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We present a comprehensive dynamical systems analysis of homogeneous and isotropic Friedmann-
Lemaître-Robertson-Walker cosmologies in the Hu-Sawicki fðRÞ dark energy model for the parameter
choice fn; C1g ¼ f1; 1g. For a generic fðRÞ theory, we outline the procedures of compactification of the
phase space, which in general is four dimensional. We also outline how, given an fðRÞ model, one can
determine the coordinate of the phase space point that corresponds to the present-day Universe and the
equation of a surface in the phase space that represents the ΛCDM evolution history. Next, we apply these
procedures to the Hu-Sawicki model under consideration. We identify some novel features of the phase
space of the model such as the existence of invariant submanifolds and two-dimensional sheets of fixed
points. We determine the physically viable region of the phase space and the fixed point corresponding to
possible matter-dominated epochs, and discuss the possibility of a nonsingular bounce, recollapse, and
cyclic evolution. We also provide a numerical analysis comparing the ΛCDM evolution and Hu-Sawicki
evolution.
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I. INTRODUCTION

One hundred years after it was formulated, Einstein’s
theory of general relativity (GR) remains the best descrip-
tion of the gravitational action, surviving observational
tests ranging from the Solar System to extragalactic scales.
Despite this success, high-precision astrophysical and
cosmological observations conducted over the past two
decades (type Ia supernovae, cosmic microwave back-
ground anisotropies, large-scale structure formation,
baryon acoustic oscillations, and weak lensing measure-
ments) [1] seem to suggest that, at least on cosmological
scales, GR might not represent a complete description of
gravity. In particular, the late-time acceleration of the
Universe cannot be described within the framework of
GR without introducing additional exotic matter degrees of
freedom, known as dark energy. Although inferred by
fitting observational data to our preferred geometry of the
Universe (the Robertson-Walker metric), dark energy has
not been directly observed. Currently, the concordance (or
ΛCDM) model is regarded as the theoretical framework
that best fits all available data. Here a cosmological
constant dominates the present-day Universe, driving
late-time acceleration, while ordinary matter is dominated

by cold dark matter (CDM), which forms the potential
wells for large-scale structure formation. Despite its suc-
cess, the ΛCDM model is plagued by significant fine-
tuning problems related to the vacuum energy scale, so it is
important to consider other theoretical alternatives, which
are able to describe the main features of the Universe
without the introduction of a cosmological constant or
dynamical dark energy.
One of the most popular alternatives to the concordance

model is based on modifications of standard Einstein
gravity [2,3]. Such models became popular in the 1980s
because it was shown that they naturally admit a phase of
accelerated expansion that could be associated with infla-
tion in the early Universe. This property has led to the idea
that late-time acceleration could also have a geometrical
origin and that there is a connection between dark energy
and a nonstandard behavior of gravitation on cosmological
scales.
Some of the most widely studied of these geometrical

dark energy models are the so-called fðRÞ theories of
gravity [4]. These models are based on gravitational actions
that are nonlinear in the Ricci curvature R. Here the higher-
order curvature corrections are written as an energy-
momentum tensor of geometrical origin describing an
“effective” source term on the right-hand side of the
standard Einstein field equations. This leads naturally to
a geometrical origin of the late-time acceleration of the
Universe. fðRÞ gravity is characterized by the existence of
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a propagating scalar degree of freedom (called a scalaron or
curvaton) φ ¼ f0ðRÞ, as is apparent from the trace field
equation

Rf0ðRÞ − 2fðRÞ þ 3□f0ðRÞ ¼ T; ð1Þ

where T is the trace of the energy-momentum tensor [2,3].
GR is the trivial case of fðRÞ for which f0ðRÞ ¼ 1 and the
scalar degree of freedom vanishes. One of the well-known
late-time fðRÞ models is the so-called Hu-Sawicki (HS)
model [5] which, in its most generic form, is a three-
parameter fðRÞ model. We focus on this important model
in this paper.
Because of the fourth-order nature of these theories, the

cosmological dynamics is considerably richer (and more
complicated) than that of their GR counterparts, making the
theory of dynamical systems ideally suited for studying
them. In fact, describing these cosmologies using the
dynamical systems approach provides a relatively simple
method for finding exact solutions (via their corresponding
fixed points) and obtaining a (qualitative) description of the
global dynamics of these models [6–12]. This approach has
been very successful in shedding light on the dynamics of a
range of homogeneous cosmologies including the
Friedmann-Lemaître-Robertson-Walker (FLRW), Bianchi
I and V [11,13], and Kantowski-Sachs models [14]. It has
also proved useful in identifying orbits in phase space
(expansion histories) that are close to the ΛCDM model,
which can then be used as suitable background cosmolo-
gies for the study of the growth of large-scale structure
[15–18].
The paper is organized as follows. In Sec. II we consider

a generic fðRÞ theory and review the dynamical systems
approach to studying these models. In particular, we
describe how to compactify the phase space and identify
surfaces containing orbits that represent ΛCDM evolution,
as well as the point in phase space corresponding to the
present Universe (based on the current values of the Hubble
and deceleration parameters). In Sec. III we apply this
framework to the Hu-Sawicki fðRÞ dark energy model for
the parameter choice fn; C1g ¼ f1; 1g, obtaining a com-
plete description of the dynamics of these models including
spatial curvature. We determine the physically viable
region of phase space and the fixed point corresponding
to possible matter-dominated epochs, and discuss the
possibility of a nonsingular bounce, recollapse, and cyclic
evolution. We also provide a numerical analysis comparing
the ΛCDM evolution and Hu-Sawicki evolution, setting
initial conditions so that the HS model is dynamically
indistinguishable from the concordance model. Throughout
the paper we use the metric signature ð−;þ;þ;þÞ and the
convention κ ¼ 8πG ¼ 1.

II. DYNAMICAL SYSTEMS APPROACH
FOR GENERIC f ðRÞ COSMOLOGY

We start by writing the field equation for fðRÞ gravity in
the presence of a perfect fluid in a homogeneous and
isotropic FLRW background [2,3],

3f0
�
H2 þ k

a2

�
¼ ρeff ≡ ρþ ρR; ð2aÞ

−f0
�
2 _H þ 3H2 þ k

a2

�
¼ Peff ≡ Pþ PR; ð2bÞ

where the prime denotes a derivative with respect to R
and we have defined the curvaton energy density and
pressure as

ρR ≡ 1

2
ðRf0 − fÞ − 3H _f0; ð3aÞ

PR ≡ f̈0 þ 2H _f0 −
1

2
ðRf0 − fÞ: ð3bÞ

The curvaton equation-of-state parameter is

wR ≡ PR

ρR
¼ f̈0 þ 2H _f0 − 1

2
ðRf0 − fÞ

1
2
ðRf0 − fÞ − 3H _f0

; ð4Þ

and the effective equation-of-state parameter of the uni-
verse is

weff ≡ Peff

ρeff
¼ Pþ PR

ρþ ρR
¼ −

2 _H þ 3H2 þ k=a2

3ðH2 þ k=a2Þ : ð5Þ

If the perfect fluid is barotropic with an equation-of-state
parameter P

ρ ¼ w, then w, wR, and weff are related as

weff ¼ w
ρ

ρeff
þ wR

ρR
ρeff

: ð6Þ

Since matter is minimally coupled to curvature, the perfect
fluid and the curvaton evolve independently according to
their own continuity equations [19],

_ρþ 3Hð1þ wÞρ ¼ 0; ð7aÞ

_ρR þ
�
3Hð1þ wRÞ þ

_Rf00

f02

�
ρR ¼ −

�
2H − 3

_Rf00

f0

�
k
a2

þ 3
H2 _Rf00

f0
: ð7bÞ

The matter continuity equation gives the usual scaling

ρ ¼ 3H2
0Ω0a−3ð1þwÞ; ð8Þ
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where we have used the definition of the observable
quantity Ω0 ¼ ρ0

3H2
0

, the matter density parameter, with the

subscript 0 being used to denote the present-day values.
It is worth mentioning here two important conditions for

the physical viability of any fðRÞ gravity model:
(1) f0ðRÞ < 0 makes the scalar degree of freedom

appearing in the theory a ghost. To eradicate the
possibility of a ghost degree of freedom, one must
require f0ðRÞ > 0 for all R.

(2) f00ðRÞ < 0 is related to unstable growth of curvature
perturbation in the weak-gravity limit. (This is also
known as the Dolgov-Kawasaki instability, as this
was first suggested by Dolgov and Kawasaki in
Ref. [20].) Therefore, one requires f00ðRÞ > 0 at
least during the early epoch of matter domination.

