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We investigate the leading-order behavior of matter fields in the preinflationary era using the
semiclassical approximation. Many inflationary models assume without supporting arguments that the
Universe was radiation dominated prior to inflation, leading to modifications of cosmological observables,
such as the cosmic microwave background power spectrum. In previous work, we demonstrated that
conformally coupled scalar fields do have a radiationlike contribution to the stress-energy tensor at
sufficiently early times. In this work, we extend these arguments to apply to massless spin-1 fields and
massive or massless spin-1

2
fields. We find massless spin-1 fields always have a radiationlike contribution.

For spin-1
2
fields, we find the contribution at early times is radiationlike assuming this is the dominant

contribution to the stress-energy tensor.

DOI: 10.1103/PhysRevD.106.103537

I. INTRODUCTION

The inflationary paradigm explains many characteristics
of our observed Universe. Many models of inflation make
use of a radiation-dominated behavior of matter fields in
the preinflationary era in order to obtain modifications to
the standard predictions of inflation and better explain
observed phenomena (see [1] and references therein for a
review of models using a radiation-dominated preinfla-
tionary era). For instance, various models involving the
transition from a radiation-dominated era to inflation lead
to modifications of the cosmic microwave background
anisotropy spectrum, such as a lowering of the quadrupole
moment which appears to be anomalously suppressed [2].
The assumption that fields are radiation-dominated prior
to inflation is central to such models, though it is nontrivial
to demonstrate that such behavior was the case for our
Universe, and it would be hopeless to try to detect particles
due to these fields today given the effects of inflation. It is
therefore interesting to analyze the preinflationary era and
the behavior of matter fields in it.
The primary objective of this work is to investigate

the behavior of quantum fields in the preinflationary era.
A complete analysis of the early universe would require a
theory of quantum gravity, which for now is out of reach,
but one could anticipate that after the Planck era some
span of the preinflationary era would have curvature
well below the Planck scale, in which case the sem-
iclassical approximation should hold. In this paper, we
will assume the semiclassical approximation to hold
in some portion of the preinflationary era, and we
will use this framework to analyze quantum fields in a

Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time and obtain their corresponding contributions to the
energy density.
The case of massive scalar fields was investigated using

the semiclassical approximation in [3]. There it was shown
that under a set of conditions on the scale factor the fields
did result in radiation-dominated contributions to the
energy density. The conditions on the scale factor were
also argued to likely be valid for our Universe. In the
present work, we will investigate the corresponding behav-
ior of other fields, namely massless spin-1 and massive or
massless spin-1

2
fields.

The analysis for spin-1 and spin-1
2
fields is generally more

complicated than for scalar fields. For spin-1
2
fields, the mass

appears explicitly in the expression for the counterterms at
higher than zeroth adiabatic order, which leads to additional
complications. Performing adiabatic regularization with a
zeroth-order parametrization of the states does not explicitly
appear to produce finite energy densities until one considers
the higher order contributions buried in the parametrization.
For an overview of the adiabatic regularization procedure
for spin-1

2
, see [4–6]. For spin-1 fields one must consider

the massive and massless cases separately. Massive vector
fields do appear in the Standard Model, but they are
ultimately due to interactions with the Higgs field and are
out of the scope of this paper. For the massless case one can
show that the analysis decomposes into four decoupled
copies of a scalar field, as was done in Ref. [7]. There
the analysis was performed to obtain the trace anomaly,
but obtaining the renormalized energy density from this
groundwork is nontrivial.
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In the following, we work in Planck units with c ¼ G ¼
ℏ ¼ 1 and use the ð−;þ;þ;þÞ signature for the metric. We
assume a spatially flat universe described by the FLRW
metric

ds2 ¼ a2ð−dη2 þ dx⃗2Þ; ð1Þ

where a≡ aðηÞ is the scale factor and η is conformal time.
We will employ a prime, such as a0 ≡ ∂ηa, to denote
differentiation with respect to conformal time. We are
interested in taking a → 0 at early times and determining
whether one can assume radiation-dominated behavior.
However, we do not want to consider times in the
Planck era, during which the semiclassical approximation
is not assumed to be valid, so we denote by η0 the earliest
conformal time of consideration and implicitly assume it to
be past the Planck era. In Planck units, this corresponds to a
value of the Hubble parameter H ≡ a0

a2 ≪ 1. We therefore
aim to determine if the renormalized energy density ρr for
each field is appropriately radiation dominated during a
range of conformal time η0 < η < η1 for a generic scale
factor a. We will allow for the possibility of a nonzero mass
m for fermions, in which case we will insist that m ≪ 1
in Planck units. If there are fermion fields with m≳ 1,
these will have mass comparable to or greater than the
Planck mass, and then we will assume the fields have no
contribution to the total energy density when η≳ η0. We
will work with quantum fields in any state other than the
conformal vacuum state for massless fields.
The body of this article is split into three sections, one for

each of the two spins of fields and one for a discussion of
the results obtained. Section II contains the analysis for
spin-1 vector fields, beginning with a summary of the
adiabatic regularization procedure and concluding with the
renormalization of the energy density and our main result
for the spin-1 case. Section III contains the analysis for

spin-1
2
fields and begins with a summary of the modified

adiabatic regularization procedure, as described in [6]. The
subsequent renormalization and analysis is more compli-
cated than that for the vector fields and is split into
subsections: in Sec. III A we give the renormalization
counterterms and preview the assumptions built into our
analysis; in Sec. III B, we derive bounds on the renormal-
ized energy density by splitting the contributions into high
and low energy terms and analyzing each in turn; and in
Sec. III C we obtain the leading order behavior of the
renormalized energy density and our main result for the
spin-1

2
case. We close in Sec. IV with a discussion of our

main results and final remarks.

