinormal modes. But this
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formulations that have been studied numerically include EdGB
[18–24], dynamical Chern-Simons [25–28], k-essence [29–32]
and cubic Horndeski [33,34].
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phenomena—of extra propagatingwaves in the gravitational
wave signal—will be true more generally, beyond the
quasinormal mode components. Indeed, we will distinguish
between the quasinormal modes (i.e., perturbations of the
metric at source) and the subsequent propagating waves in
this paper which are sourced by these modes. In the massless
tensor sector, this distinction is academic, since they are
nondispersive—the chronology of detection is exactly the
same as the chronology of emission. As we will see, in the
case of massive modes, the dispersive nature mixes up this
chronology and hence the distinction becomes useful.
In forecasting the ability of current and future

gravitational-wave instruments to detect the presence of
the scalar QNMs, one must know the initial amplitudes of
the propagating scalar waves that are excited; if the
amplitudes are too low, they are, obviously, undetectable.
These amplitudes depend on the configuration that leads t
o the formation of the black hole. In the case of massive
scalar gravitational waves, not only are the triggered
amplitudes important, but so is the propagation, which is
far more complex than that of their massless counterparts.
Even if they are excited, frequencies below the mass cutoff
are damped away, and frequencies that do survive are
dispersed and manifest as an inverse chirp [53,54].
A precise theoretical characterization of both their generation
and propagation is essential for quantifying their impact.

What might be the origin of these additional scalar
profiles? The standard sources of tensor gravitational waves
are binary black holes, but in standard scalar-tensor theories
any initial hair is likely to have decayed away so one
requires a dynamical mechanism to excite the scalar field
during the merger [33,55–58] (for other interesting caveats,
see [59–62]). Rotating neutron stars [63–65] and neutron
star binaries can support nontrivial scalar field profiles
[66–69], so they provide a possible source, along with other
more exotic possibilities such as boson stars or topological
defects. The latter objects may be endowed with internal
self-forces which, during gravitational collapse, enable and
amplify the radiation of scalar-tensor gravitational waves.
There has been a detailed analysis of the scalar wave

signals that emerge from spherically symmetric collapses
[70–77], showing the main properties of the scalar waves,
which differ greatly from the familiar, and remarkably
simple, propagation of tensor waves. In this paper we
extend the previous work to study the generation of such
scalar waves in systems that go beyond spherical symmetry.
This allows us to compare the tensor gravitational waves
(absent in spherically symmetric configurations) to their
scalar counterparts. We choose to study a toy model
where the scalar source is exotic, arising from a topological
defect—the collapse of a nonminimally coupled cosmic
string loop. In this case, the inherent tension of the string

FIG. 1. Tensor and scalar radiation spectrum comparison from the collapse of a circular loop with ðηM−1
Pl ; R0MPl; αÞ ¼

ð0.04; 300; 200Þ to form a black hole at tBH. The figure shows the radiated gravitational waves from an edge-on point of view.
The axial symmetry of the collapse only excites ðl; mÞ ¼ ðeven; 0Þ “plus” components being ðl; mÞ ¼ ð2; 0Þ the dominant. The massive
properties of the new scalar mode result in a much richer higher-mode spectrum with dispersive and sub-luminal properties. The first
outer waves in the top panel correspond to junk radiation as a result of initial conditions, which occurs in numerical relativity
simulations. A movie showing the collapse and radiation can be found here [82].
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forces the configuration to collapse towards a single
point—the center of the loop. We show that this is a
remarkably rich system with multimode tensor and scalar
gravitational waves, as well as decoupled (Goldstone)
massless scalar waves, which we do not study in this paper.
Using numerical relativity simulations of this phenome-

non, we aim to understand in more detail how the various
waves are generated and propagate. We confirm the
standard 1=r decay and luminal propagation of the tensor
waves. The additional scalar mode, on the other hand, has a
much richer behavior. We construct the frequency spectro-
grams, which feature the novel inverse chirp behavior as
described in [53,54,76,77]. However, the scalar waveforms
extracted at finite distance do not show clearly the QNMs;
the dispersive nature of the scalar mode obscures the
ringdown phase, mixing different stages of the collapse.
In order to alleviate the dispersion and scrambling of the
extracted signals, we rewind them using an effective
massive wave equation in flat space. This technique allows
us to classify the different stages of the collapse and clearly
identify the scalar ringdown phase—extracting the ampli-
tudes and complex frequencies, which show excellent
agreement with those expected from perturbative calcula-
tions [49,50,78–80]. The fact that such a naive method of
reconstructing the QNMs will be successful beyond
spherical symmetry is not at all obvious, and therefore
this is a useful result for those interesting in reconstructing
initial amplitudes from extracted data.
The outline of this paper is as follows: In Sec. II we

present the formalism for multiscalar tensor theories
and the transformations between the Einstein and Jordan
frames. In Sec. III we construct the exotica—string-like
topological defects in the gravitational sector and describe
their main properties. In Sec. IV we study the rich massless
and massive radiation spectrum of the event (Fig. 1), and
discuss the propagation properties of the new scalar waves
[81]. In Sec. V, we explain the rewinding technique used to
reconstruct the ringdown waveforms. This also allows us to
extract both the complex frequencies and amplitudes of the
QNMs. Lastly, we conclude and suggest further research
directions in Sec. VI.

