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Ultralight bosonic dark matter called fuzzy dark matter (FDM) has attracted much attention as an
alternative to the cold dark matter. An intriguing feature of the FDMmodel is the presence of a soliton core,
a stable dense core formed at the center of halos. In this paper, we analytically study the dependence of the
soliton core properties on the halo characteristics by solving approximately the Schrödinger-Poisson
equation. Focusing on the ground-state eigenfunction, we derive a key expression for the soliton core
radius, from which we obtain the core-halo mass relations similar to those found in the early numerical
work, but involving the factor dependent crucially on the halo concentration and cosmological parameters.
Based on the new relations, we find that for a given cosmology, (i) there exist a theoretical bound on the
radius and mass of soliton core for each halo mass (ii) incorporating the concentration-halo mass (C-M)
relation into the predictions, the core-halo relations generally exhibit a nonpower-law behavior, and with
the C-M relation suppressed at the low-mass scales, relevant to the FDM model, predictions tend to match
the simulations well (iii) the scatter in the C-M relation produces a sizable dispersion in the core-halo
relations, and can explain the results obtained from cosmological simulations. Finally, the validity of our
analytical treatment are critically examined. A perturbative estimation suggests that the prediction of the
core-halo relations is valid over a wide range of parameter space, and the impact of the approximation
invoked in the analytical calculations is small, although it is not entirely negligible.

DOI: 10.1103/PhysRevD.106.103532

I. INTRODUCTION

The dark matter, invisible matter component, is an
essential constituent accounting for ∼30% of the energy
contents of the Universe. Although the origin of dark matter
is not yet clarified, the structure formation driven by the
gravitational instability, consistent with large-scale structure
observations, suggests that the dark matter is nonbaryonic,
and have negligible velocity dispersion, referred to as the
cold dark matter (CDM). Since its foundation in early 1980s
[1–3], the CDM has been playing an important role to
establish a concordant picture of the Universe, and it
successfully describes a wide range of observations on
scales larger than galaxies. However, on the subgalactic
scales, recent observations suggest that deviation from CDM
predictions is visible, and remains significant especially for

the observations of the local Universe, highlighted as the
small-scale crises (see, e.g., [4,5] for review).
To relieve possible flaws in the CDM paradigm, ultralight

particle of masses, mϕ ∼ 10−22 − 10−20 eV, called fuzzy
dark matter (FDM) [6], has recently attracted much attention
as an alternative to the CDM (Refs. [7–10] for review, see
also Ref. [11]). While the predictions for the evolution and
formation of large-scale structure remain essentially the
same as in CDM model, and thus consistent with large-
scale observations (e.g., Ref. [12,13] for recent works), many
prominent features appear at small scales due to a very long
de Broglie wavelength that extends over astrophysical scales,
λdB ¼ h=ðmϕvÞ ≃ 0.48 kpcð10−22 eV=mϕÞð250 km=vÞ,
with v being the particle velocity. The FDM model can
therefore modify small-scale structure formation, and thus
the small-scale observations can place a tighter bound on the
FDM model (e.g., Refs. [14–16] for constraints from
the Lyman-α forest). Importantly, modifications of the
small-scale structures appears manifest not only through
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the small-scale cutoff of the linear power spectrum [6] (see
also Refs. [17,18] for early works), but also by the quantum
nature of dark matter particles at a macroscopic level. The
latter aspect is particularly interesting and can bring unique
signature of FDM models to observationally test and
constrain their model parameters.
Numerical studies on the FDM structure formation show

that the dark matter halos commonly host a dense flat core
called soliton with a universal density profile at the central
region, accompanied by granular structures with a typical
size of the de Broglie wavelength that extends over the
outskirt of halos [19]. A notable feature of the soliton was
its relation to the host halos. In early works, the mass and
radius of FDM solitons, Mc and rc, are found to be
correlated tightly with halo masses in a power-law form
as Mc ∝ Mα

h and rc ∝ Mβ
h, and Ref. [20] obtained α ∼ 1=3

and β ∼ −1=3. Later, these properties have been examined
with different setups by several groups [21–24], and
obtained a similar result but with slightly different slopes
(see also Ref. [25] for systematic study based on a particle-
based method). More recent simulations covering a large
cosmological volume suggest that not tight scaling relation
exists between soliton structure and halo mass, and rather
indicate a large scatter in the correlation [26,27]. Another
intriguing property of the soliton core comes from the
results of high-resolution simulations [28,29], showing that
the soliton core is not strictly stable but rather moves
around a halo center in a random fashion, accompanying a
rapid oscillation with the order-of-unity variation of its
amplitude. These phenomena are considered as a conse-
quence of the wave interference [30,31].
So far, most of these properties has been investigated by

numerical simulations of the Schrödinger-Poisson equation,
starting with various setups, and little analytical work has
been done (but see [32,33]). While the soliton core-halo
mass relation has led to a number of works that have tried to
test and constrain the FDM model (e.g., Refs. [34–38]), a
major difficulty in characterizing such a relation in numeri-
cal simulations is a severe requirement of the dynamic
range. That is, a realistic simulation must describe, in a
relevant cosmological setup, both the halo merger processes
and wave nature of soliton dynamics, typical scales of that,
respectively, appear above Mpc and below kpc, thus
requiring both a large simulation box and a sufficient
spatial resolution. Even the state-of-the-art simulation is
still challenging to trace an entire history of the formation
and evolution of cosmic structures while fulfilling both the
conditions. Aim of this paper is therefore to investigate
analytically the soliton core structure, and to address the
core-halo relations in a cosmological setup.
In doing so, a crucial step is how to solve the

Schrödinger-Poisson equation. Coupled with the Poisson
equation sourced by the mass density of FDM, the
governing equation for the wave function of FDM
becomes nonlinear. In particular, if one wants to address

the soliton core structure, the contributions of both the
soliton and surrounding halo structures have to be taken
into account consistently. As we will describe in detail, for
an analytically tractable calculation, our approach is to
consider the contribution of halo as a smooth background,
and to describe the soliton state ignoring its self gravity.
Although the flat core structure is realized under a balance
between quantum pressure and gravity and one thus
expects the self-gravity of the soliton to play a certain
role, this setup greatly simplifies the situation, and the
problem is reduced to a linear eigenvalue problem. Still,
there exists no exact solution, and some approximations
need to be invoked to construct analytically the eigen-
functions of the soliton state. In this paper, we apply the
uniform asymptotic approximation invented by Langer
[39–41] to the description of soliton state. In the presence
of a large system parameter, this approximation is known
to significantly outperform the familiar Wenzel-Kramers-
Brillouin (WKB) approximation, and provides a very
accurate way to estimate both eigenvalues and eigenfunc-
tions. In particular, the analytically constructed eigenfunc-
tions by this method is globally valid even around the so-
called turning points, where the WKB approximation is
broken down. Making use of the Langer’s method, in this
paper, we present analytical solutions of the Schrödinger-
Poisson equation under a spherically symmetric halo
potential. Focusing particularly on the ground-state wave
function for the zero angular momentum (l ¼ 0), we
derive the analytical expressions for the core-halo rela-
tions. The resultant expressions apparently resemble those
found in numerical simulations, but importantly, they
include an additional factor dependent on cosmology
and halo properties, with which the predicted core-halo
relations can differ from a power-law form found in small-
box simulations. We will discuss it in detail in comparison
with simulation results. Further, we estimate the impact of
the soliton self-gravity, which we ignore on the core-halo
relations, and the validity of our analytical treatment is
discussed.
This paper is organized as follows. In Sec. II, we begin by