II. ENERGY DENSITY FOR VECTOR FIELDS

As discussed in the Introduction, massive and massless
vector fields must be treated separately. In the Lagrangian
description, the massive field is described by the Proca
action [8], which in flat spacetime is a gauge-fixed theory
involving the Higgs mechanism. Working with interactions
and the curved spacetime form of the action is beyond the
scope of this paper. We will focus instead on the mass-
less case.
According to an argument in [9], any conformally

invariant theory in a flat FLRW spacetime will have a
stress-energy tensor that contains two terms, one of which
is radiationlike and the other of which is the anomalous
term. Renormalizing the electromagnatic field, however,
requires that masses are introduced for the photon and
ghost fields, which break the conformal invariance. These
masses are then taken to zero to obtain physical results. We
therefore feel it is worth working through the details of this
procedure to confirm that the argument in [9] works.
The massless vector field in curved spacetime is given by

the massless limit of the theory described by Lagrangian [7]

L ¼ ffiffiffiffiffiffi
−g

p �
−
1

4
gμρgνσFμνFρσ −

1

2ξ
∇μAμ∇νAν −

1

2
m2gμνAμAν þ igμν∂μχ̄∂νχ þ imχ χ̄χ

�
; ð2Þ

where Aμ is the four-vector, ξ is the gauge fixing parameter, χ is the (complex) ghost field used to maintain gauge invariance,
mχ is the mass of the ghost field, and Fμν ¼ ∂μAν − ∂νAμ. Masses are included in the Lagrangian (2) in order to properly
renormalize the theory. These masses can trivially be taken to zero before computing any unrenormalized observables, but
they are crucial in obtaining the appropriate renormalization counterterms. We will make clear when they are to be taken to
zero in the following. The energy-momentum tensor from Eq. (2) is

Tμν ¼ TMaxwell
μν þ TG

μν þ Tghost
μν ; ð3aÞ

TMaxwell
μν ≡ −

1

4
gμνgαβgρσFαρFβσ þ gαβFαμFβν −

1

2
gμνm2gαβAαAβ þm2AμAν; ð3bÞ

TG
μν ≡ 1

ξ

�
−
1

2
gμνðgαβ∇αAβÞ2 þ ðgμνgρσAσ∇ρ − Aν∇μ − Aμ∇νÞðgαβ∇αAβÞ

�
; ð3cÞ
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Tghost
μν ≡ igμνgρσ∂ρχ̄∂σχ − ið∂μχ̄∂νχ þ ∂νχ̄∂μχÞ þ igμνm2

χ χ̄χ: ð3dÞ

Following the procedure in Ref. [7], one can define the components of the four-vector Aμ as a combination of temporal,
transverse, and longitudinal parts,

Aμ ≡ ðA0; Bi þ ∂iAÞ: ð4Þ

These components and the ghost field can be expanded in terms of mode functions Ya, for a ¼ 0; L; T; χ, where L
represents longitudinal and T transverse contributions:

A0 ¼
1

m2a2

Z
d3k⃗
ð2πÞ3

�
að0Þ
k⃗

�
∂η −

2a0

a

�
ðmaY0Þeik⃗·x⃗ þ að3Þ

k⃗
kmaYLeik⃗·x⃗ þ H:c:

�
; ð5aÞ

Bi ¼
Z

d3k⃗
ð2πÞ3

X
p¼1;2

ðϵpi aðpÞk⃗
YTeik⃗·x⃗ þ H:c:Þ; ð5bÞ

A ¼ 1

m2a2

Z
d3k⃗
ð2πÞ3

�
að0Þ
k⃗
maY0eik⃗·x⃗ − að3Þ

k⃗
∂η

�
ma
k

YL

�
eik⃗·x⃗ þ H:c:

�
; ð5cÞ

χ ¼
Z

d3k⃗
ð2πÞ3

�
bk⃗Yχ

a
eik⃗·x⃗ þ

b†
k⃗
Y�
χ

a
e−ik⃗·x⃗

�
; ð5dÞ

χ̄ ¼
Z

d3k⃗
ð2πÞ3

�
b̄k⃗Yχ

a
eik⃗·x⃗ þ

b̄†
k⃗
Y�
χ

a
e−ik⃗·x⃗

�
; ð5eÞ

where aðμÞ
k⃗
, bk⃗, and b̄k⃗ and their Hermitian conjugates are

annihilation and creation operators, ϵpi are the two polari-
zation vectors of the transverse modes, and H.c. represents
the Hermitian conjugate of all preceding terms. The
creation and annihilation operators satisfy the commutation
and anticommutation relations

½aðaÞ
k⃗
; aðbÞ†

k⃗0
� ¼ ηabð2πÞ3δð3Þðk⃗ − k⃗0Þ; ð6aÞ

fbk⃗; b̄†k⃗0 g ¼ −fb̄k⃗; b†k⃗0g ¼ ið2πÞ3δð3Þðk⃗ − k⃗0Þ; ð6bÞ

where ηab ¼ diagð−1; 1; 1; 1Þ. The polarization vectors
satisfy

X
i

kiϵ
p
i ¼ 0; ð7aÞ

X
i

ϵpi ϵ
p0
i ¼ δpp

0
; ð7bÞ

X
p¼1;2

ϵpi ϵ
p
j ¼ δij −

kikj
k2

; ð7cÞ

with p the polarization index. The modes Ya satisfy the
decoupled set of differential equation

ð∂2η þΩ2
aÞYa ¼ 0; ð8Þ

where

Ω2
a ≡ ω2

a þ ζa ð9Þ

is defined for each contribution by

ω2
0 ≡ k2 þ ξm2a2; ð10aÞ

ω2
L;T ≡ k2 þm2a2; ð10bÞ

ω2
χ ≡ k2 þm2

χa2; ð10cÞ

and

ζ0;χ ≡ −
a00

a
; ð11aÞ

ζL ≡ a00

a
−
2a02

a2
; ð11bÞ

ζT ≡ 0: ð11cÞ

The modes satisfy the standard normalization conditions
for a scalar field,
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YaY�0
a − Y 0

aY�
a ¼ i: ð12Þ

Note that in the massless limit Y0 and Yχ satisfy the same
differential equations, so we can choose

Y0 ¼ Yχ for m ¼ mχ ¼ 0: ð13Þ

Using this mode decomposition, one can find contribu-
tions to the energy density ρ≡ hT 0̂ 0̂i from Eqs. (3b)–(3d)
in terms of Ya:

