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The power spectrum and the voxel intensity distribution (VID) are two of the main proposed summary
statistics to study line-intensity maps. We reformulate the derivation of the VID in terms of the local
overdensities and derive for the first time an analytic covariance between the VID and the line-intensity
mapping power spectrum. We study the features of this covariance for different experimental setups and
show that we can recover similar results to simulation-based covariances. With this formalism, we also
compute the cosmic variance contribution to the VID uncertainty, which we find to be subdominant with
respect to the standard variance from Poisson sampling. Our results allow for general joint analyses of the
VID and the line-intensity mapping power spectrum.
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I. INTRODUCTION

Line-intensity mapping (LIM) has recently emerged as a
promising technique to survey large cosmological volumes
that has the potential to recover precise redshift information
by targeting a variety of bright spectral lines [1]. Since the
resulting maps capture the integrated specific intensity,
these measurements are sensitive to both cosmology and
astrophysics. The former is encoded in the clustering of
galaxies and gas in the intergalactic medium that emit the
desired signal, and the latter, in the luminosity produced
by each emitter.
The most well-studied line is the 21-cm spin-flip

transition in neutral hydrogen (see, e.g., Ref. [2]) and
there are a variety of ongoing or planned experiments that
target cosmic dawn and the epoch of reionization [3–8]
and the late Universe [9–11]. In addition, several other
line transitions at higher frequencies have garnered atten-
tion as probes of the different phases of the interstellar
medium, such as the rotational lines of carbon monoxide
(CO) [12–16], the fine-structure line of ionized carbon
[17,18], Hα and Hβ [19,20], Lyman-α [21,22], and
oxygen lines [19]. A vast number of experiments that
target these spectral lines are already observing or
currently under development (see e.g., Refs. [23–28]),
with some initial constraints and tentative power spectrum
detections [18,29–34].
Different methods have been proposed to extract infor-

mation from line-intensity maps. While the LIM power
spectrum is the most prominent statistic, the cosmological

information it contains is inherently limited and degenerate
with astrophysical uncertainties [35,36]. Complementary
probes have been proposed to access non-Gaussian infor-
mation and break degeneracies with astrophysical param-
eters. Among them, the voxel intensity distribution (VID),
which is an estimator of the one-point probability distri-
bution function of the temperature measured in a voxel,
has been shown to be very promising [37,38]. The VID
depends directly on the line-luminosity function and is
more sensitive to the high-luminosity end that peaks above
the instrumental noise, whereas the power spectrum is more
sensitive to cosmological parameters and depends on a
weighted average of luminosities that favors comparatively
fainter objects.
While both the power spectrum and the VID have

individually been shown to offer promising constraints
on astrophysical and cosmological parameters, as well as
extensions to ΛCDM (see e.g., Refs. [39–45]), the more
substantial gain lies in their combination. The information
contained in the LIM power spectrum and the VID are
highly complimentary, and a joint analysis has been shown
to significantly increase the precision of the inference of
the line-luminosity function [46]. A joint analysis requires
a covariance matrix to properly account for the shared
information content of the observables. While Ref. [46]
relied on simulations to estimate their covariance empiri-
cally, a theoretical understanding of the expected covari-
ance between these observables is still lacking.
We derive, for the first time, an analytic covariance

between the VID and the LIM power spectrum for spectral
lines emitted within halos. We first reformulate the standard
derivation of the VID signal by an equivalent expression
that explicitly accounts for the local perturbations of the
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number of emitters—a biased tracer of the local matter
overdensities. This enables us to include the effect of
cosmic variance—the variance of the brightness temper-
ature field on the scales of the size of the survey—as a
contribution to the predicted statistical error of the VID,
though we argue that it is generally a negligible contribu-
tion. Using the same reformulation of the VID, we compute
its covariance with the LIM power spectrum. We focus on
the Legendre monopole of the LIM power spectrum and in
observations performed using only the autocorrelation
between antennas, but this work can be straightforwardly
extended for higher-order multipoles of the power spectrum
or interferometers.
The derivation presented in this work shows that we can

interpret the covariance between the VID and the power
spectrum as the response of the power spectrum to the mean
density perturbation. Since the VID depends (among other
things) on the perturbation in the number density of emitters
δh and the power spectrum depends on two powers of the
temperature fluctuation δT, the resulting covariance is
proportional to the bispectrum hδhδTδTi integrated over
two of the wave numbers. We note that the type of integrated
bispectrum we derive here has been previously studied in the
context of position-dependent power spectra and the matter
density probability distribution function (PDF) [47,48],
derived using the separate universe approach.
This paper is structured as follows. First, we introduce

the theoretical modeling of the VID, the power spectrum
and all the required quantities to compute their covariance
in Sec. II. We discuss the reformulation of the probability
distribution function of the temperature measured in a voxel
as a function of the local density of emitters in Sec. III and
use it to derive the cosmic variance contribution to the VID
variance and the covariance between the VID and the
power spectrum in Sec. IV. Finally, we conclude in Sec. V.
We include a derivation of the shot noise bispectrum in
Appendix A, details on the quantities required to compute
the power spectrum and bispectrum in Appendix B and
compare the analytic covariance derived in this work with
the numerical results of Ref. [46] in Appendix C.
Throughout this work we consider the best-fit cosmo-

logical parameters from the full data set of Planck assuming
ΛCDM [49] and adopt the following Fourier transform
convention:

fðkÞ ¼
Z

d3xfðxÞe−ikx; fðxÞ ¼
Z

d3k
ð2πÞ3 fðkÞe

ikx:

