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We revisit the predictions for the duration of the inflationary phase after the bounce in loop quantum
cosmology. We present our analysis for different classes of inflationary potentials that include the
monomial power-law chaotic type of potentials, the Starobinsky and the Higgs-like symmetry breaking
potential with different values for the vacuum expectation value. Our setup can easily be extended to other
forms of primordial potentials than the ones we have considered. Independently on the details of the
contracting phase, if the dynamics starts sufficiently in the far past, the kinetic energy will come to
dominate at the bounce, uniquely determining the amplitude of the inflaton at this moment. This will be the
initial condition for the further evolution that will provide us with results for the number of e-folds from the
bounce to the beginning of the accelerated inflationary regime and the subsequent duration of inflation. We
also discuss under which conditions each model considered could lead to observable signatures on the
spectrum of the cosmic microwave background or else be excluded for not predicting a sufficient amount of
accelerated expansion. A first analysis is performed considering the standard value for the Barbero-Immirzi
parameter, γ ≃ 0.2375, which is obtained from black hole entropy calculations. In a second analysis, we
consider the possibility of varying the value of this parameter, which is motivated by the fact that the
Barbero-Immirzi parameter can be considered a free parameter of the underlying quantum theory in the
context of loop quantum gravity. From this analysis, we obtain a lower limit for this parameter by requiring
the minimum amount of inflationary expansion that makes the model consistent with the cosmic
microwave background observations. When constraining the Barbero-Immirzi parameter, we have made
use of the results for the scalar of curvature perturbations derived in loop quantum cosmology assuming the
dressed metric approach and considering the Bunch-Davies vacuum as the initial condition for the
perturbations in the contracting phase. Such choice provides basically the same results as considering
the fourth-order adiabatic vacuum state at the bounce as an initial condition in the context of the dressed
metric approach.
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I. INTRODUCTION

Inflation is the most popular paradigm for early universe
cosmology, but it is not the only one. Indeed, it has been
extremely successful from a phenomenological point of
view. It predicted the spatial flatness of the Universe, the
homogeneity seen in the cosmic microwave background
(CMB), besides suggesting a causal explanation for the
origin of its anisotropies, providing the first theory for the
origin of the large-scale structure of the Universe based on
fundamental physics. Although requiring a certain amount

of fine-tuning on its constants [1–3] the inflationary
scenario predicts correctly the primordial power spectra,
whose evolution determines the temperature fluctuations in
the CMB and the formation of the large-scale structure of the
Universe [2,4], having been developed before most of the
data we now have was on hand.
However, despite the success of inflation, in the classical

theory of general relativity (GR), all scalar field models of
inflation experience the big bang singularity that is inevi-
table [5,6]. The singularity problem is the result of an
extrapolation of GR beyond the limits where the theory is
well justified. This implies additional difficulties in the
definition of initial conditions due to the absence of a
regular surface where those initial conditions can be
established. Another related problem in the context of
inflation in GR is the fact that there is a very limited value
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for the number of inflationary e-folds which makes the
model theoretically consistent. We know that in order to be
compatible with observations, the number of e-folds during
inflation should be at least 60 or so. Meanwhile, in some
cases, the predicted number of e-folds is more than 70 [7].
In those cases, the scale of the fluctuations which are today
observed in the CMB was smaller than the Planck length at
the starting of inflation. As a result, the usual semiclassical
treatment during inflation is questionable, which is known
as the trans-Planckian problem [8,9]. These issues with the
consistency of inflation also motivate to consider scenarios
with a well-defined preinflationary dynamics, free of
singularities [10–12]. In these scenarios, cosmological
perturbations may reach the beginning of inflation in a
quantum state excited relative to the Bunch-Davies (BD)
vacuum, affecting the power spectra, thus potentially
leaving marks on the CMB [13]. In order to address these
important issues, one must consider a scenario of quantum
gravity acting in the high energy regime. The scenario
we consider here lies in the context of loop quantum
gravity (LQG).

LQG proposes a quantization formalism based on a
nonperturbative and background-independent formulation
of the geometric degrees of freedom [14–20]. In its
canonical formulation, it is aimed to respect the general
covariance of Einstein’s theory. In particular, in GR the
Hamiltonian is a linear combination of constraints which,
via Poisson brackets, generates diffeomorphism transfor-
mations, the fundamental symmetry of the theory [21].
LQG, on the other hand, adopts the quantization scheme
proposed by Dirac for systems with constraints, which
consists in requiring that those constraints are satisfied at
the quantum level on the physical states of the system. The
geometric degrees of freedom are described in LQG by pairs
of canonical variables, the Ashtekar variables, which
consist of the components of a densitized triad and a gauge
connection. The quantization is obtained through holono-
mies of the connections and fluxes of the densitized triads.
Loop quantum cosmology (LQC) is the symmetry

reduced version of LQG [18], applied to cosmological
models [16,17,22]. Taking into account such quantum
geometric effects described by LQG in cosmological sce-
narios, Einstein’s equations maintain an excellent degree of
approximation in the low curvature regime. However, in the
Planck regime they undergo major changes, driving a
nonsingular bounce due to repulsive quantum geometry
effects [14,20], then naturally solving the big bang singu-
larity problem. Therefore, in the LQC framework, for matter
satisfying the usual energy conditions, whenever a curva-
ture invariant grows near the Planck scale in LQC, the
effects of quantum geometry dilute it [14].
In LQC models with a kinetic energy dominated bounce,

as the ones we are going to consider, an inflationary phase
almost inevitably follows the bounce phase (see, e.g.,
Refs. [10,11,23–26]). This is true whenever there is an

inflaton field, with an appropriate potential, coupled to the
gravitational field (otherwise, if there is only radiation and/
or cold dark matter in the bounce this does not happen).
The duration of this inflationary phase is quantified by the
number of e-folds [27–30]. As it is well known [31], the
inflationary phase must last at least around 60 e-folds or so
in order to solve the problems of the standard cosmological
model. However, in LQC, as shown in Ref. [32], the bounce
and preinflationary dynamics leaves imprints on the spec-
trum of the CMB. In Ref. [10] it was shown that, in order to
be consistent with observations, the Universe in LQC must
have expanded at least around 141 e-folds from the bounce
until today. This is so because LQC can lead to scale-
dependent features in the CMB spectrum, and the fact that
we do not observe them today means that they must have
been well diluted by the postbounce expansion of the
Universe. This implies an extra number of inflationary
e-folds in LQC, given by δN ∼ 21 [10]. On the other hand,
if the number of extra inflationary e-folds ismuchhigher than
this value the features imprinted in the CMB spectrum due to
the LQC effects would be overly diluted and, in this case, LQC
cannot be directly tested even by forthcoming experiments.
Such theoretical results motivate an investigation of the

number of e-folds in models of LQC. This can be performed
consistently with initial conditions defined either in the
bounce, as done, e.g., in Refs. [10,33], or in a contraction
phase before the bounce, as considered in Refs. [34–37],
for example; in particular, with the authors of the latter
references claiming that taking initial conditions in the far
past in the contracting phase should be the appropriate
approach to study the probability of inflation after the
bounce. Both approaches for choosing the initial conditions
to investigate the probability of inflation in LQC were
applied to many different potentials. For instance, power-
law potentials were considered in Refs. [11,30,34–38],
alpha-attractor potentials in Ref. [26], monodromy poten-
tials with a modulation term in Ref. [24] and also chaotic
and Starobinsky potentials in the framework of standard
and modified LQC models [25]. In particular, in the work of
Refs. [29,30], in addition of considering different classes of
potentials, the effect of radiation as an additional ingredient
of the energy density budget around the bounce has been
considered, showing that the duration of inflation is
dependent not only on the inflaton potential but also on
the amount of radiation in the Universe prior to the start of
the inflationary regime.
In the present paper, we show that there are well-defined

values for the inflaton amplitude at the bounce, which can
be estimated analytically and depending only on the form
of the primordial inflaton potential. Then, we provide
explicit results, also analytically, for the duration of the
preinflationary phase and for the inflaton amplitude at the
beginning of the inflationary regime. This then allows us to
explicitly obtain the total number of e-folds that inflation
will have. Our results are sufficiently general such that it
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can easily be extended to many different forms of the
primordial inflaton potential other than the ones we have
focused in this paper.
In the analysis we perform in the first part of this paper,

we consider the standard value for the Barbero-Immirzi
parameter, γ, which is the one arising from the calculation
of the entropy of black holes [39]. Then in the second part,
we consider the Barbero-Immirzi parameter as a free
variable of the theory, and we obtain its value by demand-
ing each model to predict the correct spectrum of CMB.
The choice of varying this parameter is motivated by the
fact that the Barbero-Immirzi parameter is, indeed, a
coupling constant with a topological term in the action
of gravity, with no consequence on the classical equations
of motion.1 Although the recovery of the Bekenstein-
Hawking entropy has been considered as a way to fix its
value, the dependence of the entropy calculation on γ is
controversial, and the value γ ≃ 0.2375 calculated thermo-
dynamically is not universally accepted (see, for example,
Refs. [50–52]). One can argue that the semiclassical
thermodynamical properties can actually be recovered
for any value of γ if one makes the appropriated assump-
tions. When introducing the notion of the horizon into the
quantum theory, it was shown that the entropy of large
black holes is independent of this parameter and, as it was
believed, it is only quantum gravity corrections to the
entropy and temperature of small black holes that depend
on the Barbero-Immirzi parameter.
When treating γ as a free parameter of the theory, it is

important to find ways to constraint its value from
observations, if possible. The appearance of this parameter
in the area and volume spectra in LQG shows that it plays a
role in determining the fundamental length scale of space,
since this parameter is used to count the size of the quantum
of area in Planck units. If one could resolve distances of
around the Planck length, one would be able to fix the
Barbero-Immirzi parameter via experiment. Once again,
cosmology seems to be a window of opportunity to access
such scales, which are unreachable by any terrestrial
experiments. As previously discussed, the quantum bounce
changes the scalar power spectrum by a correction term
which depends on the characteristic scale at the bounce.
The characteristic scale is the shortest scale (or largest wave
number, namely kB) that feels the spacetime curvature
during the bounce. Since this characteristic scale is depen-
dent on the value of the Barbero-Immirzi parameter, we
have a unique opportunity to constrain γ through the
observational limits on kB itself.
In previous works (see, for instance. Refs. [10,53]),

precise constraints on the correction term in the power
spectrum of LQC was obtained using the recent CMB data.
This observational analysis provided constraints on the
characteristic scale kB. This scale is a function of the