ρMaxwell ¼ lim
m→0

1

4π2a4

Z
Λ

0

dkk2
�
ω2
T jYT j2 þ jY 0

T j2 −
�
k2 þ a02

a2

�
jY0j2 þ

a0

a
∂ηðjY0j2Þ − jY 0

0j2

þ
�
ω2
L þ a02

a2

�
jYLj2 þ

a0

a
∂ηðjYLj2Þ þ jY 0

Lj2
�

ð14aÞ

ρG ¼ lim
m→0

1

2π2a4

Z
Λ

0

dkk2
��

ω2
0 −

1

2
ξm2a2 þ a02

a2

�
jY0j2 −

a0

a
∂ηðjY0j2Þ þ jY 0

0j2
�

ð14bÞ

ρghost ¼ lim
mχ→0

1

2π2a4

Z
Λ

0

dkk2
�
−
�
ω2
χ þ

a02

a2

�
jYχ j2 þ

a0

a
∂ηðjYχ j2Þ − jY 0

χ j2
�
; ð14cÞ

where Λ is a cutoff regulator which we will later demon-
strate can be taken to infinity in the massless limit.
One may adiabatically renormalize the energy density

by writing the vacuum states with the standard Wentzel-
Kramers-Brillouin (WKB) ansatz

Ya ¼
1ffiffiffiffiffiffiffiffiffi
2Wa

p e−i
R

η dη̄Waðη̄Þ; ð15Þ

where

ðWaÞ2 ¼ Ω2
a −

�
W00

a

2Wa
−
3

4

�
W0

a

Wa

�
2
�
: ð16Þ

Solutions toEq. (16) canbe approximatedusingWð0Þ
a ¼ Ωa as

the lowest order and iterating to higher orders, keeping to the
appropriate adiabatic order, given by the number of time
derivatives on the scale factor, at each iteration. Substitution of
Wa to some adiabatic orderA into Eq. (15) would then require
expanding the square root only to terms of adiabatic order A.
In order to renormalize the energy density, one must take

Eq. (15) to the appropriate adiabatic order and substitute
into Eqs. (14a)–(14c) to produce the renormalization
counterterms. On dimensional grounds, one would need
to keep to fourth adiabatic order to renormalize ρ. The
fourth order counterterms are

ρð4Þc ¼ lim
m→0

1

4a2

Z
d3k
ð2πÞ3

�
W0 þWL þ 2WT − 2Wχ þ

ω2
0

W0

þ ω2
L

WL
þ 2ω2

T

WT
−
2ω2

χ

Wχ
þ a02

a2W0

þ a02

a2WL
−

2a02

a2Wχ
þ a0W0

0

aW2
0

−
a0W0

L

aW2
L
−
2a0W0

χ

aW2
χ
þ W02

0

4W3
0

þ W02
L

4W3
L
þ W02

T

2W3
T
−

W02
χ

2W3
χ

�ð4Þ
; ð17Þ

where f…gð4Þ implies that allWa are taken to fourth order.
In order to analyze the early-time behavior of the energy

density, we will parametrize the mode functions in terms of
zeroth-order adiabatic states

Ya ¼ αk;aY
ð0Þ
a þ βk;aY

ð0Þ�
a ; ð18Þ

Y 0
a ¼ αk;aY

ð0Þ0
a þ βk;aY

ð0Þ�0
a : ð19Þ

From the normalization condition (12), one has

jαk;aj2 − jβk;aj2 ¼ 1: ð20Þ

One could instead parametrize themode functions in terms of
higher-order adiabatic states, in which case the Bogoliubov
coefficients αk;a and βk;a would be constant to the given
adiabatic order, but zeroth order will be sufficient to properly
renormalize the theory. Substituting Eqs. (18) and (19) into
Eq. (8), one obtains differential equations for the coefficients,

α0k;a ¼
Ω0

a

2Ωa
βk;ae2iθa ð21aÞ

β0k;a ¼
Ω0

a

2Ωa
αk;ae−2iθa ; ð21bÞ

where θa ≡ R
η dη̄Waðη̄Þ.
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One can then obtain the renormalized energy density in
terms of αk;a and βk;a by subtracting these renormalization
counterterms from the unrenormalized energy density
given in Eqs. (14a)–(14c). Using a zeroth order para-
metrization, one finds that the renormalized energy density
ρr separates into analytic and mode terms

ρr ¼ ρan þ ραβ; ð22Þ

where the analytic terms ρan are finite higher-order terms,
independent of the cutoff regulator Λ, coming from the
counterterms (17),

ρan ¼
1

2880π2

�
62ð3ÞH00 þ

�
3þ 5

2
ln ξ

�
ð1ÞH00

�

¼ 1

2880π2

�
186a04

a6
þ 216a02a00

a5
þ 54a002

a4
−
108a0a000

a4
þ ln ξ

�
180a02a00

a5
þ 45a002

a4
−
90a0a000

a4

��
; ð23Þ

where ð1ÞH00 and ð3ÞH00 are higher order corrections to the Einstein field equations [10], and the mode terms ραβ are those
coming from the zeroth order parametrization of Eq. (18),

ραβ ≡ lim
m;mχ→0

1

a2

Z
Λ

0

d3k
ð2πÞ3

�
k2 þ ω2

T

a2ωT
jβk;T j2 þ

m2

2ωL
jβk;Lj2 þ

1

ω0

�
3ω2

0 þ k2

2a2
þ a02

a4

�
jβk;0j2

−
1

ωχ

�
ω2
χ þ k2

a2
þ a02

a4

�
jβk;χ j2 −

m2

ωT
Reðαk;Tβ�k;Te−2iθT Þ þ

m2

2ωL
Reðαk;Lβ�k;Le−2iθLÞ

þ 1

ω0

�
a04

a2
−
ξm2

2a2

�
Reðαk;0β�k;0e−2iθ0Þ þ

1

ωχ

�
m2

χ −
a02

a4

�
Reðαk;χβ�k;χe−2iθχ Þ

−
2a0

a3
Imðαk;0β�k;0e−2iθ0Þ þ

2a0

a3
Imðαk;χβ�k;χe−2iθχ Þ

�
: ð24Þ

Assuming βk;a falls faster than k−2, integrating the terms
in Eq. (24) will yield finite results, even if Λ → ∞, and
hence the massless limit can be freely taken inside the
integral. One finds from substitution of Eqs. (15), (18), and
(19) into Eq. (8) that α0k;0 ¼ α0k;χ and β