describing the setup of the problem to characterize the
soliton core structure in a halo. Section III then presents the
analytical construction of the soliton eigenstate, focusing on
the cases with zero angular momentum. The construction
for the nonzero angular momentum is presented in
Appendix B. Section IV presents the main results of this
paper, and based on the treatment in previous section, we
derive the analytical expressions of core-halo relations, and
provide a general prediction for the core radius vs halo mass
and core mass vs halo mass relations, treating the halo
concentration as a free parameter. Further, imposing models
of the concentration-halo mass relation (C-M relation), the
predicted relations are compared with simulations. In
Sec. V, the validity of our treatment ignoring the soliton
self-gravity is critically examined, and employing a
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perturbative calculation, we present an estimate of its impact
on the soliton core radius. Finally, Sec. VI is devoted to
summary of important findings and conclusion.
Throughout the paper, we work with the natural units,

setting the speed of light c and Planck constant ℏ to unity.

II. SETUP

A. Schrödinger-Poisson equation

Our starting point is to write down the basic equation for
FDM in a cosmological background. Ignoring the self-
interaction terms, the scalar field dark matter is generically
described by the Klein-Gordon equation:

□ϕ −m2
ϕϕ ¼ 0; ð1Þ

with mϕ being the mass of FDM. Consider the spacetime
metric for the longitudinal gauge. Assuming the flat
geometry, we have

ds2 ¼ −ð1 − 2ΨÞdt2 þ a2ð1 − 2ΨÞδijdxidxj: ð2Þ

Throughout the paper, we work with the weak-field limit,
jΨj ≪ 1, and take the nonrelativistic limit of scalar field,
introducing the following functional form:

ϕ ¼ 1ffiffiffiffiffiffiffiffiffi
2mϕ

p
a3=2

½φe−imϕt þ c:c�: ð3Þ

Since we are interested in the perturbations deep inside the
Hubble horizon, we can make use of the approximation
such that H=mϕ ∼ ϵ ∼ k=mϕ and Ψ ∼ ϵ2 with ϵ being a
small parameter, i.e., ϵ ≪ 1. Then, the governing equation
for the scalar field at Eq. (1) is shown to be reduced to the
Schrödinger-Poisson system (e.g., Refs. [7,9,10]).
Adopting the natural units ðℏ ¼ c ¼ 1Þ, we have

i
∂

∂t
φ ¼

�
−

1

2mϕa2
∇2

x þmϕΨ
�
φ: ð4Þ

This has to be solved with the Poisson equation below:

1

a2
∇2

xΨ ¼ 4πGδρϕ; ð5Þ

where the density fluctuation δρϕ is given by

δρϕ ≡mϕ

a3
fjφj2 − hjφj2ig: ð6Þ

Equations (4)–(6) are the basic equations to describe the
cosmic structure in FDM model. Note that taking the large
mϕ limit, these equations have been also used to describe the
structure formation in the CDMmodel [42], in particular, as
an alternative way to solve the Vlasov-Poisson equation
(e.g., Refs. [43–45]).

B. FDM in a spherical halo

A primary goal of this paper is to derive analytically the
soliton core structure and to address its relation to the halo
properties. Numerical simulations show that the soliton core
forms at the center of halos, and the size and mass of the
solitons are small enough compared to those of halos. Thus,
at a first-order approximation for analytical study, we shall
ignore the self-gravity of the soliton core, and treat the
surrounding halo as a background. The impact of the soliton
self-gravity will be later discussed (see Sec. V). It is to be
noted that halos found in simulations have large fluctuations
in density, forming granular structures. While these fluctu-
ations affect the soliton core and induce the motion and
oscillations through the interaction with them, these non-
stationary behaviors can be understood as the results of
wave interference and are well described by a superposition
of the ground (soliton) and excited states in a fixed potential
[30,31]. In this respect, constructing the eigenstates under a
smooth halo background would be an important first step to
describe the dynamical features of the soliton core.
Based on these considerations, we consider a spherically

symmetric halo with the density profile described by the
Navarro-Frenk-White (NFW) profile [46,47]1:

mϕjφj2 ≃ ρNFWðrÞ≡ ρs
ðr=rsÞð1þ r=rsÞ2

: ð7Þ

Note that the density ρNFW defined above differs from the
one frequently used in the literature, and a factor of 1=a3 is
factored out. Plugging Eq. (7) into Eq. (6), the Poisson
equation at Eq. (5) is analytically solved, and the potential
is expressed as (e.g., see Appendix D of Ref. [48])2

Ψ ¼ −4πG
ρsr2s
a

logð1þ r=rsÞ
r=rs

: ð8Þ

Treating this halo potential as a background, solving the
Schrödinger-Poisson (S-P) equation at Eq. (5) is reduced to
a linear eigenvalue problem. Writing the wave function in
the form as

φ ¼
X
nlm

unlðrÞYlmðθ;ϕÞe−iϵτ; ð9Þ

where the quantity τ is the new time variable defined by
τ≡ R

t dt0=faðt0Þg2, Eq. (4) with the potential (8) yields

1We are interested in the region where the density is much
larger than the mean density, and the contribution of the term
hjφj2i in Eq. (6) is ignored.

2Equation (8) is obtained under the assumption that the density
fluctuation δρϕ follows the NFW profile even outside the virial
radius. While this is not in reality true in both the observations and
simulations, the modification of the outer profile hardly changes
the inner potential structure, and hence the analysis based on
Eq. (8) is relevant to describe the soliton core structure.
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−
1

2mϕ

1

r2
d
dr

�
r2
dunlðrÞ

dr

�
þ
�
−4πGmϕρsr2sa

logð1þ r=rsÞ
r=rs

þlðlþ 1Þ
2mϕr2

�
unlðrÞ ¼ ϵunlðrÞ: ð10Þ

Equation (10) is further rewritten in a simplified form by
introducing dimensionless quantities:

x≡ r
rs
; E ≡ 2mϕr2sϵ; α≡ 8πGm2

ϕρsr
4
sa: ð11Þ

We have

−
1

x2
d
dx

�
x2
dunlðxÞ

dx

�
þ
�
−α

logð1þxÞ
x

þlðlþ1Þ
x2

�
unlðxÞ

¼ EunlðxÞ; ð12Þ

Here, the quantity α characterizes the depth of the potential
well, and it typically takes a large value. Using the quantities
characterizing the properties of halos in Appendix A, we
obtain

α ¼ 7.21 × 102
�

mϕ

10−22 eV

�
2
�

Mh

109 M⊙

�
4=3

×

�
ΔvirðzÞ
200

�
−1=3

�
Ωm;0h2

0.147

�
−1=3 fðcvirÞ

1þ z
ð13Þ

with the function f defined by

fðcvirÞ≡ 1

cvirflnð1þ cvirÞ − cvir=ð1þ cvirÞg
: ð14Þ

The quantity cvir is the concentration parameter,
cvir ≡ rvir=rs, with rvir being the virial radius of the
halo having the mass of Mh. For typical values of
cvir ∼ 2–10, the function f varies from f ∼ 1 to 0.07 (see
right panel of Fig. 1). Left panel of Fig. 1 shows the
effective potential normalized by the parameter α, i.e.,
VðxÞ=α≡ − logð1þ xÞ=xþ lðlþ 1Þ=x2=α, where the
parameter α is set to 103. Note that the parameter α is
not strictly a constant value, but it depends explicitly on the
redshift. In this respect, Eqs. (10) or (12) cannot be reduced
to a stationary problem. Nevertheless, estimating a typical
timescale for the wave function, defined by τosc ≡ 2π=jϵj,
gives