Barbero-Immirzi parameter and of the number of e-folds of
expansion from the bounce until today. The suggestion of
considering the Barbero-Immirzi parameter as a free
quantity was in fact first considered in Ref. [34]. In the
present paper, we, however, push that idea much further by
taking advantage of our analysis and results obtained in the
first part of this paper. Then, by using the observational
constraints on kB, we also study their dependence on the
Barbero-Immirzi parameter. This will allow us to impose
some precise limits on the value of γ as a function of the
e-folding number (or equivalently, to obtain constraints on
the e-folds number as a function of γ) depending on the
primordial inflaton potential.
In summary, in this paper we keep investigating the

intriguing possibility that the quantum regime of the
Universe in the context of LQC could leave observable
signals on CMB, going beyond earlier works in at least two
important aspects: (a) First, we investigate the duration of
inflation for different potentials including the Starobinsky
and Higgs-like potential in addition to the monomial ones,
considering that the initial conditions are uniquely deter-
mined at the bounce and once we trace the dynamics far
back in the contracting phase. However, our methods are
general enough to be able to be extended to other forms of
primordial potentials. For practical purposes, we obtain the
quantities at some point in the contracting phase and where
the kinetic energy of the inflaton starts to dominate over
that from the potential. From that point on, we can forward
the evolution up to the end of the accelerated inflationary
regime; (b) second, we consider the Barbero-Immirzi
parameter as a free variable of the theory. From our
analysis, we then obtain, for the first time, a lower limit
for this parameter by requiring the model to be consistent
with the CMB observations. We have found constraints on
the Barbero-Immirzi parameter in the context of the dressed
metric approach and considering the BD vacuum as the
initial condition for the perturbations in the contracting
phase. Such choice provides basically the same results as
considering the fourth-order adiabatic vacuum state at the
bounce as the initial condition in the context of the dressed
metric approach (for more details, see, for instance,
Ref. [10]). Finally, we note that although some monomial
potentials are already ruled out in the simple scenarios of
cold inflation according to the Planck results, when
radiation processes are present (most notably as is the
case for these models when studied in the warm inflation
context) all of these potentials can be shown to agree with
the observations (see, e.g., Refs. [53,54]). Another reason
for analyzing those models here is that they are well
motivated in the context of particle physics models in
general.
This paper is organized as follows. In Sec. II, we briefly

present the main equations of LQC, and also introduce the
potentials that we are going to consider in our analysis. In
Sec. III B, we describe the method used in our analysis and1For further discussion in this topic, see, e.g., Refs. [40–49].
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we also establish the way that the initial conditions can be
determined and that we are going to use in obtaining the
subsequent background dynamical evolution up to the end
of inflation. In Sec. IV, we present the results obtained for
the duration of inflation in each model considered. The
analytical results obtained here are also compared with the
numerical results obtained from previous statistical analysis
derived in Ref. [30] and in other references. In Sec. V, we
discuss the constraints on the value of the Barbero-Immirzi
parameter from the required number of inflationary e-folds
in each model. In Sec. VI we give our conclusions. One the
Appendix is included to show some technical details.

II. THEORETICAL BASIS

In this section we briefly introduce the main equations of
LQC and we also present the models we are going to
consider in this paper.
As discussed in Ref. [33], in LQC the spatial geometry is

described by the variable ν proportional to the physical
volume of a fiducial cubical cell, in place of the scale
factor a, i.e.,

ν ¼ −
V0a3m2

Pl

2πγ
; ð2:1Þ

where V0 is the comoving volume of the fiducial cell,
mPl ≡ 1=

ffiffiffiffi
G

p ¼ 1.22 × 1019 GeV is the Planck mass, with
G the Newton’s gravitational constant and γ is the Barbero-
Immirzi parameter. Although γ is actually a free parameter
of the theory, in the first part of our work we are going to
consider the value motivated from the calculation of the
black hole entropy in LQG, which is γ ≃ 0.2375 [55], which
is the value considered in some other studies [50,51].
The Friedmann equation in LQC assumes the form [33]

1

9

�
_ν

ν

�
2 ≡H2 ¼ 8π

3m2
Pl

ρ

�
1 −

ρ

ρcr

�
; ð2:2Þ

where

ρcr ¼
ffiffiffi
3

p
m4

Pl

32π2γ3
ð2:3Þ

is the critical density. Through the modified Friedmann
equation (2.2), we see explicitly the underlying quantum
geometric effects [14], leading to a bounce in replacement
of the singularity when ρ ¼ ρcr. For ρ ≪ ρcr we recover GR
as expected.
The energy density ρ in Eq. (2.2) respects the usual

conservation equation,

_ρþ 3Hðρþ pÞ ¼ 0; ð2:4Þ

where p is the pressure density.

In models of a single scalar field ϕwith a potential VðϕÞ,
in the Friedmann-Lemaître-Robertson-Walker (FLRW)
background, the effective equation of motion for ϕ, the
inflaton, is simply

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0; ð2:5Þ

where V;ϕ ≡ dVðϕÞ=dϕ is the derivative of the inflaton’s
potential.
In the following, we are going to present the models we

are going to consider.

A. Models

The classes of inflationary models we are going to
consider are described by the potentials below.

1. Power-law monomial potentials

In this class of models, the potential is given by

V ¼ V0

2n

�
ϕ

mPl

�
2n
; ð2:6Þ

where n is some power. In this paper we will compare our
results with available ones for the cases for the quadratic,
quartic and sextic forms of the potential (corresponding to
the powers n ¼ 1, 2 and 3, respectively). The model given
by Eq. (2.6) covers the class of inflationary models
corresponding to large-field models [56].
The new data release from BICEP/Keck [57] strength-

ened the bounds on the tensor-to-scalar ratio r, putting
severe constraints in the full class of monomial potentials,
showing that they are disfavored in the context of standard
inflation. However, these potentials, besides being well
motivated from a particle physics point of view, can still be
perfectly allowed in other frameworks, like in the context
of warm inflation for example (see, e.g., Ref. [54] and
references therein). Since our current analysis can be
extended to such frameworks, we consider it important
to address this class of potentials here.

2. The Higgs-like symmetry breaking potential

The Higgs-like symmetry breaking potential is given by
the following expression:

V ¼ V0

4m4
Pl

ðϕ2 − v2Þ2; ð2:7Þ

where v denotes the vacuum expectation value (VEV) of the
field. The Higgs-like symmetry breaking potential is
another well motivated model from particle physics.
Besides that, it can represent either a small-field inflation
model, if inflation starts (and ends) at the small field part of
the potential (i.e., for jϕj < jvj), or be a large field model, if
inflation happens in the large field region of the potential
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(jϕj > jvj). In all our analyses with this potential, we
have explicitly distinguished these two possibilities and
produced results for both of them and by also considering
different values for the VEV v.

3. The Starobinsky potential

The Starobinsky model [58] is an example of a limiting
case of more general modified gravity theories. When
expressed in the Einstein frame, it represents a potential
which can be written as

V ¼ V0

�
1 − e−

ffiffiffiffi
16π
3

p
ϕ

mPl

�
2

: ð2:8Þ

The inflation results derived from the model [Eq. (2.8)]
agree quite well with the observational data for the tensor-
to-scalar ratio and spectral tilt [4]. For that reason, it is a
popular form of potential in inflation studies.
Note that in Eqs. (2.6)–(2.8), the scale V0 is fixed

differently depending on the potential. Its value is
determined by the amplitude of the CMB scalar spectrum.
Details about its evaluation for the three forms of
potentials considered here are given in the Appendix
for completeness.