0
k;0 ¼ β0k;χ after taking

the massless limit, which when combined with Eq. (13)
allows one to choose the coefficients for the 0 and χ
contributions to be identical. The mode term contribution to
the energy density therefore drastically simplifies to

ραβ ¼
1

π2a4

Z
Λ

0

dkk3jβk;T j2: ð25Þ

The ultraviolet cutoff can now be removed, and we take the
limit Λ → ∞. The renormalized energy density ultimately
only depends on the transverse mode functions, which are
the only physical modes of the theory, and higher-order
dependencies on the background curvature:

ρr ¼
1

π2a4

Z
∞

0

dkk3jβk;T j2

þ 1

2880π2

�
62ð3ÞH00 þ

�
3þ 5

2
ln ξ

�
ð1ÞH00

�
: ð26Þ

Assuming the higher-order corrections are subdominant in
the semiclassical approximation below the Planck scale, ρr

for massless vector fields does have the expected radiation-
dominated behavior. We note that this results applies to a
general scale factor a and agrees with the prediction in [9]
that, other than the higher-order terms, all of the contri-
butions in a flat FLRW metric of a conformally invariant
field will act like radiation.
The higher-order terms in (26) are of the same form as

those found for the trace anomaly in [7,11], in which the
ð1ÞH00 term has a gauge-dependent coefficient. This coef-
ficient corresponds to a □R term appearing in the trace
anomaly. The exact value of this coefficient is dependent on
the regularization scheme used, unlike for scalar and spin-1

2

fields which respectively have the same coefficient regard-
less of regularization scheme.
It is also worth noting that the higher-order terms may

not in fact be negligible compared to the rest of Eq. (26)
when the quantum field contributions themselves are very
small or vanish, such as in the case that βk;T ¼ 0, which
corresponds to the conformal vacuum state. The contribu-
tion to the total stress-energy tensor from massless
spin-1 fields would then not necessarily be radiationlike.
However, in such a scenario some other component would
likely be dominating the total stress-energy tensor, and the
Friedmann equation assures us that the higher-order, geo-
metric contributions will always be much smaller than the
other contributions until one approaches the Planck era.
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III. ENERGY DENSITY FOR DIRAC FIELDS

We now turn our attention to Dirac spinor fields in the
preinflationary era of an FLRW universe. We follow the
work and notation given in Ref. [6]. There, expressions are
in terms of cosmic time t, related to conformal time by
adη ¼ dt. We summarize the procedure for obtaining the
unrenormalized energy density here.
Consider Dirac spinor fields ΨðxÞ that obey the Dirac

equation in curved spacetime,

ðiγaeaμ∇μ −mÞΨ ¼ 0; ð27Þ
where eaμ is the vierbein, γa are the flat spacetime Dirac
matrices satisfying fγa; γbg ¼ 2ηab, and ∇μ ≡ ∂μ þ Γμ is
the covariant derivative associated with the spin connection
Γμ. For the metric (1), the Dirac equation (27) becomes

�
γ0
�
∂η þ

3a0

2a

�
þ γi∂i þ ima

�
Ψ ¼ 0: ð28Þ

The field can be written in terms of creation and annihi-
lation operators D†

k⃗λ
ðηÞ and Bk⃗λðηÞ as

Ψ ¼
X
λ¼�1

2

Z
d3kðBk⃗λψ k⃗λ þD†

k⃗λ
Cψ̄⊺

k⃗λ
Þ; ð29Þ

where C is the charge conjugation matrix, λ ¼ �1=2
represents the helicity eigenvalue, and

fBk⃗;λ; B
†
k⃗;λ
g ¼ δλλ0δ

ð3Þðk⃗ − k⃗0Þ ð30Þ

and similarly for Dk⃗λ and D†
k⃗λ
, with all other anticommu-

tators vanishing. Working in the Dirac-Pauli representation
for γa, the modes ψ k⃗λ can be written as

ψ k⃗λðη; x⃗Þ ¼
eik⃗·x⃗ffiffiffiffiffiffiffiffiffiffiffiffi
8π3a3

p
�

hIkðηÞξλðk⃗Þ;
hIIk ðηÞk̂ · σ⃗ξλðk⃗Þ

�
; ð31Þ

where ξλðk⃗Þ are two-component spinors and are eigenvec-
tors of the spin component along the k⃗ direction, so that
1
2
ðk̂ · σ⃗Þξλðk⃗Þ ¼ λξλðk⃗Þ, with normalization ξ†λξλ ¼ 1, and

hIk and hIIk are scalar functions that satisfy coupled first-
order differential equations

∂ηhIkðηÞ ¼ −ikhIIk ðηÞ − imaðηÞhIkðηÞ; ð32aÞ

∂ηhIIk ðηÞ ¼ −ikhIkðηÞ þ imaðηÞhIIk ðηÞ; ð32bÞ

and have the normalization

jhIkðηÞj2 þ jhIIk ðηÞj2 ¼ 1: ð33Þ

The energy density for the Dirac field in terms of the mode
functions hI;IIk can be written as

ρ¼ 1

π2a4

Z
∞

0

dkk2½maðjhIIk j2− jhIkj2Þ−kðhIkhII�k þhI�k h
II
k Þ�:

ð34Þ
At this point, we will diverge from this procedure

coming from [6], who themselves proceeded to obtain
counterterms to a generic unrenormalized energy in an
FLRW universe. These counterterms were then used to
prove conservation of the energy density and were applied
to a de Sitter spacetime and a radiation-dominated universe.
As demonstrated there, one can make use of adiabatic
regularization to renormalize the energy density, but the
ansatz used for the WKB approximation of adiabatic states
must be a modified form of the standard ansatz. This
renormalization procedure was first demonstrated in [4] and
has been applied in other cases [5,12–14]. Here, we will
use the energy density (34) as well as the modified WKB
ansatz to obtain renormalization counterterms, but we will
use a different process to obtain an explicit form of the
unrenormalized energy density. Namely, we will expand
the mode functions hI;IIk in terms of adiabatic modes gI;IIk
via a Bogoliubov-like expansion in order to analyze early
time behavior using the Bogoliubov coefficients.
First, one expands hI;IIk in terms of adiabatic modes gI;IIk ,

hIk ¼ αkgIk − βkgII�k ; ð35aÞ

hIIk ¼ αkgIIk þ βkgI�k ; ð35bÞ

where gI;IIk are given to adiabatic order A,

gI;IIk ¼ gI;IIð0Þk þ gI;IIð1Þk þ � � � þ gI;IIðAÞk ; ð36Þ

with adiabatic order understood to be the number of
conformal time derivatives, and satisfy the differential
equations (32a) and (32b), and αk and βk are the time-
dependent Bogoliubov coefficients and are constant to
order A. Coupled first order differential equations for αk
and βk can be obtained from Eqs. (32a), (32b), and (33).
The unrenormalized energy density in terms of the adia-
batic states is