II. MULTISCALAR-TENSOR THEORIES

Consider a theory of a complex scalar field Φ non-
minimally coupled to gravity with the following action in
the Jordan frame

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
FðΦ;Φ�ÞR̃

−
1

2
g̃μν∇μΦ∇νΦ� − VðΦ;Φ�Þ

�
; ð1Þ

where Φ� is the complex conjugate of Φ and VðΦ;Φ�Þ is a
potential with a vacuum manifold which has a Uð1Þ
symmetry

VðΦ;Φ�Þ ¼ λ

4
ðjΦj2 − η2Þ2; ð2Þ

where λ is the coupling constant and η is the symmetry
breaking scale. Although we can always expand the
complex field into two real fields and then conformally
transform [83], sometimes it can be more convenient to
work with a scalar field and its conjugate. We can treat
them as a set of independent fieldsΨa ¼ ðΦ;Φ�Þ so that the
action is compactly written in the Einstein frame as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
Gabgμν∇μΨa∇νΨb − V̂

�
; ð3Þ

where we now have

g̃μν ¼
M2

Pl

2F
gμν V̂ ¼

�
M2

Pl

2F

�
2

V; ð4Þ

and MPl is the reduced Planck mass. The complex field-
space metric is computed via

Gab ¼
M2

Pl

2F

�
J2×2 − δab

2

�
þ 3

2

M2
Pl

F2

∂F
∂Ψa

∂F
∂Ψb ; ð5Þ

where J2×2 is a 2 × 2 matrix of ones. We now make the
choice of

FðΦ;Φ�Þ ¼ 1

2

�
M2

Pl −
α

6
jΦj2

�
; ð6Þ

which provides a sufficiently nontrivial toy model for our
study—the exact form is not important for our results. The
nonminimal coupling arises as the first nontrivial correction
at the level of an effective field theory of scalar-tensor
theories. Indeed, it has been shown [84] that it is invariably
generated in the effective action in the case where V goes
beyond the usual Klein Gordon potential, m2jΦj2. Note
also that α ¼ 1 corresponds to the special case of a
conformal coupling; in that case, and in the absence of
M2

Pl and a mass term in the potential, the theory would be
conformally invariant. With that choice of nonminimal
coupling we have that the field-space metric is

Gab ¼
M2

Pl

8F2

0
B@ α2

12
Φ�2 M2

Pl −
α
6
ð1 − α

2
ÞjΦj2

M2
Pl −

α
6
ð1 − α

2
ÞjΦj2 α2

12
Φ2

1
CA:

ð7Þ

The gravitational field obeys the standard Einstein
equations sourced by the new energy momentum tensor

Tμν ¼ Gab∇μΨa∇νΨb − gμν

�
1

2
Gab∇βΨa∇βΨb þ V̂

�
ð8Þ
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and the equation of motion for the scalar field is given by

∇μ∇μΨa þ Γ̃a
bc∇μΨb∇μΨc −Gab ∂V̂

∂Ψb ¼ 0; ð9Þ

whereGab is the inverse of the field-space metricGacGcb ¼
δab and Γ̃a

bc are the field space Christoffel symbols

Γ̃a
bc ¼

1

2
Gad

�
∂Gbd

∂Ψc þ ∂Gcd

∂Ψb −
∂Gbc

∂Ψd

�
: ð10Þ

Expanding the equation of motion for the complex scalar
field,

0 ¼ ∇μ∇μΦþ αΦ�

6M2
Pl − αjΦj2∇μΦ∇μΦ

þ 6M2
Plα

2Φ
ð6M2

Pl − αjΦj2Þð6M2
Pl − ð1 − αÞαjΦj2Þ∇μΦ∇μΦ�

−
6λM2

Plð6M2
Pl − αη2ÞðjΦj2 − η2ÞΦ

ð6M2
Pl − αjΦj2Þð6M2

Pl − ð1 − αÞαjΦj2Þ ; ð11Þ

which is a wave equation with derivative coupling terms
and sourced by the scalar potential in Eq. (4).