A. Phase-space analysis for f ðRÞ gravity
In this subsection we present a dynamical systems

formulation for FLRW cosmologies in fðRÞ gravity fol-
lowing Refs. [7,8]. We start by writing the Friedmann
equation (2a) as follows:

H2 ¼ 1

3

ρ

f0
þ 1

6f0
ðRf0 − fÞ −H

_f0

f0
−

k
a2

: ð9Þ

Next, we divide both sides by 3H2 and define a set of
Hubble-normalized dimensionless dynamical variables,

x̃ ¼
_f0

f0
1

H
; ṽ ¼ 1

6

R
H2

; ỹ ¼ 1

6

f
f0

1

H2
;

Ω̃ ¼ 1

3

ρ

f0
1

H2
; K̃ ¼ k

a2
1

H2
; ð10Þ

which are related by the constraint equation

Ω̃þ ṽ − ỹ − x̃ − K̃ ¼ 1: ð11Þ

Differentiating the dynamical variables with respect to the
e-folding number N ≡ ln a, one obtains the following
autonomous system of equations:

dx̃
dN

¼ −2ṽþ 4þ 3x̃ − 3ð1þ wÞΩ̃þ 4K̃ − x̃2 − x̃ṽþ x̃K̃;

ð12aÞ

dṽ
dN

¼ ṽðΓx̃ − 2ṽþ 2K̃ þ 4Þ; ð12bÞ

dK̃
dN

¼ −2K̃ðṽ − K̃ − 1Þ; ð12cÞ

dΩ̃
dN

¼ −Ω̃ð−1þ 3wþ x̃þ 2ṽ − 2K̃Þ; ð12dÞ

dỹ
dN

¼ Γx̃ṽþ ỹð2K̃ − 2ṽ − x̃þ 4Þ; ð12eÞ

where we defined the auxiliary quantity

Γ≡ f0

Rf00
; ð13Þ

which is explicitly dependent on the functional form of
fðRÞ. The system of dynamical equations (12a)–(12e),
along with the Friedmann constraint (11), constitutes the
dynamical system for FLRW cosmologies in fðRÞ gravity.
Because of the existence of the constraint, one of the
dynamical variables is redundant, and the resulting phase
space is actually four dimensional.
In order to close the system, Γ must be expressed as a

function of the dynamical variables. This can be done by
noting that the relation

ṽ
ỹ
¼ Rf0

f
ð14Þ

can, in principle, be inverted to obtain R ¼ RðṽỹÞ. Using this
one can obtain Γ ¼ ΓðṽỹÞ. As mentioned in Ref. [8], the
success of this particular dynamical systems formulation
crucially depends on the invertibility of the relation (14).
This is a limitation of this formulation. For example, the
most generic case of the Hu-Sawicki fðRÞmodel [5] cannot
be treated with this approach and a different formulation is
necessary. A possible solution to this issue was devised in
Ref. [9]. In this paper we focus on the only particular case
of the Hu-Sawicki fðRÞ model that can in fact be treated
with this formulation [21].1

The Hubble-normalized dynamical variables defined in
Eq. (10) are noncompact, i.e., their domain is infinite or
semi-infinite. In particular, by definition, all of them
diverge at a cosmological bounce or recollapse, which
necessarily requires the condition H ¼ 0. Therefore, there
can be interesting physical properties at the infinity of the
phase space that one misses using this formulation. Also,
one can justifiably take the e-folding N ≡ ln a as a phase-
space time variable as long as one confines their attention to
an expanding universe only, as _N ¼ H is always positive.
For a contracting universe one should alter the definition as
N ≡ − ln a and in general one should define the phase-

space time variable as N ≡ jHj
H ln a. Clearly, this definition

is discontinuous at a cosmological bounce or recollapse. As
we will see in the next subsection, this shortcoming is not
present in the compact phase-space formulation.

1For a historical account of different dynamical systems
formulations for FLRW cosmology in fðRÞ gravity, see Ref. [22].
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B. Compactifying the phase space

In this subsection we outline a prescription for the
compactification of the phase space. We follow the
approach of Refs. [10,21], but generalize it to the case
of non-negative global spatial curvature.2 We start by
writing the Friedmann equation (2) as follows:

D2 ≡
�
3Hþ 3

2

_f0

f0

�2

þ 3

2

�
f
f0
þ 6k
a2

�
¼ 3ρ

f0
þ 3

2
Rþ 9

4

� _f0

f0

�2

:

ð15Þ
Next, we divide both sides by D2 and define a set of
compact dynamical variables,

x ¼ 3

2

_f0

f0
1

D
; v ¼ 3

2

R
D2

; y ¼ 3

2

f
f0

1

D2
;

Ω ¼ 3ρ

f0
1

D2
; Q ¼ 3H

D
; K ¼ 9k

a2
1

D2
; ð16Þ

which are now related by two constraint equations,

ðQþ xÞ2 þ K þ y ¼ 1; ð17aÞ

Ωþ x2 þ v ¼ 1; ð17bÞ

which come directly from Eq. (15). The dynamical vari-
ables defined in Eq. (16) are compact because, by requiring
f0ðRÞ > 0, restricting ourselves to non-negative global
spatial curvature, and keeping in mind the two constraints
(17a) and (17b), we get the following finite domains for the
dynamical variables:

−1 ≤ x ≤ 1; 0 ≤ Ω ≤ 1; −2 ≤ Q ≤ 2;

0 ≤ v ≤ 1; 0 ≤ y ≤ 1; 0 ≤ K ≤ 1: ð18Þ
It is straightforward to find a relationship between the compact
dynamical variables and their noncompact counterparts,

x̃ ¼ 2
x
Q
; ṽ ¼ v

Q2
; ỹ ¼ y

Q2
;

K̃ ¼ K
Q2

; Ω̃ ¼ Ω
Q2

: ð19Þ

To write an autonomous dynamical system, we need to
define a new phase-space time variable τ such that

dτ≡Ddt: ð20Þ

Differentiating the compact dynamical variables with
respect to τ and using the field equations results in a
system of six first-order autonomous differential equations.

Because of the existence of the two constraint equa-
tions (17a) and (17b), two of the dynamical variables
are redundant. Therefore, the compact phase space, just like
its noncompact counterpart, is actually four dimensional.
We choose to eliminate y and Ω and write the dynamical
system as follows:

dv
dτ

¼ −
1

3
vððQþ xÞð2v − ð1þ 3wÞð1 − x2 − vÞ þ 4xQÞ

− 2Q − 4xþ 2xΓðv − 1Þ þ 4xKÞ; ð21aÞ

dx
dτ

¼ 1

6
½−2x2vΓþ ð1 − 3wÞð1 − x2 − vÞ þ 2v

þ 4ðx2 − 1Þð1 −Q2 − xQÞ
þ xðQþ xÞðð1þ 3wÞð1 − x2 − vÞ − 2vÞ
þ 4Kð1 − x2Þ�; ð21bÞ

dQ
dτ

¼ 1

6
½−4xQ3 þ xQð5þ 3wÞð1 − xQÞ −Q2ð1 − 3wÞ

−Qx3ð1þ 3wÞ − 3vQð1þ wÞðQþ xÞ
þ 2vð1 −QxΓÞ − 2Kð1þ 2xQÞ�; ð21cÞ

dK
dτ

¼ −
1

3
KððQþ xÞð−ð1þ 3wÞð1 − x2 − vÞ þ 4xQ

þ 2vÞ þ 4xðK − 1Þ þ 2xvΓÞ: ð21dÞ

The system can be closed by inverting the relation

v
y
¼ Rf0

f
ð22Þ

to find R ¼ RðvyÞ and using it to write Γ ¼ ΓðvyÞ, provided,
of course, that the relation (22) is invertible. Note that,
unlike in the noncompact phase-space analysis, the defi-
nition of the phase-space time variable τ is not discontinu-
ous at a cosmological bounce or recollapse, as _τ ¼ D is
always positive definite by definition.
A compact phase-space analysis helps analyze the global

features of the solution space of a theory, someofwhichmight
not be apparent from a noncompact phase-space analysis.
From this point onwards,wewill use only the compact phase-
space analysis for all of our subsequent analysis.

