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Extreme-mass-ratio inspirals (EMRIs) are one of the most exciting and promising target sources for
space-based interferometers (such as LISA, Taiji, and TianQin). The observation of their emitted
gravitational waves will offer stringent tests on general theory of relativity and provide a wealth of
information about the dense environment in galactic centers. To unlock such potential, it is necessary to
correctly characterize EMRI signals. However, resonances are a phenomena that occurs in EMRI systems
and can impact parameter inference, and therefore the science outcome, if not properly modeled. Here, we
explore how to model resonances and develop an efficient implementation. Our previous work has
demonstrated that tidal resonances induced by the tidal field of a nearby astrophysical object alters the
orbital evolution, leading to a significant dephasing across observable parameter space. Here, we
extensively explore a more generic model for the tidal perturber with additional resonance combinations,
to study the dependence of resonance strength on the intrinsic orbital and tidal parameters. To analyze the
resonant signals, accurate templates that correctly incorporate the effects of the tidal field are required. The
evolution through resonances is obtained using a step function, whose amplitude is calculated using an
analytic interpolation of the resonance jumps. We benchmark this procedure by comparing our
approximate method to a numerical evolution. We find that there is no significant error caused by this
simplified prescription, as far as the astronomically reasonable range in the parameter space is concerned.
Further, we use Fisher matrices to study both the measurement precision of parameters and the systematic
bias due to inaccurate modeling. Modeling of self-force resonances can also be carried out using the
implementation presented in this study, which will be crucial for EMRI waveform modeling.

DOI: 10.1103/PhysRevD.106.104001

I. INTRODUCTION

The detection of the first gravitational wave (GW) signal
in 2015 by LIGO observatories commenced a new era of
astronomy. Since then, ground-based LIGO-VIRGO net-
works have observed about a hundred GW signals in the
10 Hz to 1 kHz frequency band [1–4]. In the near future,
planned space-based interferometric detectors such as
LISA (Laser Interferometer Space Antenna), Taiji, and
Tianquin will observe GW in the 1–100 mHz frequency
band. Extreme mass ratio inspiral (EMRI) is one of the
most exciting possible sources and also one of the most
challenging to model emitting gravitational radiation in the
mHz range [5–7]. During such an inspiral, a stellar-mass

compact object spirals into a massive black hole (MBH) at
the center of a galaxy. EMRIs are characterized by a small
mass ratio, typically between 10−4 and 10−7, in contrast to
comparable mass binaries observed by ground-based inter-
ferometers. An EMRI can stay in the LISA bandwidth for
years before it plunges, orbiting many cycles near the
innermost stable circular orbit. Thus, offering a very
accurate mapping of spacetime around MBHs. EMRIs
provide a chance to probe the environment of (dense)
galactic centers and tests for deviations from the predictions
of general relativity (GR) [5,6].
In the test particle limit, the small object with a mass μ

follows a geodesic around the spinning MBH. In the
framework of black hole perturbation theory, the small
mass ratio η ¼ μ=M ∼ 10−4 − 10−7 is used as an expansion
parameter to account for the finite mass of μ. Consequently,*priti.gupta@tap.scphys.kyoto-u.ac.jp
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the forcing term known as the “self-force” moves the body
away from its geodesic and is responsible for the inspiral
motion. Relativistic bounded orbits around massive BHs
have three frequencies—the radial ωr, polar ωθ, and
azimuthal ωϕ frequencies. These frequencies smoothly
evolve as the small object gets closer to the massive one
due to the self-force. Flanagan and Hinderer [8] highlighted
an interesting phenomenon that occurs during the EMRI
evolution: self-force resonances.1 During such a resonance,
radial and polar frequencies become commensurate such
that nωr þ kωθ ¼ 0, where n, k are integers. Recent studies
have shown the impact of self-force resonances on detec-
tion and parameter estimation [9,10], although the precise
evaluation of self-force resonance effects is still to be
performed.
The event rate of EMRIs depends on highly uncertain

parameters such as the stellar density profile around each
galactic center, the population of compact objects, and rates
of dynamical processes that can lead to the capture of the
stellar-mass body in the gravitational potential of a MBH
[11–16]. Therefore, the expected range varies from a few to
a few hundred EMRI signals over a four-year mission
duration for LISA [16,17]. To take the full advantage of the
scientific potential of such astrophysical sources, data
analysis methods rely on theoretical waveform templates
to compare against the data. Thus, we must have wave-
forms for generic orbits that are modeled accurately within
a fraction of a radian, even after hundreds of thousands of
orbital cycles. Another necessity is that the templates
should cover the high-dimensional parameter space of
possible EMRI configurations and their generation must
be fast enough to be able to deal with templates in large
numbers. Significant efforts by the scientific community
focusing on the computation of the self-force, together with
LISA working groups and mock data challenges, are
concentrated on realizing the goal of accurate and fast
waveform modeling [18–23].
Environmental effects will introduce systematic param-

eter estimation errors, potentially spoiling the efforts of the
community towards accurate waveform models and pre-
cision gravitational wave astrophysics. This can lead to the
erroneous conclusion that the data conflicts with GR [24].
Thus, quantifying and modeling resonances resulting from
self-force and external tidal fields on inspirals is another
challenge to overcome, if we want to perform precision
tests of GR [24,25]. Our paper is motivated by this issue,
and we investigate the modeling of resonances induced by
an external tidal field. We developed for the first time the
implementation of a realistic EMRI waveform passing
through a resonance. This is essential for the scientific

success of LISA. In particular, full waveforms will be
essential for the search [9] and parameter estimation of
EMRIs [10]. The insights gained from this paper will be
also relevant to self-force resonances, which we do not
model in this paper as there are no precise jump size
estimations available at present, but we hope they will be
available in the near future [26–29].
Most of the current models are focused on isolated EMRI

systems. However, EMRIs may exist within noisy astro-
physical environments, and their evolution can therefore
deviate from the pure vacuum predictions of GR. For
instance, studies based on a Fokker-Planck simulation
suggest that a population of 40 M⊙ BHs can be close to
Sagittarius A⋆, with a median distance ∼5AU [14,24,30].
According to [11,31], brown dwarfs can be at an approxi-
mate distance of ∼30AU for Sgr A⋆. The focus of our work
is to study the influence on EMRI evolution by a nearby
stellar-mass compact object with mass M⋆, although our
results apply to any kind of external sources whose main
contribution can be modelled by a quadrupole tidal field.
The tidal perturbation (the external force) can modify the
orbital dynamics, and hence the GWs radiated from that
EMRI. In particular, a new type of resonance is induced in
EMRIs by the tidal force of a nearby object [24], named
“tidal resonances,” when the condition nωr þ kωθ þ
mωϕ ¼ 0 is satisfied. During the resonance crossing, a
“jump” is induced in the constants of motion which alters
the subsequent orbital evolution. Unlike self-force reso-
nances, tidal resonances are caused by the tidal force of the
tertiary. Although the magnitude of the tidal field depends
on the situation, here we assume that the magnitude is not
excessively large, and hence the resonances are transient,
i.e., the evolution of orbital frequencies is dominated by the
radiation reaction due to gravitational self-force.
Our recent paper [32] (hereafter paper I) surveyed how

common and vital tidal resonance encounters are over a
large part of the relevant parameter space of the orbital
evolution tracks. The results showed that an EMRI typi-
cally crosses multiple resonances during an observationally
important regime leading to a significant dephasing of
waveforms. We also provided analytic fits for tidal resonant
jumps for an efficient generation of EMRI waveform
models taking into account these features, which are at
the foundation of the present work. The analytic fits also
provide insight into the dependence of the resonance
strength on the orbital parameters such as the spin of the
massive BH a, the orbital eccentricity e, and the inclination
I. In paper I, the position of the perturber was restricted to
the equatorial plane, and its tidal influence on the EMRI
was implemented taking only the m ¼ 2 quadrupole tidal
deformation into account.
This paper aims to generalize the results of paper I in two

important directions. First, the position of the tertiary is
generalized. Namely, we include the perturber’s inclination
as a parameter, while maintaining the stationary perturber