τ¼ 1

4πGmϕρsr2s

�jEj
α

�
−1
;

¼ 1.34× 107½year�
�jEj

α

�
−1
�

mϕ

10−22 eV

�
−1
�

Mh

109 M⊙

�
−2=3

×

�
Δvir

200

�
−1=3

�
Ωm;0h2

0.147

�
−1=3

�
gðcvirÞ
0.1

�
; ð15Þ

with the function gðcvirÞ defined by

gðcvirÞ≡ 1

c2virfðcvirÞ
; ð16Þ

which typically has g ∼ 0.15–0.2 for a broad range of cvir
(see right panel of Fig. 1). As we will see later, the typical
value of the energy level is given by jEj ∼ α (Sec. III B).
Hence, the oscillation period of the wave function is
sufficiently shorter than the cosmological timescales, and
thus we can ignore the time dependence of the parameter α.

FIG. 1. Left: effective potential of the Schrödinger-Poisson equation in a NFW halo [see Eq. (12)] normalized by α, i.e.,
VðxÞ=α≡ − logð1þ xÞ=xþ lðlþ 1Þ=x2=α. The results are plotted against the dimensionless radius, x≡ r=rs. Blue, orange, and green
lines are the cases with l ¼ 0, 1, and 5, respectively. Here, we set the parameter α to 103 for illustration. Right: functions fðcvirÞ and
gðcvirÞ, defined at Eqs. (14) and (16), as a function of concentration parameter cvir.
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III. ANALYTICAL SOLUTIONS FOR l= 0

In this section, in order to describe the soliton core
structure and its properties, we focus on the cases with zero
angular momentum (l ¼ 0), and obtain an approximate
solution for the radial part of the S-P equation. In
Appendix B, we also construct the approximate eigenstates
for the nonzero angular momentum, and the results are
compared with numerical solutions.

A. Constructing analytical eigenfunctions
and eigenvalues

Hereafter, dropping the subscript l, we denote the radial
wave function for l ¼ 0 by un. Introducing the new
function ũn ≡ xun and setting the angular momentum l
to zero, we rewrite Eq. (12) with the normal form below:

d2ũnðxÞ
dx2

þ αg0ðxÞũnðxÞ ¼ 0; g0ðxÞ≡ logð1þ xÞ
x

þ E
α
:

ð17Þ

We shall construct the bound-state solutions satisfying the
boundary condition3:

ũnð0Þ ¼ 0; ũnð∞Þ ¼ 0: ð18Þ

To obtain an approximate solution for the bound-
state FDM distribution, we first notice that the function
g0ðxÞ in Eq. (17) is a monotonically decreasing function
of x, and we have g0ð0Þ ¼ 1þ E=α and g0ð∞Þ ¼ E=α.
Since the eigenvalue E for the bound-state solution must
be negative (E < 0), the function g0 should have a single
zero-crossing (or turning) point. Denoting its position by
xc, we have

g0ðxcÞ ¼
logð1þ xcÞ

xc
þ E

α
¼ 0: ð19Þ

Note that the above equation implies that the position xc
depends on the eigenvalue E. The eigenvalues are given as
a set of discrete values associated to the eigenfunction ũ,
and will be later determined by the boundary condition
at Eq. (18).
Keeping in mind the fact that Eq. (17) has a single turning

point, we consider the following transformation, known as
the Liouville-Green transformation (see, e.g., [49]):

z ¼ pðxÞ; vnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
p0ðxÞ

p
ũnðxÞ: ð20Þ

The prime denotes the derivative with respect to x. With this
transformation, Eq. (17) becomes

d2vnðzÞ
dz2

þ
�
α

g0ðxÞ
fp0ðxÞg2 þ δ

�
vnðzÞ ¼ 0; ð21Þ

where the quantity δ is defined by

δ≡ q
fp0g2

�
1

q

�00
; q ¼

ffiffiffiffiffi
p0p
: ð22Þ

Here, we choose the function p so as to satisfy4

α
g0ðxÞ

fp0ðxÞg2 ¼ −z: ð23Þ

Recall from Eq. (20) that z is equal to p, the above equation
is solved to give an explicit form of p as follows. First we
take the square root of both sides and obtain

p1=2p0 ¼ �α1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðxÞ

p
ð24Þ

for x > xc. Upon separation of variables, this becomes

p1=2dp ¼ �α1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðxÞ

p
dx: ð25Þ

Integrating once, we have

2

3
z3=2 ¼ 2

3
p3=2 ¼ �α1=2

Z
x

xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðx0Þ

p
dx0: ð26Þ

Here we set the lower value of the integral to xc. Taking the
positive sign of Eq. (26), we obtain

z ¼ pðxÞ ¼ α1=3
�
3

2

Z
x

xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðx0Þ

p
dx0

�
2=3

; ð27Þ

which is valid at x > xc (i.e., z > 0). Similarly, we obtain the
relation valid at x ≤ xc (or z ≤ 0):

z ¼ pðxÞ ¼ −α1=3
�
3

2

Z
xc

x

ffiffiffiffiffiffiffiffiffiffiffiffi
g0ðx0Þ

p
dx0

�
2=3

: ð28Þ

With Eqs. (27) and (28), the function z yields a smooth
and monotonically increasing function of x, and its sign
changes from negative to positive at xc.
Using Eq. (23) and the relations given above, the

differential equation given at Eq. (21) is further recast as

d2vnðzÞ
dz2

− zvnðzÞ ¼ −δvnðzÞ: ð29Þ
3The inner boundary condition ũð0Þ ¼ 0 ensures that the mass

profile, MðxÞ ∝ R
x
0 juðx0Þj2x02dx0 ¼

R
x
0 jũðx0Þj2dx0, is regular at

x ¼ 0, and we have Mð0Þ ¼ 0.