C. ΛCDM point

In this subsection we try to determine which point in the
four-dimensional phase space v-x-Q-K corresponds to the
present-day Universe. In other words, we outline how to
calculate the values of the compact dynamical variables v,
x, Q, K based on the observed values of different
cosmological parameters. To this aim, let us first introduce
two sets of dimensionless parameters. The first set is the
usual matter density parameter (Ωm) and spatial curvature
density parameter (Ωk),

2For a different compactification approach via the Poincaré
compactification, see Ref. [6].
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Ωm ≡ ρ

3H2
; Ωk ≡ k

a2H2
; ð23Þ

where we have deliberately used the subscript m in Ωm to
make it apparent that it is different from the compact
dynamical variable Ω defined in Eq. (16) (Ω → Ωm only in
the GR limit f0 → 1). The second set is the dimensionless
cosmographic parameters, namely, the dimensionless
Hubble parameter (h), deceleration parameter (q), jerk
parameter (j), and snap parameter (s) [23,24],

h≡ H
H0

; q≡−
ä

aH2
; j≡ a

…

aH3
; s≡ að4Þ

aH4
; ð24Þ

whereH0 is the present-day value of the Hubble parameter.
Both the matter density parameters and the cosmographic
parameters are sets of observable quantities.
Assuming that the dominant hydrodynamic fluid content

in the Universe is given by CDM that is modeled by a
dust fluid, the Hubble parameter and its first derivative are
given by

H2 ¼ ρ

3f0
þ 1

6f0
ðRf0 − fÞ −H

_f0

f0
−

k
a2

; ð25aÞ

_H ¼ −
1

2f0

�
1

3
ρþ R̈f00 þ _R2f000 −Hf00 _R

�
þ 3

2

k
a2

: ð25bÞ

It can be verified that Eqs. (25a) and (25b) are completely
equivalent to Eqs. (2a)–(2b). The Ricci scalar and its first
two derivatives are

R ¼ 6

�
_H þ 2H2 þ k

a2

�
; ð26aÞ

_R ¼ 6

�
Ḧ þ 4H _H − 2H

k
a2

�
; ð26bÞ

R̈ ¼ 6

�
H
… þ 4HḦ þ 4 _H2 þ ð4H2 − 2 _HÞ k

a2

�
: ð26cÞ

The Ricci scalar and its first two derivatives can be
expressed as purely algebraic combinations of the matter
abundance parameters and the cosmographic parameters
[19],

R
H2

0

¼ 6h2ð1 − qþ ΩkÞ; ð27aÞ

_R
H3

0

¼ 6h3ðj − q − 2 − 2ΩkÞ; ð27bÞ

R̈
H4

0

¼ 6h4ðsþ q2 þ 8qþ 6þ 2ð3þ qÞΩkÞ: ð27cÞ

Equations (25a) and (25b) can also be expressed using the
cosmographic parameters as purely algebraic equations,
i.e., not explicitly containing any time derivatives,

Af0 þ f
H2

þ BðH2f00Þ − 6Ωm ¼ 0; ð28aÞ

Cf0 −DðH2f00Þ − GðH4f000Þ − Ωm ¼ 0; ð28bÞ

with the coefficientsA, B, C,D, G being different algebraic
combinations of the cosmographic parameters and the
spatial curvature density parameter,

A ¼ 6q; ð29aÞ

B ¼ 36ðj − q − 2 − 2ΩkÞ; ð29bÞ

C ¼ 3Ωk þ 2þ 2q; ð29cÞ

D ¼ 6ð8 − jþ 9qþ q2 þ 2Ωkð4þ qÞ þ sÞ; ð29dÞ

G ¼ 36ðj − q − 2 − 2ΩkÞ2: ð29eÞ

Henceforth, we use the subscript 0 to denote the
parameter values in the current epoch. Since the value of
the scale factor itself bears no dynamical significance, it is
conventional to take a0 ¼ 1. Also, by definition, the
present-day value of the dimensionless Hubble parameter
is h0 ¼ 1. Other cosmographic parameters are quantities
that can be calculated from the observational data once a
parametrization for the dark energy equation of state is
fixed. Using the Chevallier-Polarski-Linder parametriza-
tion [25,26] for the dark energy equation of state

wDE ¼ w0 þ wað1 − aÞ ð30Þ

and fixing the free parameters to those corresponding to the
ΛCDM model ðw0; waÞ ¼ ð−1; 0Þ results in the following
expressions for ðq0; j0; s0Þ:

q0 ¼
1

2
−
3

2
ΩΛ0; ð31aÞ

j0 ¼ Ωk þ 1; ð31bÞ

s0 ¼ 1 −
9

2
Ωm0; ð31cÞ

where ΩΛ is used to denote the dark energy density
parameter. The values of different density parameters,
taken from Planck 2018 data [27], are

ðΩΛ0;Ωk0;Ωm0Þ ¼ ð0.6843; 0.0007; 0.315Þ: ð32Þ

This gives the present-day values for the cosmographic
parameters within the ΛCDM model as
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ðq0; j0; s0Þ ¼ ð−0.52645; 1.0007;−0.4175Þ: ð33Þ

The values in Eqs. (32) and (33) allow us to calculate the
present-day values of the Ricci scalar and its derivatives
using Eqs. (27a)–(27c),

�
R0

H2
0

;
_R0

H3
0

;
R̈0

H4
0

�
¼ ð9.1629;−2.8455; 9.9091Þ; ð34Þ

as well as the present-day values of the coefficients in
Eqs. (29a)–(29e),

ðA0;B0;C0;D0;G0Þ
¼ ð−3.1587;−17.0730;0.9492;12.7546;8.0969Þ: ð35Þ

With the known values of these coefficients, one can see
now that Eqs. (28a) and (28b) become a pair of algebraic
equations with constant coefficients for f0

H2
0

, f00, H2
0f

00
0 ,

H4
0f

000
0 . If one now specifies an explicit functional form

of fðRÞ, Eqs. (28a) and (28b) can be used to determine the
value of up to two a priori unspecified model parameters of
the theory (modulo a factor of H0 that is used to make the
model parameters dimensionless).
Note that if there are more than two unspecified model

parameters, one requires more equations in addition to
Eqs. (28a) and (28b), which are obtained by taking time
derivatives of Eq. (25b) and considering cosmographic
parameters of order higher than the snap parameter. On the
other hand, if there is only one unspecified model param-
eter, then it is not necessary to use both equations (28a) and
(28b). In this situation, one should consider the reduced set
of cosmographic parameters fq; jg and use their present
values to determine the value of the model parameter.
Equation (28a) now suffices for this purpose.
Equation (28b) in this case does not provide an additional
equation to determine the model parameter, as it contains s
whose present-day value will not be required anymore.
Once the value(s) of the a priori unspecified model

parameter(s) is determined (modulo the factor of H0), one
can calculate the values of the compact dynamical variables
corresponding to the present-day observable Universe
using the values given in Eqs. (33) and (34). Henceforth,
we will call this point in the phase space the ΛCDM point.
In Sec. III H we will calculate the phase-space coordinates
of the ΛCDM point for the specific case of the Hu-Sawicki
fðRÞ model that we consider in this paper.

D. ΛCDM surface

The cosmological evolution in the ΛCDM model can be
written as

hðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0a−3 þΩΛ0 −Ωk0a−2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0a−3 þΩΛ0 − ðΩm0 þ ΩΛ0 − 1Þa−2

q
; ð36Þ

where Ωm0, ΩΛ0, and Ωk0 have the values specified in
Eq. (32) and the second line comes from the first line by
writing the equation at the present epoch. The ΛCDM
evolution history can be specified by the necessary and
sufficient condition3 [24]

j ¼ Ωk þ 1: ð37Þ

This is a purely kinematic condition specifying how the
Universe evolves, with no information on the inherent
dynamical model for the evolution. There can be models
other than ΛCDM that obey the same cosmographic
requirement [Eq. (37)] and therefore produce a cosmologi-
cal evolution identical to Eq. (36). Such models are
kinematically degenerate with ΛCDM at the background
level. For an fðRÞ model to exactly mimic the ΛCDM
evolution history at the background level, it must obey the
condition (37).4

The deceleration parameter q can be expressed in terms
of the dynamical variables as

q ¼ 1þ K̃ − ṽ ¼ 1þ K − v
Q2

: ð38Þ

The jerk parameter j can be expressed in terms of the
deceleration parameter and its time derivative,

j ¼ 2q2 þ q −
1

H
dq
dt

¼ 2q2 þ q −
3

Q
dq
dτ

: ð39Þ

Using the dynamical equations (21a)–(21d), j can be
expressed as a function of the dynamical variables,

j ¼ jðK; x; v;QÞ; ð40Þ

whose explicit functional form we do not write here as
the relevant calculations can be tackled numerically.
Equation (37) now provides an algebraic constraint that
specifies a three-dimensional hypersurface over the entire
four-dimensional phase spaceK-x-v-Q. Henceforth, wewill
call it the ΛCDM surface. If an fðRÞ theory is to produce a
cosmic evolution history that is asymptotically ΛCDM, then
there must be a de Sitter saddle or stable fixed point lying on
this hypersurface and a phase trajectory that asymptotically

3This is to say that Eq. (36), differentiated twice, gives Eq. (37)
and Eq. (37), integrated twice, gives back Eq. (36).