1There is a common term in the literature for these resonances:
“transient” since the frequencies are continually evolving and the
orbit does not stay at a resonance. To distinguish them from tidal
resonances, which are also transient in nature, we call them “self-
force resonances,” here.
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approximation.2 This additional inclination parameter
introduces new nonvanishing resonances with m ¼ �1
and thus, enhancing the allowed resonances. We also take
into account the m ¼ 0 mode, which was neglected in our
previous work. Treating the tertiary as a perturber, we can
obtain the metric perturbation using black hole perturbation
theory [33]. From the tidally perturbed metric, we calculate
the tidal force on the EMRI, and the resonant jumps in the
constants of motion are determined semianalytically.
Second, we go beyond semianalytic fits to resonant

jumps by proposing a new waveform model taking the
resonances into account. To detect and analyze GW signals,
the phase evolution of our waveform models need to be
accurate enough because detections rely on matched filter-
ing techniques, which are extremely sensitive to the errors
in the phase evolution of the template waveforms. If the
resonance effects are large enough, then postresonance
waveform evolution can become totally out of phase
compared with the template neglecting resonances. It
requires a practical, i.e., fast and accurate, model to
efficiently detect EMRIs and correctly estimate the para-
meters of EMRI and the perturber. A recent work [10]
presented a partially phenomenological effective resonance
model (ERM) with additional free parameters for the
resonance jumps. We use techniques from this model to
incorporate tidal resonances that are constrained by phys-
ics, and hence our model is no longer “effective” in the
above sense.
A consistency check confirms that the obtained fitting

formulas accurately estimate the jump size by comparing it
with the slow evolution forced osculating elements trajec-
tory [34]. Hence, these fittings allow incorporating reso-
nances at inexpensive computational costs. To model the
jump, we use a step function approach rather than a
“smooth” impulse function [10], and show that this
simplified treatment is enough to maintain the accuracy
required for data analysis. The accuracy of postresonance
evolution depends far more on the fitting formulas than the
profile of the jump. For a small tidal perturbation (exam-
ined in this paper), the phase accumulated during the
passage of the resonance is negligible, which makes the
step function approach suitable. In case of large tidal
perturbations (sustained resonances), the impulse function
must be carefully selected. However, this occurs in a less
astrophysically relevant region of the parameter space, and
is beyond the scope of this paper.
With our model, we explore the parameter measurement

precision when tidal resonances are present and study the
parameter bias induced by ignoring them [35]. Based on the
studied EMRI configurations, we find that biases are larger
than noise-induced statistical errors. As a result of our

findings, parameter estimates of resonant EMRIs will likely
be biased if resonances are not taken into consideration in
parameter estimation models. The Fisher matrices are also
used to discuss the threshold magnitude of tidal perturba-
tion below which the observed signal cannot be interpreted
as indicative of tidal perturbation.
The outline of the paper is as follows. In Sec. II, we recall

the evolution equations for Kerr geodesic motion and the
framework to compute jumps due to tidal resonances. In
Sec. III, we present the first part of our results and show the
dependence of tidal resonances and accumulated phase
shift on orbital and tidal parameters. In Sec. IV, we review
gravitational wave data analysis concepts and the key
concepts of the resonance model (RM). In Sec. V, we
analyze the agreement between the RM and forced oscu-
lating evolution. We examine the bias in parameter esti-
mation using Fisher matrices and present our results. We
conclude our paper with a discussion and future outlook in
Sec. VI. In the Appendix, we discuss the combination of
resonances that are suppressed and do not contribute to
dephasing the waveform. Throughout this paper, we use
geometrical units with c ¼ G ¼ 1 where c is the speed of
light and G is the gravitational constant. When converting
geometric units to astronomical units (AUs), 1 AU ∼ 25M
where M is defined as the mass of Sagittarius A�.

II. BACKGROUND

In this section, we first describe the motion of a non-
spinning compact object of mass μ moving in the Kerr
spacetime and set up the notation and conventions that we
use. Next, we introduce the tidal resonance condition
and briefly describe the tidally perturbed metric used to
model the tidal force and calculate the jump in conserved
quantities due to a tidal resonance. For an in-depth dis-
cussion, we refer the reader to paper I.

A. Overview of Kerr geodesic

Consider a small body of mass μ moving in the
spacetime of a large black hole described by mass M
and spin parameter a. We use Boyer-Lindquist coordinates
fr; θ;ϕg and Carter-Mino time λ to describe the geodesic
equations [36–39]:

�
dr
dλ

�
2

¼ ½Eðr2 þ a2Þ − aLz�2

− Δ½r2 þ ðLz − aEÞ2 þQ�;
≡ RðrÞ; ð2:1aÞ

�
dθ
dλ

�
2

¼ Q − cot2θL2
z − a2cos2θð1 − E2Þ;

≡ ΘðθÞ; ð2:1bÞ
2A generic model would demand a dynamical third body on an

eccentric and inclined orbit. This will be treated in our future
work.
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dϕ
dλ

¼ ΦrðrÞ þΦθðcos θÞ − aLz; ð2:1cÞ

dt
dλ

¼ TrðrÞ þ Tθðcos θÞ − aE; ð2:1dÞ

The quantities E; Lz, and Q correspond to the orbit’s
energy (in unit μ), axial angularmomentum (in unit μM), and
Carter constant (in unit μ2M2). Here, Δ ¼ r2 − 2Mrþ a2,
and the Carter-Mino time parameter λ is related to the proper
time τ through dλ ¼ dτ=Σ, where Σ ¼ r2 þ a2 cos2 θ. The
explicit forms of the functions,ΦrðrÞ;Φθðcos θÞ; TrðrÞ, and
Tθðcos θÞ in Eqs. (2.1c) and (2.1d) can be found in Ref [39].
The Kerr geodesic orbit can be also parametrized by

another set of parameters: the semilatus rectum p, the
orbital eccentricity e, and orbital inclination angle I, instead
of E;Lz, and Q. These parameters are defined by

p ≔
2rpra

Mðrp þ raÞ
; ð2:2Þ

e ≔
ra − rp
ra þ rp

; ð2:3Þ

I ≔ π=2 − sgnðLzÞθmin; ð2:4Þ

where ra, rp are, respectively, the values of r at the apo-
apsis and periapsis, and θmin is the minimum value of θ
(measured from the black hole’s spin axis). For later
convenience, we also introduce x ¼ cos I.