ð1:1Þ

II. THEORETICAL MODELING

In this section we briefly review the modeling of the VID
and the power spectrum, as well as the quantities that will
be necessary for the calculation of the variance of the VID

and the covariance between the VID and the power
spectrum. We begin by assuming that the measured line
emission is sourced within dark matter halos, which trace
the underlying matter distribution, and relate the line
luminosity to halo mass.
The brightness temperature T at a position x of a given

emission line with rest-frame frequency ν is related to its
local luminosity density ρL as

TðxÞ ¼ c3ð1þ zÞ2
8πkBν3HðzÞ ρLðxÞ≡ XLTρLðxÞ; ð2:1Þ

where c is the speed of light, z is the redshift of the
emission, kB is the Boltzmann constant, H is the Hubble
parameter and we have defined XLT in the second equality
to compress our expressions. The luminosity density can be
computed assuming a relation between the specific lumi-
nosity L and the halo massM. Thus, we can write the mean
of the temperature distribution as

hTi ¼ XLT

Z
dMLðMÞ dn

dM
; ð2:2Þ

where dn=dM is the halo mass function.

A. VID

The VID is the histogram of temperatures measured
within the observed voxels; we follow Ref. [38] to compute
it. A voxel of volume Vvox that contains N emitters will, in
the absence of noise, have a brightness temperature of

T ¼ XLT

Vvox

XN
i¼1

Li; ð2:3Þ

where Li is the luminosity of the ith emitter. Hence, the
probability of observing a temperature T for a voxel that
contains only a single emitter is given by

P1ðTÞ ¼
Vvox

n̄XLT

dn
dL

����
L¼TVvox=XLT

; ð2:4Þ

where n̄ is the mean comoving number density of emitters
and dn=dL is the luminosity function of the targeted line,
which we compute from the halo mass function and the
LðMÞ relation. We assume a mean-preserving logarithmic
scatter with standard variable σL in the LðMÞ relation.
Then, we can obtain the luminosity function by integrating
over mass:

dn
dL

¼
Z

dM
dn
dM

1ffiffiffiffiffiffi
2π

p
Lσ̃L

× exp

�
−
ðlogðLÞ − logðLðMÞÞ þ σ̃2L=2Þ2

2σ̃2L

�
; ð2:5Þ
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where we have defined σ̃L ≡ logð10ÞσL.1 Since the con-
tribution of each emitter to the observed temperature is
additive, the probability of observing a given temperature
in a voxel with N emitters is P1 convolved N times with
itself. Similarly, in voxels where there are no emitters we
have P0ðTÞ ¼ δDðTÞ, where δD is the Dirac delta.
The total PDF PðTÞ of observing a voxel with temper-

ature T is therefore given by the probability PðNÞ that a
voxel contains N sources and that these N sources produce
an aggregate temperature T, summed over all possible
values of N. That is,

PðTÞ ¼
X∞
N¼0

PNðTÞPðNÞ: ð2:6Þ

If the sources are unclustered, PðNÞ is a Poisson
distribution PPoissðN; N̄hÞ, where the mean number N̄h
of emitters in a voxel is determined by the mean number
density of dark matter halos in the Universe, N̄h ¼ n̄hVvox.
To include the effect of clustering in the calculation of
PðNÞ, Ref. [38] used the fact that the halo number count
follows the matter distribution, which can be approximated
by a log-normal distribution [50]. The number of emitters is
then a Poisson draw where the mean is now determined by
the expected number of (log-normally distributed) emitters
in a given voxel. Under these assumptions, we have

PðNÞ ¼
Z

dηPLNðηÞPPoissðN; ηÞ; ð2:7Þ

where η refers to the expected number of emitters and PLN
denotes a log-normal distribution for η, assuming that the
halo number count fluctuations can be expressed in terms
of a Gaussian random variable and its variance [51].
Finally, the total observed temperature also includes

the thermal noise (in addition to the contribution of
continuum foregrounds and line interlopers, which we
neglect in this work). Therefore, the total probability
distribution function is

PtotðTÞ ¼ ðPnoise � PÞðTÞ; ð2:8Þ

where usually Pnoise is a Gaussian distribution with
standard deviation given by the effective instrumental noise
per voxel and � denotes the convolution operator.
The probability of observing a voxel temperature within

a given range ΔTi ≡ ðTmin
i ; Tmax

i � can be estimated with the
VID Bi, which is the total number of voxels with an
observed temperature within ΔTi. The relation between Bi,
which is the actual observable, and PðTÞ is

Bi ¼ Nvox

Z
ΔTi

dTPtotðTÞ; ð2:9Þ

where Nvox ¼ Vfield=Vvox is the total number of voxels in
an observed volume Vfield.

B. Correlations

The total observed LIM power spectrum consists of
three components—clustering, shot noise, and instrument
noise—which we can write as

P̃tot
TTðk; μ; zÞ ¼ P̃clust

TT ðk; μ; zÞ þ P̃shot
TT ðk; μ; zÞ þ PNðzÞ;

ð2:10Þ

where the tilde denotes an observed quantity and μ is the
cosine of the angle between the wave number vector k and
the line of sight. The observed power spectrum differs from
the predicted one due to the limited experimental resolution
and the volume probed; this is why the observed contri-
bution from shot noise also depends on k and μ. Hence, we
include the window functions that model these limitations
in the observed power spectrum, such that, for any power
spectrum,

P̃ðk; μÞ ¼
Z

q
ð2πÞ3W

2
volðkÞW2

voxðq − kÞPðq − kÞ; ð2:11Þ

where Wvol models the limited survey volume and Wvox
models the voxel resolution. We will discuss the particular
forms chosen for these functions in more detail in Sec. II C.
However, we note that, since the volume window simply
includes or excludes certain spatial positions, it corre-
sponds to a product with the density field in configuration
space and therefore a convolution in Fourier space.
Conversely, the voxel window captures the loss of infor-
mation on scales smaller than the voxel size and therefore
this smoothing is added as a convolution in configuration
space and as a product in Fourier space.
Since the line emission is sourced within dark matter

halos, the temperature fluctuations are a biased tracer of the
matter distribution. We consider a simple linear bias model
to describe the relation between temperature and matter
perturbations and assume Poisson shot noise. We therefore
model the LIM power spectrum as