ρ ¼ 1

π2a4

Z
∞

0

dkk2f2jβkj2½maðjgIkj2 − jgIIk j2Þ þ 2kReðgIkgII�k Þ� þ 4maReðαkβ�kgIkgIIk Þ

þ 2kRe½αkβ�kððgIIk Þ2 − ðgIkÞ2Þ� þmaðjgIIk j2 − jgIkj2Þ − 2kReðgIkgII�k Þg; ð37Þ
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and the adiabatic renormalization counterterms are

ρc ¼
1

π2a4

Z
∞

0

dkk2½maðjgIIk j2 − jgIkj2Þ − 2kReðgIkgII�k Þ�ð4Þ;

ð38Þ

where ½…�ð4Þ indicates that gIk, gIIk are fourth order states. In
order for the energy density to be renormalized and all
divergences eliminated, the adiabatic states in Eq. (37) must
be at least of the adiabatic order at which the counterterms
in Eq. (38) are divergent.
In order to obtain forms for the adiabatic states, one can

obtain uncoupled second order equations from Eqs. (32a)
and (32b),

�
∂
2
η þ

a0

a
∂η − ima0 þ ω2

�
gIk ¼ 0; ð39Þ

�
∂
2
η þ

a0

a
∂η þ ima0 þ ω2

�
gIIk ¼ 0; ð40Þ

where

ω2 ≡ k2 þm2a2; ð41Þ

and assume formal WKB series solutions, truncating at
the desired adiabatic order. However, Ref. [4] and later
Refs. [5,6] pointed out that the usual WKB ansatz does not
satisfy the normalization condition (33), so one must use a
modified WKB ansatz of the form

gIk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþma

2ω

r
Fe−iθk ; ð42aÞ

gIIk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −ma
2ω

r
Ge−iθk ; ð42bÞ

and the functions

F ¼ 1þ Fð1Þ þ � � � þ FðAÞ; ð43aÞ

G ¼ 1þ Gð1Þ þ � � � þ GðAÞ; ð43bÞ

θk ¼
Z

η
dη̃ðωþωð1Þ þ � � �þωðAÞÞ ð43cÞ

are determined by repeated substitution of Eqs. (42a)
and (42b) into Eqs. (32a), (32b), and (33). There is an
ambiguity in the exact forms following this method, but
all local observables are independent of the ambiguity [4],
so one may fix the ambiguity by choosing FðnÞð−mÞ ¼
GðnÞðmÞ for each order n ≥ 1. However, we are only
interested in using zeroth order states, for which one
obtains

gIk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþma

2ω

r
e−iθk ; ð44aÞ

gIIk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω −ma
2ω

r
e−iθk ; ð44bÞ

which have a normalization from Eq. (33) of

jgIkj2 þ jgIIk j2 ¼ 1: ð45Þ

Note that we will continue writing θk like we have in
Eqs. (44a) and (44b) for simplicity and assume it to be
understood that only the zeroth order term is kept.
Substituting Eqs. (35a) and (35b) into the differential
equations (32a) and (32b), one obtains differential equations
for αk and βk,

α0k ¼
−kma0

2ω2
βke2iθk ; ð46Þ

β0k ¼
kma0

2ω2
αke−2iθk ; ð47Þ

and substituting them into the normalization condition (33),
one finds

jαkj2 þ jβkj2 ¼ 1: ð48Þ

A. Renormalized energy density

In order to obtain finite results so that we may inspect the
behavior of the energy density, one must subtract counter-
terms up to fourth order from Eq. (37). Order by order,
these counterterms ρðnÞ are

ρð0Þc ¼ −ω; ð49Þ

ρð2Þc ¼ k2ω02

8m2a2ω3
¼ k2m2a02

8ω5
; ð50Þ

ρð4Þc ¼ Oðk−5Þ: ð51Þ

The fourth order counterterms produce finite contributions to
the energy density. Using the zeroth order adiabatic states
(44a) and (44b) in Eq. (34) and subtracting the counterterms
(49)–(51), one obtains the renormalized energy density

ρr ¼
1

π2a4

Z
∞

0

dkk2
�
2ωjβkj2 −

k2m2a02

8ω5

�

þ 2

2880π2

�
−
1

2
ð1ÞH00 þ

11

2
ð3ÞH00

�
; ð52Þ

where the finite renormalization terms coming from the
fourth order counterterms [10],
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2

2880π2

�
−
1

2
ð1ÞH00 þ

11

2
ð3ÞH00

�
¼ 2

2880π2a4

�
33a04

2a4
þ 18a0a000

a2
−
9a002

a2
−
36a02a00

a3

�
; ð53Þ

are assumed small beyond the Planck era. As discussed in
the spin-1 case, these higher-order terms (53) may not be
negligible compared to very small or negligible quantum
field contributions in Eq. (52). However, if this were true,
then some other component would likely be dominating the
total energy density, and the potentially nonradiationlike
behavior of the spin-1

2
contribution (52) would be sublead-

ing. In any case, we may proceed to analyze the quantum
field terms in Eq. (52) regardless of the size of the higher-
order terms to see if they do in fact produce a radiationlike
contribution.
We ultimately will attempt to solve the Friedmann

equation

H2 ¼ 8π

3
ρ; ð54Þ

where

H ≡ a0

a2
; ð55Þ

and ρ contains ρr and may also include other terms such as
a cosmological constant or other classical contributions.
Because we are working with a semiclassical approxima-
tion, we do not assume our analysis to be valid during the
Planck era. Hence wewill work starting at an initial time η0,
which is assumed to be after the Planck era and corresponds
to a scale factor a0 that is above the Planck scale, and
demonstrate that ρr ∼ a−4 for some region η0 < η < η1.
Above the Planck scale, the Hubble parameter H ≲ 1, so

given Eqs. (55) and (53), we will insist that the following
set of inequalities of derivatives of the scale factor must
hold:

a0 ≲ a2; ð56Þ

a00 ≲ a3; ð57Þ

a0a000 ≲ a6: ð58Þ

We will use these inequalities in order to compute the
integral in Eq. (52).