III. BACKGROUND DYNAMICS IN LQC

The dynamics in the LQC models considered here is
assumed to start in the contracting phase sufficiently before
the bounce and as originally assumed to be the appropriate
moment for setting the initial conditions [34]. Assuming
that the initial conditions are set in the contracting phase,
when the inflaton field is in the oscillating regime, then,
considering a generic inflaton potential of the form
V ∝ ϕm, m > 0, it then follows that the inflaton field
amplitude is expected to evolve as a function of the scale
factor aðtÞ as [59] ϕ ∝ aðtÞ−6=ðmþ2Þ. Thus, in the oscillating
regime we have that V ∝ aðtÞ−6m=ðmþ2Þ, while the inflaton’s
kinetic energy will behave like _ϕ2 ∝ aðtÞ−6. Thus, for any
finite value for the exponent m, with the oscillating phase
lasting long enough in the contracting phase, the kinetic
energy of the inflaton field will necessarily come to
dominate at the bounce. As we are going to show in this
section, with the kinetic energy dominating at the bounce,
the value of the inflaton field, ϕB, will then be uniquely
determined at this moment. This result is independent of the
details of the contracting phase, provided that the evolution
starts sufficiently back in the contracting phase and in the
oscillatory regime for the inflaton. The obtained value for
ϕB for each model provides the initial conditions for the
further evolution of the system and which can be carried out
up to the end of the accelerated inflationary regime.
In LQCmodels inwhich the evolutionof the inflaton field is

dominated by its kinetic energy at the quantum bounce, a
slow-roll inflation phase is practically always reached as

demonstrated in many previous papers [10,29,30,33,34,36].
Our goal here will be to estimate the number of e-folds of
expansion in two regimes: In the preinflationary one, which
includes the instant of the bounce until the beginning of slow-
roll inflation. We denote this number of e-folds of expansion
as Npre. Then, the e-folds from the beginning to the end of
inflation, which we call Ninfl, is also determined. In order to
achieve this, let us first begin by analyzing the background
dynamics in our scenario starting from the bounce phase.We
will proceed without assuming a specific model for the
contracting phase.
Immediately before and after the bounce, assumed to

happen at a time instant tB, if the energy density is mostly
dominated by kinetic energy as we are going to consider
and discussed above, we have a phase of superdeflation (for
t < tB) and superinflation (for t > tB). These are very short
phases, which start close to the bounce instant (when
H ¼ 0, i.e., ρ ¼ ρcr). They start (at t < tB) and end (at
t > tB) when _H ¼ 0. The conditions for superdeflation/
superinflation are

H2 ≫ jV;ϕj; _ϕ2=2 ≫ VðϕÞ: ð3:1Þ
Right after the superinflation phase, in the postbounce
phase, the kinetic energy quickly decreases as _ϕ2 ∝ 1=a6,
while the potential energy density VðϕÞ only changes
slowly. The inflaton dynamics after the bounce and
throughout the preinflationary phase is just monotonic
[10]. After a given moment, the potential energy of the
inflaton will eventually dominate the energy content of the
Universe and the standard slow-roll inflationary phase will
set in. Before the beginning of slow roll, the quantum
corrections to the Friedmann equation are negligible, and
the cosmological equations reduce to the usual ones of GR,
at which point we then have that

ρcr ≪ ρ; VðϕÞ ≫ _ϕ2=2: ð3:2Þ

More specifically, the evolution of the Universe for t ≥ tB
and prior to reheating (end of inflation) is divided into three
different phases: the bouncing, the transition and slow-roll
inflation [10]. Next, we describe each of these phases.

A. Kinetic dominated regime

This phase is dominated by the kinetic energy of the
inflaton, with _ϕ2=2 ≫ VðϕÞ. In Eq. (2.5), neglecting the
derivative of the potential V;ϕ, we have

ϕ̈þ 3H _ϕ ≈ 0; ð3:3Þ

whose solution is given by

_ϕðtÞ ¼ �
ffiffiffiffiffiffiffiffi
2ρcr

p �
aB
aðtÞ

�
3

; ð3:4Þ
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where aB is the scalar factor at the bounce. Substituting the
solution (3.4) in Eq. (2.2), we obtain

aðtÞ ¼ aB

�
1þ 24πρcr

m4
Pl

ðt − tBÞ2
t2Pl

�
1=6

; ð3:5Þ

where aB ≡ aðtBÞ and tB is the bounce instant.
Equation (3.5) gives the expression for the scale factor
in the quantum regime of the Universe. In the above
equation, tPl ¼ 1=mPl is the Planck time.
With the analytical solution for aðtÞ, from (3.4) one finds

_ϕðtÞ ¼ �
ffiffiffiffiffiffiffiffi
2ρcr

ph
1þ 24πρcr

m4
Pl

ðt − tBÞ2=t2Pl
i
1=2 ð3:6Þ

and

ϕðtÞ ¼ ϕB � mPl

2
ffiffiffiffiffiffi
3π

p arcsinh

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
24πρcr
m4

Pl

s
ðt − tBÞ

tPl

#
: ð3:7Þ

It is important to notice that even though the result for the
inflaton amplitude [Eq. (3.7)] is derived close to the bounce
and where the inflaton potential is negligible, its validity
still extends quite well for a long time interval both before
and after the bounce. This is illustrated in Fig. 1, where we
show the numerical evolution for the inflaton amplitude
ϕðtÞ and compare it to the analytical result given by
Eq. (3.7). For illustrative purposes, we have considered
the quadratic power-law potential, Eq. (2.6), with n ¼ 1,
but the results remain qualitatively similar when conside-
ring other potentials. The initial conditions were considered
deep in the contracting phase and such that around 147
e-folds of inflation would be produced. This value of
e-folds of inflation was chosen since it is within what is
expected for this potential from previous statistical ana-
lysis for this form of potential (see, e.g., Refs. [30,34]
for details). The transition time in the contracting and
expanding phases, t−tr and tþtr, respectively, defined by
_ϕ2ðt�trÞ=2 ¼ Vðϕðt�trÞÞ, are marked by the red and green
vertical strips, respectively. The bounce is marked by the
blue vertical strip. Note that the analytical result for ϕðtÞ
agrees well with the numerical solution obtained when
evolving Eq. (2.5) with the Hubble parameter in LQC given
by Eq. (2.2) in the whole region t−tr ≲ t≲ tþtr.

B. Setting the initial conditions

Let us now describe the process of determining the
appropriate initial conditions for the evolution of the system
and which will determine the inflaton amplitude at the
bounce instant, ϕB. Having ϕB is important because we
can straightforwardly relate all relevant postbounce quan-
tities for our analysis with it, as we are going to show below.
First, one notices that for a fluid with equation of state w,

we can write the Hubble parameter in LQC as

HLQCðtÞ ¼
4πρcr
m4

Pl
ð1þ wÞ t−tBtPlh

1þ 6πρcr
m4

Pl
ð1þ wÞ2 ðt−tBÞ2

t2Pl

imPl; ð3:8Þ

which comes straightforwardly when we generalize the
scale factor [Eq. (3.5)] to an arbitrary constant equation of
state w. The results derived next hold far from the bounce,
where the LQC effects are negligible. Far from the bounce,
when the quantum effects can be neglected, i.e.,
jt − tBj ≫ tPl, Eq. (3.8) gives the usual expression obtained
in GR for a fluid with constant equation of state w,

H ≃
2

3ð1þ wÞðt − tBÞ
: ð3:9Þ

(a)

(b)

FIG. 1. Comparison of the numerical and analytical results for
the inflaton amplitude ϕ. A quadratic power-law potential was
considered and initial conditions (set in the contracting phase) are
defined such that around 147 e-folds of inflation are generated
(see text). The vertical red and green strips indicate the start and
end of the kinetic energy dominated regime, _ϕ2=2 > VðϕÞ. The
vertical blue strip indicates the bounce instant tB. Evolution is
shown in terms of both the number of e-folds [panel (a)] and in
terms of the physical time [panel (b)].
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In the following we will assume that the equation of state in
Eq. (3.9) can be extended for that of the inflaton field, i.e.,

w ¼
_ϕ2=2 − VðϕÞ
_ϕ2=2þ VðϕÞ : ð3:10Þ

Following also a notation analogous to the one used by the
authors of Ref. [33] and defining the ratio of the potential
energy to kinetic energy, α≡ V=ð _ϕ2=2Þ, then the Hubble
parameter far from the bounce is approximated as

H ≃
1þ α

3ðt − tBÞ
; ð3:11Þ

where we have used that w ¼ ð1 − αÞ=ð1þ αÞ in Eq. (3.9).
In principle the expression (3.11) might be considered a too
rough approximation for the Hubble parameter. But as
already noticed before, e.g., from the results shown in
Fig. 1, if we look at the dynamics in the contracting phase,
for t−tr < t < tB, it tends to be much slower than in the
expanding phase, for tB < t < tþtr, which gives us hope that
we can eventually match the results at some point in the
contracting phase with some value of α and then evolve the
system forward to the bounce instant. As suggested from
the results shown in Fig. 1 and the above discussion, the
appropriate moment to perform suchmatching is well before
the bounce, while in the contracting phase, but where the
quantumeffects are still negligible andwe can useEq. (3.11),
but after the transition time t−tr, where we can still apply
Eqs. (3.6) and (3.7) with good accuracy. Our results to be
shown in Sec. IV indeed indicate that this simple strategy is a
sound one.
Our approximation then consists of considering the

dynamics at some point in the contracting phase, after
the transition time t−tr, but still well before the bounce, such
that the quantum effects are still negligible. We then look at
some instant tα in the contracting phase given by
t−tr < tα ≪ tB, and where the Hubble parameter can be
approximated by Eq. (3.11). Taking the time derivative of
Eq. (3.11) and equating it to −4π _ϕ2=m2

Pl, which is valid in
the regime we are considering (i.e., far from the bounce and
where the quantum effects are still negligible), we find a
direct relation between the potential and its field derivative,
V 0, as given by

VðϕαÞ
V 0ðϕαÞ

¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p

4
ffiffiffiffiffiffi
3π

p mPl: ð3:12Þ

To obtain Eq. (3.12), we have used the inflaton’s equation
of motion [Eq. (2.5)] along also with Eq. (3.11) to eliminate
the explicit time dependence in favor of the Hubble
parameter and finally that2

H ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

m2
Pl

ð1þ αÞ
α

V

s
; ð3:13Þ

which follows when using that _ϕ2=2≡ V=α. Our approxi-
mation to estimate ϕB now consists of considering that we
can take an “average” value for α and approximate it as a
constant ᾱ. In this case, for a given value of ᾱ within the
range (0,1) we can readily estimate the inflaton amplitude
ϕα ≡ ϕðtαÞ, for any given potential, when using Eq. (3.12),
and also the instant of time tα when using Eqs. (3.11) and
(3.13) for α → ᾱ,

tα − tB ¼ −
1þ ᾱ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

Plᾱ

8πð1þ ᾱÞVðϕαÞ

s
: ð3:14Þ

Here we fix the value for ᾱ such that the dynamics will
match the one obtained for each potential and which
results are available for the potentials we are analyzing.
We note that this strategy is analogous to the one adopted,
e.g., by the authors of Ref. [33], where the constant value
for ᾱ was fixed by matching their numerical results for ϕ,
but in the postbounce regime instead. The apparent
arbitrariness in having to choose a different value of ᾱ
for different initial conditions has also been dealt with in
Ref. [33] by fixing ᾱ for one initial condition and then
using the same value for all other cases. Thus, there is only
one value of ᾱ fixed once and for all. As shown in
Ref. [33], this simple approach was good enough to
reproduce their numerical results in the postbounce phase
when considering different initial conditions taken at the
bounce instant. Here we avoid applying this to the
postbounce regime and choose to consider its application
in the contracting phase instead. This is justified because,
as seen from Fig. 1(b), the postbounce dynamics lasting
from the bounce up to the transition time tþtr is much
shorter than the one lasting from t−tr in the contracting
phase until the bounce time tB. The ratio of energies α
changes much faster in the expanding phase than in the
contracting one. Trying to fix α to match the numerical
results in the expanding phase and evolving back to the
bounce instant tB to obtain ϕB for example, thus implies
requiring a much higher accuracy than the one we can
achieve doing the same procedure in the contracting
phase. Motivated also by the results obtained by the
authors of Ref. [33], we will fix the value of ᾱ such that
our analytical results will match the statistical analysis
considered for example in Ref. [30]. Furthermore, we also
show that we only need to fix the value of ᾱ once for one
primordial inflaton potential. This same value can then be
used for all other potentials. We will see that this simple
strategy will produce results with good accuracy as
confirmed by the results shown in Sec. IV.

2Note the choice of minus sign for the Hubble parameter is
because we are considering the dynamics in the contracting
phase, hence, H < 0.
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C. The postbounce transition time
and the inflaton amplitude

Having both ϕα and the instant tα for a given value of ᾱ
by following the above procedure in the contracting phase,
we then can use Eq. (3.7) to obtain the inflaton amplitude at
the bounce time, ϕB. Given the value for ϕB, we can
estimate the number of e-folds of inflation. First, the
inflaton value at the transition time tþtr in the postbounce
regime is determined by using Eq. (3.7) again,

ϕðtþtrÞ ¼ ϕB þ mPl

2
ffiffiffiffiffiffi
3π

p arcsinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
24πρcr
m4

Pl

s
tþtr − tB
tPl

�
: ð3:15Þ

We can now consider that at the transition time we have
that3

_ϕðtþtrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕðtþtrÞÞ

q
: ð3:16Þ

By using the time derivative of ϕðtÞ, Eq. (3.6) at tþtr and
substituting Eq. (3.15) in Eq. (3.16), we can then numeri-
cally4 solve Eq. (3.16) for the time interval tþtr − tB. This
result then also allows us to obtain ϕðtþtrÞ when substituting
the solution for tþtr − tB back in Eq. (3.15).

D. Beginning of the slow-roll inflationary phase

When the slow-roll phase starts at some time ti > tþtr, the
Universe is already far from the quantum regime. The
potential energy starts to dominate over the kinetic energy
giving rise to the inflationary regime. In the following, we
use the index “i” to denote the quantities at the beginning of
inflation, which corresponds to the moment when the
Universe starts accelerating and the equation of state
satisfies w ≤ −1=3. In order to obtain the quantities in

this moment, we can use the expansion for ϕðtÞ which is
valid for t ≃ ti,

ϕi ≃ ϕtr þ _ϕtrt
þ
tr ln

ti
tþtr

; ð3:17Þ

where ϕtr ≡ ϕðtþtrÞ, _ϕtr ≡ _ϕðtþtrÞ and, without loss of gene-
rality, we are setting from this point on that tB ¼ 0.
Likewise for _ϕðtiÞ, we have that

_ϕi ≃
tþtr
ti

_ϕtr: ð3:18Þ

Thus,

VðϕiÞ ≃ VðϕtrÞ þ V;ϕðϕtrÞtþtr _ϕtr ln
ti
tþtr

: ð3:19Þ

Since the accelerated regime, ä > 0, starts at w ¼ −1=3 for
the equation of state, then

_ϕ2
i ¼ VðϕiÞ: ð3:20Þ

Using Eqs. (3.20) and (3.19) and knowing tþtr and ϕtr
obtained from the previous step, we can now numerically
solve5 Eq. (3.20) for the initial time ti, which will then
determine ϕi from Eq. (3.17).

E. Number of e-folds Npre and Ninfl

The number of e-folds of expansion is defined as

N ≡ ln

�
aend
ainit

�
; ð3:21Þ

where ainit and aend denote, respectively, the scale factors at
the beginning and at the end of the corresponding period.
Let us first present the results for the preinflationary

phase, i.e., the expansion lasting from the bounce time to
the start of the inflationary phase. The number of e-folds for
the preinflationary phase is denoted by Npre, with
Npre ≡ lnðai=aBÞ, where aB and ai are the scale factors
at the bounce and at the beginning of inflation, respectively.
According to what we have done in the previous sections,
we can write ai as [10]

ai ≃ atr

�
1þ tþtrHtr ln

ti
tþtr

�
; ð3:22Þ

where Htr in Eq. (3.22) is obtained from the Friedmann
equation considering ρtr ¼ _ϕ2

tr=2þ VðϕtrÞ. Therefore, the

3Note that we could have this equation for both signs positive
or negative for _ϕ. Throughout this paper, we work with the
convention of adopting the positive sign for _ϕ, thus also
considering the positive sign in Eq. (3.7) when writing it for
t ¼ tþtr in Eq. (3.15). This implies that the field is always moving
from the left to the right side of the potential. For the power law
and Higgs potentials this choice does not lead to any ambiguity
since the potential is symmetric and for any choice of the sign for
_ϕ the field is always climbing the potential when starting the
initial conditions deep inside the contracting phase and always
close to the minimum of the potential. The Starobinsky potential
is asymmetric, but for the standard form, Eq. (2.8), inflation only
happens along the flat region, which resides in the right-hand side
of the potential.

4In fact exact analytical expressions for both tþtr − tB and ϕðtþtrÞ
can be obtained from these equations by approximating them by
considering that tþtr − tB ≫ tPl (see, e.g., Ref. [10] for details in
the cases of the quadratic power law and Starobinsky potentials).
The solution is in general expressed in terms of Lambert
functions. Here we simply choose to directly numerically solve
Eq. (3.16), which can in principle be done for any potential in
general.

5Again, it can be found general analytical solutions for
Eq. (3.20) which are expressed also in terms of Lambert functions
[10], but for practical purposes we just opt to numerically solve
Eq. (3.20).
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number of e-folds of expansion in the preinflationary phase
can be written as

Npre ¼ ln

�
ai
aB

�
¼ ln

�
atr
aB

�
þ ln

�
ai
atr

�

≃
1

6
ln

�
1þ 24πρcr

m4
Pl

ðtþtrÞ2
t2Pl

�
þ ln

�
1þ tþtrHtr ln

ti
tþtr

�
;

ð3:23Þ

where we have used Eq. (3.5) at t ¼ tþtr and Eq. (3.22).
The number of the e-folds of expansion during the

inflationary phase, Ninfl, is defined as

NinflðϕÞ≡ ln

�
aend
ai

�
≈

8π

m2
Pl

Z
ϕi

ϕend

�
V
V 0

�
dϕ; ð3:24Þ

where in the last term in the above equationwe have used the
slow-roll approximations, valid during inflation, _ϕ ≃
−V;ϕ=ð3HÞ and H2 ≃ 8πV=ð3m2

PlÞ. The total number of
e-folds lasting from the bounce until the end of inflation is
then Ntotal ¼ Npre þ Ninfl. In Eq. (3.24), ϕi is given by
Eq. (3.17) and ϕend, the scalar field at the end of the
inflationary phase, is obtained by the slow-roll coefficient
ϵ ¼ − _H=H2 when it is set to one (indicating the end of the
accelerated regime). Thus, from ϵ¼− _H=H2≃ðV;ϕmPl=VÞ2=
ð16πÞ¼1, ϕend can be readily obtained for each of the
potential forms we are considering. The results are explicitly
given below.

1. The power-law monomial potentials

From Eq. (3.24), Ninfl in the case of monomial potentials
is given by

Ninfl ¼
2π

nm2
Pl

ðϕ2
i − ϕ2

endÞ; ð3:25Þ

with ϕend given by

ϕ2
end ¼

n2

4π
m2

Pl: ð3:26Þ
2. The Higgs-like symmetry breaking potential

For the Higgs-like potential we have that

Ninfl ¼
2π

m2
Pl

�
ϕ2
i − ϕ2

end

2
− v2 ln

ϕi

ϕend

�
ð3:27Þ

and

ϕend ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þm2

Pl

2π
�m2

Pl

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πv2

m2
Pl

svuut ; ð3:28Þ

where the signs positive and negative correspond to the
large and small-field cases, respectively.