4For a reconstruction of fðRÞ models based on the ΛCDM
evolution history (36), see Ref. [28]. For a generic dynamical
systems analysis ofΛCDM-mimicking fðRÞmodels, seeRef. [29].
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approaches this point. If an fðRÞ theory is to produce a
cosmic evolution history that is indistinguishable from the
ΛCDM evolution (36) at all times, then there must be an
unstable or a saddle fixed point corresponding to a matter-
dominated phase on this surface, a de Sitter saddle or stable
fixed point on this surface, and a phase trajectory connecting
these two fixed points. The theory must also produce a phase
trajectory lying entirely on this surface connecting these two
fixed points.

III. DYNAMICAL SYSTEMS ANALYSIS APPLIED
TO THE HU-SAWICKI f ðRÞ MODEL

A theoretically viable fðRÞ alternative to dark energy
must satisfy the following criteria:
(1) fðRÞ → R for R → 0.
(2) fðRÞ → R − 2Λ (Λ > 0) for R → ∞.
(3) f0ðRÞ > 0 for all R so that the curvature degree of

freedom is always physical.
(4) f00ðRÞ > 0 for all R so that at no point of time is there

an unbounded growth of curvature perturbation.
The Hu-Sawicki fðRÞ model [5] was specifically designed
so as to satisfy all of these conditions. In its most generic
form, the HS model is a three-parameter theory with the
following form:

fðRÞ ¼ R −
C1Rn

C2Rn þ 1
: ð41Þ

Taking the limit R → ∞, one can read off Λ ¼ C1

C2
, so that C1

C2

must be positive. As was pointed out in Ref. [21], only the
particular case n ¼ 1 ¼ C1 can be studied with the present
dynamical systems formulation since it is only for this special
case that the relation (22) is invertible. Henceforth, we will
confine our study to this special case only. Choosing towork
with the particular case n ¼ 1 does not, in anyway,make our
subsequent analysis any less relevant, because it was shown
in Ref. [30] that n remains completely unconstrained by
current cosmological data. Since we live in a universe with a
positivevalueof the cosmological constant, choosingC1 ¼ 1
now means that C2 must have a positive value.

A. Compact dynamical system

For n ¼ 1 ¼ C1, the relation (22) is invertible and one
can find

Γ ¼ 1

2

vy
ðv − yÞ2 : ð42Þ

With the above expression for Γ, the dynamical system (21)
becomes singular with a pole of second order on the three-
dimensional hypersurface given by

z≡ ðv − yÞ ¼ vþ ðQþ xÞ2 þ K − 1 ¼ 0; ð43Þ

which means one needs to be careful to construct a
dynamical system here so as to be able to apply the
dynamical systems technique. To this goal, we redefine
the phase-space time variable as

dη ¼ dτ
ðvþ ðQþ xÞ2 þ K − 1Þ2 ; ð44Þ

so that with respect to this redefined time variable, the new
dynamical system becomes regular everywhere. The
explicit form of the dynamical system in the compact
phase space in the presence of a generic perfect fluid and
for the HS model with n ¼ 1 ¼ C1 is as follows:

dv
dη

¼ −
1

3
vz2ððQþ xÞð2v − ð1þ 3wÞð1 − x2 − vÞ

þ 4xQÞ − 2Q − 4xþ 4xKÞ

−
1

3
v2xðv − zÞðv − 1Þ; ð45aÞ

dx
dη

¼ 1

6
z2½ð1 − 3wÞð1 − x2 − vÞ þ 2v

þ 4ðx2 − 1Þð1 −Q2 − xQÞ
þ xðQþ xÞðð1þ 3wÞð1 − x2 − vÞ − 2vÞ

þ 4Kð1 − x2Þ� − 1

6
x2v2ðv − zÞ; ð45bÞ

dQ
dη

¼ 1

6
z2½−4xQ3 þ xQð5þ 3wÞð1 − xQÞ −Q2ð1 − 3wÞ

−Qx3ð1þ 3wÞ − 3vQð1þ wÞðQþ xÞ

þ 2v − 2Kð1þ 2xQÞ� − 1

6
v2ðv − zÞQx; ð45cÞ

dK
dη

¼−
1

3
z2KððQþxÞð−ð1þ3wÞð1−x2−vÞ

þ4xQþ2vÞþ4xðK−1ÞÞ−1

3
Kxv2ðv− zÞ: ð45dÞ

The variable z from Eq. (43) follows the dynamical
equation

dz
dη

¼ 1

3
z½v2xðkþ ðQþ xÞ2 þ v− 1Þ− zðxð4k2 þ kð8Q2 þ 7v− 7Þ þ 4Q4 þQ2ðv− 1Þð9wþ 13Þ þ 3ðv− 1Þ2ðwþ 1ÞÞ

þQð3kðv− 1Þ þ 3Q2ðv− 1Þðwþ 1Þ þ 3v2 þ 3ðv− 1Þ2w− 4vþ 3Þ þ x3ð5kþ 3Q2ð3wþ 5Þ þ 2ðv− 1Þð3wþ 2ÞÞ
þQx2ð13kþQ2ð3wþ 13Þ þ 2ðv− 1Þð6wþ 7ÞÞ þQð9wþ 7Þx4 þ ð3wþ 1Þx5Þ þ xðkþ ðQþ xÞ2 − z− 1Þ3�: ð46Þ
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Interestingly, the singular submanifold z ¼ 0 now
becomes an invariant submanifold in the phase space, by
virtue of the time redefinition (44).
The fixed points of the system for the case when the

perfect fluid is CDM (w ¼ 0) are listed in Table I, along
with their stability nature. As can be seen from the table,
there are nine isolated fixed points ðE�;F ;G�;H�; I�Þ
and two two-dimensional “sheets” of fixed points that can
be expressed in a compact way as

S1 ≡ ðK; x; v;QÞ
¼ ðð1 −Q2Þcos2θ; 0; ð1 −Q2Þsin2θ; QÞ; ð47Þ

S2 ≡ ðK; x; v;QÞ ¼ ð1 − ðQþ xÞ2; x; 0; QÞ: ð48Þ

Both S1 and S2 have one part corresponding to an
expanding phase (Q > 0) and another part corresponding
to a contracting phase (Q < 0). In Table I we explicitly
write them as S1� and S2�. The stability of the isolated
fixed points is found in the usual way using the Hartman-
Grobman theorem. The stability of the sheets of fixed
points needs some further discussion, which we provide in
Appendix B. The entire phase space is four dimensional.
The phase space of the HS model is very rich in structure

and many of its features deserve an entire subsection
dedicated to its detailed discussion.

B. Sheets of fixed points

As mentioned previously, there are two pairs of sheets of
fixed points S1� and S2� in the four-dimensional compact
phase space of the Hu-Sawicki model. Since all of the
points on these two-dimensional sheets are fixed points,
there is no phase flow either on the sheet or across the
sheet. Therefore, these sheets of fixed points are also
invariant submanifolds. Each of the sheets S1� divides

the three-dimensional submanifold x ¼ 0 into two disjoint
volumes. Likewise, each of the sheets S2� divides the
three-dimensional submanifold v ¼ 0 into two disjoint
volumes. It is to be kept in mind, however, that these
sheets do not divide the entire four-dimensional phase
space into two disjoint four-dimensional volumes, as in that
case one would need not a sheet of fixed points, but rather a
volume of fixed points. (As a lower-dimensional analogy,
one could think of a one-parameter family of fixed points in
a complete three-dimensional phase space.)
The Jacobian of the dynamical system yields four null

eigenvalues when calculated on each sheet. Therefore, the
Hartman-Grobman theorem cannot be used to determine
their stability. We expand on this in Appendix B.

C. Physically viable regions

For the HS model with n ¼ C1 ¼ 1, one can obtain from
the definitions of the phase-space variables v and y that

C2Rþ 1 ¼ y
v − y

; ð49Þ

and therefore

f0ðRÞ ¼ 1 −
1

ðC2Rþ 1Þ2 ¼
vð2y − vÞ

y2
; ð50aÞ

f00ðRÞ ¼ 2C2

ðC2Rþ 1Þ3 ¼
2C2ðv − yÞ3

y3
: ð50bÞ

The absence of ghost and tachyonic instabilities requires
f0 > 0, f00 > 0. These expressions can be used to determine
the regions of the phase-space in which the HS model is
physically viable, i.e., free of ghost and tachyonic insta-
bilities. Keeping in mind that C2 is a positive constant, this
constrains the physically viable region of the phase space as

TABLE I. Fixed points for the HS model with the parameter choice n ¼ C1 ¼ 1 in the presence of CDM (w ¼ 0). Note that S1� and
S2� are actually two pairs of sheets of fixed points. The deceleration parameter q ¼ −1 − _H

H2 and the effective equation-of-state

parameter weff ¼ −
2 _Hþ3H2þ k

a2

3ðH2þ k
a2
Þ can be determined in terms of the compact dynamical variables as q ¼ 1þ K−v

Q2 and weff ¼ Q2þK−2v
3ðQ2þKÞ .