III. THE PROGENITOR:
A CIRCULAR STRING LOOP

Topological defects in scalar fields are an intriguing
aspect of classical field theory that have consistently led
to interesting insights in various aspects of fundamental
physics. Cosmic strings [85,86] are a particular example
that naturally arise after a phase transition in the early
universe, when the symmetry of the vacuum is broken.
There exists a plethora of models encompassing gauge and
global strings, which have been studied analytically as well
as numerically over many decades [87–95]. Only recently
has the full gravitational behavior of field theory cosmic
strings been studied using numerical relativity [96,97],2

showing that gauge circular loops could collapse to black
holes, emitting ∼2% of their initial mass in gravitational
waves. In the case of global strings, the theory possesses a
global symmetry, in which a complex scalar field with a
massless Goldstone boson introduces a long-range force.
This radiation channel allows the string to emit energy in
the form of Goldstone bosons, and a key question was
whether this could prevent strings from collapsing to black
holes [101].
In this work, we focus on the collapse of global Uð1Þ

strings where the scalar field nonminimally couples to the
metric. To understand their properties, it is often useful to

look at the vacuum manifold of the (Einstein frame) scalar
potential

V̂ðjΦj2Þ ¼ M4
Pl

ðM2
Pl −

α
6
jΦj2Þ2

λ

4
ðjΦj2 − η2Þ2: ð12Þ

For the case in which α ¼ 0, we recover the standard Higgs
potential with a Uð1Þ symmetry where the vacuum is at
jΦj ¼ η. Vacuum stringlike defects correspond to cylindri-
cal configurations of the field Φð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; zÞ with boun-

dary conditions

Φ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

→ 0; z

�
¼ 0;

Φ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

→ ∞; z

�
¼ η: ð13Þ

An important quantity that sets the properties of the
propagating scalar waves is the mass (which also sets the
width of the strings), and can be found by expanding
the equation of motion Eq. (11) around the vacuum
Φ ¼ ðηþ δφÞeiθ. Isolating the coefficients of the linear
terms in δφ and θ,

m2
φ ≈

12M2
Pl

6M2
Pl − ð1 − αÞαη2 λη

2; ð14Þ

m2
θ ¼ 0; ð15Þ

corresponding to amassive radial mode—the dilaton—and a
massless Goldstone boson as usual. As we see, the mass of
the radial mode now also depends on the strength of the
coupling to theRicci scalarα; in the case ofminimal coupling
(α ¼ 0) or a conformally invariant coupling (α ¼ 1), we
revert to the mass obtained for standard global strings.
Using these objects as a fiducial model for axisymmetric

collapse, we extract the tensor and scalar gravitational
waves from the collapse of an initially stationary circular
string loop of radius R0 ¼ 300M−1

Pl . The parameters of
the theory are the symmetry breaking scale η ¼ 0.04MPl,
coupling constant λ¼1, and nonminimal coupling α¼200,
which result in a scalar mass of mφ ≈ 0.017. The system
is massive enough to form a black hole of mass
M ¼ 23.5� 0.2MPl, so that mφM ≈ 0.4. In Fig. 1 we plot
the radiation spectrum that we study in detail below.

IV. PROPAGATION OF SCALAR-TENSOR
GRAVITATIONAL WAVES

To see how the new scalar gravitational mode arises in
the signal it is useful to recall that the Jordan and Einstein
frame metrics are related via Eq. (4),

g̃μν ¼
M2

Pl

M2
Pl −

α
6
jΦj2 gμν ¼

M2
Pl

M2
Pl −

α
6
φ2

gμν; ð16Þ
2See [98–100] for ongoing work estimating the smoothing of

Nambu-Goto strings including their linearized gravitational
backreaction.
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where we have decomposed the two degrees of freedom of
the complex scalar field as

Φ ¼ φeiθ; ð17Þ
with both φ and θ real—we will dub φ the dilatonic and θ
the Goldstone part of the field. Expanding to first order
gμν ¼ g0μν þ hμν and φ ¼ φ0 þ δφ leads to the following
relationship between the Jordan and Einstein frame per-
turbations of the fields

h̃μν ¼ h̃TTμν þ g0μνh̃
s

¼ M2
Pl

M2
Pl −

α
6
φ2
0

�
hTTμν þ g0μν

αφ0

3ðM2
Pl −

α
6
φ2
0Þ
δφ

�
; ð18Þ

where we identify the transformations for the transverse-
traceless tensor h̃TTμν and the additional breathing mode h̃s.
Defining the “plus” h̃þ ≡ h̃TTxx ¼ −h̃TTyy and “cross” polari-
zations h̃× ≡ h̃TTxy ¼ h̃TTyx , we obtain that we can relate the
Jordan frame gravitational waves to quantities in the
Einstein frame as