3. The Starobinsky potential

For the Starobinsky potential we obtain that

Ninfl ¼
3

4

�
e

ffiffiffiffi
16π
3

p
ϕi
mPl −e

ffiffiffiffi
16π
3

p
ϕend
mPl

�
þ

ffiffiffiffiffiffi
3π

p

mPl
ðϕi−ϕendÞ; ð3:29Þ

where

ϕend ¼ mPl

ffiffiffiffiffiffiffiffi
3

16π

r
ln

�
1þ 2ffiffiffi

3
p

�
: ð3:30Þ

Having derived and collected all relevant equations, we
are now in condition to present our results in the following
section.

IV. RESULTS

As explained in Sec. III B, we first need to set an
appropriate value for the ratio ᾱ of potential to kinetic
energy in the contracting phase. We illustrate this by
comparing the results generated for the number of e-folds,
Eq. (3.24), within our approach to those obtained through
the statistical analysis produced in Ref. [30]. In Ref. [30],
which follows the proposal initiated by the authors of
Ref. [34], initial conditions are generated deep inside the
contracting phase, where ρϕ ≪ ρcr, and the inflaton is
oscillating around the minimum of its potential. The
number of e-folds of inflation is then obtained by taking
a large number of random initial conditions satisfying these
conditions and each one of them is evolved up to the end of
inflation. The probability distribution function for each
potential is obtained, from which statistical predictions for
the number of e-folds are derived. In Ref. [30] results were
obtained for the power-law potential with n ¼ 1, 2, 3 and
also for the Higgs-like potential for different values for the
VEV v. These results of Ref. [30] are indicated, for
comparison, by the data points with the error bars shown
in Fig. 2, for the case of the power-law potential, and in
Fig. 3, for the case of the Higgs-like potential.
From the results shown in Fig. 2, we see that the results

very reasonably fit the data points, with a difference of less
than 5%, for the choice6 ᾱ ¼ 1=3. The same choice of ᾱ is
also seen to reproduce well the results for the Higgs-like
potential, for many different values for v, as shown in
Fig. 3. Note that for the Higgs-like potential curves do not
quite agree with the data points for the preinflationary
number of e-folds, but the qualitative agreement is still very

6We note that the same value for the constant α given by 1=3
was, coincidentally, also found by the authors of Ref. [33],
though matching their numerical results that were obtained in the
postbounce phase.
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good, again within less than 5% differences.7 Hence, our
results indicate that we can just fix ᾱ ¼ 1=3 once and for all
other primordial potentials it should also continue to
produce sufficiently accurate results. This is what we have
assumed in all our subsequent results shown next.
As already said above, the results shown in Figs. 2 and 3,

all our subsequent analysis will be done by choosing
ᾱ ¼ 1=3. Recalling that α is related to the equation of
state by w ¼ ð1 − αÞ=ð1þ αÞ, hence, the choice ᾱ ¼ 1=3 is
also equivalent to considering the moment tα in the
contracting phase where w ¼ 1=2.
Figures 2 and 3 already show some revealing features.

One recalls that one typically requires at least around 80
e-folds of total expansion from the bounce to the end of
inflation in order for the quantum effects on the spectra to
be sufficiently diluted [10]. On the contrary, if the total

expansion lasts less than this minimum, the LQC effects on
the spectra would already be visible. This limitation, which
is a consequence of the effects of LQC on the power
spectrum, will be detailed below in the next section. From
Fig. 2(a), therefore, it indicates that monomial power-law

(a)

(b)

FIG. 2. The numerical results for the number of e-folds of
inflation [panel (a)] and for the number of e-folds for the
preinflationary regime lasting from the bounce until the begin-
ning of inflation [panel (b)] obtained through the method
described in Sec. III E when applied to the monomial power-
law potential Eq. (2.6). The “data” points show the results
obtained in Ref. [30].

(a)

(b)

(c)

FIG. 3. The numerical results for the number of e-folds of
inflation in the case of the Higgs-like potential when inflation
happens in the large-field portion of the potential, jϕj > jvj
[panel (a)], and for inflation happening around the plateau region,
jϕj < jvj [panel (b)]. The number of e-folds for the preinfla-
tionary regime lasting from the bounce until the beginning of
inflation is shown in panel (c). The data points are the results
obtained using the methods described in Ref. [30]. All curves
here were obtained by setting ᾱ ¼ 1=3 within the procedure
described in Sec. III B.

7We notice that for all data points shown in the figures, the
error bars are the one-standard deviation from the average values.
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potentials with a fifth power in the inflaton (n ¼ 2.5) and
higher are not favored due to the small amount of expansion
predicted from them. For the quadratic potential (n ¼ 1) the
situation is quite different. We obtain Ninfl ∼ 147, in
agreement with previous results obtained in Ref. [34].
Despite being in agreement with current CMB data, such
high value for Ninfl does not lead to good prospects in
observing signals from the high energy regime on CMB

data. On the other hand, for the quartic model (n ¼ 2) we
obtain Ninfl ∼ 87. This value, while providing a satisfactory
number of e-folds of inflation, it also allows for better
prospects concerning potentially observable signals from
the quantum regime of LQC on future CMB measurements.
In Fig. 3(a), which shows our results for the Higgs-like
potential when inflation happens on the large-field portion
of the potential, i.e., jϕj > jvj, the number of e-folds is
always larger than Ninfl ∼ 87, whose value is approached
when v → 0 and the model is analogous to the quartic
monomial potential. However, when inflation happens in
the plateau region of the potential, i.e., when jϕj < jvj, the
number of e-folds tends initially to increase with the value
of the VEV v, up to around v ∼ 5mPl, after which it drops
and tends to asymptote around Ninfl ∼ 200. This behavior
was already hinted in the analysis done in Ref. [30] but it
becomes clear now in the results shown in Fig. 3(b). This
apparently odd behavior has a simple explanation. For
small VEV values, the plateau region of the potential is
small and it is difficult to localize the inflaton in that small
field region of the potential and the number of e-folds of
inflation tends to be small. As the VEV increases, it
becomes more likely for inflation to happen closer to the
flatter top of the potential and the number of e-folds of

inflation increases.8 However, for even larger values for the
VEV, it becomes again less likely that the dynamics would
put the inflaton too close to the top of the potential and the
number of e-folds decreases. Our results indicate that there
is an optimum value for the VEV for inflation having a
maximum number of e-folds for a Higgs-like potential in
the context of LQC and this value for the VEV is around
v ∼ 5mPl. On the other hand, our results also show that for
v≲ 3mPl, there are essentially no more initial conditions
leading to inflation starting and ending in the plateau
region, which also agrees with the findings of Ref. [60].
Our results, including also the ones for the Starobinsky

potential, Eq. (2.8), are summarized in Tables I–IV. We
have chosen the cases of a quadratic, a quartic and a sextic
monomial potential for illustration, along with some
representative cases of the Higgs-like potential and then
the Starobinsky potential.
In Tables I and II we give the results for the various

quantities which were defined in the previous section, in
particular the numerical prediction for the amplitude for the
inflaton field at the bounce, ϕB. This is important, since all
other quantities, in particular the point where inflation
starts, depends on this value. In a sense, we see that this is

TABLE I. Numerical values obtained for the three forms of monomial potentials and the Starobinsky potential.

Model V0=m4
Pl ϕB=mPl tþtr=tPl ϕtr=mPl ð106Þ _ϕtr=m2

Pl ti=tPl ϕi=mPl

Quadratic 1.355 × 10−12 2.72 2.9 × 104 4.72 5.6 4.1 × 104 4.84
Quartic 1.373 × 10−13 3.19 2.3 × 104 5.22 7.1 3.2 × 104 5.27
Sextic 4.563 × 10−15 3.65 2.3 × 104 5.68 7.1 3.1 × 104 5.73
Starobinsky 1.497 × 10−13 2.65 3.0 × 105 5.10 0.5 4.2 × 105 5.16

TABLE II. Numerical values obtained for the Higgs-like potential, considering some illustrative values for the VEV.

Model V0=m4
Pl ϕB=mPl tþtr=tPl ϕtr=mPl ð106Þ _ϕtr=m2

Pl ti=tPl ϕi=mPl

Higgs-like (jϕBj > jv ¼ 3.5mPlj) 2.867 × 10−14 6.27 2.4 × 104 8.30 6.8 3.3 × 104 8.35
Higgs-like (jϕBj > jv ¼ 4.0mPlj) 2.384 × 10−14 6.76 2.4 × 104 8.80 6.7 3.4 × 104 8.85
Higgs-like (jϕBj > jv ¼ 4.5mPlj) 2.010 × 10−14 7.25 2.5 × 104 9.29 6.6 3.4 × 104 9.35
Higgs-like (jϕBj < jv ¼ 3.5mPlj) 6.424 × 10−14 −0.79 9.0 × 104 1.46 1.8 1.3 × 105 1.52
Higgs-like (jϕBj < jv ¼ 4.0mPlj) 5.245 × 10−14 −1.30 6.6 × 104 0.90 2.5 9.4 × 104 0.96
Higgs-like (jϕBj < jv ¼ 4.5mPlj) 4.254 × 10−14 −1.80 5.6 × 104 0.37 2.9 7.9 × 104 0.43