Point ðK; x; v; Q;Ω; yÞ Stability
Deceleration
parameter weff Cosmology

S1� ðK; 0; v;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K − v

p
; 1 − v; vÞ Saddle 1−2v

1−K−v
1
3

ð1−3vÞ
ð1−vÞ Depends on the point

S2� ðK; x; 0;−x� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − K

p
; 1 − x2; 0Þ

(Attractor for 3Q < x < 0

Repeller for 0 < x < 3Q
Saddle otherwise

x2∓2x
ffiffiffiffiffiffiffi
1−K

p þ1

ð−x� ffiffiffiffiffiffiffi
1−K

p Þ2
1
3

Depends on the point

E� ð0; 0; 1;� 1ffiffi
2

p ; 0; 1
2
Þ NH −1 −1 de Sitter

F ð3
5
; 0; 3

5
; 0; 2

5
; 2
5
Þ Spiral Undefined − 1

3
Einstein static solution

G� ð0;� 1
3
; 8
9
;� 2

3
; 0; 0Þ Attractor=repeller −1 −1 de Sitter

H� ð2
3
;� 1ffiffi

3
p ; 2

3
; 0; 0; 0Þ Saddle Undefined − 1

3
Einstein static solution

I� ð3
5
;∓ 1ffiffi

5
p ; 4

5
;� 1ffiffi

5
p ; 0; 2

5
Þ Saddle 0 − 1

3
a ∼ t
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1

2
v < y < v ð51Þ

or, using the constraint equation (17a),

1

2
v < 1 − K − ðQþ xÞ2 < v: ð52Þ

Furthermore, one requires 0 ≤ y, Ω ≤ 1 which, using the
constraint equations (17a) and (17b), translates into the
conditions

0 ≤ ðQþ xÞ2 þ K ≤ 1; ð53Þ

0 ≤ vþ x2 ≤ 1: ð54Þ

The constraints (52)–(54) must also be imposed to single
out the physically viable region of the phase space.

D. Matter-dominated epoch

An effectively matter-dominated epoch is given by a
fixed point which has weff ¼ 0. The only candidate for this
is the one-parameter family of fixed points given by the
curve

M≡ ðK; x; v;Q;Ω; yÞ

¼
�
2

3
−Q2; 0;

1

3
; Q;

2

3
;
1

3

�
⊂ S1: ð55Þ

If we only consider the invariant submanifold K ¼ 0, i.e.,
only the spatially flat cosmologies, we get two pairs of
isolated fixed points,

Pm� ≡ ðx; v;Q;Ω; yÞ ¼
�
0;
1

3
;�

ffiffiffi
2

3

r
;
2

3
;
1

3

�
; ð56Þ

which correspond to an effectively dark matter–dominated
epoch during the expansion and contraction phases, respec-
tively. From Table I one can note that matter-dominated
fixed points are always saddle fixed points, i.e., an
intermediate epoch of a cosmology.

E. Fixed points on the ΛCDM surface

It can be explicitly checked that the fixed points E� and
G� satisfy the cosmographic condition (37), i.e., they fall
on the ΛCDM surface. In an expanding universe, Eþ is a
saddle point (i.e., an intermediate phase), whereas Gþ is a
stable fixed point (i.e., a future attractor). In order for the
HS model under consideration to asymptotically mimic the
ΛCDM evolution at late times, the phase trajectories near
the matter-dominated fixed point M must end at the
de Sitter future attractor Gþ via the intermediate
de Sitter epoch Eþ. Figure 1 shows such a trajectory for the
spatially flat case. The trajectory is plotted by numerically

solving the system in Eqs. (45a)–(45d), setting fK;wg ¼
f0; 0g and using the initial conditions ðx; v;QÞη¼0 ¼
ð0; 0.334;

ffiffi
2
3

q
Þ, which falls in the vicinity of the matter-

dominated fixed point Pmþ ≡ ðx; v;QÞ ¼ ð0; 1
3
;

ffiffi
2
3

q
Þ.

F. Comparison with ΛCDM evolution

In this subsection we compare the evolution of the
dimensionless Hubble parameter (h), deceleration param-
eter (q), effective equation-of-state parameter (weff ), and
jerk parameter (j) in the spatially flat ΛCDM cosmology
and an HS cosmology given by the phase trajectory of
Fig. 1, setting the same initial conditions for both. To
perform the numerical analysis it is easier to work with the

redshift z ¼ 1−aðtÞ
aðtÞ . For the spatially flat ΛCDM model the

Friedmann equation and the Raychaudhuri equation are

3H2 ¼ ρm þ Λ; ð57aÞ

2 _H þ 3H2 ¼ Λ; ð57bÞ

from which one can write the evolution of the dimension-
less Hubble parameter and the deceleration parameter as5

FIG. 1. Characteristic phase trajectory for the spatially flat case

K ¼ 0 passing through the point ðx; v;QÞ ¼ ð0; 0.334;
ffiffi
2
3

q
Þ

(indicated by the red dot) in the vicinity of the matter-dominated

fixed point Pmþ ≡ ðx; v; QÞ ¼ ð0; 1
3
;

ffiffi
2
3

q
Þ. The trajectory passes

near the intermediate de Sitter phase Eþ and ends at the de Sitter
future attractor Gþ. Both de Sitter points lie on the ΛCDM
surface.

5For the spatially flat ΛCDM model, the jerk parameter j is
identically unity [24].
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hðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ ð1 − Ωm0Þ

q
; ð58aÞ

qðzÞ ¼ 3Ωm0ð1þ zÞ3
2h2ðzÞ − 1; ð58bÞ

weffðzÞ ¼ −
1

3
ð1 − 2qðzÞÞ; ð58cÞ

jðzÞ ¼ 1: ð58dÞ

Noting that dN ¼ − dz
1þz, one can express the noncompact

dynamical system in Eqs. (12a)–(12e) with respect to z:

dx̃
dz

¼ −
1

ðzþ 1Þ ½−2ṽþ 4þ 3x̃ − 3ð1þ wÞΩ̃þ 4K̃

− x̃2 − x̃ṽþ x̃K̃�; ð59aÞ

dṽ
dz

¼ −
ṽ

ðzþ 1Þ ðΓx̃ − 2ṽþ 2K̃ þ 4Þ; ð59bÞ

dK̃
dz

¼ 2K̃
ðzþ 1Þ ðṽ − K̃ − 1Þ; ð59cÞ

dΩ̃
dz

¼ Ω̃
ðzþ 1Þ ð−1þ 3wþ x̃þ 2ṽ − 2K̃Þ; ð59dÞ

dỹ
dz

¼ −
1

ðzþ 1Þ ðΓx̃ṽþ ỹð2K̃ − 2ṽ − x̃þ 4ÞÞ: ð59eÞ

For the spatially flat case K̃ ¼ 0, the constraint equa-
tion (11) gives

Ω̃ ¼ 1þ x̃þ ỹ − ṽ; ð60Þ

and the noncompact dynamical system (59a)–(59e)
reduces to

dx̃
dz

¼ −
1

ðzþ 1Þ ½−2ṽþ 4þ 3x̃ − 3ð1þ wÞð1þ x̃þ ỹ − ṽÞ

− x̃2 − x̃ṽ�; ð61aÞ

dṽ
dz

¼ −
ṽ

ðzþ 1Þ ðΓx̃ − 2ṽþ 4Þ; ð61bÞ

dỹ
dz

¼ −
1

ðzþ 1Þ ðΓx̃ṽþ ỹð−2ṽ − x̃þ 4ÞÞ: ð61cÞ

To solve the system in Eq. (61), one needs to set an initial
condition ðx̃; ṽ; ỹÞzi at some zi. To compare the evolution of
the spatially flat ΛCDM model and the spatially flat HS
model with n ¼ 1 ¼ C1, one needs to set the same initial
condition for the two models at some time in the past.
Following the idea adopted in Ref. [21], we set the initial

condition at z ¼ 20. In the remainder of this section we
explain how to set the same initial condition for both
cosmologies at z ¼ 20.
Taking the parameter choice ðΩm0;ΩΛ0Þ¼ð0.315;0.685Þ6