4This choice is known as the Langer’s transformation [39]. See
Chapter 14.6 of Ref. [49].
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Equations (27) and (28) ensure that the quantity δ defined at
Eq. (22) is shown to be of the order of Oðα−2=3Þ for all
values of x. Thus, in the limit of α ≫ 1, we can safely
ignore the right-hand side involving the factor δ, and the
above equation is reduced to

d2vnðzÞ
dz2

− zvnðzÞ ≃ 0: ð30Þ

The general solution of this equation is known to be
expressed in terms of the Airy functions:

vnðzÞ ¼ c̃1AiðzÞ þ c̃2BiðzÞ; ð31Þ

with c̃1 and c̃2 being the integration constants. Note that the
asymptotic behaviors of the Airy functions are (e.g., [50])

AiðzÞ ∼
8<
:

e−ð2=3Þz3=2

2
ffiffi
π

p
z1=4

ðz → ∞Þ
sin½ð2=3Þð−zÞ3=2þπ=4�ffiffi

π
p ð−zÞ1=4 ðz → −∞Þ

;

BiðzÞ ∼
8<
:

eð2=3Þz3=2ffiffi
π

p
z1=4

ðz → ∞Þ
cos½ð2=3Þð−zÞ3=2þπ=4�ffiffi

π
p ð−zÞ1=4 ðz → −∞Þ

: ð32Þ

Thus, imposing the boundary condition ũnð∞Þ ¼ 0, the
constant c̃2 must be zero. Another boundary condition,
ũnð0Þ ¼ 0, leads to the following condition,

Aiðzð0ÞÞ ¼ 0; ð33Þ

where we used the fact that both of the functions zðxÞ and
g0ðxÞ are nonvanishing at x ¼ 0.
Equation (33) determines the eigenvalues E through the

function zð0Þ given at Eq. (28), in which the integrandffiffiffiffiffiffiffiffiffiffiffi
g0ðxÞ

p
manifestly depends on E [see Eq. (17) for the

definition of g0ðxÞ]. It is the transcendental equation and has
to be evaluated numerically to get the eigenvalues. Although
this can be easily and quickly done with the standard
numerical techniques, we can derive an analytical expres-
sion for energy eigenvalues by further employing an
approximation. Since the quantity z is of the order of
Oðα1=3Þ and z < 0 at x ¼ 0, we can make use of the
asymptotic form of the Airy function Ai by taking the limit
of α ≫ 1. Then, Eq. (33) is rewritten with [see Eq. (32)]

1ffiffiffi
π

p f−zð0Þg1=4 sin
�
2

3
f−zð0Þg3=2 þ π

4

�
¼ 0: ð34Þ

Note that Eq. (28) implies zð0Þ ≠ 0. Thus, the condition
given above is recast as [using Eq. (28)]

2

3
f−zð0Þg2=3 þ π

4
¼ nπ

⇔ α1=2
Z

xc

0

ffiffiffiffiffiffiffiffiffiffiffiffi
g0ðx0Þ

p
dx0 ¼

�
n −

1

4

�
π ð35Þ

with the variable n being the positive integer (i.e.,
n ¼ 1; 2;…). Assuming further xc ≪ 1 and expanding
the function g0ðxÞ as g0ðxÞ ≃ 1 − x=2þ E=α, the turning
point is easily evaluated to give xc ¼ 2ð1þ E=αÞ.
Substituting the relations into the above, the integration
is analytically performed, and Eq. (35) becomes

α1=2
4

3

�
1þ E

α

�
3=2

¼
�
n −

1

4

�
π: ð36Þ

Solving the above equation with respect to E, we finally
get an analytical expression for the energy eigenvalues:

�
E
α

�
approx

¼ −1þ α−1=3
�
3

4

�
n −

1

4

�
π

�
2=3

: ð37Þ

Note that the n ¼ 1 implies the ground state. The above
analytical expression is in general valid as long as we
consider α ≫ 1 and for a small integer n.
In Table I, normalizing the energy eigenvalues by α, we

list their numerical values for the lowest five eigenstates.
Here, we specifically show the results of α ¼ 103. Table I
demonstrates how well the analytical estimation at Eq. (37)
can work. Compared to the results obtained from numerical
calculation and Eq. (33), the eigenvalues from (37) start to
deviate as increasing n. On the other hand, results obtained
by solving the transcendental equation (33) are surprisingly
accurate even for n ¼ 5. We will see in next subsection how
this semianalytical estimation works well in more general
cases with various values of α.
To sum up, the analytical solution for the bound-state

radial wave function which satisfies the boundary con-
ditions ũð0Þ ¼ 0 ¼ ũð∞Þ is given by

TABLE I. Comparison of analytically and numerically esti-
mated eigenvalues for the zero angular-momentum case. Setting
the parameter α to 103, numerical values of E are summarized
by normalizing them by α, particularly for the lowest five
eigenstates.

E=α Numerical Equation (33) Equation (37)

n ¼ 1 −0.86680 −0.86687 −0.85383
n ¼ 2 −0.78318 −0.78323 −0.74286
n ¼ 3 −0.72307 −0.72311 −0.65244
n ¼ 4 −0.67531 −0.67535 −0.57261
n ¼ 5 −0.63553 −0.63557 −0.49965
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ũnðxÞ ¼ xunðxÞ ¼

8>><
>>:

fzðxÞg1=4
f−g0ðxÞg1=4 AiðzðxÞÞ; zðxÞ ¼ α1=3

h
3
2

R
x
xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðx0Þ

p
dx0

i
2=3

; ðx > xcÞ
f−zðxÞg1=4
fg0ðxÞg1=4 AiðzðxÞÞ; zðxÞ ¼ −α1=3

h
3
2

R
xc
x

ffiffiffiffiffiffiffiffiffiffiffiffi
g0ðx0Þ

p
dx0

i
2=3

; ð0 ≤ x ≤ xcÞ
; ð38Þ

with the function g0 defined at Eq. (17). The eigenvalue E is obtained by solving Eq. (33) for a given α, and the turning point
xc is determined by g0ðxcÞ ¼ 0. Note that the analytical expressions given above is not normalized, and for a proper
definition, it has to be divided by the normalization constant N , defined by N ≡ fR dx0jũnðx0Þj2g1=2.

B. Comparison with numerical solutions

Having obtained the analytical expressions for eigenvalues and eigenfunctions, we now compare them with numerical
solutions. Based on the standard technique to solve the stationary problem of Schrödinger equation, we discretize Eq. (17).
Then, solving differential equation under the boundary conditions at Eq. (18) is reduced to a matrix eigenvalue problem in
the following form (e.g., Ref. [51]):

0
BBBBBBBBBB@

2=Δ2 þ Vðx1Þ −1=Δ2 � � � 0 0

−1=Δ2 2=Δ2 þ Vðx2Þ −1=Δ2 � � � 0

..

. . .
. . .

. . .
. ..

.

0 . .
.

−1=Δ2 2=Δ2 þ Vðxn−1Þ −1=Δ2

0 � � � 0 −1=Δ2 2=Δ2 þ VðxnÞ

1
CCCCCCCCCCA

0
BBBBBBBB@

ũðx1Þ
ũðx2Þ
..
.

ũðxn−1Þ
ũðxnÞ

1
CCCCCCCCA

¼ E

0
BBBBBBBB@

ũðx1Þ
ũðx2Þ
..
.

ũðxn−1Þ
ũðxnÞ

1
CCCCCCCCA
; ð39Þ

with the quantity Δ and the function VðxÞ, respectively, defined by Δ≡ xiþ1 − xi and VðxÞ ¼ −α logð1þ xÞ=x.