B. Framework to study tidal resonances

We consider an EMRI within the influence of an external
tidal field. The tidal environment created by a stellar-mass
object near the EMRI is treated in a relativistic framework
by computing the complete linear metric perturbation to the
Kerr spacetime [33,40].
We use a set of action-angle variables to study the orbital

evolution, such that the angle variables qi parametrize a
torus, and the conjugate action variables Ji are functions of
the constants of motion fE; Lz;Qg. This method offers a
simple formulation to incorporate and study deviations
from the geodesic motion due to different forces [41]:

dqi
dτ

¼ ωiðJÞ þ ϵgð1Þi; tdðqϕ; qθ; qr; JÞ þ ηgð1Þi; sfðqθ; qr; JÞ
þOðη2; ϵ2; ηϵÞ; ð2:5Þ

dJi
dτ

¼ ϵGð1Þ
i; tdðqϕ; qθ; qr; JÞ þ ηGð1Þ

i; sfðqθ; qr; JÞ
þOðη2; ϵ2; ηϵÞ; ð2:6Þ

where the terms with subscript “td” are from the tidal force,
and the terms with subscript “sf” are from the self-force.
Here, the parameter

ϵ ¼ M⋆M2x⋆=R3 ð2:7Þ

characterizes the strength of the tidal field produced by the
perturber M⋆ at an inclination Iper. Here, x⋆ is a sinusoidal
function of Iper depending on mode m of the quadrupole
(l ¼ 2) tidal perturbation. The distance of the tidal per-
turber from the central MBH is denoted by R. As mentioned
in the introduction, the frequencies of EMRI orbital
evolution associated with distant observer time are ωr
(oscillations in the radial direction), ωθ (oscillations in the
polar direction), and ωϕ (rotations around the central BH
spin axis).
From the expressions above, we see that at the zeroth

order [neglecting the terms with the superscript (1) and
hither order], the action variables are conserved whereas the
angle variables increase at a fixed rate in time, which are
denoted by ωi. At leading order in η, the EMRI orbit
deviates from the geodesic motion due to the particle’s self-
force (gi; sf ,Gi; sf ) [42–45]. In our model, the EMRI expe-
riences an external tidal force introduced in evolution
equations by terms ðgi; td; Gi; tdÞ. Over the longer timescale,
it is necessary to consider the postadiabatic corrections
Oðη2Þ currently under development [46,47] as well as the
interaction term OðηϵÞ if the tidal perturbation is compa-
rable to η. However, in this paper we aim to study the
leading order effect of tidal perturbation. As we proceed,
we will only consider tidal resonances and hence the

leading order tidal force Gð1Þ
i; td, and we will drop the

subscript “td” for brevity. The force is written in terms
of its Fourier modes as

Gð1Þ
i ðqϕ; qθ; qr; JÞ ¼

X
n;k;m

Gð1Þ
i; nkmðJÞeiðnqrþkqθþmqϕÞ: ð2:8Þ

For nonresonant orbits, the exponential factor in the above
equation is rapidly oscillating in time, thereby averaging to
zero over many cycles. Thus, all m, k, n modes, except for
the one with m ¼ k ¼ n ¼ 0, do not contribute to a secular
change in J. However, the phase in Eq. (2.8) will be
stationary when

ωnkm ≔ nωr þ kωθ þmωϕ ¼ 0; ð2:9Þ

i.e., when the tidal resonance condition is satisfied for a set
of relatively small integers3 ðn; k; mÞ. Thus, the exponential
factor varies slowly around the resonance point, and the

corresponding average of the force amplitude Gð1Þ
i; nkm is

nonvanishing, inducing a secular change in J.

3When the condition is satisfied for large integers, the
corresponding Gð1Þ

i; nkm is much smaller. Hence, they tend to be
irrelevant from the observational point of view, although it also
depends on the magnitude of the tidal perturbation which
resonances are sufficiently influential. This holds true for self-
forces resonances as well [9].
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It is helpful to recall the relevant timescales for our
physical setup. The fastest timescale is the orbital period
τorb ∼OðMÞ and the slowest timescale corresponds to the
radiation reaction time τrr ∼M=η. The orbital period of the
tidal perturber is given by τtd ∼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffi
R3=M

p
. Another key

timescale is the resonance duration τres [8,32],

τres ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

m _ωϕ þ k _ωθ þ n _ωr

s
∼M

ffiffiffi
1

η

s
: ð2:10Þ

Overall, when the stationary perturber approximation is
valid, we have

τorb ≪ τres ≪ τtd; τrr:

Flanagan and Hinderer [8] gave an analytic expression
for the “jump” in the constants of motion in the context of
self-force resonances. We use a similar estimate to model
the effect of the tidal resonance, and calculate the jump ΔJi
in conserved quantities across a resonance point. Assuming
that the evolution of J and hence the orbital periods is
dominantly determined by the gravitational radiation reac-
tion, the jump ΔJi is estimated as

ΔJi ¼ ϵ

Z
∞

−∞
Gð1Þ

i ðqϕ; qθ; qr; JÞdτ;

¼ ϵ
X
s¼�1

ffiffiffiffiffiffiffiffi
2π

jΓsj

s
exp

�
sgnðΓsÞ iπ

4
þ isχ

�

× Gð1Þ
i;sn; sk; smðJÞ; ð2:11Þ

where χ¼ nqr0þkqθ0þmqϕ0 andΓ¼n _ωr0þk _ωθ0þm _ωϕ0,
and the quantities qi0 and _ωi0 are phases and frequency
derivatives evaluated at τres;0 (the instant where tidal reso-
nance condition is satisfied), respectively. Strictly speaking,
higher modes with ðn; k; mÞ multiplied by an integer other
than �1 are also nonvanishing, but their contribution is
highly suppressed. In the estimate ofΓ, the corrections due to
the tidal resonance are neglected, because such corrections
are higher order in ϵ.
In this work, we study only the leading quadrupolar l ¼

2modes, because the higher multipoles will be smaller by a
power of M=R. For l ¼ 2, allowed values for azimuthal
number m are −2 to 2. In paper I only the m ¼ �2 modes
were considered. We relax this restriction to incorporate
resonances caused bym ¼ 0;�1modes. In Fig. 1, we show
the full set of low order resonance combinations inves-
tigated in our analysis. We find that resonance jumps vanish
for combinations with kþm ¼ odd. This suppression is
discussed in the Appendix.
To calculate the tidal force Gð1Þ

i , we start with the
space-time metric of a rotating BH perturbed by a nearby
object [33]. Given the perturbation hαβ,

4 the induced

acceleration with respect to the background Kerr spacetime
is expressed as

aα ¼ −
1

2
ðgαβKerr þ uαuβÞð2hβλ;ρ − hλρ;βÞuλuρ; ð2:12Þ

with uα as the unit vector tangent to the worldline of the
inspiraling object with a small mass μ. The instantaneous
change rates of the constants of motion are [49]

dLz

dτ
¼ aϕ; ð2:13Þ

l

l

FIG. 1. The low order tidal resonance contours for a prograde
orbit with inclination 50° (top) and a retrograde orbit with
inclination 130° (bottom) in e − p plane. The spin parameter
of the central BH is set to a ¼ 0.9. The contour labels correspond
to integers fn; k;mg. We discuss the suppression of resonance
combinations with kþm ¼ odd in the Appendix.

4An overall factor of two missing in hαβ in [33]; see footnote 17
in [48] for details.
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dQ
dτ

¼ 2uθaθ − 2a2 cos2 θutat þ 2 cot2 θuϕaϕ: ð2:14Þ

As our perturber is treated to be stationary, the change in
orbital energy E due to a tidal resonance is zero. Moreover,
m ¼ 0 mode drives an axisymmetric perturbation, leaving
Lz unchanged. Nonetheless, this mode can cause a signi-
ficant nonzero change in Q.