in Eqs. (58a)–(58d), for the ΛCDM evolution one gets

ðh;qÞz¼20¼ðhΛCDM;qΛCDMÞz¼20¼ð54.0176;0.499Þ: ð62Þ

Setting w ¼ 0 (CDM) and Γ ¼ 1
2

ṽỹ
ðṽ−ỹÞ2 (for the HS model

with n ¼ 1 ¼ C1) and using the initial conditions, one
can numerically solve the system (59a)–(59e) to find the
evolution of various dynamical quantities along the trajec-
tory. The evolution equations for the cosmographic param-
eters and the effective equation-of-state parameters are then
obtained as

qðzÞ ¼ −1 −
_H
H2

¼ 1 − ṽðzÞ; ð63aÞ

weffðzÞ ¼ −
2 _H þ 3H2

3H2
¼ 1

3
ð1 − 2ṽðzÞÞ; ð63bÞ

jðzÞ ¼ 2q2ðzÞ þ qðzÞ − dqðzÞ
dN

¼ 2q2ðzÞ þ qðzÞ þ ð1þ zÞ dqðzÞ
dz

; ð63cÞ

hðzÞ ¼ exp

�Z
z

0

1þ qðzÞ
1þ z

dz

�
: ð63dÞ

One now gets from Eq. (63a) that

ṽðz ¼ 20Þ ¼ 1 − qðz ¼ 20Þ ¼ 0.501: ð64Þ

Sincewe are using the same initial conditions for theΛCDM
and HS cosmologies at z ¼ 20, we assume that gravity at
z ¼ 20 is described well enough by GR, so that

x̃ðz ¼ 20Þ ¼ 0: ð65Þ

One still needs to determine the initial condition
ỹðz ¼ 20Þ. To this goal, we adopt the following procedure.
In the past, the ΛCDM model goes asymptotically to the
matter-dominated phase;Ωm ≫ ΩΛ for z ≫ 1. We consider
the fðRÞ cosmology to be in the matter-dominated phase at
z ¼ 20, so that

Qðz ¼ 20Þ ¼ QjPmþ ¼
ffiffiffi
2

3

r
; ð66Þ

6The actual Planck values are ðΩΛ0;Ωk0;Ωm0Þ ¼ ð0.6843�
0.0073; 0.0007� 0.0019; 0.315� 0.007Þ [27]. However, since
we are comparing spatially flat cosmologies, it is a good enough
approximation to take ðΩm0;ΩΛ0Þ ¼ ð0.315; 0.685Þ.
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with Pmþ being the matter-dominated fixed point. Setting
K ¼ 0 (since we are considering spatially flat cosmologies
here) and xðz ¼ 20Þ ¼ 0 [since x̃ðz ¼ 20Þ ¼ 0], yðz ¼ 20Þ
can be found from the constraint equation (17a) to be

yðz ¼ 20Þ ¼ 1

3
: ð67Þ

One now gets from Eq. (19) that

ỹðz ¼ 20Þ ¼ yðz ¼ 20Þ
Q2ðz ¼ 20Þ ¼

1

2
: ð68Þ

Equations (64), (65), and (68) provide the initial conditions
necessary to solve the system in Eqs. (59a)–(59e).
Once Qðz ¼ 20Þ is known, by using Eq. (19) one can

obtain the numerical values of the compact dynamical
variables at z ¼ 20 from the numerical values of the
corresponding noncompact dynamical variables at z ¼ 20:

ðx; v; QÞz¼20 ¼ ðQ2x̃; Q2ṽ; QÞz¼20

�
0; 0.334;

ffiffiffi
2

3

r �
: ð69Þ

In the compact phase space this point lies in the vicinity of
the matter-dominated fixed pointPmþ. The phase trajectory
shown in Fig. 1 passes through this point. Solving the
system in Eqs. (59a)–(59e) with the initial conditions given
by Eqs. (64), (65), and (68), we find the evolution of
various quantities along this particular trajectory.
In Fig. 2 we show the evolution of the dimensionless

Hubble parameter, deceleration parameter, and effective
equation-of-state parameter for the trajectory of Fig. 1 with
respect to redshift z, and compare it to the ΛCDM
evolution. In Fig. 3 we show the evolution of the jerk
parameter with respect to the phase-space time variable η
defined in Eq. (44) and compare it with that of the ΛCDM
model (i.e., j ¼ 1).

G. Nonsingular bounce, recollapse,
and cyclic cosmology

A nonsingular bounce and a recollapse can be specified,
respectively, by the conditions

_HjH¼0 > 0; _HjH¼0 < 0: ð70Þ

Since Q ¼ 3H
D ¼ 0 is zero for a nonsingular bounce or a

recollapse, a phase trajectory corresponding to a bounce or
a recollapse must cross the Q ¼ 0 hypersurface. For a
nonsingular bounce ( _H > 0) the crossing is from theQ < 0

side to the Q > 0 side, and for a recollapse ( _H < 0) the
crossing is from the Q > 0 side to the Q < 0 side. Starting
from the definition of the Ricci scalar, one can express _H as

_H ¼ D2

9
ðv − 2Q2 − KÞ: ð71Þ

Using the above expression, one can distinguish the regions
on the Q ¼ 0 hypersurface in which the trajectories cross
from left to right (bounce) and from right to left (recollapse)
as well as the region in which the trajectories do not cross at
all. They are

v > K ðbounceÞ;
v < K ðrecollapseÞ;
v ¼ K ðno crossingÞ: ð72Þ

On the Q ¼ 0 hypersurface the physical viability condi-
tions (52)–(54) become

1

2
v<1−K−x2<v; 0≤Kþx2≤1; 0≤vþx2≤1: ð73Þ

Clearly, for the spatially flat case K ¼ 0, the first and third
inequalities are incompatible. This implies a breakdown of
the condition f00 > 0. One therefore arrives at an important
conclusion:

FIG. 2. Evolution with respect to redshift ðz ¼ 1−a
a Þ of the dimensionless Hubble parameter (h) in panel (a), deceleration parameter (q)

in panel (b), and effective equation-of-state parameter (weff ) in panel (c) along the phase trajectory of Fig. 1 (red curve) and the
corresponding evolutions for theΛCDMmodel (blue curve). The initial conditions for the noncompact variables, corresponding to those
used in Fig. 1, are ðx̃; ṽ; ỹÞ ¼ ð0; 0.501; 0.5Þ and are set at z ¼ 20, following Ref. [21].
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(1) No physically viable nonsingular bounce or recol-
lapse is possible in spatially flat FLRW cosmology
for the Hu-Sawicki model with n ¼ 1 ¼ C1.

Note that this conclusion holds only for K ¼ 0. For K ≠ 0
perfectly viable bounces or recollapses can occur. Increasing
thevalueofK from0 to1 allows formore space for the first and
third inequalities to be simultaneously satisfied, and conse-
quently increases the possibility of a perfectly viable bounce
(see two-dimensional slices of the phase space in Fig. 4).

In Figs. 5, 6,7, and 8 we explicitly show two-dimensional
parametric plots of bouncing and recollapsing trajectories,
taking the initial conditions from the two-dimensional slices
in Fig. 4. Here we find it worth mentioning that cyclic
cosmologies are possible in the HSmodel with n ¼ 1 ¼ C1.
This is the case, for example, for the evolution represented
by the parametric plots in Fig. 5; it periodically undergoes a
distinct cycle. Cyclic universes have been studied in the
context of fðRÞ gravity [31–33]; however, most results

FIG. 3. Evolution with respect to redshift ðz ¼ 1−a
a Þ of the jerk parameter (j) along the phase trajectory of Fig. 1 (red curve) and the

corresponding evolutions for theΛCDMmodel (blue curve). The initial conditions for the noncompact variables, corresponding to those
used in Fig. 1, are ðx̃; ṽ; ỹÞ ¼ ð0; 0.501; 0.5Þ and are set at z ¼ 20, following Ref. [21]. The plot reaffirms the fact that the phase
trajectory of Fig. 1 passes through the de Sitter saddle Eþ and ultimately settles on the de Sitter attractor Gþ, both of which fall on the
surface j ¼ 1 (see Sec. III E).