Figures 2 and 3 show the wave functions of the lowest
five eigenstates (i.e., n ¼ 1;…; 5) for the parameters α ¼
10 (left), 102 (middle), and 103 (right). In upper panels of
Fig. 2, thick dashed lines are the numerical results of the
function ũn, which are obtained by setting the inner and
outer boundaries to x1 ¼ 0 and xn ¼ 50 for α ¼ 10 and 20
for α ¼ 102 and 103 with the number of grids n ¼ 104.
These results are compared to the analytical results

depicted as thin solid lines, with the amplitude of each
eigenfunction properly normalized. Bottom panels of Fig. 2
plot the fractional difference between the analytical and
numerical results, defined by ðũn;analytical − ũn;numericalÞ=
ũn;numerical. On the other hand, Fig. 3 shows the square
of the wave function un ¼ xũn, normalized it by the one
evaluated at the origin, i.e., junðxÞj2=junð0Þj2, which
corresponds to the density profile normalized by the central

FIG. 2. Eigenfunctions for radial wave function ũnðxÞ for α ¼ 10 (left), 102 (middle), and 103 (right). Results of the lowest five
eigenstates are plotted as a function of dimensionless radius x ¼ r=rs. shown. In the upper panels, while the thin solid lines are the
analytical results based on Eq. (38), thick dashed lines represent the numerical solutions obtained by solving the matrix eigenvalue
problem. Note that all the results are normalized. On the other hand, the bottom panels show the fractional difference between the
analytical and numerical results defined by Δũn=ũn;numerical with Δũn ¼ ũn;analytical − ũn;numerical, where the functions ũn;analytical and
ũn;numerical denote the analytical and numerical eigenstates, respectively. Here, to avoid the division by zero, we stop plotting the results
when the amplitude of the wave functions becomes smaller than 10−9 at the outer part.
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density, ρðxÞ=ρð0Þ. The meaning of line types and colors
are the same as those shown in the upper panels of Fig. 2.
Clearly the agreement between analytical numerical

results is excellent even for a small value of α, with which
we naively expect the analytical prediction to be inaccurate.
A closer look at the fractional difference reveals a discrep-
ancy at larger radii x for small α, where spiky features
arising from the zero-crossing points also become promi-
nent. Nevertheless, these behaviors appear manifest only
when the wave functions fall off and approach zero, thus
giving no serious impact even from the quantitative point of
view. Indeed, looking at the density profiles plotted in
logarithmic scales (Fig. 3), we hardly see a difference
between analytical and numerical results.
Next look at the eigenvalues. Table I summarizes the

results in the case of α ¼ 103. Further, we plot in Fig. 4 the
eigenvalues for the lowest five eigenstates as a function of
α. Here, the eigenvalues computed from Eqs. (33) and (37)
are shown, depicted as solid and dotted lines, respectively.
Again, we see an excellent agreement between numerical
and analytical estimations. It is surprising that the analytical
estimation with Eq. (33) remains accurate even at α≲ 1,
and reproduce numerical results. Thus, we conclude that
the solutions constructed analytically in Sec. III A provide a
fast and reliable estimate of the eigenfunctions and eigen-
values, which can be used to study quantitatively the soliton
core properties.

C. Analytical estimation of soliton core

In this subsection, before addressing the core-halo
relations, we shall compare the ground-state wave function
(n ¼ 1) with the soliton density profile found in numerical
simulations.
It has been found in numerical simulations that the

central core structure of FDM halos is well described by the
following fitting form [52,53]:

ρsolitonðrÞ ¼
ρc

f1þ γðr=rcÞ2g8
; ð40Þ

with the central density ρc given by5

ρc ¼
0.019
a

�
mϕ

10−22

�
−2
�

rc
1 kpc

�
−4
½M⊙ pc−3�: ð41Þ

In the above, the core size xc is defined to be the radius
at which the density drops to one-half of the central
density, i.e., ρsolitonðxcÞ ¼ ρc=2. This gives the constant
γ ¼ 21=8 − 1 ≃ 0.091.
Similarly, as we have seen in Fig. 3, the ground-state

eigenfunctions (n ¼ 1), depicted as black curves, com-
monly have a flat core followed by a sharp drop, irrespective
of the parameter α. Although our treatment ignoring the self-
gravity cannot precisely predict the soliton core density ρc,
making use of the asymptotic properties of the Airy
function, one can analytically express the size of the soliton
core structure near the origin. From Eq. (38), we have

unðxÞ ¼
ũnðxÞ
x

!x≪1 1ffiffiffi
π

p fg0ðxÞg1=4
sin

�
2

3
f−zðxÞg3=2 þ π

4

�

≃ ð−1Þnþ1
α1=2fg0ð0Þg1=4

π1=2

�
1 − βx2 þ � � �

�
; ð42Þ

where the function z is Taylor expanded in the last line.
Rewriting further the derivatives of z in terms of those of the
function g0, the coefficient β is expressed with a help of
Eqs. (23) and (28) as

β ¼ α

6
g0ð0Þ þ

5

96

�
g00ð0Þ
g0ð0Þ

�
2

−
1

24

g000ð0Þ
g0ð0Þ

: ð43Þ

Note that in deriving Eq. (43), we do not use any functional
form of g0. To get a more explicit expression, we substitute
the function g0ðxÞ given at Eq. (17). We then obtain

β ¼ α

6

�
1þ E

α

�
þ 17þ 32E=α
1152ð1þ E=αÞ2 : ð44Þ

FIG. 3. Same as Fig. 2, but we here plot the square of the wave function unðxÞ ¼ xũnðxÞ, normalized by the one evaluated at the origin,
i.e., junðxÞj2=junð0Þj2. Note that the plotted results correspond to the density profile normalized by the central density, ρðxÞ=ρð0Þ.

5Here, the quantities ρc and rc are defined as the comoving
density and comoving radius, respectively.
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Equating especially the ground-state eigenfunction ju1ðxÞj2=
ju1ð0Þj2 with ρsolitonðxÞ=ρc at Eq. (40), we find that the
dimensionless core radius xc, defined by xc ≡ rc=rs, is
expressed as

xc ¼ pβ−1=2 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

αð1þ E=αÞ

s
; ð45Þ

with the constant p chosen to be p ¼ 0.65. Here, we have
ignored the second term in Eq. (44), which merely gives a
subdominant contribution. To be precise, in Eq. (45), a
relevant numerical factor is p ¼ ffiffiffiffiffi

4γ
p

≃ 0.60, but we here
adopt the value of 0.65, which in fact gives a better
agreement with Eq. (45) when comparing the analytically
estimated density profile with the fitting formula below.
Using the expression of the core radius in Eq. (45), Fig. 5

compares the normalized density profile obtained from the
analytical expression of the ground-state wave function
with Eq. (40). Plugging Eq. (45) into Eq. (40), the analytical
expression depicted as solid lines describes remarkably
well the fitting function (red dashed) over a wide range
of the parameter α even at the outskirt of the profile. Thus,
our analytical result can give a good description for the
simulated soliton profile. In particular, Eq. (45) is the key to
derive analytically the core-halo relation, which we will
discuss in more detail.

IV. PREDICTING SOLITON
CORE-HALO RELATIONS

In this section, on the basis of the analytical expression at
Eq. (45), we investigate in detail properties of the soliton
core, focusing particularly on its relation to the halo mass
and other parameters.