PTTðk; μ; zÞ≡ Pclust
TT ðk; μ; zÞ þ Pshot

TT ðzÞ
¼ hTi2ðbT1 þ fμÞ2Pl þ hT2i ð2:12Þ

where Pl is the linear power spectrum of cold dark matter
and baryons, bT1 is the linear bias parameter of the temper-
ature field, and f is the linear scale-independent growth
rate. We discuss the noise power spectrum PN in Sec. II C.
Note that the average in temperature is taken over the mass
distribution of halos, as in Eq. (2.2). Therefore, the second

1Note that if there is any further dispersion in any of the steps
taken to obtain LðMÞ, it must be added accordingly to σL.
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term in Eq. (2.12) is the second moment of the tempera-
ture over the mass distribution, which corresponds to
hT2i≡ X2

LT

R
dML2ðMÞdn=dM.

The key ingredient for the calculation of the covariance
between the VID and the power spectrum is a bispectrum of
the form hδhδTδTi. This bispectrum includes contributions
from clustering and shot noise, but does not have any
contribution from instrumental noise since the temperature
fluctuations due to thermal noise are uncorrelated with the
halo density. The total bispectrum is given by

BhTTðk1;k2;k3Þ ¼ Bclust
hTT ðk1;k2;k3Þ þ

Pclust
TT ðk2Þ þPclust

TT ðk3Þ
n̄

þ hT2i
�
Pclust
hT ðk1Þ
hTi þ 1

n̄

�
: ð2:13Þ

The last two terms of the bispectrum correspond to shot
noise contributions, which we assume to be Poissonian;
we include their derivation in Appendix A. Using standard
perturbation theory (see, e.g., Ref. [52]), we compute the
power spectra and bispectrum due to clustering at tree level.
We show in Appendix B the perturbation theory kernels
including the effect of redshift-space distortions and the
bias model assumed here.

C. Noise and survey specifications

LIM experiments measure a limited volume of the
Universe and can resolve temperature fluctuations up to
a limited resolution. We assume the size of the voxel to be
determined by the spectral and angular resolutions, with
corresponding spatial dimensions along and across the
line of sight

σk ¼
cδνð1þzÞ
HðzÞνobs

; σ⊥¼DMðzÞθFWHM=
ffiffiffiffiffiffiffiffiffiffiffiffi
8 log2

p
; ð2:14Þ

where δν is the spectral resolution, νobs is the observed
frequency, DM is the comoving angular diameter distance,
and θFWHM is the full-width at half maximum of the
telescope beam. We model the effect of the angular and
spectral resolutions through the windowWvox introduced in
Eq. (2.11) and, as in Ref. [53], assume a Gaussian function
in Fourier space.
We consider a cylindrical survey volume aligned with

the line of sight, with side Lk ¼ cΔνð1þ zÞ × ðHνobsÞ and
base with radius R⊥ ¼ DM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωfield=π

p
(where Δν and Ωfield

are the experimental frequency bandwidth and observed
solid angle, respectively). We assume that all spatial
positions within the survey are observed with the same
efficiency, and hence we consider the survey mask or
volume window function Wvol to be a top hat in configu-
ration space with values 1 and 0 for points within and
outside this volume, respectively.

Finally, we assume Gaussian instrumental noise, such
that the noise power spectrum PN is given by

PN ¼ Vvoxσ
2
N; and σN ¼ Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nfeedsδνtpix
p ; ð2:15Þ

where σN is the standard deviation of the instrumental noise
per voxel, Tsys is the system temperature of the telescope
(though it can effectively include other limitations and
contaminants such as continuum foregrounds [54]), Nfeeds
is the total effective number of detectors used, and tpix is the
observing time per pixel.
We choose to center our analysis on the COMAP [23]

instrument and consider the CO(1-0) emission line
observed at 29.6 GHz for a finished first phase of the
experiment. Our fiducial experimental setup follows the
expected sensitivities after 5 years of observations, which
can be estimated from the early science sensitivities
of COMAP [54]. We consider a single 4 deg2 survey area
with a bandwidth of 7.7 GHz (which corresponds to the
redshift range z ∈ 2.4–3.4) observed during a total time of
1000 hours (effectively accounting for ∼300 hours of
observation in three different fields for the real experiment)
with 38 effective detectors (19 feeds with double polari-
zation), with an effective system temperature of 45 K and
spectral and angular resolutions of δν ¼ 31.25 MHz and
θFWHM ¼ 4.5 arcmin. Finally, in order to account for the
upgrade in sensitivity between the recent early science
sensitivities of COMAP and the finished COMAP Y5,

we use the factor σðY5ÞN ¼ σðY1ÞN =
ffiffiffiffiffiffiffiffiffi
69.4

p
[54].

For the mean relation between luminosity and halo mass,
we assume the fiducial COMAP model [55]:

LCO

L⊙
ðMÞ ¼ 4.9 × 10−5

C
ðM=M⋆ÞA þ ðM=M⋆ÞB

; ð2:16Þ

and include a mean-preserving logarithmic scatter σL.
The fiducial values adopted by COMAP for these param-
eters, grounded in results from Universe Machine [56],
COLDz [57] and COPSS [58], are A ¼ −2.85, B ¼ −0.42,
C ¼ 1010.63, M⋆ ¼ 1012.3 M⊙ and σL ¼ 0.42. This scatter
results in the luminosity function extending towards very
low luminosities. We neglect the contribution from line
broadening due to peculiar velocities [59] and, in order to
ease the computations of P1 and other quantities depending
on it, we impose an exponential cutoff in the luminosity
function at 20L⊙ which does not affect the mean lumi-
nosity; we compute n̄ including this cutoff.