ðh̃þ; h̃×Þ≡ M2
Pl

M2
Pl −

α
6
φ2
0

ðhþ; h×Þ ð19Þ

h̃s ≡ αM2
Plφ0

3ðM2
Pl − α

6
φ2
0Þ2

δφ; ð20Þ

which correspond to the three gravitational-wave degrees of
freedom we have in this theory. In what follows, we further
decompose each mode into spin-2 and spin-0 spherical
harmonics

h̃þ×
lm ðtÞ ¼

Z
dΩh̃þ×ðt; θ;ϕÞ ½−2Ylmðθ;ϕÞÞ��; ð21Þ

h̃slmðtÞ ¼
Z

dΩh̃sðt; θ;ϕÞ ½0Ylmðθ;ϕÞ��: ð22Þ

A. Tensor gravitational waves

We have constructed the tensorial strain waveforms
in the Jordan frame ðh̃þ; h̃×Þ by integrating the Weyl scalar
Ψ4 [102] extracted from our numerical simulations in the
Einstein frame with the tetrads proposed by [103]

Ψ4 ¼ ḧ ¼ −ḧþ þ iḧ×: ð23Þ

We then transform this using Eq. (19). Given the symmetry
of the collapse, we only excite ðl; mÞ ¼ ðeven; 0Þ modes of
the “plus” tensor h̃þlm polarization, with ðl; mÞ ¼ ð2; 0Þ the
dominant one. The signal features a low frequency infall,
collapse during which the black hole forms and a ringdown.
We show the propagation of the radiation in the top three
panels of Fig. 1. In Fig. 2 we plot the ringdown phase of the

signal and confirm the luminal propagation and expected
1=r decay by extracting the signal at two different radii
rext ¼ f100M; 125Mg. The extracted waveform matches
the expected QNM frequency prediction: Mωþ

20 ¼ 0.372 −
i0.089 ½�0.004 − i0.001� vs Mωþ

20 ¼ 0.3735 − i0.0890.

B. Scalar gravitational waves

Asymptotically far from the black hole (or the collapse
event), the scalar field rests at the vacuum, set by the
symmetry breaking scale φ0 ¼ η. The scalar waves that are
produced during and postcollapse travel to infinity and
cause the field to oscillate around the symmetry breaking
scale φ ¼ ηþ δφ. We construct the scalar strain waveforms
h̃s from the evolution of these perturbations δφ ¼ φ − η
using Eq. (20). The propagation of the scalar waves is
shown in the bottom three panels of Fig. 1. We now
decompose the extracted signals into spin-0 weighted
spherical harmonics h̃slm, Eq. (22), and find that given
the symmetry of the collapse, only ðl; mÞ ¼ ðeven; 0Þ
modes are excited. In Fig. 3 we plot the loudest modes3

for extraction radii rext ¼ f100M; 125Mg. When overplot-
ting the waveforms, we find that massive scalar waves
experience a faster than 1=r decay as expected, together
with a delay due to their subluminal propagation speeds.
The additional scalar degree of freedom evolves according

to the Klein-Gordon equation in a Schwarzschild back-
ground,

½∂2t − ∂
2
r� þ VsðrÞ�rh̃sl ¼ 0; ð24Þ

FIG. 2. Dominant tensor h̃þ20 waveform focusing on the ring-
down phase of a black hole formed from a loop with
ðηM−1

Pl ; R0MPl; αÞ ¼ ð0.04; 300; 200Þ. The vertical dashed line
corresponds to the black hole formation time, defined as when ḧþ20
peaks. Note that we have removed the numerical noise present
at later times when the signal is subdominant by extending it
using the extracted spin-2 ðl; mÞ ¼ ð2; 0Þ QNM frequency
Mωþ

20 ¼ 0.372 − i0.089 ½�0.004 − i0.001�, consistent with per-
turbative predictions; Mωþ

20 ¼ 0.3735 − i0.0890.

3We choose the parameters such that the lowest ðl; mÞ ¼ ð0; 0Þ
is a nonpropagating wave.
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with r� ≡ rþ 2M ln ðr − 2MÞ the tortoise coordinate and
VsðrÞ the effective potential

VsðrÞ ¼
�
1 −

2M
r

��
m2

φ þ
lðlþ 1Þ

r2
þ 2M

r3

�
; ð25Þ

where m2
φ is given in terms of the parameters of the theory,

Eq. (14). Far from the source,Vsðr → ∞Þ ≈m2
φ and r� → r,

thus the propagation reduces to a massive Klein-Gordon
equation in flat space. So, given a plane wave of the form
exp ½−iðωtþ kixiÞ�, where ω and ki are the frequency and
3-momentum, the scalar waves will have a dispersion
relation ω2 ¼ k2 þm2