A. Core-halo mass-concentration relations

Let us recast the expression at Eq. (45) with the
comoving core radius rc, showing explicitly the parameter
dependence. Through the relation rc ¼ xcrs with the scale
radius given by rs ¼ rvir=cvir, using the expression of α at
Eq. (13) and the definition of rvir at Eq. (A3) gives

rc ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

1þ E=α

s
rvir=cvir
α1=2

;

≃ 1.83½kpc�a−1=2
�

p
0.65

��
mϕ

10−22 eV

�
−1
�

Mh

109 M⊙

�
−1=3

×

�
Δvir

200

�
−1=6

�
Ωm;0h2

0.147

�
−1=6

�
gðcvirÞ
1þ E=α

�
1=2

; ð46Þ

where the function gðcvirÞ is defined in Eq. (16).
The above relation is compared to Eq. (7) of Ref. [53],

who derived it based on the kinematic argument with a help
of numerical experiments. Apart from the last factor, the
dependencies on FDM mass, halo mass, and cosmological
parameters exactly coincide with each other.6 Also, the
numerical prefactor of 1.83 in our expression is rather close
to theirs.
However, an important difference is the last factor,

fgðcvirÞ=ð1þ E=αÞg1=2. While the numerator of this factor
is given as a function of cvir, the denominator, 1þ E=α,
depends on the parameter α. Thus, through Eq. (13), the
actual parameter dependence of rc can differ significantly
from the one in Ref. [53].

FIG. 4. Left: energy eigenvalue plotted as a function of α. To be precise, the plotted results are 1þ E=α, and results for the lowest five
eigenstates are shown. Lines from bottom to top indicate the results from n ¼ 1 to 5. Right: fractional error of the analytically estimated
values of the eigenvalue E, ΔE=Enumerical. Again, results for the lowest five eigenstates are shown.

6In Eq. (7) of Ref. [53], the cosmological parameters are set to
typical values, and their expression of the core radius apparently
misses the dependence on Ωm;0h2. Note also that Eq. (7) is given
as a physical radius, and thus the scale factor dependence differs
from ours by the factor of a.
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To see the explicit dependence of the expression (46)
on the halo properties, we hereafter fix the cosmological
parameters and FDM mass, respectively, to Ωm;0 ¼ 0.276,
h ¼ 0.677,ΩΛ ¼ 0.724, andmϕ ¼ 8 × 10−23 eV. Then, for
a given redshift z, the soliton core size rc is described as a
function of the halo mass and concentration parameter, Mh
and cvir. While the concentration parameter is also given as
a function of the halo mass and redshift, its dependence is
known to be sensitive to the cosmology, mainly through
the initial power spectrum. Hence, as a generic prediction
of the core-halo relation, we first consider cvir to be an
independent parameter of the halo mass. We shall then
introduce the models of concentration-halo mass relation,
and discuss their core-halo relations (Sec. IV B).
Left panel of Fig. 6 plots the predicted core radius given

as a function of Mh and cvir, with the latter dependence
shown in the color scales. In similar manner, right panel
plots the predicted core mass. Here, we adopt the fitting
form of the soliton density profile at Eq. (40) with the
soliton core density ρc given by Eq. (41). The core mass is
then estimated from (e.g., [25]):

Mc ≃ 4πð0.2225Þρcr3c ; ð47Þ

which gives

Mc ¼ 2.91 × 107½M⊙�a−1=2
�

p
0.65

�
−1
�

mϕ

10−22 eV

�

×

�
Mvir

109 M⊙

�
1=3

�
Δvir

200

�
1=6

�
Ωm;0h2

0.147

�
1=6

×

�
gðcvirÞ

1þ En=α

�
−1=2

: ð48Þ

Since the core mass shown here partly uses the relation
determined by the numerical simulations [in particular, the
core density at Eq. (41)], Eq. (48) is not strictly the first-
principle prediction, compared to the core radius shown in
the left panel, where we only used the analytical results

given in Sec. III. Nevertheless, the predicted core mass can
be used as an independent cross check, and it provides
some insights into the one obtained from numerical
simulations, as we will discuss below.
In both panels of Fig. 6, we also plot the results

measured from numerical simulations, depicted as filled
circles. These data are taken from Ref. [27]. Two different
colors indicate the results obtained from either soliton
merger simulations (dark green) or simulations started
from the cosmological initial condition (purple, Ref.
[26]).7 Multiplying by the scale factor a1=2, the results
are all scaled to those at z ¼ 0.
In Fig. 6, a cautious remark is that the parameter α

becomes smaller than unity at the region satisfying the
condition 1≲ ðMh=107 M⊙Þ3=4fðcvirÞ, which roughly cor-
responds to reddish triangular regions. Although our ana-
lytical description of the core-halo relations become
inaccurate there, these parameter regions are somewhat
extreme and there are in fact no simulation data points.
Apart from these points, important findings from Fig. 6 are
summarized below:

(i) All of the simulation results lie at the regions
allowed by predictions. To be precise, measured
core radii and core masses are consistent with
predictions with moderately small values of con-
centration parameter, cvir ∼Oð1 − 10Þ.

(ii) In predictions, there exist clear boundaries on the
allowed core radius and core mass for each halo
mass. Denoting, respectively, the upper and lower
bounds on the predicted core radius and core mass
by rlimit

c and Mlimit
c , one finds that they gradually

changes with halo mass, scaled as rlimit
c ∝ M−1=9

h and

FIG. 5. Comparison of the ground-state (n ¼ 1) density profile (black solid) with the fitting function of the soliton density profile (red
dashed). Plotted results are the normalized density profile, ρðxÞ=ρð0Þ, so that it approaches unity at x → 0. From left to right panels, the
results for α ¼ 5 × 103, 104, and 5 × 104 are shown. In plotting the fitting function in Eq. (40), we adopt the core radius xc given at
Eq. (45). Note that the ground-state density profiles are identical to those shown in Fig. 3 (see thin black solid lines).

7To be precise, simulation data of Ref. [26] have started from
the CDM initial condition. Thus, unlike the FDM initial con-
dition, no small-scale cutoff was imposed in the initial conditions.
Nevertheless, the evolved power spectra measured at later time
are shown to look quantitatively similar to those expected from
the FDM initial condition.
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Mlimit
c ∝ M1=9

h (see gray dashed lines). Both of the
bounds appear in the limit of cvir → 0.

Making use of the analytical properties of the wave
functions in Sec. III, we can derive explicit expressions for
the critical radius rlimit

c and mass Mlimit
c as follows. We first

notice that taking the limit cvir → 0, the parameter α yields
α → ∞. This implies that we can safely use the approximate
expression at Eq. (37) to evaluate the ground-state (n ¼ 1)
eigenvalue. Then, writing the parameter α given in Eq. (13)
as α ¼ α̃fðcvirÞ, the factor of fgðcvirÞ=ð1þ E=αÞg1=2 can be
computed explicitly in the limit of cvir → 0. We obtain

�
gðcvirÞ

1þ En=α

�
1=2

⟶
cvir→0

α̃1=6
�
8

9π

�
1=3

: ð49Þ

Recalling that the quantity α̃ depends on various model
parameters including the FDM mass and halo mass
[Eq. (13)], plugging Eq. (49) into Eq. (46) finally yields
the following relation:

rlimit
c ¼ 3.59½kpc�a−1=3

�
p

0.65

��
mϕ

10−22

�
−2=3

�
Mh

109 M⊙

�
−1=9

×

�
Δvir

200

�
−2=9

�
Ωm;0h2

0.147

�
−2=9

; ð50Þ

which gives the upper bound on the core radius. Similarly,
the lower bound on the soliton core mass is obtained by
substituting Eq. (49) into Eq. (48):