B. Bounds on the renormalized energy density

We will begin by splitting the integral into infrared and
ultraviolet regions I1 and I2 by a cutoff kc. The infrared
contribution is

I1 ¼
Z

kc

0

dkk2
�
2ωjβkj2 −

k2m2a02

8ω5

�

¼
Z

kc

0

dkk2
�
2kjβkj2 þ 2ðω − kÞjβkj2 −

k2m2a02

8ω5

�
; ð59Þ

and the ultraviolet contribution is

I2 ¼
Z

∞

kc

dkk2
�
2ωjβkj2 −

k2m2a02

8ω5

�
: ð60Þ

At time η0, we define

B0 ≡
Z

kc

0

dk2k3jβkðη0Þj2: ð61Þ

If B0 is the dominant contribution to the renormalized
energy density at time η, then ρr ∝ a−4 as desired.
However, as one may anticipate given the apparent loga-
rithmically divergent term in Eq. (52), this may not always
be the case. We will investigate this in the following
sections. Given that jβkðη0Þj ≤ 1 from Eq. (48), one finds
from Eq. (61) a lower bound on kc of

kc ≳ B1=4
0 : ð62Þ

1. Ultraviolet region

One is tempted to assume βk → 0 sufficiently quickly at
high k, as is often done with scalar fields [3]. However,
because the final term in Eq. (60) produces a logarithm
divergence, it is evident that doing so will introduce a
divergent contribution to the energy density. This situation
is occurring because until now we have been working with
a zeroth order parametrization of the states, but because the
logarithmic divergence comes in at higher than zeroth
adiabatic order, one would expect to need to work with at
least a second order parametrization to eliminate this
higher-order divergence. These problems would indeed
disappear working with a higher-order parametrization, but
it becomes much more difficult to analytically obtain
generic bounds on I2 doing so.
One can instead continue to work with a zeroth-order

parametrization using αk and βk. We can understand what
the appropriate higher order states look like at large k by
integrating Eq. (47) by parts, which shows that the
asymptotic behavior of βk will take the form

βk ⟶
k→∞

−
ikma0

4ω3
αke−2iθk : ð63Þ
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This motivates us to use the parametrization β̄k, defined as

βk ≡ βk þ
ikma0

4ω3
αke−2iθk ; ð64Þ

as the appropriate description to use in calculating the
energy density at large k. We then anticipate that βk will fall
faster than the leading order term at large k, so

jβ̄kðη0Þj <
A0

k2

�
kc
k

�
b0 ð65Þ

for k > kc, some b0 > 0, and A0 independent of k. The
ultraviolet integral (60) written in terms of β̄k is

I2 ¼
Z

∞

kc

dkk2
��

1−
k2m2a02

16ω6

�

×

�
2ωjβ̄kj2 þ

kma0

ω2
Imðαkβ̄�ke−2iθkÞ

�
−
k4m4a04

128ω11
jαkj2

�
:

ð66Þ

Because β̄k encodes the cancellation of the divergent term
in the renormalized energy density, one expects that the
contributions to the energy density from Eq. (66) will
converge.
In order for the energy density to be radiation-dominated

the ultraviolet contribution (66) must either be the dom-
inant contribution and itself radiation-dominated or be
subdominant to the radiation-dominated part of the infrared
contribution (59). As we will demonstrate, every term in
Eq. (66) is in fact subdominant to B0 (61), which itself
produces a radiation-dominated term in the energy density,
and hence the latter is true.
To show this, we will first simplify the first factor in

Eq. (66) by using Eqs. (62) and (56) and ω > k > kc to
show that k2m2a02 ≪ 16ω6 and therefore 1 − k2m2a02

16ω6 ≈ 1,

provided the condition a2 ≪ B1=2
0 m−1 is satisfied, so we

will need

a ≪ B1=4
0 m−1: ð67Þ

This is the first of several conditions we will need. We will
consider the complete set of conditions collectively later.
With this simplification, one finds a bound on I2 of

jI2j ≲
Z

∞

kc

dk

�
2k2ωjβ̄kj2 þ

1

2
kma0jβ̄kj

�
þ m4a04

512k4c

<
Z

∞

kc

dk

�
2k3jβ̄kj2 þ km2a2jβ̄kj2 þ

1

2
kma0jβ̄kj

�

þ m4a04

512k4c
; ð68Þ

where we have bounded the integral on the final term
using the normalization (48) to obtain jαkj < 1. For B0 to
dominate, the contributions from I2 must remain less than
B0, and therefore the full contribution from I2ðηÞ ¼
I2ðη0Þ þ ΔI2 must be less than B0. We will find the
conditions under which jI2ðη0Þj and jΔI2j, and therefore
jI2ðηÞj, are subdominant to B0.
Given Eq. (65), one finds from Eq. (68) that the

contributions from the integrand of jI2ðη0Þj are subdomi-
nant to B0 provided that

A2
0 ≪ B0; ð69aÞ

m2a2A2
0 ≪ B3=2

0 ; ð69bÞ

ma0A0 ≪ B0: ð69cÞ

To satisfy (65), one may increase kc which allows for
decreasing A0 and ensuring (69a) can be satisfied.
Furthermore, provided Eq. (69a) is satisfied and using
Eq. (56), one can show Eqs. (69b) and (69c) become

a ≪ B1=4
0 m−1; ð70Þ

a ≪ B1=4
0 m−1=2: ð71Þ

The final term in (68) is also less than B0 provided (71) is
satisfied.
For the bound on the integral in ΔI2 to converge, Δβ̄k

must fall faster than k−2. We will assume that Δβ̄k falls at
least as fast as k−2−bΔ , and then we will need to show

jΔβ̄kj <
AΔ

k2

�
kc
k

�
bΔ
; ð72Þ

with AΔ independent of k and bΔ > 0 chosen appropriately
for each term contributing to Δβ̄k. One finds from Eq. (68)
that the contributions from ΔI2 are less than B0 provided
that