III. RESONANCE STRENGTH AND DEPHASING

In the following, we first explore the strength of m ¼
0;�1 mode resonances as a function of orbital parameters
ðp; e; xÞ and spin parameter a. We consider the tidal
perturber at an inclination of Iper and a distance R from
the central BH. Next, similar to the analysis in paper I,
we show accumulated phase shift for typical cases for
m ¼ 0;�1 resonances and discuss the impacted orbital
parameter space of EMRIs due to a tidal resonance
encounter. Fitting formulas are constructed for each reso-
nance combination shown in Fig. 1 for both prograde and
retrograde cases.

A. Dependence on orbital and tidal parameters

When we introduce a tidal perturber, the spacetime
describing the central black hole and the tidal perturber
is no longer axisymmetric. As shown in Eq. (2.6), the tidal
force depends on the axial position of the small body.
Hence, the changes in conserved quantities are sensitive to
EMRI’s orbital phases on encountering the resonance, i.e.,
qϕ0; qθ0; qr0. To demonstrate this dependence, we first
compute dLz=dt and dQ=dt for some resonances. After
orbit averaging at the resonance point, the right-hand side
in Eq. (2.8) is well approximated by

hGð1Þ
i ðqϕ; qθ; qr; JÞi
≈Gð1Þ

i; mknðJÞeiðmqϕ0þkqθ0þnqr0Þ þ fc: c:g: ð3:1Þ

The resonant phase is defined as qres ≔ mqϕ0 þ kqθ0 þ
nqr0 and from Eq. (3.1), it is clear that the jump size due to
the tidal resonance has a sinusoidal dependence on the
resonant phase [24,32]. Therefore, depending on this phase,
an orbit may cross the tidal resonance with a negligible
jump in Lz and Q, even if the magnitude of the tidal
perturbation itself is sufficiently large. To analyze the
strength of resonance on orbital and tidal parameters, we
will adopt the fine-tuned value of qres that maximizes the
changes in Lz and Q. Hence, our results show the upper
limit of influence caused by these resonances.
Using (2.11), we compute the change in Lz and Q for

different resonances and note some interesting trends for
m ¼ 0;�1 modes. In Fig. 2, we show dependence of a
sample resonance −3∶1∶1 (prograde orbit) on e, a, x,
and Iper.

(i) We find that, irrespective of the resonance combi-
nations, i.e., m ¼ 0;�1;�2, and the direction of the
orbit (prograde or retrograde), both dLz=dt and
dQ=dt increase with increasing orbital eccentricity
e. The prefactor e2=ðe − 1Þ2 ensures that dLz=dt and
dQ=dt are zero for circular orbits (e ¼ 0) since the
amplitude of radial oscillations is zero for this case.

(ii) Another pattern is observed for variation in the spin
parameter of MBH. Similar to m ¼ �2 modes
analyzed in paper I, for prograde orbits, m ¼ �1
mode resonances show a decrease in both dLz=dt
and dQ=dt as a increases whereas for retrograde
orbits both quantities increase as a increases. The
difference between prograde and retrograde orbits is
expected because the resonance occurs at smaller
(larger) p values for prograde (retrograde) orbits for
larger values of a (see vertical scale of lower panel in
Fig. 1) for which the acting tidal force is greater.

(iii) As for orbital inclination parameter x ¼ cos I, we
find that, as x increases, both dLz=dt and dQ=dt
decreases regardless of the orbit’s direction. This
feature is again qualitatively similar to the trend
found for m ¼ �2 in paper I.

(iv) Next, we note the dependence of resonance strength
on inclination of the tidal parameter Iper. For the
sample resonance −3∶1∶1 and other resonance
combinations with m ¼ �1, the change in dLz=dt
and dQ=dt is maximum for the perturber at an
inclination of Iper ¼ 45°. This behavior can be
qualitatively explained for Lz using Newtonian
arguments—the spherical harmonic decomposition
of (l ¼ 2; m ¼ �2) mode of the tidal force and
hence the torque turns out to be proportional to
sin Iper cos Iper [50]. This dependence also clarifies
that m ¼ �1 resonance gives no contribution for an
equatorial perturber (Iper ¼ 0°).

In Fig. 3, we show the dependence on orbital and tidal
parameter for a m ¼ 0 mode focusing on −3∶2∶0 reso-
nance. For this mode, the axisymmetry of the background
Kerr spacetime remains intact. Therefore there is no jump
induced in Lz. Nonetheless, we find that such resonances
can still drive a jump in Q as shown in Fig. 3. The
dependency on e, a, x are qualitatively similar to m ¼ 1
resonances discussed above. In contrast, for m ¼ 0 reso-
nances, we find that the absolute jump size is largest when
the perturber is aligned with the rotation axis of the MBH.
This finding is important becausem ¼ 0modes can cause a
jump in Q, implying that other axisymmetric sources such
as accretion disks can also induce a jump and impact
waveforms through tidal resonances. Furthermore, tidal
resonances with m ¼ 0 modes are degenerate with self-
force resonances, for which only the radial and polar
integers (n and k) determine the resonance combina-
tion due to the axisymmetry of the Kerr space-time. In
order to dissociate such resonances, waveforms need to be
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accurately modeled. If multiple tidal resonances due to the
same perturber are encountered by an EMRI, they might be
sufficient to break the degeneracy.
For the completeness, in Fig. 4 we show the dependence

of the m ¼ 2 mode on Iper. The cos2 Iper-like dependence
highlights that the jump size from m ¼ 2 modes is
maximum when the perturber is on the equatorial plane.
This holds true irrespective of the orbit’s direction.
Note that in Figs. 2–4 hdLz=dti and hdQ=dti are

normalized by multiplying a factor of ðϵ=MÞ−1. The dots
represent the values obtained from the semi-analytic calcu-
lations, and curves denote the obtained fitting (see paper I for
discussion on the construction of fitting formulas). The
agreement between the semianalytic evaluation and fitting
agrees remarkably well with the error always less than 1%.
The Mathematica notebook with fittings for all significant
resonances is made available on [51].

B. Dephasing due to tidal resonance

Low order resonances encountered by EMRI orbits lie
within the LISA frequency band for a typical mass ratio of
10−4 − 10−7. As discussed in previous sections, an orbit
crossing resonance experiences a jump in the constants of
motion. Thus, resonances cause the orbit and hence the
phases to depart from the standard adiabatic evolution.

Given a high SNR (∼30) of the waveform, LISA may
resolve the phase in ϕ with an approximate sensitivity of
ΔΨϕ ∼ 0.1 [17,24]. To quantify the dephasing, we compute
the deviation in the GW phase using

ΔΨϕ ¼
Z

Tplunge

0

2Δωϕdt: ð3:2Þ

The accumulation in phase is integrated from the onset of
resonance (when the resonance condition is satisfied) up to
the plunge time Tplunge. The method of determining the
phase evolution during the subsequent inspiral is discussed
in detail in paper I (Sec. III B). In short, for the imple-
mentation of the analytic expressions of fundamental
frequencies [37,39], our code employs the “Kerr geodesic”
package from the black hole perturbation toolkit [52]. We
evolve two orbits—one with and without ΔJi included. At
each time ωϕ for both the orbits are compared, and the
difference in frequencies for these two evolutions is given
by Δωϕ. The factor of 2 in Eq. (3.2) appears because the
strongest harmonic in GWs (for quasicircular equatorial
EMRIs) is the quadrupolar mode (l ¼ 2, m ¼ 2). For
eccentric orbits such as the one we have here, higher
harmonics dominate, which can increase the amplitude of
mismatch due to dephasing.