Mlimit
c ¼ 1.48 × 107½M⊙�a−2=3

�
mϕ

10−22

�
2=3

�
Mh

109 M⊙

�
1=9

×

�
Δvir

200

�
2=9

�
Ωm;0h2

0.147

�
2=9

: ð51Þ

Equations (50) and (51) derived above precisely repro-
duce the boundary curves shown in Fig. 6. The presence of
upper (lower) bound on core radius (mass) are related to the
structure of halo potential near the center. In other words,
the inner structure of halo profile determines the allowable
soliton core size and mass, and they can be indeed changed
depending on the inner slope of halo density profile. In
Appendix C, we examine this in detail in a class of
generalized halo profiles, and show that the upper bound
on the core radius rlimit

c generally scales with respect to the
inner slope of the density profile s, defined by ρ ∝ r−s

ð0 ≤ s < 2Þ, as [Eq. (C15)]:

rlimit
c ¼ 3.59½kpc�T ðsÞ

T ð1Þa
−1=ð4−sÞ

�
p

0.65

��
mϕ

10−22 eV

�
−2=ð4−sÞ

×
�

Mh

109 M⊙

�
−s=3=ð4−sÞ�Δvir

200

Ωm;0h2

0.147

�
−ð1−s=3Þ=ð4−sÞ

;

where the function T , defined at Eq. (C16), is a mono-
tonically decreasing function of the slope s, and it becomes
zero when the slope approaches 2. Although the above
expression is valid at 0 ≤ s < 2, the behavior of the
function T suggests that the FDM soliton, if exists, does
not form a flat core for a halo having a steeper inner slope
of s ≥ 2.

FIG. 6. Soliton core-halo relation given as function of halo mass Mh and concentration parameter cvir, with the latter dependence
shown in the color scales. The analytical predictions of the core radius vs halo mass (left) and core mass vs halo mass (right) relations,
given, respectively, at Eqs. (46) and (48), are plotted at z ¼ 0. Here, we adopt the mass of the FDM and the cosmological parameters as
follows: mϕ ¼ 8 × 10−23 eV, Ωm;0 ¼ 0.276, ΩΛ ¼ 0.724 and h ¼ 0.677. For comparison, we also plot the results measured from the
numerical simulations of S-P equation. The dark green and purple points, respectively, represent the results from soliton merger
simulations [27] and cosmological simulations [26]. Note that, in each panel, regions with no color indicate that the soliton core is not
theoretically allowed to form. The boundary on the allowed core radius and/or core mass is described by a single power-law function of
halo mass, whose scaling is depicted as gray dashed lines (see the text in detail).
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B. Core-halo mass relations in CDM
and FDM cosmologies

In this subsection, incorporating the C-M relation
cvirðMhÞ into the results shown Fig. 6, we compare the
predicted core-halo relations with simulation results.
It is known that the C-M relation acquires various

dependencies on cosmology and redshift through the for-
mation and merger history of halos. As a result, at low-mass
halos of our interest, it becomes rather sensitive to the cutoff
of the initial power spectrum. Here, as representative
examples, we examine the two C-M relations given for
different cosmological models. One is the C-M relation of

the FDM model. The linear power spectrum of this model
exhibits a sharp cutoff at the wave number k1=2 ∼
4.5ðmϕ=10−22 eVÞ4=9 Mpc−1 [6,7], and this cutoff leads
to the formation of low-concentration halos with a sup-
pressed abundance, analogous to the case in the warm dark
matter model (e.g., Refs. [54,55]). At present, there is a little
work to numerical study the C-M relation in a relevant
cosmological setup. We adopt the analytical C-M relation
proposed by Ref. [56], who applied it to predict the two-
point statistics of galaxies and weak lensing based on the
halo model prescription. Another C-M relation we examine
is the one of the CDMmodel. In contrast to the FDMmodel,
the power spectrum of the CDM model does not have any
typical cutoff at relevant scales of structure formation. Thus,
a sizable amount of halos is formed, and this results in the
high concentration halos at small halo masses. We adopt the
C-M relation given by Ref. [57], which has been calibrated
by cosmological N-body simulations to quantitatively
match the measured C-M relation (see also Refs. [58–60]
for recent improved modeling).
The analytical expressions for the C-M relation of both

models are summarized in Appendix A 2. Based on these,
Fig. 7 shows the C-M relations of the FDM (blue) and
CDM (red) models. Since the C-M relation measured
in simulations is known to have a large scatter (e.g.,
Refs. [57,61–65]), we also show in Fig. 7 the 1 and 2σ
errors around the mean C-M relation, assuming the log-
normal distribution with the scatter of 0.16 dex [65].
Using these C-M relations and their scatter in Fig. 7, we

compute the core-halo relations, and the predictions are
plotted in Figs. 8 and 9 for FDM and CDM models,
respectively. Together with the fitting function found

FIG. 7. C-M relation for the FDM and CDM models. Adopting
the analytical models presented in Refs. [56,57] (see Appendix A 2
for their analytical expressions), the concentration parameter cvir is
plotted as a function of halo mass in blue and red lines for FDM
and CDM models, respectively. The faint and dark shaded area
indicate the 1σ and 2σ errors, assuming the log-normal distribution
of cvir with dispersion given by 0.16 dex.

FIG. 8. The soliton core-halo mass relation adopting the C-M relation for the FDMmodel. Incorporating the C-M relation of Ref. [56]
into the predictions shown in Fig. 6, the results of the core radius vs halo mass (left) and the core mass vs halo mass (right) relations are
plotted, together with measured results from numerical simulations, for which the median values and dispersions are also evaluated in
each halo mass bin and are plotted as large filled circles and error bars, respectively. In plotting the predictions, we assume, for each halo
mass, the log-normal distribution of cvir, and evaluate the median and the scatter in the core-halo relation. In each panel, the thick solid
line is the median relation, while the faint and dark shaded areas, respectively, show the 1σ and 2σ scatter arising from the scatter in cvir.
Note that the median relations shown here are hardly distinguishable from the predictions computed with the mean C-M relation. For
reference, the gray dashed lines are the scaling relations numerically found by Ref. [53].
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numerically by Ref. [53] (gray dashed), simulation results
are also shown as small filled circles, for which we further
estimate the median values and dispersions, depicted,
respectively, as large filled circles and error bars.
Overall, the predicted core-halo relations exhibit a non-

power-law behavior for both the FDM and CDM models.
At the small halo masses of Mh ≲ 1011 M⊙, differences
between the predictions become manifest. Obviously, the
results from the C-M relation of the CDM model, which
predicts high-concentration halos, fails to reproduce the
trend seen in numerical simulations. On the other hand,
adopting the C-M relation of the FDMmodel, the predicted
core-halo relations gives a close agreement with the results
obtained from numerical simulations. Interestingly, at
Mh ∼ 108–109 M⊙, the predicted core-halo relations get
closer to the scaling relation found by Ref. [53] (gray
dashed), which predicts the core-halo relation in a power-
law form of rc ∝ M−1=3

h and Mc ∝ M1=3
h . Also, scatters in

the predicted core-halo relations resemble those shown in
the simulations.
These results suggest that provided the C-M relation