A2
Δ ≪ B0; ð73Þ

m2a2A2
Δ ≪ B3=2

0 ; ð74Þ

ma0AΔ ≪ B0: ð75Þ

One can obtain bounds on the contributions to Δβ̄k, and
hence the conditions under which Eqs. (73)–(75) are
satisfied, using the differential equation for β̄k. From
Eqs. (47) and (64), the differential equation is

β̄0k ¼ −
ikma00

4ω3
αke−2iθk þ

ik2m2a02

8ω5
βk þ

3ikm3aa02

4ω5
αke−2iθk :

ð76Þ
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Writing β̄kðηÞ ¼ β̄kðη0Þ þ Δβ̄k, one then finds by integrating by parts on the phase

Δβ̄k ¼
Z

η

η0

dx

�
−ikma00

4ω3
αke−2iθk þ

ik2m2a02

8ω5
βk þ

3ikm3aa02

4ω5
αke−2iθk

�

¼ kma00

8ω4
αke−2iθk

				
η

η0

þ
Z

η

η0

dx

�
−kma000

8ω4
αke−2iθk þ

3km3aa0a00

8ω6
αke−2iθk þ

k2m2a0a00

16ω6
βk

þ ik2m2a02

8ω5
βk þ

3ikm3aa02

4ω5
αke−2iθk

�
; ð77Þ

and therefore

jΔβ̄kj <
mðja00ðη0Þj þ ja00ðηÞjÞ

8k3
þ 1

8k3

Z
η

η0

dxðmja000j þm2a02Þ þ 1

16k4

Z
η

η0

dxm2ja0jja00j

þ 3

4k4

Z
η

η0

dxm3aa02 þ 3

8k5

Z
η

η0

dxm3aja0jja00j: ð78Þ

Each term in Eq. (78) can be written in the form of Eq. (72)
to obtain conditions under which each will satisfy Eq. (73).
Term by term, using the inequalities in Eqs. (56) and (57),
we can obtain conditions on the scale factor under which
each term is subdominant to the infrared contribution. In
order to obtain these conditions, we will assume a0, a00, and
a000 have definite signs; that is, each of them is either always
positive or always negative. The conditions are

ma00

k3
¼ ma00

k2kc

�
kc
k

�
⇒ B0 ≫

�
ma00

kc

�
2

a ≪ B1=4
0 m−1=3; ð79aÞ

1

k3

Z
dxm2a02 <

1

k3

Z
dxm2a2a0 ¼ m2a3

k3
¼ m2a3

k2kc

�
kc
k

�

⇒ B0 ≫
�
m2a3

kc

�

a ≪ B1=4
0 m−2=3;

ð79bÞ
1

k4

Z
dxm2a0a00 ¼ m2a02

k4
¼ m2a02

k2k2c

�
kc
k

�
2

⇒ B0 ≫
�
m2a02

k2c

�
2

a ≪ B1=4
0 m−1=2; ð79cÞ

1

k4

Z
dxm3aa02 <

1

k4

Z
dxm3a3a0 ¼ m3a4

k4
¼ m3a4

k2k2c

�
kc
k

�
2

⇒ B0 ≫
�
m3a4

k3c

�
2

a ≪ B1=4
0 m−3=4;

ð79dÞ

1

k5

Z
dxm3aa0a00 <

1

k5

Z
dxm3a4a0 ¼m3a5

k5
¼m3a5

k2k3c

�
kc
k

�
3

⇒ B0 ≫
�
m3a5

k3c

�

a≪ B1=4
0 m−3=5:

ð79eÞ

Even if one of the three quantities a0, a00, or a000 is not of
definite sign, one can subdivide the integrals appearing in
(78) into regions in which it is of definite sign, and
assuming the number of regions is not too large the sum
of these regions can be similarly bounded if the inequalities
(79a)–(79e) are satisfied.
We are working at times beyond the Planck era during

which the mass is small compared to the Planck mass, and
hence m ≪ 1, so the strongest restriction among Eqs. (67)
and (79a)–(79e) for which the ultraviolet contributions are
subdominant to that from B0 is

a ≪ B1=4
0 m−1=3: ð80Þ

Equation (80) is stronger than the conditions in
Eqs. (70)–(71) and those in Eqs. (74)–(75). One therefore
has a complete set of conditions under which the ultraviolet
contribution is subdominant to that from B0: kc must be
large enough such that Eq. (69a) is true, and a must be
small enough to satisfy Eq. (80).

2. Infrared region

It remains to be shown that B0 is indeed the dominant
contribution to the energy density among all the terms in
the infrared contribution (59). Given Eq. (61), the infrared
contribution (59) can be written
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I1¼B0þðB−B0Þþ
Z

kc

0

dk

�
2k2ðω−kÞjβkj2−

k4m2a02

4ω5

�
;

ð81Þ

where we have defined

B≡
Z

kc

0

dk2k3jβkj2: ð82Þ

The ðB − B0Þ term can be written

B − B0 ¼
Z

kc

0

dk2k3ðjβkj2 − jβkðη0Þj2Þ

≤
Z

kc

0

dk2k3ðjΔβkj2 þ 2jβkðη0ÞjjΔβkjÞ; ð83Þ

where Δβk ¼ βk − βkðη0Þ. From Eq. (47),

jΔβkj <
Z

η

η0

dx
kma0

2ω2
¼ 1

2

Z
η

η0

dx∂x tan−1
�
ma
k

�
<

ma
2k

;

ð84Þ
which implies

Z
kc

0

dk2k3jΔβkj2 <
1

4
k2cm2a2 ð85Þ

and

Z
kc

0

dk4k3jβkðη0ÞjjΔβkj <
2

3
mak3c; ð86Þ

so, using Eq. (62), one finds ðB − B0Þ is dominated by B0 if

a ≪ B1=4
0 m−1: ð87Þ

Similarly, using the normalization condition (48) to bound
jβkj2 ≤ 1, the next term in Eq. (81) isZ

kc

0

dk2k2ðω − kÞjβkj2 ≤
1

2
k2cm2a2; ð88Þ

which is also less than B0 if a ≪ B1=4
0 m−1. This condition is

weaker than Eq. (80) and hence will be satisfied if the set of
conditions under which the ultraviolet contribution is
subdominant to B0 is satisfied.
The last term in I1 is

Z
kc

0

dk
−k4m2a02

4ω5
¼ m2a02

4

�
k3c
3ω3

c
þ kc
ωc

�

þ 1

4
m2a02 ln

�
ma

ωc þ kc

�

≊ 1

3
m2a02 þ 1

4
m2a02 ln

�
ma
2kc

�
; ð89Þ

where we have used a ≪ B1=4
0 m−1 < kc to simplify

ω2
c ≡ k2c þm2a2 ≈ k2c.