III. POSITION-DEPENDENT PDF

The temperature PDF shown in Eq. (2.6) accounts for the
global matter distribution [as given in Eq. (2.7)]; however,
in a finite volume of the Universe, one can expect this PDF
to vary. To account for this position dependence, we
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begin by rewriting Eq. (2.6) as a probability conditioned by
the halo density perturbation field δvh smoothed over
a voxel:

PðTjδvhðxÞÞ ¼
X∞
N¼0

PNðTÞPðNjδvhðxÞÞ; ð3:1Þ

where the probability PðNjδvhðxÞÞ is a Poisson sampling
with the mean determined by the density field at a given
position through NðxÞ ¼ N̄h½1þ δvhðxÞ� and the smoothed
halo density perturbations are

δvhðxÞ ¼
Z

d3x0Wvoxðx − x0Þδhðx0Þ; ð3:2Þ

where δh is the unsmoothed field.
In principle, the probability PðTÞ of measuring a

temperature T is given by the average of PðTjδvhðxÞÞ
over realizations of the density field. However, we can
write this as a spatial average by invoking the ergodic
hypothesis:

PðTÞ ¼
Z

dδvhPðδvhÞPðTjδvhÞ ¼
1

Vfield

Z
Vfield

d3xPðTjδvhðxÞÞ:

ð3:3Þ

Equation (3.3) allows us to express PðTÞwith an explicit
dependence on the local overdensities, as will be required
later in order to relate it with the power spectrum. However,
this alternative derivation of PðTÞ is completely equivalent
to the standard one discussed in the previous section, under
the same set of assumptions. Let us rewrite Eq. (3.3)
expanding all the terms:

PðTÞ ¼
X∞
N¼0

PNðTÞ
Z

dδvhPðδvhÞPðNjδvhÞ

¼
X∞
N¼0

PNðTÞ
Z

dηPðηÞPðNjðη − N̄Þ=N̄Þ; ð3:4Þ

where the last equality just involves the change in variable
from δvh to η. Then, identifying PðNjðη − N̄hÞ=N̄hÞ as
PPoissðN; ηÞ, we recover Eq. (2.7) if we assume a log-
normal distribution for η. Although we will use Eq. (2.7) to
compute the expected PðTÞ we will stick to the expression
in Eq. (3.3) to derive the covariances.

We can expand PðNjδvhðxÞÞ for small δvh as

PðNjδvhðxÞÞ ¼
ðN̄h½1þ δvhðxÞ�ÞNe−N̄h½1þδvhðxÞ�

N!

≈
N̄N

h e
−N̄h

N!

�
1þ δvhðxÞðN − N̄hÞ þ

ðδvhÞ2ðxÞ
2

ðN̄2
h − 2N̄hN þ ðN − 1ÞNÞ

	
: ð3:5Þ

Notice that in the last equality the term that factors out is the Poisson distribution PPoissðN; N̄hÞ. As noted in Eq. (2.8),
the instrumental noise is added to the VID prediction as a convolution between the astrophysical signal and the noise
PDF. This only applies to PNðTÞ, since it is the only temperature-dependent term. Therefore, the total VID to linear order
in δvh is

Bi ¼
Nvox

Vfield

Z
ΔTi

dT
Z
Vfield

d3x
X∞
N¼0

ðPnoise � PNÞðTÞPPoissðN; N̄hÞ½1þ δvhðxÞðN − N̄hÞ�: ð3:6Þ

We can write the spatial integral over the survey volume in the equation above as an integral over all space multiplied by the
survey mask function WvolðxÞ. Transforming to Fourier space, we have

Z
Vfield

d3xδvhðxÞ ¼
Z

d3xWvolðxÞδvhðxÞ ¼
Z

d3k
ð2πÞ3WvolðkÞWvoxð−kÞδhð−kÞ; ð3:7Þ

where the survey window function is not normalized, so that
R
d3xWvolðxÞ ¼ Vfield. Then, we can express the VID as

Bi ¼ Nvox

Z
ΔTi

dT
X∞
N¼0

ðPnoise � PNÞðTÞPPoissðN; N̄hÞ
�
1þ ðN − N̄hÞ

Vfield

Z
d3k
ð2πÞ3WvolðkÞWvoxð−kÞδhð−kÞ

	
: ð3:8Þ
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IV. VARIANCE AND COVARIANCE

In this section we use the reformulation of the voxel
temperature PDF in terms of the local halo overdensity
derived in the previous section to compute the variance of
the VID and its covariance with the power spectrum.

A. VID

Given a PDF for the voxel temperatures, the observed
voxel count within each temperature bin ΔT follows a
multinomial distribution, since the temperature within a
given voxel either lies in a given temperature bin or
does not, and different temperature bins are mutually
exclusive. The expected value for each bin hBii ¼ Bi; hence
this is an unbiased estimator, and its variance is σ2bin;i ¼
Bið1 − Bi=NvoxÞ.2 Nonetheless, due to the dependence of
the VID on the density field shown in the previous section,
there is an additional contribution σ2cv to the variance of Bi
coming from cosmic variance. In addition, different temper-
ature bins are also correlated due to physical processes,
which depend on the matter-density field, halo bias and line-
luminosity function, correlated sky and noise structures, and
processing effects; the modeling of the physical contribu-
tions to the off-diagonal covariance of the VID is beyond the
scope of this study and is left for future work.
The cosmic variance only affects the astrophysical signal

present in PðTÞ, but it cannot be separated from the
instrumental noise contributions in the VID. We therefore
compute the covariance for the total VID and not for only
the astrophysical contribution. At linear order, we have,