FIG. 4. Two-dimensional slices of the phase space for (a) ðK; xÞ ¼ ð1=5; 0Þ, (b) ðK; xÞ ¼ ð3=5; 0Þ and (c) (ðK; xÞ ¼ ð0.9; 0Þ. The sheet
of fixed points S1 intersects these two-dimensional slices at curves that are represented by the black curves in the plots. The sheet of fixed
points S2 intersects these two-dimensional slices only at the two points ðQ; vÞ ¼ ð� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − K
p

; 0Þ which, coincidentally, also fall on S1.
Increasing the value of K allows more trajectories to pass through Q ¼ 0 as either bounces or recollapses. The green shaded region
corresponds to the subset of the three phase-space viability constraints (52)–(54) as projected onto the two-dimensional Q-v slices.
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produce numerical solutions or complex analytical functions
for the formof fðRÞ forwhich such a cycle is possible.As far
as we are aware, explicit cyclic solutions have not been
investigated specifically for physically viable fðRÞ models
like the HS model.

H. ΛCDM point for the Hu-Sawicki f ðRÞ model

The particular case of the Hu-Sawicki model we are

considering [Eq. (41)] has n ¼ C1 ¼ 1 and only one

unspecified model parameter C2. Following the discussion

(a) (b) (c)

FIG. 5. Parametric plots for coordinate QðηÞ against (a) xðηÞ, (b) vðηÞ, and (c) KðηÞ, corresponding to the initial conditions
ðKð0Þ; xð0Þ; vð0Þ; Qð0ÞÞ ¼ ð0.2; 0; 0.9; 0Þ (coordinates labeled). The corresponding point in the phase space is marked with a blue dot in
Fig. 4(a). The trajectory evolves away from the saddle fixed point ðK; x; v; QÞ ¼ ð0; 0; 1; 0Þ on S1 in the past toward the saddle fixed
point ðK; x; v; QÞ ¼ ð0;−1; 0; 2Þ on S2þ. It then undergoes a recollapse in the past and a bounce at the initial condition point
ðK; x; v; QÞ ¼ ð0.2; 0; 0.9; 0Þ [since v > K at this point; see Eq. (72)], and then recollapses again and evolves toward the corresponding
collapsing saddle fixed point ðK; x; v; QÞ ¼ ð0; 1; 0;−2Þ on S2− in the future, before returning to the point of origin on S1. This entire
cycle is repeated over and over again and this cyclic trajectory corresponds to a cyclic cosmology. We note here that the recollapse points
appear to be identical in panels (b) and (c); however, the x coordinate changes from positive to negative when the trajectory undergoes a
bounce between the recollapses.

(a) (b) (c)

FIG. 6. Parametric plots for coordinate QðηÞ against (a) xðηÞ, (b) vðηÞ, and (c) KðηÞ, corresponding to the initial conditions
ðKð0Þ; xð0Þ; vð0Þ; Qð0ÞÞ ¼ ð0.6; 0; 0.86; 0Þ (coordinates labeled). The corresponding point in the phase space is marked with a blue dot
in Fig. 4(b). The trajectory evolves asymptotically from the past attractor G− to the future attractor Gþ, undergoing a bounce at
ðK; x; v; QÞ ¼ ð0.6; 0; 0.86; 0Þ [since v > K at this point; see Eq. (72)].

(a) (b) (c)

FIG. 7. Parametric plots for coordinate QðηÞ against (a) xðηÞ, (b) vðηÞ, and (c) KðηÞ, corresponding to the initial conditions
ðKð0Þ; xð0Þ; vð0Þ; Qð0ÞÞ ¼ ð0.9; 0; 0.95; 0Þ (coordinates labeled). The corresponding point in the phase space is marked with a blue dot
in Fig. 4(c). The trajectory evolves asymptotically from the past attractor G− to the future attractor Gþ, undergoing a bounce at
ðK; x; v; QÞ ¼ ð0.9; 0; 0.95; 0Þ [since v > K at this point; see Eq. (72)].
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of the last paragraph of Sec. II C, one can use Eq. (28a) to
determine C2, which gives a third-order equation for
c ¼ C2H2

0. However, only one of the three solutions is
positive. Since we restrict this study to C2 > 0, the only
viable solution is7

c ¼ C2H2
0 ¼ 0.11841: ð74Þ

One can then calculate values for fðR0Þ and its derivatives
(up to second order since this is the highest-order derivative
required for calculation of the dynamical variable values):

fðR0Þ
H2

0

¼ 4.76818;

f0ðR0Þ ¼ 0.76996;

f00ðR0Þ
ðH2

0Þ−1
¼ 0.02613: ð75Þ

Using these values, one can calculate

D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3H0 þ

3

2

f00ðR0Þ _R0

f0ðR0Þ
�2

þ 3

2

�
fðR0Þ
f0ðR0Þ

þ 6k
a20

�s

¼ 4.17549H0; ð76Þ

and, therefore, the present-day values of the compact
dynamical variables are

ðx0; v0; y0; Q0; K0;Ω0Þ

¼
�
3

2

f00ðR0Þ _R0

f0ðR0Þ
1

D0

;
3

2

R0

D2
0

;
3

2

fðR0Þ
f0ðR0Þ

1

D2
0

;
3H0

D0

;

1 − ðQ0 þ x0Þ2 − y0; 1 − x20 − v0

�
¼ ð−0.03469; 0.78833; 0.53207; 0.71848;
0.00036; 0.21047Þ: ð77Þ

This is the ΛCDM point for the HS model with
n ¼ C1 ¼ 1. In Fig. 9 we show parametric plots using
the initial conditions at this point.

(a) (b) (c)

FIG. 9. Parametric plots for coordinate QðηÞ against (a) xðηÞ, (b) vðηÞ, and (c) KðηÞ, corresponding to the initial conditions
ðKð0Þ; xð0Þ; vð0Þ; Qð0ÞÞ ¼ ð0.00036;−0.03469; 0.78833; 0.71848Þ, which is the ΛCDM point for the HS model with n ¼ C1 ¼ 1
[Eq. (77)]. The trajectory evolves asymptotically from the point ðK; x; v; QÞ ¼ ð0; 0; 1; 0Þ on S1þ in the past, passing through the
ΛCDM point and the point Eþ, and evolving asymptotically to Gþ in the future.

(a) (b) (c)

FIG. 8. Parametric plots for coordinate QðηÞ against (a) xðηÞ, (b) vðηÞ, and (c) KðηÞ, corresponding to the initial
conditions ðKð0Þ; xð0Þ; vð0Þ; Qð0ÞÞ ¼ ð0.9; 0; 0.2; 0Þ (coordinates labeled). The corresponding point is marked with a blue dot in Fig. 4
(c). The trajectory evolves asymptotically from the saddle fixed point ðK; x; v;QÞ ¼ ð0;−1; 0; 2Þ on S2þ in the past to the saddle fixed
point ðK; x; v;QÞ ¼ ð0; 1; 0;−2Þ on S2− in the future, undergoing a recollapse at ðK; x; v; QÞ ¼ ð0.9; 0; 0.2; 0Þ [since v < K at this point;
see Eq. (72)].

7We give the value here to such a degree of accuracy since the
dynamical system is very sensitive. It is possible to keep only up
to the third decimal place; however, this slightly alters some of the
values found in subsequent calculations.
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IV. CONCLUSION

In this paper we have presented a comprehensive
analysis of the phase space of the fn; C1g ¼ f1; 1g Hu-
Sawicki fðRÞ-gravity model including spatial curvature.
We began by extending the compactified dynamical sys-
tems formalism for a general fðRÞ theory, presented in
Ref. [21], to include non–spatially flat cosmologies. We
then introduced a method to determine a point and surface
in the phase space corresponding to the present-day
Universe and the ΛCDM evolution history, respectively
(referred to as the ΛCDM point and surface). Applying
these procedures to the Hu-Sawicki model, we identified
some novel features of the phase space, including invariant
submanifolds, a physically viable region, and the existence
and stability of two two-dimensional sheets of fixed points.
We presented a trajectory mimicking the ΛCDM evolution
history and compared the evolution of their cosmographic
parameters. Following this, we investigated the existence of
bouncing and recollapsing cosmologies in the model and
arrived at a no-go conclusion stating that this kind of
trajectory is not possible in the spatially flat model for our
specific parameter choice. We also presented the case of a
cyclic cosmology which, to the best of our knowledge, has
not been identified before in this particular model.
A comment here is in order regarding Ref. [34], in which

an analytical method was developed for identifying bounc-
ing solutions in fðRÞ theory for spatially flat FLRW
cosmology. This study found that the model used (a similar
late-time model) does permit bounces for the spatially flat
case. The method developed here provides a way to
analytically test the no-go conclusion for the Hu-Sawicki
model with n ¼ 1 ¼ C1. Applying the analytic method to
this model, we find that it is possible to find bounces in the
spatially flat case; however, this requires that the matter
equation-of-state parameter wm crosses the phantom barrier
(wm < −1). On the surface, it appears that bounces are
possible with −1 ≤ wm ≤ 1, but upon further investigation
this results in ghost instabilities since f0 < 0. Therefore, if
one requires that wm is nonphantom and that f0 > 0
throughout the evolution history, the no-go conclusion
holds for the n ¼ 1 ¼ C1 Hu-Sawicki model.
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APPENDIX A: STABILITY OF THE
INVARIANT SUBMANIFOLDS