C. Friedmann equation

The energy density is given by the sum of the contri-
bution from the infrared and ultraviolet regions. As shown
in Secs. III B 1–III B 2, provided one is looking early
enough such that Eq. (87) and hence Eq. (80) are satisfied,
the energy density is dominated by the contributions from
B0 and the logarithm in Eq. (89):

ρr≊ 1

π2a4

�
B0 þ

1

4
m2a02 ln

�
ma
2kc

��
: ð90Þ

Given the constraint m2a02 ≪ m2a4 ≪ B0 from Eq. (79c),
the logarithm term will be negligible unless the logarithm
itself is not too large. If it is indeed small, then it can be seen
that Eq. (90) is radiation dominated in general. Even if it is
not negligible, we can still demonstrate that it is radiation
dominated in some range using the Friedmann equation
provided that spin-1

2
fields are the dominant contribution to

the total energy-density.
Using the Friedmann equation

�
a0

a2

�
2

¼ 8π

3
ρr ð91Þ

with the assumption that the contribution from spin-half
fields dominates the energy density, one finds

a02≊ 8B0

3π

�
1 −

2

3π
m2 ln

�
ma
2kc

��
−1
: ð92Þ

The renormalized energy density can bewritten using (92) as

ρr≊ B0

π2a4

�
1þ 2

3π
m2

�
ln

�
2kc
ma0

�
− ln

�
a
a0

���
−1
: ð93Þ

At this point, we will choose a0 ≈ B1=4
0 to ensure we are past

the Planck era, and given the condition (80) we have
a1 ≈ B1=4

0 m−1=3, so m2 lnða=a0Þ < m2 lnðm−1=3Þ ≪ 1 is
irrelevant compared to the 1 term. Hence, in the range
B1=4
0 < a < B1=4

0 m−1=3, the energy density will indeed be
radiation dominated.
Note that a0 (92) is approximately constant in the range

of interest, so a00 will be strongly suppressed. This allows
one to relax some of the accumulated constraints, for
example Eq. (79a), implying ρ ∝ a4 over a larger range of
a. However, limits such as (87) will generally not relax, but
this is not surprising because at a ¼ B1=4

0 m−1 one expects
fermions to become nonrelativistic. Of course, realistic
models would not only have fermion fields but also an
inflaton field, which would look like a cosmological
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constant, but, until the mass term becomes important at
a ∼ B1=4

0 m−1 or inflation takes over, things will still be
radiation dominated.

IV. DISCUSSION AND CONCLUSION

In this paper we have analyzed the early-Universe,
preinflationary behavior of massless vector fields of
spin-1 and massive or massless fermion fields of spin-1

2

in the semiclassical approximation. We showed for a range
of conformal time after the Planck era that both types of
fields have radiation-dominated behavior. Along with the
same result obtained for scalar fields in [3], we have
demonstrated that all matter fields which one might
anticipate to play a role in the preinflationary era do in
fact produce a radiation-dominated energy density that is
typically assumed in inflationary models.
In Sec. II, we summarized the adiabatic renormalization

procedure for amassless vector field in a spatially flat FLRW
universe, following the groundwork laid out in [7]. We then
used this procedure to renormalize the energy density
contribution for such a field following a parametrization
of the mode functions in terms of adiabatic states. We found
the renormalized energy density to have a radiation-domi-
nated form similar to that for the scalar field in [3].
In Sec. III, we summarized a modified version of the

adiabatic renormalization procedure for a massive or
massless fermion field, using the modified WKB ansatz
given in [4]. We found that parametrizing the mode
functions in terms of adiabatic states required higher than
zeroth order contributions in order to properly renormalize
the energy density at high energies. We then made use of
the leading second adiabatic-order contributions to the
parametrization coefficients to obtain the leading order
behavior of such high-energy contributions and used this to
show the high-energy contributions are in fact subdominant
to the radiation-like term in the remaining energy density
contributions given a set of constraints on the scale factor.
These constraints are more stringent than those required for
the scalar field [3], for which only a constraint on ða2Þ00
was necessary. We then found the next-to-leading order

behavior of the energy density to be a logarithmic con-
tribution and showed that it is subdominant compared to
the radiation-dominated energy density for a the range of
conformal time beyond the Planck era, where the constraint
on the scale factor coming from the analysis of the high-
energy contribution served as the upper bound on the range.
Our analysis of the fermion field assumed that fermionic

matter was the dominant contribution to the energy density
in order to make use of the Friedmann equation to obtain
the approximate leading order behavior. This result for
fermions is different than that for scalars [3] and vectors,
which work in any case. Our argument for fermions also
only applies for the range a0 < a < a1 described in
Sec. III, though we expect this range to be in the preinfla-
tionary era prior to the fields becoming matter dominated.
This result is weaker than those for the other two fields, but
in application it is not. One would not be able to observe
these matter fields during this era directly but rather
through their effects on other phenomena, such as in the
cosmic microwave background, so the results are not
necessarily weaker in application.
Having demonstrated in the semiclassical approximation

that the matter content in the post-Planck, preinflationary
era will indeed be radiation-dominated, one can proceed
with the procedure for the inflaton field in [3]. There, it was
assumed that spin-1

2
and spin-1 massive fields could be

modeled with conformally coupled massive scalar fields,
which were argued to be radiation-dominated themselves in
the preinflationary era. Our results that spin-1

2
fermion fields

and massless spin-1 vector fields are radiation-dominated,
themselves, supports the procedure in [3], and the analysis
for obtaining a renormalized energy density for a universe
with a mixture of cosmological constant and classical
radiation, and hence for obtaining the power spectrum of
the cosmic microwave background, is identical.
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