FIG. 2. Dependence of average change rate of the z component of angular momentum (red solid) and Carter constant (blue dashed) on
the orbital eccentricity (top, left), on orbital inclination (bottom, left), the spin of central BH (top, right), and perturber’s inclination
(bottom, right) for n∶k∶m ¼ −3∶1∶1. The dots represent the values obtained from the semianalytic calculation, and curves denote the
obtained fitting. Note that both hdLz=dti and hdQ=dti are normalized by multiplying a factor of ðϵ=MÞ−1.
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We set M ¼ 4 × 106 M⊙, μ ¼ M⋆ ¼ 30 M⊙, and
R ¼ 10 AU. This distance is the same as in paper I, but
twice as far compared to [24] to give a more conservative
estimate. In Fig 5, ΔΨϕ is shown for prograde orbits

crossing the −3∶1∶1 (top panel) and −3∶2∶0 (bottom
panel) resonances in the x − e plane for different spin
parameters of the MBH. The whole parameter space except
for low eccentricity orbits and/or for a large spin is
measurably affected by the −3∶1∶1 resonance. In a similar
way, the −3∶2∶0 resonance impacts a large parameter
space. The dephasing increases with increasing eccentri-
city. Since both sample resonances are encountered early in
the inspiral phase (see the upper panel of Fig 1), the
dephasing accumulates over hundreds of thousands of
cycles before the plunge, and therefore affects most of
the parameter range.
The accumulated phase shown for the sample resonances

is calculated for fixed masses of the MBH, EMRI and the
tidal perturber. The accumulated phase ΔΨ0

nkm for a differ-
ent set of parameters M0; μ0;M0⋆; R0; x0⋆ simply scales as

ΔΨ0 ¼ΔΨ
�
M0

M

�
7=2

�
μ0

μ

�
−3=2

�
M0⋆
M⋆

��
x0⋆
x⋆

��
R0

R

�
−3
: ð3:3Þ

So far, our results suggest that resonance jumps are
sensitive to intrinsic orbital parameters, especially the

FIG. 3. Dependence of average change rate of the Carter constant (blue dotted) on the orbital eccentricity (top, left), on orbital
inclination (bottom, left), the spin of central BH (top, right), and perturber’s inclination (bottom, right) for n∶k∶m ¼ −3∶2∶0. The dots
represent the values obtained from the semianalytic calculation, and curves denote the obtained fitting. There is no change in the z
component of angular momentum given the axisymmetry of the m ¼ 0 perturbation. Note that hdQ=dti is normalized by multiplying a
factor of ðϵ=MÞ−1.

FIG. 4. Dependence of average change rate of the Carter
constant (blue dotted) on the perturber’s inclination for a prograde
orbit crossing n∶k∶m ¼ 3∶0∶ − 2. The dots represent the values
obtained from the semianalytic calculation, and curves denote the
obtained fitting. Note that both hdLz=dti and hdQ=dti are
normalized by multiplying a factor of ðϵ=MÞ−1.
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orbital phases at resonance as discussed below Eq. (3.1).
Also, dephasing due to low-order tidal resonances can
strongly impact the EMRIs detectable by LISA, assuming
such tidal perturbers exist. Consequently, the waveform
evolution becomes out of phase, compared to a template
neglecting resonances—reducing the detection rate because
the signal-to-noise ratio falls as the phase error accumu-
lates. It calls for careful modeling of waveforms that
correctly detect EMRIs and estimate the parameters of
EMRI and perturber. This serves as our motivation for the
rest of the paper.

IV. MODELING TIDAL RESONANCES

In this section, we first review how to evaluate the
expected accuracy and systematic bias in parameter esti-
mation, based on Fisher analysis. Next, we introduce the
structure of the RM, which is used to incorporate tidal
resonances in waveforms and investigate the loss of signal
and the systematic bias due to inaccurate modeling.

A. Gravitational wave data analysis

The output data sðtÞ of a gravitational detector consists
of random noise, nðtÞ and possibly a gravitational wave

signal hðt; λÞ characterized by a set of parameters λ ¼
½λ1…λn� in n-dimensional parameter space.

sðtÞ ¼ hðt; λÞ þ nðtÞ: ð4:1Þ

We assume that noise is given by a weakly stationary,
Gaussian random process with zero mean. Under these
assumptions, the Likelihood for the parameters λ is given
by [53]

pðsjλÞ ∝ exp

�
−
1

2
hs − hðλÞjs − hðλÞi

�
; ð4:2Þ

where h·j·i is a noise-weighted inner product defined as

haðtÞjbðtÞi ≔ 4Re
Z

∞

0

ã�ðfÞb̃ðfÞ
SnðfÞ

df: ð4:3Þ

SnðfÞ is the power spectral density of the noise and the
variable with tilde indicates the Fourier transform of the
corresponding time series data. Additionally, it is custom-
ary to define the SNR,

FIG. 5. Log of accumulated phase ΔΨϕ for spin parameter a ¼ 0.1, 0.5, 0.9 for a prograde orbit crossing the −3∶1∶1 (top panel) and
−3∶2∶0 (bottom panel) resonance in the x − e plane. The phase shift is computed for an EMRI with M ¼ 4 × 106 M⊙, μ ¼ 30 M⊙
under the influence of a tidal perturber with massM⋆ ¼ 30 M⊙ at a distance of 10 AU from the central MBH. Results for different sets
of parameters can be estimated from the scaling relation given in Eq. (3.3).
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ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hhjhi

p
; ð4:4Þ

which characterizes the detectability of a signal by a
detector with a given noise power spectrum.
We define two other quantities that serve as a measure of

similarity between two template waveforms ha ¼ hðt; λaÞ
and hb ¼ hðt; λbÞ, the overlap Oðha; hbÞ and mismatch
Mðha; hbÞ, by

Ohha; hbi ¼
hhajhbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhajhaihhbjhbi

p ; ð4:5Þ

Mðha; hbÞ ¼ 1 −Oðha; hbÞ: ð4:6Þ

If Oðha; hbÞ ¼ 1, then the two waveforms are identical.
Waveforms withOðh1; h2Þ ¼ 0 are mutually orthogonal. In
contrast, by definition, the smaller Mðha; hbÞ, the better
the match is.
If we want to estimate how accurately parameters are

measured, then it is helpful to calculate the Fisher infor-
mation matrix Γij. When a strong signal with parameters λ
is present in the detector output, the likelihood is strongly
peaked in the parameter space at the best-fit (BF) parameter
set close to the true values. Namely, the measurement error

Δλ ¼ λBF − λ ð4:7Þ

is small. Then, we expand hðλÞ up to linear order in Δλ
(truncating higher orders terms given the smallness ofΔλ in
the strong signal limit) and substitute it into (4.2). On
substitution, the likelihood function becomes

pðsjλÞ ∝ exp

�
−
1

2

X
i;j

ΓijΔλiΔλj
�
; ð4:8Þ

where

Γij ¼
�
∂h
∂λi

���� ∂h
∂λj

�
: ð4:9Þ

The waveform derivatives ∂jh are computed numerically
using the five-point stencil formula such that the numerical
error scales at fourth order in the derivative spacing. The
probability function shows that the inverse of Γij, known as
the covariance matrix, contains information about variances
of parameter measurement error (diagonal elements) as
well as correlations of errors among different parameters
(off-diagonal elements). In particular, the statistical error in
the estimate of the parameter λi can be evaluated by