φ.
Nonpropagating waves have ω2 ≤ m2

φ and a spatial
dependence of the form e−jkjr. Note that the wave-numbers
are complex4 and we recover, in the static case (ω ¼ 0), the
usual Yukawa potential with hs ∝ e−mφr. This is confirmed
in our simulations by looking at the Fourier transform of
the extracted wave, where frequencies below ω2 < m2

φ are
exponentially suppressed.
Propagating waves, on the other hand, satisfy ω2 > m2

φ,
and the general solution is a superposition of plane waves
of the form exp ½−iðωtþ kixiÞ�. If we now consider a
massive wave packet emitted by an event or source, we can
see how it will differ from the standard massless tensor
waves. For a start, its group velocity,

vg ≡ ∂ω

∂k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2 þm2
φ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mφ

ω

�
2

s
ð26Þ

shows the process will be dispersive. Lower frequency
waves will propagate more slowly and dissipate. We check
these properties in the top panel of Fig. 4, where we observe
a delay in the arrival of the power peak between different
frequency modes. This k dependence of the propagation
results in the initial waveform being substantially deformed
as it propagates from r ≈ 2M to rext, scrambling the shape
of the wave. Higher-frequency waves propagate at higher-
group velocity reaching the detector first and resulting in a
generic inverse chirp signal, as shown in [53,54,76]. This
means that, unlike in the case of the tensor sector,
information about the source event (in our case, the cosmic
string collapse) may be lost in the process. These two
effects—the faster decay in peak amplitude and the
deformation of the signal—make it potentially difficult
to reconstruct the massive scalar mode from a gravitational
waveform at larger distances.
We test our results by evolving the rext ¼ 100M

extracted signal to r ¼ 125M using the Fourier techniques
introduced in [54]. The authors describe the outgoing scalar
wave related to the numerically extracted signal as

rh̃ðt; rÞ ¼
Z

dω
2π

Ffrh̃ðt; rÞge−iωt; ð27Þ

where kþ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

φ

q
. The function Ffrh̃ðt; rÞg is the

Fourier transform at the target radius and is related to the
one extracted from simulations via

Ffrh̃ðt; rÞg ¼ Ffrh̃ðt; rextÞg

×

(
e−ik

þðr−rextÞ; if ω ≤ −mφ

eþikþðr−rextÞ; if ω > −mφ

: ð28Þ

FIG. 3. Scalar h̃slm waveforms constructed from the evolution of
the massive dilaton φ. Top and bottom panels show the dominant
extracted spin-0 harmonic waves, ðl; mÞ ¼ ð2; 0Þ and ðl; mÞ ¼
ð4; 0Þ respectively. Blue and green illustrate different extraction
radii rext ¼ f100M; 125Mg respectively, and the black dashed
lines show the agreement with the larger radius extraction (green
line) assuming a flat space massive wave equation.

FIG. 4. Power and energy contained in the tensor and scalar
waveforms via Eq. (29) for extraction radii rext ¼ f100M;
125Mg. The luminosity of the scalar waves decays faster than
1=r2, but the integrated energy remains constant as the signal
spreads out. Even though tensor modes are > 40 times louder for
this extraction radius, the amount of energy emitted in scalar
waves is only 6 times smaller.

4These are sometimes called evanescent waves. See [104] for
an application to gravitational waves.
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We plot the results in Fig. 3, showing excellent agreement
with the evolution of a massive wave equation in flat
space.
As a result of the dispersive nature of massive waves, the

luminosity of such a signal decays more quickly than the
1=r2 we obtain for massless fields. However, energy is
conserved; the decay in amplitude of the waveform is
compensated by the growth in the width of the wave packet.
We confirm this in Fig. 4, computing the power and energy
in the scalar and tensor sector for rext ¼ f100M; 125Mg,

Pþjs
lm ðtÞ ¼ dEþjs

lm

dt
∝

r2

16πG̃

�
∂h̃þjs

lm

∂t

�2

; ð29Þ

with G̃≡ 1=Fðφ ¼ ηÞ the effective Newton’s constant via
Eq. (6). In the top panel of Fig. 4, we see that at these
“astronomically close” extraction radii, the scalar gravita-
tional waves are already 40 times fainter, and they will
become more subdominant as they propagate. However, the
bottom panel shows that the energy contained in the scalar
waves—which stays constant—is only 6 times smaller,
which could still indirectly impact the tensor waveforms,
e.g., by changing their phase evolution relative to the GR
case [105–109].
We often want to extrapolate the signals extracted from

simulations to what an asymptotic observer would see.
Tensor gravitational waves, which decay as 1=r and propa-
gate at the speed of light are in general easily extended by
extracting at several different radii [110,111].5 Thedispersive
properties of massive waves, on the other hand, make this
process a harder challenge. However, it has been shown that
in the largedistance limit the stationaryphaseapproximation
can be used to construct the asymptotic waveforms of the
propagating scalar wave [76].