Suppose that in the four-dimensional phase space
K-x-v-Q, a three-dimensional invariant submanifold is
given by the condition SðK; x; v;QÞ ¼ 0, i.e.,

dS
dτ

����
S¼0

¼ 0: ðA1Þ

The stabilityof this submanifold canbedeterminedas follows.
Consider the family of hypersurfaces SðK; x; v;QÞ ¼ C,
which contains the invariant submanifold as C ¼ 0. Let us
consider an arbitrary submanifold with C ¼ δ which is
infinitesimally close to the invariant submanifold C ¼ 0.
Keeping in mind the condition that S ¼ 0 is an invariant
submanifold, by Taylor expanding dS=dτ around it one gets

dS
dτ

����
S¼δ

¼ dðdS=dτÞ
dS

����
S¼0

δþ 1

2

d2ðdS=dτÞ
dS2

����
S¼0

δ2

þ 1

6

d3ðdS=dτÞ
dS3

����
S¼0

δ3 þ � � � ðA2Þ

The first nonvanishing term in the above expression gives the
directionality (toward or away from) of the flow component
normal to the invariant submanifold S ¼ 0 for the phase flow
in its vicinity, which determines its stability. The invariant
submanifold is attractive (repulsive) if the phase flow in its
vicinity is toward (away from) it.
In the HS model under consideration there are three

invariant submanifolds, namely,

K ¼ 0; v ¼ 0; z≡ vþ ðQþ xÞ2 þ K − 1 ¼ 0:

1. Stability of K = 0

Using the dynamical equation for K, the Taylor expan-
sion of dK=dτ around K ¼ 0 up to the first nonvanishing
term is

dK
dτ

����
K¼δ

¼ 1

3
½v2xððQþ xÞ2 − 1Þ − ððQþ xÞ2 − 1þ vÞ2

× ð−4xþ ðQþ xÞðx2 þ 4xQþ 3v − 1ÞÞ�δ
þOðδ2Þ. ðA3Þ

The invariant submanifold is attractive (repulsive) when the
coefficient of δ is negative (positive).

2. Stability of v= 0

Using the dynamical equation for v, the Taylor expan-
sion of dv=dτ around v ¼ 0 up to the first nonvanishing
term is
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dv
dτ

����
v¼δ

¼
� 1

3
z2½Qð3 − 4xQ − 5x2Þ þ xð5 − 4k − x2Þ�δþOðδ2Þ ðfor z > 0Þ;

1
3
xδ3 þOðδ4Þ ðfor z ¼ 0Þ: ðA4Þ

The leading nonvanishing term in the Taylor expansion
is OðδÞ for z > 0 and Oðδ3Þ for z ¼ 0. The invariant
submanifold is attractive (repulsive) when the leading
coefficient is negative (positive).

3. Stability of z= 0

Using Eq. (46), the Taylor expansion of dz=dτ around
z ¼ 0 up to the first nonvanishing term is

dz
dτ

����
z¼δ

¼
8<
:

− 1
3
v3xδþOðδ2Þ ðfor x ≠ 0; v > 0Þ;

− 2
3
Qvδ2 þOðδ3Þ ðfor x ¼ 0; v > 0Þ;

−ð2x − 6QÞδ3 þOðδ4Þ ðfor v ¼ 0Þ:
ðA5Þ

The leading nonvanishing term in the Taylor expansion is
OðδÞ for x ≠ 0, v ≠ 0, Oðδ2Þ for x ¼ 0, v ≠ 0, and Oðδ3Þ
for x ≠ 0, v ¼ 0.
(1) For x ≠ 0, v > 0, the invariant submanifold is

attractive (repulsive) for x > 0 (x < 0), with x ¼ 0
acting as a separatrix.

(2) For x ¼ 0, v > 0, the (nature of) stability is different
on each side of the invariant submanifold z ¼ 0,
with z ¼ 0 serving as a node. Since C2 > 0 in the
HS model under consideration, one recalls from
Eq. (52) that the physical viability condition f00 > 0
requires z > 0. If one focuses on the positive side of
z, then, for x ¼ 0, v > 0, the invariant submanifold
z ¼ 0 is attractive (repulsive) for Q > 0 (Q < 0).

(3) For v ¼ 0, the invariant submanifold is attractive
(repulsive) for x > 3Q (x < 3Q), with x ¼ 3Q act-
ing as a separatrix.

One can note that the nature of the stability of the invariant
submanifold z ¼ 0 is independent of K.

APPENDIX B: STABILITY OF THE SHEETS
OF FIXED POINTS S1, S2

From Eqs. (47) and (48) we notice that both sheets of
fixed points S1, S2 lie on the invariant submanifold z ¼ 0.
In fact, if we replace Q by z using the definition of z,

Q ¼ −x� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v − K þ z

p
; ðB1Þ

and use ðK; x; v; zÞ instead of ðK; x; v;QÞ to be the set of
independent dynamical variables, then the equations for the
sheets of fixed points are greatly simplified,

S1 ≡ ðK; x; v; zÞ ¼ ðK; 0; v; 0Þ; ðB2Þ

S2 ≡ ðK; x; v; zÞ ¼ ðK; x; 0; 0Þ: ðB3Þ

In general, there can be phase flows within the invari-
ant submanifold z ¼ 0 [which represents the limit
fðRÞ → −2Λþ R], but the flow is contained within it.
There are, however, parts of z ¼ 0, given by S1 and S2,
where there is no flow, as these parts represent sheets of
fixed points. In the immediate vicinity of a point P ⊂ S1 or
S2, the phase flow is essentially two dimensional; if
P ⊂ S1 the flow is entirely in the x-z plane, and if P ⊂
S2 the flow is entirely in the v-z plane. This geometrical
insight dictates that in order to investigate the stability of
S1, S2, one is only required to consider the phase flow in
the vicinity of the submanifolds z ¼ 0, x ¼ 0, v ¼ 0,
something that we already considered in Appendix A.

1. Stability of S1

The two-dimensional sheet S1 lies at the intersection of
the three-dimensional submanifold x ¼ 0 and the three-
dimensional invariant submanifold z ¼ 0. In the immediate
vicinity of any point on S1, the phase flow is essentially
planar, lying in the x-z plane. The nature of the stability of
the invariant submanifold z ¼ 0 for x ¼ 0 was already
discussed in the last subsection of Appendix A. In
particular, for v > 0, the flow is toward (away from)
z ¼ 0 for Q > 0 (Q < 0). The phase flow in the vicinity
of the submanifold x ¼ 0 for z ¼ 0 can be found by Taylor
expanding dx=dη around x ¼ 0, setting z ¼ 0, and looking
at the leading-order nonvanishing term,

dx
dη

����
x¼δ

¼ −
1

6
v3δ2 þOðδ3Þ ðfor z ¼ 0; v > 0Þ: ðB4Þ

The flow is toward x ¼ 0 on the positive side of x and away
from x ¼ 0 on the negative side of x, with x ¼ 0 acting as a
node, an inference that holds true for all values of Q.
Summarizing, one can infer that the sheet of fixed points S1

is always:
(1) attractive on the positive side of x, and
(2) repulsive on the negative side of x.

Based on this fact alone, one can conclude that all of the
points on S1 are saddle fixed points, with there always
being a flow component along the x direction from the
positive to the negative side of x past x ¼ 0 in the vicinity
of any point P ⊂ S1. One can note that the stability of S1 is
completely independent of K and v, i.e., each point on S1

has the same stability classification.
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2. Stability of S2

The two-dimensional sheet S2 lies at the intersection of
two three-dimensional invariant submanifolds v ¼ 0 and
z ¼ 0. In the immediate vicinity of any point on S2, the
phase flow is essentially planar, lying in the v-z plane.
The stability of both v ¼ 0 and z ¼ 0 were already
discussed in Appendix A. For z ¼ 0, the invariant sub-
manifold v ¼ 0 is attractive (repulsive) for x < 0 (x > 0).

For v ¼ 0, the invariant submanifold z ¼ 0 is attractive
(repulsive) for x > 3Q (x < 3Q). Summarizing, one can
infer that the sheet of fixed points S2 is:
(1) attractive for 3Q < x < 0.
(2) repulsive for 0 < x < 3Q, and
(3) each point on S2 is a saddle point.

Note that the stability of S2 depends on x as well as K [by
virtue of Eq. (B1)].
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