Δλstati ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
: ð4:10Þ

From (4.9), the Fisher matrix scales as ∼ρ2, therefore Δλ
scales as ∼ρ−1.
Besides the errors induced bynoise, there can be a possible

systematic uncertainty that is not parametrized in our wave-
formmodels. For instance, if we use an inaccuratewaveform
model hmðλÞ to estimate the parameters λ0 of a signal
actually described by a model htðλÞ, the recovered para-
meters will be affected by systematic errors given by [35],

Δλsysi ¼ ðΓ−1Þkih∂khðλ0Þjhtðλ0Þ − hmðλBFÞi: ð4:11Þ

This error is independent of the strength of the signal.
Therefore, if it exists, it will dominate over noise-induced
error, whenever the data quality is sufficiently good.
In this work, we evaluate the above mentioned errors by

comparing two kinds of waveforms: resonant waveforms
which are produced using the augmented analytic Kludge
(AAK) module [54,55] implemented in the RM (discussed
in Sec. IV B), and nonresonant waveforms where we “turn
off” the jumps induced by tidal resonances. For our Fisher
analysis, we assume that from the data we determine the
following ten parameters:

λ¼
�
log10

M
M⊙

; log10
μ

M⊙
;a;p;e;x;qr;qθ;qϕ; ϵ̃

�
; ð4:12Þ

where qr; qθ; qϕ are the initial phases of an EMRI orbit and
ϵ̃ is the normalized (by the fiducial value of ϵ) tidal
parameter. These intrinsic parameters govern the detailed
dynamical evolution of a system, regardless of where or
how an observer observes it. For computational conven-
ience, we are not including extrinsic parameters such as the
sky location angles (θS;ϕS) and the angles pointing to the
direction of the MBH’s spin (θK;ϕK) in this list, since they
are not strongly correlated with the intrinsic parameters
[56,57]. The luminosity distance DL of the source is
rescaled for each waveform to fix the SNR to 30. Our
fiducial values for the masses of the EMRI system areM ¼
106 M⊙ and μ ¼ 30 M⊙. The perturber of mass M⋆ ¼
30 M⊙ is placed at a distance of 5 AU on the equatorial
plane, resulting in the following fiducial tidal parameter
ϵ ∼ 2.3 × 10−13 for x ¼ 1. Note that EMRI evolution is
unlikely to be chaotic due to the parameters we choose for
the tidal perturber. In particular, we have found no evidence
of chaos in the osculating orbital method approach, which
takes the effect of the tidal force into account throughout
the entire inspiral. This is also consistent with other
analyses in the literature. For instance, [30] shows that
the three-body system considered here is deterministic for a
tidal parameter ϵ ∼ 10−9, which is substantially larger than
our 10−13. This study is in the post-Newtonian (PN) setting
(terms up to 2.5 PN orders are included), but we do not
expect that higher order post-Newtonian corrections would
change the “onset” of chaos in terms of ϵ by orders of
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magnitude. The authors in [58] studied the occurrence of
nonlinear resonances—which loosely speaking are asso-
ciated to chaos—in a Newtonian toy model for the three-
body hierarchical system with a tidal parameter between
10−9 and 10−5. Those authors find that nonlinear reso-
nances occur for ϵ ≥ 300η2 ∼ 1.7 × 10−8, which is also
orders of magnitude larger than the ϵ values considered in
this paper.

B. Resonance model

The ERM is a phenomenological model developed
recently to study EMRI resonances. It was constructed

using the resonance jumps as free parameters and applied to
the case of self-force resonances [10]. Following the
implementation of [10], we extend the ERM to incorporate
tidal resonances. We refer to our working code as the RM;
the word “effective” has been discarded since we are not
using the resonance jumps as free parameters. The flow-
chart is shown in Fig. 6. The solver employs flux and phase
evolution equations to obtain the trajectory, given some
initial condition (E0; Lz0; Q0). Our calculations use the fifth
order post-Newtonian (5PN) fluxes generated by the PN
approximation in first-order black hole perturbation theory
[18]. The right-hand side of the phase evolution equations
are corresponding Kerr orbital frequencies [37]. The
resonance condition is checked at each time step of the
solver (using the adaptive time step and event handling tool
in the SOLVE-IVP ODE package in PYTHON) for some low
order integer m, k, and n. If the resonance condition is
satisfied, then we record the orbital parameters at the
resonance surface and use them to estimate the jump size
of the resonance due to the tidal field using the analytic fits
obtained from our semianalytic calculations [32]. Once the
jump sizes ΔLz and ΔQ are measured, we update the
constants of motion for the next time step using a step
function. In [10], the resonance jump is implemented using a
“smooth” impulse function. In this study, however, we find
that using a smooth function instead of a step function did not
affect our results (shown in Fig. 7). Consequently, we choose
to implement the faster and simpler step function.We stop the
evolution of the trajectory once the separatrix, where ωr

vanishes, is reached. The orbital parameters and phases are

FIG. 6. Workflow of resonance model.

FIG. 7. The left figure shows the difference in Lz between the orbits evolved with and without tidal resonance effect. When the orbit
undergoes a resonance, there is a jump in the action variables J. Black dashed lines illustrate the evolution of ΔLz using a step impulse
function in the RM, whereas orange (dashed-dotted) lines represent evolution tracks using a “smooth” impulse function. Similarly, the
right figure shows the evolution of the Carter constant Q. The initial conditions for this orbit are ða; p; e; xÞ ¼ ð0.9; 11.8; 0.8; 0.0187Þ,
and the trajectory crosses two resonances, n∶k∶m ¼ 3∶0∶ − 2 and n∶k∶m ¼ 3∶ − 4∶ − 2 around t ∼ 2.2 × 107 and ∼5.8 × 107,
respectively. The fast oscillations in both figures correspond to timescales of the orbital motion. The inset plot shows enlarged evolution
near the 3∶0∶ − 2 resonance.
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then fed to the AAK module to obtain the waveform. Our
code makes use of the modular FEW package [55].

V. RESULTS

In this section, we compare the jump obtained from
analytic fits with the result obtained by the numerical
osculating code to find a good agreement between the two.
Using the RM and Fisher matrices, we show mismatches
for different initial conditions and assess the measurement
precision of EMRI orbital parameters and tidal parameters.
We also compute the systematic bias that would be induced
by ignoring resonances.