σ2cv;i ¼ σ2cvðBiÞ ¼ hBiBii − hBiihBii

¼ N2
vox

V2
field

ϒ2
i

Z
d3k
ð2πÞ3 W

2
volðkÞW2

voxð−kÞPhðkÞ

≡ ϒ2
i

V2
vox

σ2vol; ð4:1Þ

where the integral in the second line corresponds to the
variance of the halo density field on the survey volume, as
indicated in the last line, and we have defined

ϒi ¼
Z
ΔTi

dTPnoise �
�X∞

N¼0

ðN − N̄hÞPNðTÞPPoissðN; N̄hÞ
�
;

ð4:2Þ

the sign of which depends on whether the voxel lies on a
halo under or overdensity.
We assume that these two contributions to the variance

of the VID are independent, and hence the total variance
of Bi is

σ2tot;i ¼ σ2bin;i þ σ2cv;i ¼ Bið1 − Bi=NvoxÞ þϒ2
i σ

2
vol=V

2
vox:

ð4:3Þ

Both contributions to the covariance of the VID scale
generally as Vfield; note that σ2cv only depends on the
volume through σ2vol, which goes roughly as Vfield

(modulo variations due to changes in the shape of the
mask window) and that Nvox ∝ Vfield in the case of σ2bin.
This may be counterintuitive, especially for the contri-
bution coming from cosmic variance. However, note that
the VID, as defined in Eq. (2.9), does not involve an
average over positions or configurations (as is the case of
e.g., the power spectrum). If that were the case, there
would be no Nvox factor in Eqs. (2.9) and (4.1), and
σ2bin ∝ N−1

vox. Similarly, σ2cv would scale as V−1
field, connect-

ing with the intuition of cosmic variance from other
summary statistics. In any case, for any definition of B,
both contributions to its variance scale similarly with the
volume. Finally, if we observe more than one patch on
the sky, we shall divide the variance of the VID by the
number Nfield of fields observed (assuming all of them
have the same volume and shape).
As it is evident from Eq. (4.1), σ2cv depends on the survey

volume, the survey mask and the resolution, as well as σN,
all of which can vary widely from case to case. However,
we can compare as generally as possible the two contri-
butions to the total variance of the VID in Eq. (4.3). Their
ratio is given by

σ2cv;i
σ2bin;i

¼ σ2vol=Vfield

Vvox

½RΔTi
dTPnoise � ð

P∞
N¼0ðN − N̄hÞPNðTÞPPoissðN; N̄hÞÞ�2R

ΔTi
dTPnoise � ð

P∞
N¼0 PNðTÞ

R
dηPLNðηÞPPoissðN; ηÞÞ : ð4:4Þ

By definition, the two integrals above are smaller
than one; in particular, the ðN − N̄hÞ term makes the
integral in the numerator smaller for most N values.

Since that integral is also squared, we expect the second
fraction on the right-hand side of Eq. (4.4) to be very
small and dominate the first one. Therefore, we expect
the cosmic variance contribution to the variance of the
VID to be subdominant. We confirm this intuition in
Fig. 1, where we show both contributions as functions
of the angular resolution (keeping all other parameters
and the instrumental noise per voxel fixed) and as

2The off-diagonal covariance of the VID from the sampling of
the PDF is σbin;ij ¼ −BiBj=Nvox. This covariance is always
negative because one more voxel within a temperature bin means
one less in the rest.
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functions of Tsys, divided by the number of voxels in
both cases.
For most cases, the contribution from cosmic variance

is roughly 2 orders of magnitude smaller than σ2bin. This
difference becomes larger at high temperatures as the
angular resolution degrades, and it decreases at the temper-
atures where the VID starts to be dominated by the
astrophysical contribution (∼20 μK in our case) for better
angular resolution. As we reduce Tsys, the difference
between the two contributions decreases at low temper-
atures. Therefore, this contribution cannot be neglected in
cases with good angular resolution and low tempera-
ture noise.

B. VID+PðkÞ
A joint analysis of the VID and the LIM power spectrum

is key to maximizing the astrophysical and cosmological
information recovered from LIM experiments. In order to
combine these two observables, it is necessary to model the
covariance between them. One can argue that a correlation
between the two signals is expected because larger temper-
ature fluctuations result in a more extended PDF for the
temperatures, and the other way around. The covariance

between the VID and the power spectrum can therefore be
understood as the response of the measured power spec-
trum to the local density perturbation and luminosity
function.
We consider the estimator for the LIM power spectrum

monopole P0 of a wave number kj, which is given by

P̂0ðkjÞ ¼
1

Vfield

Z
Vkj

d3k
Vkj

δ̃TðkÞδ̃Tð−kÞ; ð4:5Þ

where Vkj is the Fourier-space volume of the jth wave

number bin, and δ̃T is the observed brightness temperature
perturbation. That is, we have that

δ̃TðkÞ ¼
Z
Vfield

d3xe−ik·x
Z

d3x0Wvoxðx − x0Þδhðx0Þ

¼
Z

d3q
ð2πÞ3 δTðk − qÞWvoxðk − qÞWvolðqÞ: ð4:6Þ

The covariance between the VID and the power spec-
trum is given by

Cov½Bi; P̂0ðkjÞ� ¼
Nvox

V2
field

ϒi

Z
d2Ωk̂

4π

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3

Z
d3q3
ð2πÞ3Wvoxð−q1ÞWvolðq1ÞWvolðq2Þ

×Wvoxðk − q2ÞWvolðq3ÞWvoxð−k − q3Þhδhð−q1ÞδTðk − q2ÞδTð−k − q3Þi: ð4:7Þ

From the definition of the bispectrum, we have that

hδhð−q1ÞδTðk − q2ÞδTð−k − q3Þi ¼ ð2πÞ3δ3Dð−q1 − q2 − q3ÞBhTTð−q1; k − q2;−k − q3Þ; ð4:8Þ

where the bispectrum above is computed according to Eq. (2.13). Substituting this definition into the expression for the
covariance and integrating over q3 yields