8It should be noticed that the number of e-folds in Fig. 3(b)
appears to grow very sharp at around v ≃ 5mPl, we expect the real
situation to display a smoother maximum as actually indicated by
the numerical data. This is because there is always Gaussian
stochastic quantum fluctuations acting on the background in-
flaton field [60]. These fluctuations make unlikely for the inflaton
to be precisely localized at the top of the maximum of the
potential at ϕ ¼ 0.
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equivalent to providing the initial conditions at the bounce
time. The subsequent evolution of the Universe is then
completely determined from these initial conditions, espe-
cially the inflationary regime. In this case, knowing the
initial conditions at the bounce, we have shown that it
completely determines the duration of inflation for any
given potential. Note that the predicted total duration of
inflation here is based on assuming a kinetic-dominated
bounce and using α ¼ 1=3, differently from the statistical
results obtained for example in Refs. [30,34–37]. The
predicted values for the duration of the preinflationary
phase and inflation are shown in Tables III and IV.
From the results shown in Tables III and IV, we can see

that for all models studied the number of preinflationary
e-folds, which consider the expansion from the bounce
to the beginning of the slow-roll inflation, is always
Npre ∼ 4–5, which agrees with Ref. [30] and other previous
references. This is a consequence of the bounce being
dominated by the kinetic energy of the inflaton field, thus,
being weakly dependent on the form of its potential. For the
number of inflationary e-folds, we also obtain results
generically in agreement with those obtained in Ref. [30].
In particular, we can observe that for the Starobinsky
potential Ninfl ∼ 109, i.e., the duration of slow-roll inflation
is longer compared to the other models. This is consistent
with the results shown, e.g., in Ref. [37], which follows the
determination for the number of e-folds of inflation origi-
nally proposed in Ref. [34] andwhichwas also considered in
Ref. [30]. This happens for positive values of the scalar field
at the beginning of inflation, i.e., where the potentials have a
plateau [61]. As discussed in Ref. [37], LQC dynamics
automatically provides highly energetic field configurations
at the onset of inflation. Consequently, in these cases the
inflaton field is “pushed” away on the plateau, leading to a

very long phase of slow-roll inflation. It is important to
remember that potentials predicting a large number ofe-folds
are perfectly fine as far as the observations are concerned. For
the monomial power-law potentials, as already seen in a
previous work [30], increasing the power n implies a
decreasing of the number of e-folds.

V. CONSTRAINING THE BARBERO-IMMIRZI
PARAMETER

As previously discussed, the Barbero-Immirzi parameter
is strictly a free parameter of the theory. Therefore, it is
important to find ways to constraint its value. In this section
we study how the prediction for the number of e-folds in
LQC helps in setting possible constraints on the Barbero-
Immirzi parameter γ.
In order to constrain this parameter, we will need to

analyze the power spectrum in LQC, as we explain in the
following. In order to treat the perturbations in LQC we are
going to adopt the so-called dressed metric quantization
approach [62]. The dressed metric approach, in addition of
being one of the approaches most studied in the literature, is
the approach that seems most suitable for this kind of
analysis. It reproduces qualitatively similar results for the
power spectrum as the hybrid quantization approach [63].
In general, both the quantization scheme and the initial
conditions chosen are important when deriving the power
spectrum in LQC. Concerning the initial conditions, the
most commonly used is the BD vacuum state imposed in
the contracting phase, prior to the bounce. Since before the
start of the bouncing phase all the important modes are
within the effective horizon, the BD vacuum state is a
natural choice in this case. A second possibility would be to
impose initial conditions at the bounce. At the bounce some
modes are inside the effective horizon and some are outside
it. So, in this case the BD vacuum state is no longer a
suitable choice. Instead, one can impose the fourth-order
adiabatic vacuum state [62]. Within the validity of the latter,
it has been shown in the literature [10] that both choices
essentially lead to the same results.

A. The power spectrum in LQC

The quantum bounce changes the scalar power spectrum
by a correction term which depends on the characteristic
scale at the bounce. This characteristic scale is the shortest
scale (or largest wave number, namely kB) that feels the
spacetime curvature during the bounce. In previous works
(see, for instance, Ref. [53]), precise constraints on the
correction term in the scalar power spectrum of LQC was
obtained using the recent CMB data, providing limits on the
characteristic scale kB. It happens that this scale is a
function of the Barbero-Immirzi parameter and the number
of e-folds of expansion from the bounce until today, NT.
Therefore, in the following we use such observational
constraints on kB in order to impose limits on the value of γ
as a function of the e-fold number.

TABLE III. Number of e-folds obtained through the analytical
analysis for the same models considered in Table I.

Model Npre Ninfl

Quadratic 4.15 146.55
Quartic 4.06 86.36
Sextic 4.06 67.30
Starobinsky 4.92 1.10 × 109

TABLE IV. Number of e-folds obtained for the Higgs-like
potential, assuming different values for the VEV.

Model Npre Ninfl

Higgs-like (jϕBj > jv ¼ 3.5mPlj) 4.08 113.31
Higgs-like (jϕBj > jv ¼ 4.0mPlj) 4.08 115.46
Higgs-like (jϕBj > jv ¼ 4.5mPlj) 4.09 117.35
Higgs-like (jϕBj < jv ¼ 3.5mPlj) 4.53 32.64
Higgs-like (jϕBj < jv ¼ 4.0mPlj) 4.43 95.66
Higgs-like (jϕBj < jv ¼ 4.5mPlj) 4.37 235.92
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In addition to the modifications at the background level
from LQC, at the perturbative level modifications are also
expected, especially from relevant modes which have
physical wavelengths comparable to the curvature radius
at the bounce time. Unlike what happens in GR, where it is
usually assumed that the preinflationary dynamics does not
have any effect on modes observable in the CMB, in LQC the
situation is different. Modes that experience curvature are
excited in the Planck regime around the bounce time. The
main effect at the onset of inflation is that the quantum
state of perturbations is populated by excitations of these
modes over the BD vacuum. As a consequence, the scalar
curvature power spectrum in LQC gets modified with
respect to GR, such that it can be written as (see
Ref. [10] for more details)

ΔRðkÞ ¼ jαk þ βkj2ΔGR
R ðkÞ

¼ ð1þ 2jβkj2 þ 2Reðαkβ�kÞÞΔGR
R ðkÞ: ð5:1Þ

In Eq. (5.1) αk and βk are the Bogoliubov coefficients,
where the preinflationary effects are codified, and ΔGR

R is
the GR form for the power spectrum. In GR with the BD
vacuum, the Bogoliubov coefficients in Eq. (5.1) should
reduce simply to αk → αBDk ¼ 1, and βk → βBDk ¼ 0. In
LQC, the change of the spectrum can be seen exactly as a
result of the change of the vacuum state with respect to the
GR case, since jβkj2 ≡ nk is associated with the number of
excitations in the mode k.
Equation (5.1) can also be parametrized as

ΔRðkÞ ¼ ð1þ δPLÞΔGR
R ðkÞ; ð5:2Þ

where the factor δPL is a scale (k-)dependent correction,
which, following the derivation given in Ref. [10], is
given by

δPL ¼
�
1þ cos

�
πffiffiffi
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��
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�

πkffiffiffi
6

p
kB

�

þ
ffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh

�
2πkffiffiffi
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kB
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þ cos
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πffiffiffi
3
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�s
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�
π

2
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p
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�
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6
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kB

�
cosð2kηB þ φkÞ; ð5:3Þ

where

φk ≡ arctan

�
Im½Γða1ÞΓða2ÞΓ2ða3 − a1 − a2Þ�
Re½Γða1ÞΓða2ÞΓ2ða3 − a1 − a2Þ�

�
; ð5:4Þ

with a1, a2, a3 defined as a1;2 ¼ ð1� 1=
ffiffiffi
3

p Þ=2 − ik=
ð ffiffiffi

6
p

kBÞ and a3 ¼ 1 − ik=ð ffiffiffi
6

p
kBÞ. In particular, ηB is the

conformal time at the bounce and kB ¼ ffiffiffiffiffi
ρc

p
aB

ffiffiffiffiffiffi
8π

p
=mPl is

the characteristic scale also at the bounce.

From the above equations, we identify

2jβkj2 ¼
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�
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; ð5:5Þ
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ffiffiffi
2

p
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ð5:6Þ

The term cosð2kηB þ φkÞ in Eq. (5.6) oscillates very fast,
having a negligible effect when averaging out in time.
Therefore, for practical purposes, in observable quantities
the factor δPL can be simply considered as being given by

δPL ¼
�
1þ cos

�
πffiffiffi
3

p
��

csch2
�

πkffiffiffi
6

p
kB

�
: ð5:7Þ

Note that in this case δPL can simply be identified with 2nk,
i.e., with the number of excitations in the mode k which
appears as a consequence of the quantum bounce in LQC. It is
due to this correction term that in LQC, in order for the
spectrum to be consistent with the observations, it is required
that the Universe must have expanded some extra 21 e-folds
such as to allow for those scale-dependent features in the
primordial scalar power spectrum to get sufficiently diluted
and as discussed in detail in Refs. [10,53].
Even though the correction given by Eq. (5.7) was

derived in the dressed metric quantization approach, the
result is also qualitatively similar when derived in the
hybrid quantization approach (see, e.g., Ref. [64]). Other
alternative quantization schemes used in LQC can lead to
corrections to the power spectrum that are suppressed. This
seems to be the case, for example, in the closed/deformed
algebra approach [65,66]. In this case there is no need in
principle of the additional extra e-folds of expansion as
required in the dressed or hybrid quantization approaches.
Either way, we can view our results using the dressed
metric approach as the one giving the most restrictive
condition on the required minimum number of e-folds.
Even in other approaches that might lead to a suppressed
correction to the power spectrum, one still needs to require
that inflation lasts around some 60 or so e-folds. This still
gives a restriction qualitatively similar to what we will
consider below, though weaker.