V. QUASINORMAL MODE RINGDOWN PHASE

When black holes form and ring down to the static
Schwarzschild solution, they radiate energy in the form of
waves with a characteristic set of complex frequencies
determined by the quasinormal modes. To do a precise
study of the ringdown frequencies one has to decide the
relevant time window for such an analysis. In Fig. 2 we
focused our attention on the post-BH formation phase of
the tensor modes, where the signal shows an exponential
decay. Given the luminal propagation of massless fields,
this translates to defining the correct start time of QNMs,
which is a well-known open problem [116]. In Fig. 2 we
took the start of the QNMs to be t0 − tpeak ≈ 15M and we
confirmed that the extracted frequencies agree with those
values obtained from perturbative calculations [50–52]

Mωþ
20 ¼ 0.372 − i0.089 ½�0.004 − i0.001�: ð30Þ

For the scalar gravitational waves, on the other hand, the
challenge is greater. Given their dispersive properties,
different frequency components emitted at different stages
of the collapse invariably mix. In fact, in Fig. 5 we find no
evidence of exponentially decaying modes. Furthermore,
unlike massless GW, scalar waves sourced during the
preringdown phases mixes with that of postcollapse ring-
down, rendering the determination of the start of ringdown
t0 difficult.
To attack this problem, we study the frequency content of

the full waveform; if QNMs have been excited and are loud
enough then they will be picked up in the analysis. We
computed the spectrograms from the h̃s20 and h̃s40 wave-
forms extracted at r ¼ 125M. Even though we do not
observe a clear exponentially decaying ringdown phase, the
inverse chirp contains frequency contributions from the
QNM predictions (red and blue crosses in the left panels of
Fig. 6). This is because the ringdown phase sourced when
the black hole forms has been obscured when mixing with
louder stages of the collapse. We will then “clean” the
extracted signals to have access to the different stages of the
collapse as follows.
The signals we extract at rext have been dispersed when

propagating from r ≈ 2M to rext; that is, from the source of
the event to the extracted radius. During this process, the
amplitudes of the scalar gravitational waves are sup-
pressed below the mass cutoff scale jωj < mφ, which is
completely lost by the time we extract the signal at rext.
Meanwhile, waves with frequencies jωj > mφ survive,
and has been mixed in the time-domain waveforms during
their propagation to the extraction zone. To “unmix” them,
we propagate these scalar waves from rext back to the
vicinity of the black hole at rrew ≈ 2M—we rewind the
signals in order to remove the effect of the dispersion.
During most of the backward propagation, the evolution is
well described by the same massive flat space wave
equation in spherical coordinates. At some point, the
curvature and spherical harmonic terms will become
relevant; but for simplicity, instead of solving Eq. (24),
we approximate the rewind of the scalar mode as an
effective flat space wave equation6

½∂2t − ∂
2
r� þm2

eff �rh̃sl ¼ 0; ð31Þ

with a space independent effective mass m2
eff that we

define as the averaged value of the effective potential Vs

5See [112–115] for alternative waveform extraction methods.

6Ideally, one would like to rewind using Eq. (24), which
encodes the full description of the propagation, but this is a much
harder computational task.
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m2
eff ¼

R
rrew
rext

VsðrÞdr
rrew − rext

¼m2
φ þ

2Mm2
φ

rrew − rext
log

rext
rrew

þ lðlþ 1Þ
rrewrext

�
1−M

rrew þ rext
rrewrext

�
þM

�
rrew þ rext
r2rewr2ext

�
−
4M2

3

�
r2rew þ rrewrext þ r2ext

r3rewr3ext

�
: ð32Þ

So, for example, if we want to rewind a signal extracted at
rext ¼ 125M to rrew ¼ 2M, the effective mass describing
such a propagation will be given by

m2
eff

m2
φ
≈ 0.9327þ 0.026022

m2
φM2

ð1þ 2.907lðlþ 1ÞÞ: ð33Þ

In these simulationsmφM ≈ 0.4, so for the l ¼ 2 and l ¼ 4

modes studied in this work, we get m2
eff ≈ 1.01m2

φ and
m2

eff ≈ 1.19m2
φ, respectively.

Similar to outgoing propagation, we can solve this using
Fourier techniques [54]

rh̃ðt; rÞ ¼
Z

dω
2π

Ffrh̃ðt; rÞge−iωt: ð34Þ

To study the rewinding proccess, we modify Eq. (28) to

Ffrh̃ðt; rÞg ¼ Ffrh̃ðt; rextÞg

×

�
e−ik

þðr−rextÞ; if ω ≤ mφ

eþikþðr−rextÞ; if ω > mφ:
ð35Þ

We note that this technique allows us to rewind the
extracted signals, but not to recover those nonpropagating
frequencies jωj < mφ that have been exponentially sup-
pressed and never reach rext.