FIG. 1. Comparison of the bin (upper set of curves) and cosmic variance (lower set of curves) contributions to the variance of the VID
for our fiducial case (thick dashed lines) and for varying the angular resolution (left) from 1’ (dark) to 10’ (light) while keeping every
other parameter and noise per voxel fixed, and the system temperature (right) from 2 K (dark) to 11 K (light). We divide the variance by
the number of voxels in each case to highlight the dependence on the resolution besides the change in the amplitude.
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Cov½Bi; P̂0ðkjÞ� ¼
Nvox

V2
field

ϒi

Z
d2Ωk̂

4π

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3Wvolðq1ÞWvolðq2ÞWvolð−q1 − q2Þ

×Wvoxð−q1ÞWvoxðk − q2ÞWvoxð−kþ q1 þ q2ÞBhTTð−q1; k − q2;−kþ q1 þ q2Þ: ð4:9Þ

Assuming the theoretical model and experimental configu-
ration described in Sec. II, we perform the integral shown
above directly, using the VEGAS package [60].
We define the pseudocorrelation matrix between the VID

of a temperature bin Ti and the power spectrum monopole
of a Fourier mode kj as

cij ¼
Cov½Bi; P̂0ðkjÞ�

σBi
σP0ðkjÞ

; ð4:10Þ

where the standard deviation σP0ðkjÞ is computed assum-
ing that the Fourier modes are uncorrelated (see, e.g.,
Ref. [36]):

σ2P0ðkÞ ¼
1

2

R
1
−1 dμðP̃ðk; μÞ þ PNÞ2

NmodesðkÞ
; with

NmodesðkÞ ¼
k2Δk
4π2

VfieldNfield; ð4:11Þ

where NmodesðkÞ is the number of modes per k bin of width
Δk, Vfield is the observed volume andNfield is the number of
fields observed. The variance in the VID σBi

is calculated
from Eq. (4.3), which includes both the Poisson noise and
the effect of cosmic variance. Notice that the pseudocorre-
lation matrix can be greater than 1 for cases with low
instrumental noise due primarily to the shortcomings of the
assumed Gaussian power spectrum covariance.
We show in Fig. 2 the expected correlation matrix

between the VID and the power spectrum for each wave
number and temperature bin. We assume the fiducial

COMAP Y5 configuration described in Sec. II C and
consider additional scenarios in which the experiment
has lower or higher instrument noise. The effect this has
on the power spectrum is to increase or decrease the white
noise power due to thermal noise, and the effect it has
on the VID is to broaden or narrow the Gaussian distri-
bution of the noise temperature, which is then convolved
with the signal.
Let us discuss the main qualitative features of the

correlation. First, the correlation matrix is null at the
smallest and largest scales probed by the power spectrum;
this is due to the limited survey volume and resolution of
the experiment. At low temperatures, the VID and the
power spectrum are anticorrelated and become correlated as
the temperature increases. This can be explained as follows.
The VIDs at the lowest temperatures are dominated by the
instrumental noise and correspond to the voxels within
underdensities for which the astrophysical contribution is
the dimmest. These low-temperature bins are anticorrelated
with the power spectrum, since a higher power spectrum
(i.e., larger temperature fluctuations) widens the astrophysi-
cal temperature PDF and the total VID—given by the
convolution between noise and astrophysical PDFs—shifts
towards higher temperatures. This results in a reduction of
the values of Bi at low temperatures (and a corresponding
increase at high temperatures, hence the positive correlation
between the power spectrum and the VID). We also notice
that the correlation peaks at the temperatures for which the
signal-to-noise ratio for the astrophysical contribution to
the VID is maximum, and decreases later at higher temper-
ature due to a lower signal-to-noise ratio. Finally, since the

FIG. 2. Value of the pseudocorrelation coefficient between the VID and the power spectrum for different temperature and wave-
number bins. The middle panel corresponds to the fiducial scenario described in Sec. II C. The leftmost panel shows the case with half of
the noise per voxel and the rightmost panel shows the case with twice the noise per voxel. Notice the different color bars in each panel.
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existence of voxels with the highest temperatures depends
on the clustering at smaller scales, the correlation decays
faster at large scales as the temperature increases.
The general outcome of increasing the noise per voxel

is to reduce the correlation coefficient, which is to be
expected since the noise is uncorrelated; note that PN does
not appear in Eq. (4.9). We also notice a variety of
qualitative changes in the structure of the correlation
matrix. As we move from lower to higher instrumental
noise, the peak of the correlation matrix shifts from smaller
to larger scales. As the noise increases, the wave number k
at which the noise power spectrum crosses the signal moves
towards larger scales and therefore shifts the peak of
the correlation accordingly. As for the variations along
the temperature bin, we can see two main effects as the
instrumental noise increases: the peak of the correlation
shifts towards higher temperatures, and the distribution
broadens. The first feature is a consequence of the peak of
the signal-to-noise ratio of the VID shifting towards higher
temperatures; the second feature is a direct consequence of
the broadening of the noise PDF.
Finally, we can directly compare our results with the

numerical covariance between the VID and the LIM power
spectrum computed in Ref. [46]. We reproduce Fig. 2 in
Ref. [46] by adopting the same set of experimental
parameters and compute the correlation coefficient as
described above. We present this result in Appendix C
and find good agreement between the two.