A. Mismatch

Dephasing induced by tidal resonances accumulates over
the inspiral, resulting in a decrease in the overlap (4.5)
between resonant and nonresonant waveforms after reso-
nance encounter. In this section, we analyze the evolution
of the mismatch M (4.6) as a function of the final time for
different initial conditions listed in Table I. These con-
ditions were chosen since they cover a broad range of
possibilities for astrophysical EMRI events that may be
measured by future low-frequency GWmissions. All initial
conditions are subject to a 30 M⊙ tidal perturber at a
distance of 5 AU on the equatorial plane, and the EMRI
inspiral lasts for ∼1–2 years. The parameters chosen for
tidal perturber are motivated by the Fokker-Planck simu-
lation study that suggests a population of stellar-mass BHs
at a median distance of ∼5 AU [14]. We note that for the
chosen set of parameters τres ∼ τtd, thereby violating the
stationary perturbation approximation. However, we leave
the impact of a dynamical tidal perturber on the resonances
for future work.
We first determine the consistency of the resonance

model by comparing its trajectory evolution with the
numerical osculating trajectory. The forced osculating
orbital elements method [34,59] uses the tidal force
computed from the metric perturbation hαβ and for the
inclusion of radiation reaction effects, 5PN fluxes [18,51]
are employed. Using the osculating code, we ran two
simulations for an inspiral orbit—with and without the
effect of the tidal force with the same initial conditions. To
extract the jump size, we compute the difference (ΔLz and

ΔQ) between the full trajectory (tidal forceþ 5PN) and
adiabatic (only 5PN) trajectory. A similar trajectory evo-
lution is obtained by means of the resonance model, where
the inspiral is derived mostly from 5PN adiabatic fluxes,
and the jump is added only when the resonance condition is
satisfied.
The comparison is presented in Fig. 7. We show the

differences ΔLz (left, red) and ΔQ (right, blue) for IC4
crossing two resonances 3∶0∶ − 2 and 3∶ − 4∶ − 2. The
apparent thickness of the lines shown in the figures is due to
oscillations on the orbital timescale. In this plot, the
evolution of the respective quantities obtained from the
RM are overlaid for both the “step” (black, dashed) and
“smooth” (orange, dashed-dotted) impulse functions that
model the jump obtained from the fitting formulas. This
figure shows a good agreement of jump size (and therefore
resonant phase) and overall evolution between the RM and
osculating method regardless of the choice for the impulse
function. The difference between the evolutions from the
two impulse functions is ∼Oð10−8Þ, which is too small to
resolve on the scale in Fig 7.
Additionally, we compare the agreement between the

RM and osculating methods at the waveform level.
The trajectory information from both models is fed into
the AAK module, and the snapshot of the waveform
(þ polarization) a few hours just before the plunge is
displayed in Fig. 8. We can see a remarkable phase match
between the two in the top panel. In the lower panel, we
switch off the jump in the RMwaveform and compare it with
the osculating waveform. As a result of dephasing, there is a
clear disagreement in the waveforms. Furthermore, we see
that in the present example the merger time corresponding to
the end point of the waveform is delayed for the osculating
waveform, which takes the tidal jump into account, because
of the positive jump in Lz and Q.
In Fig. 9, the cumulative mismatch between resonant and

non-resonant waveforms using the RM and osculating
method is shown. The unfilled markers show the cumu-
lative mismatch between the resonant waveforms using the
RM and osculating method, for four different initial
conditions crossing two resonances n∶k∶m ¼ 3∶0∶ − 2
and n∶k∶m ¼ 3∶ − 4∶ − 2 during the evolution. In con-
trast, the filled markers show the mismatch when the
resonances are neglected in the RM waveform model.
Before crossing the first resonance, the filled markers
overlay the unfilled ones for every initial condition. This
indicates that the mismatch increases with each subsequent
resonance encounter. The tiny increase in M before
resonance is only due to numerical error arising from a
“shift” in initial orbital frequencies due to tidally perturbed
metric as also discussed in [58] using a Newtonian analysis.
A key point to notice is that after the resonance the
mismatch between the RM and osculating resonant wave-
forms grows from 10−5 − 10−7 up to ∼10−3. This result is
significant for the waveform modeling community, because

TABLE I. Initial conditions (ICs) for EMRI orbit. The last
column shows the time of n∶k∶m ¼ 3∶0∶ − 2 resonance
encounter.

IC ða; p; e; xÞ t3∶0∶−2 (107 sec)

1 0.1,11.5,0.7,0.642 ∼1.64
2 0.5,10.5,0.8,0.642 ∼1.85
3 0.7,11.0,0.7,0.342 ∼1.71
4 0.9,11.8,0.8,0.087 ∼2.24
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it quantifies the mismatch induced by ignoring the reso-
nance modeling. As long as we correctly predict the
resonance jumps, it is possible to have an accurate wave-
form up to a mismatch of ∼10−3. This is expected to be

sufficient for search and parameter estimation. In summary,
we can model (multiple) tidal resonances by using the RM
and match the waveform until the end of the inspiral
keeping M below 10−3. It is worth reminding the reader
that the cause of the mismatch of Oð10−3Þ comes from a
numerical error resulting from tidally perturbed metric
causing a tiny “shift” in the initial conditions. If we can
determine the initial conditions correctly, the mismatch
would be smaller. We also find no discernible difference in
mismatch between the RM with the “step” and the
“smooth” impulse functions for all four initial conditions.

B. Parameter estimation and systematic bias

With the resonant waveforms derived from the RM and
including only one resonance (3∶0∶ − 2), we examine the
parameter measurement precision of the orbital and tidal
parameters basedonFishermatrices (discussed in Sec. IVA).
All thewaveforms have been normalized so that their SNR ¼
30 and the extrinsic parameters are set to fθK;ϕK; θS;ϕSg ¼
fπ=4; 0; π=4; 0g. The results for Fisher matrix estimates are
shown in Fig. 10. In this figure, we can see that the orbital
parameters (except the initial phases) are well constrained,
whereas the tidal parameters are less well constrained. In
particular, the measurement precision for the tidal parameter
ϵ̃ and the phases is ∼10−1. In terms of the waveform, the
initial phases determine the initial position of the compact
object and do not affect the frequency evolution of the EMRI
at adiabatic order, so their impact is weaker, which leads to

FIG. 8. Snapshot of hþ waveforms obtained from the RM and osculating method a few hours before plunge. Top panel: comparison of
hþ from RM (with resonance jump included) and the one from the osculating method. Lower panel: comparison of hþ from the RM
without resonance jump and the one from the osculating method.

FIG. 9. The cumulative mismatch between resonant and non-
resonant waveforms using the RM and osculating method. Here,
the unfilled markers show the cumulative mismatch between the
resonant waveforms using the RM and osculating method for
different initial conditions (see Table I) crossing two resonances
n∶k∶m ¼ 3∶0∶ − 2 and n∶k∶m ¼ 3∶ − 4∶ − 2 during the evo-
lution. In contrast, the filled markers show the mismatch if
resonances are neglected in the waveform model. The filled
markers overlay the unfilled ones before crossing the first
resonance for every initial condition. The condition with spin
0.9 has the longest inspiral time because the separatrix is close to
the central BH compared to the low spin EMRIs.
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the lower measurement precision. Due to the longer obser-
vation time for IC4 (see Fig. 9), the orbital parameters of this
system are better constrained than for the other models.
In waveform modeling, using an approximate model can

introduce systematic error (4.11) into parameter estimation.
We investigate the systematic error by using a nonresonant
approximate waveform hm, while the true waveform ht
incorporates the resonance using the RM. To compare this
error with the statistical error (4.10), we show the ratio
δλbias=Δλ in Fig. 11. With δλbias=Δλ > 1, the inaccurate
waveform modeling leads to biases larger than those
induced by noise fluctuations. The magnitude of systematic
bias naturally depends on the magnitude of the tidal

perturbation. For the strong but still realistic examples
(motivated by [14,24,30]) of tidal resonance that we
consider, the systematic errors cannot be completely
ignored. Thus, we may need to account for the presence
of tidal perturbers when performing careful inference, as
also indicated by mismatch analysis in Fig. 9.
In addition to measurement precision, the Fisher matrix