B. The Barbero-Immirzi parameter
as a function of the number of e-folds

The total number of e-folds of expansion from the
moment of the bounce until today, NT, is related to the
LQC parameter kB. By assuming an upper bound on kB, it
can be translated into constraints on the total number of
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e-folds. We are interested in finding an upper bound value
for kB, which implies in a lower value for the number of
e-folds. In Ref. [53], for example, constraints on the
parameter kB were obtained from CMB data. Since kB is
related to γ, these results can be translated into constraints
in the parameter γ.
The relation between kB and the number of e-folds is

given by the equation

kB ≡
ffiffiffiffiffiffiffiffiffiffiffi
8πρcr

p
aB

mPl
¼ mPl

� ffiffiffi
3

p

4πγ3

�1=2

e−NT ; ð5:8Þ

where we have used Eq. (2.3) and in the above equation
NT ¼ lnða0=aBÞ is the total number of e-folds from the
bounce until today. Note that in Eq. (5.8) we have used the
standard convention of setting the scale factor today as
one, a0 ¼ 1.
It happens that the CMB observations constrain directly

the value of kB by imposing a limit in the correction term
given by Eq. (5.7). An updated observation constraint on kB
was obtained in Ref. [53], which leads to kB < 1.9 ×
10−4 Mpc−1 at 1σ. Note that this constraint is independent
of the value of the Barbero-Immirzi parameter and should
be valid for any value for γ. Using Eq. (5.8), it translates
into a lower limit on NT depending on the value for the
Barbero-Immirzi parameter, which is described by

NT ≳ 139 −
3

2
lnðγÞ: ð5:9Þ

Note that NT can be expressed as

NT ¼ ln

�
a0
aB

�
¼ ln

�
ai
aB

aend
ai

areh
aend

a0
areh

�

¼ Npre þ Ninfl þ Nreh þ ln

�
a0
areh

�
; ð5:10Þ

where ai, aend and areh are the scale factors at the beginning
of inflation, at the end of inflation and at the end of the
reheating phase, respectively, while Nreh is the duration of
the reheating phase. We also have that [67]

a0
areh

¼
�
11gs;reh
43

�1
3 Treh

TCMB;0
; ð5:11Þ

where Treh is the reheating temperature, TCMB;0 is the
temperature of the CMB today and gs;reh is the effective
number of relativistic degrees of freedom for entropy at the
end of reheating. Considering the case of instantaneous
reheating at the end of inflation (i.e., neglecting the
typically unknown physics at reheating), Nreh ≈ 0 and
we can associate Treh with the inflaton potential energy
density at the end of inflation, Vend, as

Treh ≃
�

30

grehπ2

�1
4ð1þ κÞ14V1

4

end; ð5:12Þ

where greh is the effective number of relativistic degrees of
freedom for energy at full thermalization. In Eq. (5.12), κ is
the ratio of kinetic energy to potential energy during
inflation. At the end of inflation, κ ¼ 1=2. By taking both
gs;reh and greh to be close to those for the standard model of
particle physics, gs;reh ≃ greh ∼ 100, we obtain that
ln ða0=arehÞ ∼ 60. Thus, Eq. (5.9) can also be written as
a lower bound for Npre þ Ninfl,

Npre þ Ninfl ≳ 79 −
3

2
lnðγÞ: ð5:13Þ

Adding the reheating details after inflation only makes the
above relation more restrictive. Thus, we can use Eq. (5.13)
as an overall lower bound for the total number of e-folds
from the bounce until the end of inflation as a function of
the Barbero-Immirzi parameter. By considering the value
for γ as given by the value suggested by the black hole
entropy [55], γ ≃ 0.2375, we then obtain thatNT ≳ 141 and
Npre þ Ninfl ≳ 81. Recall also that the number of e-folds
relevant from the CMB observations (e.g., at a pivot scale
k� ¼ 0.05=Mpc and assuming instant reheating for sim-
plicity) is given by [4]

N� ≈ 57þ 2 ln

�
V1=4
�

1016 GeV

�
− ln

�
Treh

1016 GeV

�
; ð5:14Þ

which typically leads to N� ∼ 50–60 for the necessary
number of e-folds of inflation. As we have seen that
Npre ∼ 4, which is very weakly dependent on the form
of the inflaton potential, then N� can comfortably fit in the
estimated lower bound Npre þ Ninfl ≳ 81.
In the following we analyze the general behavior of the

number of e-folds Npreþinfl ¼ Npre þ Ninfl lasting from the
bounce until the end of inflation, as a function of γ.
The general expressions for Npre and Ninfl were derived
in the previous section. Next, we will consider howNpreþinfl

changes by varying the Barbero-Immirzi parameter and
also by considering the overall lower bound given by
Eq. (5.13).

C. Results for the Barbero-Immirzi parameter

The behavior of the number of e-folds from the bounce
to the end of inflation as a function of γ for each potential
considered in this paper is shown in Figs. 4 and 5. We show
in Fig. 4(a) the case of monomial power-law potentials. We
consider a sufficiently long range of representative values
for γ (the range 0≲ γ ≲ 10 typically corresponds to the
interval most considered in the literature [41–45]). The
almost horizontal gray lines in Figs. 4 and 5 show the lower
limit on NpreþinflðγÞ set by Eq. (5.13). In all cases it is
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observed that the smaller the value of γ, the greater the
value of Npreþinfl. For the quadratic case (n ¼ 1) we obtain
a value of Npreþinfl which satisfies the observational
constraints for almost the entire interval of γ. However,
the quartic (n ¼ 2) and sextic (n ¼ 3) cases approach the
limit of 81 e-folds for smaller values of γ. For the quartic
case (n ¼ 2), we get that for γ ∼ 0.46, Npreþinfl reaches the
value of 81 e-folds. For the sextic case (n ¼ 3), we get that
for γ ∼ 0.1, the number of e-folds reaches the limiting value
Npreþinfl ¼ 81 and quickly drops below this value as γ
increases. We can see that, although for the usual value of
the Barbero-Immirzi parameter the sextic potential in LQC

is in strong tension with the observations, for smaller values
of the parameter, γ < 0.1, it can be consistent.
Complementing these results, we show in Fig. 4(b) the

results for the number of e-folds as a function of γ for the
Starobinsky potential. We can see that, again, this corre-
sponds to the case that presents the highest values for
Npreþinfl.

9 We analyzed what value for the γ parameter

would lead to the limiting value of Npreþinfl ¼ 81. The
numerical results shows that in this case the value of the
Barbero-Immirzi parameter would be around γ ∼ 1000, as
can be seen in Fig. 4(b). Note that although γ is typically
expected to be approximately of order 1, a large γ is not
inconsistent.
To complete our analysis, the results for the Higgs-like

potential is shown in Fig. 5. The number of e-folds as a
function of γ for the large field case is shown in Fig. 5(a),
while for the small field case it is shown in Fig. 5(b). In
both cases, representative values for the VEV are consi-
dered. We observe from Fig. 5(a), which is for the large
field case, that Npreþinfl decreases when γ increases. For all
VEVs considered, we observe a similar behavior and we
see that the limit Npreþinfl ¼ 81 occurs when γ ≈ 1.15. On
the other hand, for the small field case, shown in Fig. 5(b),
it is possible to observe that the higher the VEV, the higher
the number of e-folds for each value of γ, up to some
critical value for γ, above which the number of e-folds
decreases. The decreasing behavior for the number of
e-folds seen here, and that happens above some value of γ,

(a)

(b)

FIG. 4. Number of preinflationary plus inflationary e-folds,
Npreþinfl, for the potentials considered, varying the Barbero-
Immirzi parameter. The almost horizontal gray lines show the
lower limit on NpreþinflðγÞ set by Eq. (5.13). Panel (a): power-law
potentials; panel(b): Starobinsky potential.

(a)

(b)

FIG. 5. Number of e-folds, Npreþinfl, as a function of the
Barbero-Immirzi parameter for the Higgs-like potential with
different values of the VEV. The almost horizontal gray lines
show the lower limit on NpreþinflðγÞ set by Eq. (5.13). Panel (a):
the results for the large field case jϕj > jvj. Panel (b): the results
for the small field case jϕj < jvj.

9See, for example, Ref. [37] for an analysis on the duration of
the slow-roll inflation for this kind of potential in the presence of
shear.
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is a consequence of the effect already discussed in con-
nection to the one seen in Fig. 3(b). Increasing γ changes
the point (VEV) where the number of e-folds peaks when
inflation happens in the plateau region of the potential. For
VEVs larger than around 7mPl, the number of e-folds drops
below the lower bound set by Eq. (5.13) for γ ∼ 10, but for
even higher VEVs, the lower bound will be reached for
much smaller values of γ.
The results given above show that for different values of

γ the predictions for observational signals of LQC in CMB

are considerably different. We see that the consistency of
the models with the current data depends strongly on the
value of this parameter. This motivates and highlights the
importance of a careful analysis of the role of the Barbero-
Immirzi parameter in these scenarios.