V. CONCLUSIONS

Line-intensity mapping proposes a novel technique that
provides access to large cosmological volumes and offers a
complementary approach to map large-scale structure,
gleaning otherwise inaccessible astrophysical information.
Due to the shared dependence on cosmology and astro-
physics, the resulting line-intensity maps are very non-
Gaussian, and hence leave a significant amount of the
information beyond the reach of power spectrum measure-
ments. This is why the VID, which is more sensitive to the
line-luminosity function, arises as a very promising sum-
mary statistic of LIM observations, especially when also
combined with the power spectrum.
We have generalized the VID formalism to account for

local variations of the halo density field. This enabled us to
derive for the first time an analytic covariance between the
LIM power spectrum and the VID—a key step for joint
analyses of one- and two-point correlations of line-intensity
maps. This approach allows for a faster estimation of the
covariance matrix that can be particularly useful when
handling problems in which simulations are unavailable or
impractical, or that require many evaluations. Furthermore,
an analytical approach can offer a deeper understanding of
the physical origin of such a covariance, as it clarifies the

connection between the position-dependent PDFs and
power spectra. We have also derived the cosmic variance
contribution to the variance of the VID, and found that it is
a subdominant contribution with respect to the bin variance,
with possible exceptions in extreme cases.
We directly compared our results with a simulation-

based analysis [46] and found that the results are consistent
with each other and that the structure of the correlation
matrix is successfully reproduced. While the precision of
the results obtained here may be potentially limited by the
modeling choices for the VID and power spectrum, the
general expression for the covariance, which is given in
Eq. (4.9) and is the main result of this work, is general and
can be refined with more accurate models. Furthermore, the
correlation presented here can be easily extended to a wide
range of studies of the statistical properties of intensity
maps. Generalizing the covariance for higher-order multi-
poles of the power spectrum, for higher N-point statistics,
or for different tracers of large-scale structure are natural
extensions of our results.
The combination of the VID and the LIM power

spectrum is expected to significantly improve constraints
on theoretical parameters from LIM experiments. In par-
ticular, adding the VID to a power spectrum analysis can
improve our handle on the line-luminosity function, which
helps break the degeneracies between astrophysical uncer-
tainties and cosmological features.
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APPENDIX A: SHOT NOISE BISPECTRUM

In this work we consider Poissonian shot noise in all
cases. Here we briefly show the derivation of the contri-
bution to the bispectrum BhTT . Consider an infinitesimal
volume δV that may contain Ni ¼ f0; 1g emitters, where
the probability of finding an emitter is n̄ðxÞð1þ δhðxÞÞδV.
Similarly, the expected brightness temperature in
that volume is Ti ¼ NiXLT

R
dMLðMÞdn=dMδV=n̄ðxÞ ¼

hTðxÞið1þ δTðxÞÞ, with δT ¼ δT=hTi. Under these
assumptions, the self-correlators in a given cell are

hN3
i i ¼ hN2

i i ¼ hNii ¼ n̄ðxiÞδVi;

hTn
i i ¼ hTni; hNiTii ¼ hTii; ðA1Þ

and the correlators between different cells are
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hninjii≠j ¼ n̄ðxiÞn̄ðxjÞδViδVjð1þ hδhðxiÞδhðxjÞiÞ;
hninjnkii≠j≠k ¼ n̄ðxiÞn̄ðxjÞn̄ðxkÞδViδVjδVkð1þ hδhðxiÞδhðxjÞδhðxkÞi

þ hδhðxiÞδhðxjÞi þ hδhðxiÞδhðxkÞi þ hδhðxjÞδhðxkÞiÞ;
hTiTjii≠j ¼ hTðxiÞihTðxjÞiδViδVjð1þ hδTðxiÞδTðxjÞiÞ;

hTiTjTkii≠j≠k ¼ hTðxiÞihTðxjÞihTðxkÞiδViδVjδVkð1þ hδTðxiÞδTðxjÞδTðxkÞi
þ hδTðxiÞδTðxjÞi þ hδTðxiÞδTðxkÞi þ hδTðxjÞδTðxkÞiÞ: ðA2Þ

Now we can compute the multitracer three-point function of interest as

Z
d3xi

Z
d3xj

Z
d3xkhNðxiÞTðxjÞTðxkÞi

¼
X
i≠j≠k

n̄ihTjihTkiδViδVjδVkð1þ hδh;iδT;jδT;ji þ hδh;iδT;ji þ hδh;iδT;ki þ hδT;jδT;kiÞ

þ
X
i¼j≠k

hTiihTkiδViδVkð1þ hδT;iδT;jiÞ þ
X
i¼k≠j

hTkihTjiδVkδVjð1þ hδT;kδT;jiÞ

þ
X
j¼k≠i

n̄ihT2
jiδViδVjð1þ hδh;iδT;jiÞ þ

X
i¼j¼k

hT2
i iδVi; ðA3Þ

where we have converted the integrals in sums and denoted the spatial coordinates with subscripts to save space; the terms
in which the sums are constrained to have the same indices correspond to Dirac deltas if we express them as integrals.
We are interested in the correlation of the fluctuations:


�
Ni

n̄
− 1

�
ðTj − hTiÞðTk − hTiÞ

�
¼ 1

n̄
hNiTjTki −

hTi
n̄

hNiTji −
hTi
n̄

hNiTki − hTjTki þ 2hT2i

¼ hTi2hδh;iδT;jδT;ki þ
hTi2
n̄

½hδT;iδT;kiδ3Dðxi − xjÞ þ hδT;iδT;jiδ3Dðxi − xkÞ�

þ hT2ihδh;iδT;jiδ3Dðxj − xkÞ þ
hT2i
n̄

δ3Dðxi − xjÞδ3Dðxj − xkÞ: ðA4Þ

Then, by taking the Fourier transform of the expression above to compute the multitracer bispectrum we find