In Fig. 6 we plot the extracted waveforms at rext ¼ 125M
(left panels), as well as the rewound signals to rrew ¼
f65M; 2Mg (center and right panels). This plot aims to
illustrate how the inverse chirp is reversed as the signals are
rewound, recovering the standard chirp waveforms for
rrew ¼ 2M. In addition, we note that the peak of the scalar
signals converges to black hole formation time. We there-
fore focus on the rrew ¼ 2M rewound signal plotted in
Fig. 7, where we can now clearly distinguish three main
stages of the collapse. First, the pre-BH formation phase
features an oscillatory behavior of frequency ω ≈mφ with
increasing amplitude. The system radiates scalar gravita-
tional waves of the scalar mass frequency as it collapses.
The amplitude of the signal peaks at the BH formation time,
consistent with the tensor sector. This is followed by the
ringdown phase (red-shaded region), characterized by a set
of exponentially decaying QNMs, before they become
subdominant at the post-BH formation phase, when the
remaining scalar field around the black hole mainly sources
the scalar waves. This is analogous to the expected
postmerger tensor waveforms in systems where there is
remnant matter around the formed black hole—such as
neutron or boson stars mergers.
We define the ringdown phase as the approximate time

range where a clear exponential decay is observed.
Therefore, we now focus the analysis on the region where
the exponential decay provides the best fit for each of the

FIG. 5. Scalar waveforms extracted at rext ¼ 125M. Top and bottom panels plot the ðl; mÞ ¼ ð2; 0Þ and ðl; mÞ ¼ ð4; 0Þ modes (the
right panel plots show the absolute value of the waveforms). The vertical dashed line illustrates the time at which the black hole forms—
defined as the peak of the tensor waveform. We find no evidence of exponentially decaying waves corresponding to the QNMs. In
addition, there is a delay between the peak amplitudes of the hs20, h

s
40 and h

þ
20 modes, caused by the frequency dependent group velocity

of scalar waves, Eq. (26). On the right panel we show the late time behavior of the signals, with t−2 and t−4 tail decays, consistent within
the early time t−l−3=2 and late-time t−5=6 power-law behaviors [117–119].
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modes, that is, t=M ≈ 60–100 for hþ20 and t=M ≈ 70–120
for hþ40. We first compute the analytical QNM frequency
predictions following the expansion methods described
in [49],

Mωs
20 ¼ 0.5326 − i0.0796; ð36Þ

Mωs
40 ¼ 0.8960 − i0.0910: ð37Þ

In Fig. 7 we plot the expected decay rates given by the
imaginary part of the QNM frequencies, and show excellent
agreement within the data in the scalar ringdown phase.
In order to test the real part of the QNM frequencies,

FIG. 7. Scalar waveforms after the rewinding to rrew ¼ 2M to alleviate the dispersion that has happened when propagating until
extracted at rext ¼ 125M (the right panel plots show the absolute value of the waveforms). As opposed to Fig. 5, we now observe a time-
range compatible with the tensor ringdown where both scalar modes exponentially decay at the rate consistent with QNM calculations
ImðMωs

20Þ ¼ −0.0796 and ImðMωs
40Þ ¼ −0.0910, see Ref. [49]. We identify this as the scalar ringdown, which is followed by a phase

where remnants of the scalar field around the black hole source more scalar waves.

FIG. 6. Spectrogram of the additional scalar modes extracted at rext ¼ 125M (left panels), rewound to rrew ¼ 65M (center panels) and
rrew ¼ 2M (right panels). For reference we indicate the time of BH formation, tBH, defined as when ḧþ20 peaks. In the left panel, the
spectrogram shows an inverse chirp behavior due to the dispersive propagation of the massive scalar waves. The spectrogram crosses
through the scalar QNM predictions ReðMωs

20Þ ¼ 0.533 and ReðMωs
40Þ ¼ 0.896, but without evidence of an exponentially decaying

ringdown phase in the waveforms. In the central and right panels, we have evolved the extracted signal backwards to smaller radii using
an effective massive wave equation, Eq. (31). We recover a standard chirp waveform with real and imaginary QNM frequencies, which
agree with perturbative calculations. A movie showing the rewinding can be found here [120].
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we construct the corresponding Fourier transforms in Fig. 8
and compare where they peak

ReðMωs
20Þ ¼ 0.50� 0.09; ð38Þ

ReðMωs
40Þ ¼ 0.88� 0.10; ð39Þ

to the analytical predictions (dash-dotted vertical lines),
also showing excellent agreement.