VI. CONCLUSIONS

It is well known that the primordial power spectrum is a
quantity that can relate the theory of the early Universe with
the observations. Previous works in the literature have
shown that the predictions for the power spectrum in the
context of LQC receive a correction term with respect to the
predictions in the context of GR. As shown in Ref. [10], due
to this correction term, models in the context of LQC require
a minimum amount of ∼81 e-folds of expansion from the
bounce until the end of the slow-roll inflationary phase in
order to be consistent with the observations. However, the
prediction for the duration of inflation in LQC depends on
how the initial conditions for the dynamics are set.
A previouswork [30] investigated in detail the duration of

inflation for LQC models with monomial and Higgs-like
potentials and which was considered initial conditions far in
the contracting phase, thus well before the bounce (extend-
ing the analysis made in Refs. [10,11,24,26,33–38]). In the
present paper, we have investigated the duration of inflation
in these same models, including also the Starobinsky
potential, but now from a different perspective concerning
the initial conditions. As discussed, the dynamics in the
LQC models considered here starts in the contracting phase
sufficiently before the bounce, such that the kinetic energy
of the inflaton field necessarily comes to dominate at the
bounce. Then, we have shown that it is possible to estimate
the inflaton field amplitude at some intermediate instant in
the contracting phase, but still well before the bounce.
With that value for the inflaton amplitude, we can forward
the background dynamics up to the bounce instant and
determine the value for the inflaton field at that instant, ϕB.
With ϕB uniquely determined, all subsequent background
dynamics from the bounce until the end of inflation can
then be determined. In LQC models in which the evolution
of the inflaton field is dominated by its kinetic energy at the
quantum bounce, a slow-roll inflation phase is practically
always reached as is also demonstrated by our results.
With the initial conditions taken deeper in the contracting
phase, the kinetic energy regime dominates earlier and

longer until the bounce is reached. Hence, we expect the
results to turn out to be weakly dependent on the infla-
tionary potential, as our results indicate. This also implies
that the results turn out to be weakly dependent on the
specific value adopted for the ratio of the kinetic and
potential energy.
For all the models analyzed, we found that the number of

e-folds of the preinflationary phase is approximately
Npre ∼ 4. On the other hand, the number of inflationary
e-folds changes considerably depending on the potential
for the inflaton. Monomial potentials like V ∝ jϕj5 and
with higher powers tend to predict a too small value for the
number of inflationary e-folds and, thus, they are likely to
be incompatible with the CMB data. The quartic potential,
V ∝ ϕ4, on the other hand, predicts the most likely Ninfl to
be around Ninfl ∼ 86, which suggests a very good possibil-
ity of leading to observable signatures from LQC in the
spectrum of CMB data. For the quadratic model, V ∝ ϕ2, the
most likely Ninfl is around Ninfl ∼ 147. This is in agreement
with the results obtained in the earlier work done in
Ref. [34]. With such high values of Ninfl allowed by the
quadratic potential, the effects from the quantum regime
would probably be diluted to an unobservable level. For the
Higgs-like symmetry-breaking potential we have shown
that Ninfl grows with the VEV v for the case of inflation
occurring in the plateau (small-field) region. It reaches a
maximum value for the number of e-folds at a VEVaround
v ∼ 5mPl and beyond this value Ninfl drops and tends to
asymptote at around Ninfl ∼ 200. For inflation occurring in
the large-field (jϕj > jvj) part of the potential Ninfl has a
weak dependence on v, being around Ninfl ∼ 110 in the
range of values of vwe have considered. Even though these
results were obtained for a Higgs-like potential, we expect
the features displayed would also be present in other small
field types of potentials, like hilltop and axionlike poten-
tials. For the Starobinsky model, we predict a much higher
value for Ninfl when compared to the other potentials
studied, with Ninfl ∼ 109. This implies no potentially
observable signal that could be searched for on CMB data
as far as the Starobinsky model is considered in the context
of LQC.
We have also shown in the present paper that the value of

the Barbero-Immirzi parameter can affect strongly the
constraints on the number of e-folds. The Barbero-
Immirzi parameter is strictly a free parameter of the
underlying LQG theory. Being related to the typical scale
at the bounce, the Barbero-Immirzi parameter implies
different predictions for the power spectrum in LQC. In
fact, what CMB actually constrains is the combination of the
parameters γ and Npreþinfl, the total number of e-folds from
the bounce until the end of inflation. Therefore, it is
important to investigate the relation between the predictions
for the number of e-folds in LQC with the value of γ. This
analysis is performed in detail, for the first time, in the
present paper.
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The results presented in this paper show that for different
values of γ the predictions for the duration of inflation in
LQC are considerably different. For the monomial poten-
tials, the predicted number of e-folds decreases with the
value of γ. In particular it is interesting to see that, for
example in the case of the sextic potential in LQC, although
for the usual value of the Barbero-Immirzi parameter the
model is in strong tension with the observations, for smaller
values of the parameter, like γ ≲ 0.1, it can be consistent
with the increase of the predicted number of e-folds when γ
is lower than the usual value adopted for it in the literature.
For the Higgs-like potential, we have obtained that the
number of e-folds increases with γ in the small field case,
up to some critical value, beyond which, with the increase
of γ, it starts to decrease. For the large field case, on the
other hand, the number of e-folds always decreases when γ
increases. For the Starobinsky model, we have obtained
that the prediction for the number of e-folds decreases with
γ. The number of e-folds can reach the limiting value of
N ≃ 81 for the value of the Barbero-Immirzi parameter
γ ∼ 1000, which is, nevertheless, a quite high value to be
acceptable by the underlying LQG theory.
It is important to remark that the observable predictions

in LQC and the constraints obtained for the Barbero-Immirzi
parameter are dependent on the way initial conditions are
set. In this work we considered the initial conditions for the
perturbations to be the BD vacuum in the contracting phase
in the context of the dressed metric approach, which leads
to basically the same results as considering the fourth-order
adiabatic vacuum state at the bounce in the context of the
dressed metric approach. We obtain that the observable
predictions in LQC models are dependent also on the value
of the Barbero-Immirzi parameter, being quite sensitive to
the latter. We obtain limits for γ directly from the primordial
scalar power spectrum. Since the consistency of the models
with the current data depends strongly on the value of
this parameter, this paper highlights for the first time the
importance of a careful analysis of the role of the Barbero-
Immirzi parameter in LQC.
Finally, in this paper we have analyzed only the case of a

Universe with energy density made essentially of the
inflaton field. As possible follow-ups of this paper, it
would be interesting to perform a similar analysis when
other energy contents are present, like from sources of
anisotropies [35,37] or when radiation is also present,
which itself has been shown to lead to interesting results
in the context of LQC [29,30,53,68–71].
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APPENDIX: OBTAINING V0 THROUGH THE
CMB SPECTRUM

Let us now briefly review the derivation of the normali-
zation V0 for each of the potentials we have considered in
this paper. The primordial scalar curvature power spectrum
ΔR is given by the standard expression [56]

ΔR ¼
�

H2�
2π _ϕ�

�
2

; ðA1Þ

where a subindex �means that the quantities are evaluated
at the Hubble radius crossing k� (k� ¼ a�H�). This is
typically assumed to happen around N� ∼ 50–60 e-folds
before the end of inflation. In this work we have assumed
the fiducial value of 60 e-folds for illustration purposes.
The value of V0 is fixed by the normalization of the
primordial scalar of curvature power spectrum. The
Planck collaboration [72] gives for instance the value
ln ð1010ΔRÞ ≃ 3.047 (TT;TE;EE-lowEþ lensingþ BAO
68% limits). This is the value we have adopted in this
paper to obtain the normalization V0.
During the slow-roll regime of inflation, we can make the

approximations H2 ≃ 8πV=ð3m2
PlÞ and _ϕ ≃ −V;ϕ=ð3HÞ.

Thus,

ΔR ≃
128π

3m6
Pl

V3�
V2
;ϕ�

; ðA2Þ

for any given potential.
For the monomial power-law potentials [Eq. (2.6)],

Eq. (A2) gives

ΔR ¼ 4

3ð4πÞn
1

n3
Vmon
0

m4
Pl

½nð2N� þ nÞ�nþ1; ðA3Þ

where we have used that

ϕ� ≡ ϕðN�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnm2

Pl=4πÞð2N� þ nÞ
q

: ðA4Þ

Therefore, the normalization V0 obtained from CMB mea-
surements gives
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Vmon
0

m4
Pl

¼ 3ð4πÞn
4

n3

½nð2N� þ nÞ�nþ1
ΔR: ðA5Þ

For the Higgs-like potential (2.7), we find, analogously,
that

ΔR ¼ 2π

3m6
Pl

VHiggs
0

m4
Pl

ðϕ2� − v2Þ4
ϕ2�

: ðA6Þ

Solving for V0, we find

VHiggs
0

m4
Pl

¼ 3m6
Pl

2π
ΔR

ϕ2ðN�Þ
½ϕ2

i ðN�Þ − v2�4 ; ðA7Þ

where ϕðN�Þ is obtained from the expression (3.27), which
gives two possible solutions,

ϕ2ðN�Þ ¼ −v2W0

�
−
ϕ2
end

v2
ðe

N�
π þ

ϕ2
end
m2
Pl Þ

−
m2
Pl
v2
�

ðA8Þ

and

ϕ2ðN�Þ ¼ −v2W−1

�
−
ϕ2
end

v2
ðe

N�
π þ

ϕ2
end
m2
Pl Þ

−
m2
Pl
v2
�
; ðA9Þ

where W0 and W−1 correspond to the Lambert functions
and ϕend is given by Eq. (3.28). It can be verified that the
solution given by Eq. (A8) applies when inflation happens
in the small field region of the potential, i.e., around the
plateau region, jϕj < jvj. The second solution given by
Eq. (A9), on the other hand, applies in the large field region
of the potential, i.e., when jϕj > jvj.
For the Starobinsky potential, Eq. (2.8), the normaliza-

tion V0 is found to be

VStaro
0

m4
Pl

¼ e−8
ffiffi
π
3

p
ϕ�
mPl

2ð1 − e−4
ffiffi
π
3

p
ϕ�
mPlÞ4

ΔR; ðA10Þ

where ϕ� is given by

ϕðN�Þ ¼ −
mPl

4
ffiffiffiffiffiffi
3π

p
�
4N� þ 3þ 2

ffiffiffi
3

p
þ ln ð−135þ 78

ffiffiffi
3

p
Þ

þ 3W−1

�
−
�
1þ 2ffiffiffi

3
p

�
e−

4N�
3
−1− 2ffiffi

3
p
��

: ðA11Þ
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