BhTTðk1; k2; k3Þ ¼ Bclust
hTT ðk1; k2; k3Þ þ

Pclust
TT ðk2Þ þ Pclust

TT ðk3Þ
n̄

þ hT2i
�
Pclust
hT ðk1Þ
hTi þ 1

n̄

�
; ðA5Þ

as expressed in Eq. (2.13). Similarly, the shot noise for the LIM bispectrum is given by

BTTTðk1; k2; k3Þ ¼ Bclust
TTTðk1; k2; k3Þ þ

hT2i
hTi ½Pclust

TT ðk1Þ þ Pclust
TT ðk2Þ þ Pclust

TT ðk3Þ� þ hT3i: ðA6Þ

APPENDIX B: TREE-LEVEL PERTURBATION THEORY KERNELS AND BIASES

The multitracer bispectrum required to describe the covariance between the VID and power spectrum has contributions
from both clustering and shot noise. At tree level, the clustering term can be written as

Bclust
hTT ðk1; k2; k3Þ ¼ 2hTi2fZh

1ðk1ÞZT
1 ðk2ÞZT

2 ðk1; k2ÞPlðk1ÞPlðk2Þ þ Zh
1ðk1ÞZT

1 ðk3ÞZT
2 ðk1; k3ÞPlðk1ÞPlðk3Þ

þ ZT
1 ðk2ÞZT

1 ðk3ÞZh
2ðk2; k3ÞPlðk2ÞPlðk3Þg; ðB1Þ

where Pl is the linear matter power spectrum, and ZX
1 and ZX

2 are the redshift-space kernels corresponding to tracers
X ¼ h, T:
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ZX
1 ðkiÞ≡ ðbX1 þ fμiÞ;

ZX
2 ðki; kjÞ≡ bX1

�
F2ðki; kjÞ þ

fμijkij
2

�
μi
ki
þ μj

kj

�	

þ fμ2ijG2ðki; kjÞ þ
f2μijkij

2
μiμj

�
μj
ki

þ μi
kj

�

þ bX2
2

þ bXs2
2

S2ðki; kjÞ; ðB2Þ

and we use kij ¼ jki þ kjj, μij ¼ ðkiμi þ kjμjÞ=k. F2 and
G2 are the second-order kernels for densities and velocities,
and S2 is the tidal tensor kernel (see, e.g., Refs. [52,61]).
Notice that the only difference between tracers in the
kernels is through the bias parameters; in the case of the
halo density field, the bias parameters are computed with a
simple mass average, whereas for the temperature fluctua-
tions, they are also weighted by luminosity:

bTαðzÞ ¼
R
dMLðM; zÞbαðM; zÞ dn

dM ðM; zÞR
dMLðM; zÞ dn

dM ðM; zÞ ; ðB3Þ

where α denotes the bias parameter corresponding to either
linear, quadratic, or tidal terms. We compute the halo
mass function and the bias parameters bαðM; zÞ using the
Sheth-Tormen prediction [62,63] and assuming coevolu-
tion of halos and dark matter [61,64], so that

b1 ¼ 1þ ϵ1 þ E1;

b2 ¼ 2

�
1 −

17

21

�
ðϵ1 þ E1Þ þ ϵ2 þ E2;

bs2 ¼ −
2

7
ðb1 − 1Þ; ðB4Þ

where

ϵ1 ¼
αν2 − 1

δc
; ϵ2 ¼

αν2

δ2c
ðαν2 − 3Þ;

E1 ¼
2p=δc

1þ ðαν2Þp ; E2 ¼ E1

�
1þ 2p
δc

þ 2ϵ1

�
: ðB5Þ

The shot-noise term in the multitracer bispectrum
depends on both PhT and PTT , which we can write using
the kernel definitions introduced above as

Pclust
hT ðkÞ ¼ hTiZh

1ðkÞZT
1 ðkÞPlðkÞ; ðB6Þ

Pclust
TT ðkÞ ¼ ½hTiZT

1 ðkÞ�2PlðkÞ; ðB7Þ

where Eq. (B7) is the first term in Eq. (2.12), but rewritten
using the kernel ZT

1 .

APPENDIX C: COMPARISON WITH
NUMERICAL COVARIANCE

Reference [46] proposed a combined analysis of the VID
and the power spectrum using a simulation-based approach.
The covariance matrix is obtained by generating a large
number of halo catalogs from “peak patch” simulations and
assigning CO luminosities based on the model outlined in
Ref. [53]. We compare the results derived here with the
covariance matrix measured in their work. Adopting the
experimental design they define in their Table 1 for the two
COMAP phases, a voxel angular size defined by θFWHM,
and the same astrophysical model, we compute the pseu-
docorrelation matrix using Eqs. (4.3), (4.9), and (4.10),
defined as in Ref. [34].
Figure 3 can be directly compared to Fig. 2 in Ref. [46],

but we show only the off-diagonal block of the correlation
matrix. The first row corresponds to the first stage of the
COMAP experiment (COMAP1), the second row corre-
sponds to the second phase (COMAP2), and the third row
shows the result in the absence of instrumental noise. The
first and second columns in Fig. 3 show the results without
and with beam smoothing, respectively.3 We find good
agreement between the two results and that the analytical
approach outlined in this work successfully captures the
important qualitative features in the correlation.

3Beam smoothing has no effect on the VID measurements in
our modeling of this summary statistic. This is not the case when
measuring the VID from a simulated map, since the Gaussian
beam extends beyond the size of the voxel.
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