also provides the covariance relation between the para-
meters. To visualize this, we plot the 3σ contours in Fig. 12
for IC1. The solid (blue) contours are generated by the true
model (with resonance) and are centered on the true
parameter values. The dotted (red) contours are derived
from the model without resonance, where the peak values
are shifted by the amount of the systematic errors shown in
Fig. 11. For the example considered in Fig. 12, the bias is
within the credible region for most of the EMRI para-
meters. However, our ability to measure the initial phases is
more significantly affected if tidal effect is not modeled.
The normalized tidal parameter ϵ̃ [discussed below
Eq. (4.12)] can be constrained with an absolute precision
of 0.25.
In the analysis above, we showed the bias induced in

parameter measurement precision if tidal resonance was not
modeled in the waveform. Next, we compare the same
model with the one in which tidal parameter is set to zero;
i.e., the signal is not tidally perturbed but the tidal
parameter is included in the Fisher analysis. The goal is
to check whether the error estimates are affected by the
introduction of the tidal parameter. We assume that the
signal is given by a model with the tidal parameter set to
zero. In Fig. 13 blue-solid contours show the 3σ confidence
region when we use the model with 10 parameters includ-
ing the tidal parameter, while the red-dotted contours
corresponding to the model with nine parameters excluding
the tidal parameter. Because the tidal parameter is positive
by definition, we show a section of ellipses in the positive
range. The orbital parameters such as M; μ; a; p; e; x are
measured with approximately the same precision in both
models. Our ability to measure the EMRI’s initial phasing
is noticeably more degraded, but the overall impact is still
fairly marginal. Thus, the tidal parameter is largely a
nondegenerate degree of freedom, and its inclusion in
EMRI data analysis will not pose fundamental issues in
the absence of a tidal perturber at least for the magnitude of
tidal perturbation considered in our work.
By combining the results from Figs. 12 and 13 for the

example considered, we can infer the maximum value of
tidal parameter under which the presence of a tidal
resonance cannot be assessed. According to Fig. 12, we
can constrain the tidal parameter within the error bar of
�0.25 of the true value, whereas Fig. 13 says that we can
rule out values larger than 0.25 for ϵ̃. Therefore, if we
choose a signal with ϵ̃ ¼ 0.25, we would likely have an
ellipse centered at 0.25 and the width touching the zero
(since the error bar is �0.25). It follows that we may rule

FIG. 10. Measurement precision Δλ of EMRI’s intrinsic and
tidal parameters for the initial conditions listed in Table I. All the
signals are normalized to SNR ¼ 30. The numbering of ICs
follows Table I.

FIG. 11. The ratio δλbias=Δλ between the size of the systematic
and statistical errors is shown for the initial conditions listed in
Table I. The dashed grid line indicates that the ratio is equal to 1.
For δλbias=Δλ > 1, the bias induced by inaccurate waveform
modeling is more significant than that caused by the noise
fluctuations in the detector.
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FIG. 12. The two-dimensional posterior showing 3σ contours for IC1 (see Table I), where the injected signal had an SNR of 30. The
solid (blue) contours are generated by the model with resonance and are centered on the true parameter values. The dotted (red) contours
are derived from a model without resonance with peak shifted to parameter values estimated with induced systematic error.
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out zero for a larger ϵ̃ (> 0.25), thereby marking the
presence of the perturber, but not for a smaller ϵ̃.

VI. SUMMARY AND FUTURE WORK

Observations of extreme-mass-ratio inspirals may pro-
vide an excellent opportunity to test some of the key

predictions of general relativity and are particularly useful
for probing the stellar distribution at the galactic center. In
this work, we generalized our previous study [32] to
explore the impact of different resonance combinations
caused by a stellar-mass perturber near an EMRI. We
computed the accumulation in phase after a tidal resonance
has been encountered by an EMRI and showed the

FIG. 13. The two-dimensional posterior showing 3σ contours for IC1 (see Table I), where the injected signal had an SNR of 30. The
blue-solid contours represent the model in which the tidal parameter is set to zero (ϵ̃ ¼ 0), and red-dotted contours represent the model in
which the tidal parameter is not included in the analysis. The confidence contours are centered at the true value since both signals were
unperturbed.
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dependence of resonance strength on orbital parameters
and inclination of the perturber. Using Fisher matrices, we
also analyzed how this phenomenon impacts the estimation
of the intrinsic orbital and tidal parameters by using a RM
based on a step function approach. We validated the
evolution of the trajectory derived from the RM by
comparing it with the forced osculating trajectory. This
gives us confidence in the robustness of the fitting formulae
as well as the implementation of the RM. Our study
examined the systematic errors that might arise from
neglecting tidal resonances in the estimation of intrinsic
parameters. Our results suggest that parameter estimates are
likely to be biased if resonances are not considered in
waveform modeling. The analysis presented here to model
tidal resonances would likely apply to self-force resonances
as well.
As part of the extension of this work, we will relax the

stationary perturber approximation and explore multiple
resonant interactions in parameter estimation using
Bayesian posterior calculations. Furthermore, once the
resonances jump sizes due to the self-force is available,
the ability of RM to detect and characterize EMRIs should
be investigated. Last, the overall approach in this work,
paper I, and modeling efforts by the EMRI community is to
pursue a modeled treatment of resonances (be it self-force
or tidal) in data analysis. However, this is not the only
possible approach, since phenomenological treatments
such as ERM (where information on resonance jumps is
recovered rather than modeled) might also prove useful;
this is especially the case if sufficiently precise modeling of
these jumps turns out to be unfeasible or unachievable.
Thus, it is worthwhile to continue exploring both
approaches in parallel, which will in turn benefit from
shared techniques such as those introduced in this work.
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APPENDIX: SUPPRESSION OF ODD k+m
INTEGER RESONANCES

In paper I, we focused our analysis onm ¼ �2modes and
discussed the suppression of resonances for odd k integers.
Here, we take a step further and investigatem ¼ �1modes.
We discover that tidal resonances with odd kþm integer do
not give rise to a jump in the constants ofmotion.Hence, they
do not contribute to a secular accumulation of a phase shift
and are therefore not relevant for waveform modeling. On
assuming a static tidal interaction, the leading order external
potential at a large distance is expressed as

Uext ∝ Eabxaxb;

where the symmetric tidal tensor Eab contains all the
information about the tidal environment. Form ¼ �1modes,
only Exz and Eyz contributewhere x; y; zðr; θ;ϕÞ are standard
Cartesian (spherical) coordinates. Note that transforming
qϕ → qϕþπ ⇒ x → −x; y → −y or qθ → qθþπ ⇒ z → −z

FIG. 14. Section of orbit in qϕ − qθ plane for different resonance conditions.
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leads to a sign flip of the tidal potential and hence the
resulting torque. Therefore, if corresponding points [for
instance, both ðqϕ; qθÞ and ðqϕ; qθþπÞ] are passed by an
orbit, then it results in a net cancellation of dLz=dt between
the two segments of the orbit. In Fig. 14, for illustrative
purposes, we show a section of the orbit in the qϕ − qθ
plane for kþm ¼ 1 (left) and kþm ¼ 2 (right) resonance
combinations. In the left plot, for fixed qr ¼ 0, the distance

between two lines is π. Thus, the orbit evolves in such a
manner, that the net tidal force cancels out resulting in no
change in Lz. Whereas, in the right plot, the corresponding
“cancellation” points are not crossed by the orbit. While
this discussion helps understand the vanishing dLz=dt on
crossing odd kþm resonances, empirically we found that
the jump in Carter constant (i.e., dQ=dt) also vanishes for
such resonances.
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