VI. DISCUSSION

In this paper we have studied the generation and
propagation of gravitational waves in scalar-tensor theory.
Using one simple laboratory of axially symmetric
collapse—the collapse to a black hole of a nonminimally
coupled cosmic string loop—we have extracted the rich
spectrum of the scalar-tensor gravitational waveforms
ðh̃þ; h̃×; h̃sÞ produced in the event. We emphasize that,
while we have picked a specific configuration and gravita-
tional theory, the results we have found are general to
theories that involve the propagation of a (minimally or
nonminimally coupled) massive scalar field. We also expect
similar results for theories in which the speed of propagation
of the tensor field has a nontrivial dispersion relation.
One of the advantages of working with configurations

which are not spherically symmetric is that we also produce
(massless) tensor gravitational waves that behave in a well-
established fashion, and we can compare these to the
additionally excited massive, scalar sector signal. We have
focused on the key features by extracting the scalar
waveforms at different radii: (i) a faster decay than tensor
waves (r−1); (ii) a broadening of the wavepacket; and (iii) a
delay in the time of arrival for different frequency waves
due to mixing of waves emitted during different stages of
the event. The fact that the wave packet spreads and the
peak amplitude decays more quickly than for the tensor
gravitational waves means that massive scalar gravitational

waves will be much fainter (see Fig. 4), and thus, harder to
detect. They can carry a comparable amount of energy
away from the system as the tensor modes, and this energy
is conserved as they propagate, but their luminosity is
orders of magnitude fainter than tensor modes due to
dispersion.
We have also used this exotic collapse to delve into the

generation of both tensor and scalar QNMs from the
Schwarzschild black hole. For extracted tensor h̃þ wave-
forms, we can clearly identify a dominant QNM at the
predicted frequency. The main obstacle to reproduce a
similar analysis for the scalar QNM is the dispersive nature
of the evolution of the scalar waves themselves, due to
mixing with waves emitted during louder stages of the
collapse. We have described a simple but powerful method
to alleviate this issue, using an effective massive flat space
wave equation to rewind back the extracted signals to
reconstruct their nondispersed waveforms. This has
allowed us to separate out and classify the collapse signal
into the pre-BH formation, ringdown, and post-BH for-
mation stages. Focusing on the ringdown phase, we have
demonstrated excellent agreement with the QNM frequen-
cies expected from perturbative calculations.
Our analysis reinforces what we actually mean by the

QNMs around a black hole; theQNM (complex) frequencies
are those excited at the perturbed horizon and not those
extracted at large distances. In the case of massless tensors
(and massless scalars), the shape of the QNM (in the form
et=τ cosðωtþ ϕÞ) is preserved as it propagates away from the
black hole. But, as we see in our set up, this is not the case for
a massivewave. This means that it is incorrect to assume that
at detection, the massive waveforms will have the canonical,
QNM shapewhich is normally considered. Thus some of the
assumptions that have gone into forecasting the observability
of such QNMs in previous work are incorrect [121].
Even though the properties of scalar gravitational waves

mean that it is extremely unlikely to detect such a new
polarization mode directly, it is interesting to note that they
contain extremely rich information about the theory, the
propagation, and the strong gravity event. If we (optimis-
tically) assume that we are indeed able to detect the massive
scalar waves from a nearby event, then we can imagine
rewinding its propagation until the QNM frequencies are
consistent with the scalar mass, allowing us to potentially
infer, independently, both the scalar mass and the distance
to the event. This could be used to break degeneracies in the
properties of the collapse process, or the parameters of the
final black hole. Furthermore, scalar gravitational waves
could be an interesting laboratory in which to test the
generation of nonlinearities, where QNMs interact and
additional modes can be sourced [122–125]. It is possible
that the generation and propagation of massive scalar waves
could result in the excitation of those nonlinear mode
couplings.

FIG. 8. Real part of the scalar QNM frequencies extracted by
Fourier transforming the range corresponding to the scalar
ringdown phase in Fig. 7, showing agreement with QNM
predictions from Ref. [49].
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We end by reiterating that the phenomena we have
studied are much more general than the specific scalar-
tensor theory, and source, that we studied here. General
scalar-tensor theories, such as Horndeski theory [36,37], its
extensions [126,127] and particular notable examples like
Einstein-Dilaton-Gauss-Bonnet gravity [62] and Chern-
Simons gravity [60], all give rise to scalar waves that
are potentially massive. In addition, similar effects will be
relevant and should be taken into account in theories in
which tensor waves have a dispersion relation [128,129].
Understanding the rich phenomenology of the excitation
and propagation during strong gravity events provides both
an opportunity and a challenge, as a route to uncovering
distinctive signatures of deviations from general relativity.
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