well-calibrated with numerical simulations, our analytical
formulas given at Eqs. (46) and (48) can successfully
describe the core-halo relations found in numerical simu-
lations. Nevertheless, one caveat to be noted is that the data
points shown in Figs. 8 and 9 are obtained from the
simulations with a small box size, L ¼ 10 h−1Mpc for
the cosmological simulations [26], and L ¼ 300 kpc for the
soliton merger simulations. Further, while the latter simu-
lations are not strictly made with a cosmological setup, the
initial conditions of the former simulations is not precisely
consistent with the FDM model having a small-scale cutoff.
In this respect, in both simulations, the evolved halos may
not necessarily trace the C-M relations expected from those
obtained from a relevant cosmological setup. Indeed, we see
a small discrepancy with predictions, which appears mani-
fest around the halo mass ofMh ∼ 109 M⊙. In addition, the
analytical C-M relation for the FDM model is not designed

to account for the low-mass halos considered here. In
this respect, the predicted core-halo relations adopting
the C-M relation of Ref. [56] might not be accurate at
Mh ≲ 1011 M⊙. Still, the results shown in Fig. 8 is very
promising, and a more quantitative investigation along the
direction would shed light on clarifying the origin and
diversity of core-halo relations.
Finally, a closer look at the predictions in the FDM

model reveals that the scatter in core-halo relations gets
smaller as decreasing the halo mass. This is because the
FDM model prefers low-concentration halos at small mass
scales. As we have seen in Sec. IVA, the allowable size and
mass of the soliton core become converged to a certain
value for each halo mass in the limit of cvir → 0 [see
Eqs. (50) and (51)]. As a result, the scatter in the predicted
core-halo relation gets reduced for low-concentration halos.
Indeed, similar trend can be clearly seen in numerical
simulations, and data points from the two different simu-
lations converge to a similar core radius and core mass at
Mh ∼ 108 M⊙, giving consistent results with predictions of
the FDM model.

V. DISCUSSION: IMPACT OF SOLITON
SELF-GRAVITY

So far, we have ignored the self gravity of soliton core,
and constructed analytically the eigenfunctions of the S-P
system under the potential of a spherically symmetric
halo. Focusing particularly on the ground-state eigen-
function, we derived the analytical expression of the
soliton core, which is then used to predict the soliton
core-halo relations. In this section, we discuss the effect
of soliton self-gravity, and estimate in particular its
impact on the soliton core radius.
As we have seen in Sec. II A, a proper account of the

soliton self-gravity is to add the contribution of the soliton
core to the gravitational potential, on top of the potential of
the background halo. The effective potential of Eq. (12) is
then changed to

FIG. 9. Same as Fig. 8, but the predictions adopting the C-M relation of the CDM model by Ref. [57] are shown.
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− α
logð1þ xÞ

x
þ lðlþ 1Þ

x2

→ −α
logð1þ xÞ

x
þ lðlþ 1Þ

x2
þ ΔVðxÞ; ð52Þ

where the correction term ΔV is related to the gravitational
potential of the soliton, Ψsoliton:

ΔVðxÞ ¼ 2m2
ϕr

2
sa2

ℏ2
ΨsolitonðxÞ: ð53Þ

Since the potential Ψsoliton is determined by the Poisson
equation sourced by the square of the wave function itself
[see Eqs. (5) with (6)], the S-P equation having the effective
potential at Eq. (52) is no longer reduced to a linear
eigenvalue problem. Nevertheless, if the potential of the
self-gravitating soliton is small enough compared to the
background halo potential, a perturbative treatment can be
applied, and the impact of soliton self-gravity is estimated
based on our treatment in Sec. III.
Let us suppose that the soliton core is described by the

ground-state eigenfunction in Sec. III A, with its density
profile approximately given by the fitting function at
Eq. (40). Adopting this fitting form, the Poisson equation
is analytically solved, and the gravitational potential
induced by the soliton core is expressed as [66]

ΨsolitonðxÞ ¼ −πG
ρcr2s
a

x2c
53760γ3=2

�
γ1=2hðx=xcÞ

½1þ γðx=xcÞ2�6

þ 3465

x=xc
tan−1

�
γ1=2x
xc

��
ð54Þ

with γ ≃ 0.091 and the function hðyÞ given by

hðyÞ ¼ 3465γ5y10 þ 19635γ4y8 þ 45738γ3y6

þ 55638γ2y4 þ 36685γy2 þ 11895: ð55Þ

Note that the quantity x is the dimensionless radius
normalized by rs, x ¼ r=rs.
Plugging the explicit functional form into Eq. (52), we

can repeat the same analysis as we have done in Sec. III as
follows. First notice that the function g0ðxÞ introduced at
Eq. (17) is changed to

g0ðxÞ →
logð1þ xÞ

x
þ E

α
−
ρc
ρs
Ψ̃solitonðxÞ; ð56Þ

where the function Ψ̃ is related to the potential Ψsoliton

through Ψsoliton ¼ 4πGρcr2s Ψ̃soliton. One important point to
note is that the modification due to soliton potential does
not affect the monotonicity of the function g0. That is, the
function g0 still has a single turning point, though its
location is perturbatively shifted to an inner radius. Thus,
even if the soliton self-gravity is taken into account, the

ground-state eigenfunction that describes the soliton core
structure is still given by Eq. (38), with the function g0
replaced with Eq. (56). Hence, taking the limit of x ≪ 1,
we have the same asymptotic form of the eigenfunction as
we obtained in Sec. III C [see Eq. (43)], but the explicit
form of the coefficient β is now changed to

β →
α

6

�
1þ E

α
−
ρc
ρs
Ψ̃solitonð0Þ

�
; ð57Þ

where we have only taken into account the leading-order
term proportional to the parameter α. This modification
implies that the soliton self-gravity can change the core
size xc from Eq. (45) to

xc → p
�

6

αf1þ E1=αþ ðρc=ρsÞðx2c=14=γÞg
�
1=2

; ð58Þ

with p given by 0.65. Here we used the fact that
Ψ̃solitonð0Þ ¼ −x2c=ð14γÞ. In the above, the energy eigen-
value E has to be consistently evaluated, taking the soliton
potential into account. Employing the perturbative calcu-
lation familiar in quantum mechanics, this is estimated
to give

E1=α≃Eð0Þ
1 =αþ

�
ρc
ρs

�Z
dxũð0Þ1 ðxÞΨ̃solitonðxÞũð0Þ1 ðxÞ; ð59Þ

where the quantity Eð0Þ
1 stands for the unperturbed energy

eigenvalue of the ground state, which is obtained ana-

lytically from Eq. (33). The function ũð0Þ1 represents the
unperturbed ground-state eigenfunction that is properly
normalized.
The new expression of the soliton core radius at Eq. (58)

involves the soliton core radius xc, which we evaluate with
the unperturbed result at Eq. (45). As a result, the ratio of
the new core radius to the unperturbed counterpart ignor-
ing the soliton self-gravity, which we denote by R, is
expressed as

R≡ xcðw=selfgravityÞ
xcðw=oselfgravityÞ

¼
�
1þ ρc=ρs

1þE1=α

�
x2c
14γ

þ
Z

dxfũð0Þ1 ðxÞg2Ψ̃solitonðxÞ
��

−1=2
:

ð60Þ

Using the explicit expressions for the quantities α, xc, ρs
and adopting the relation for ρc, respectively, given at
Eqs. (13), (45), (A2), and (41), the above expression is
simplified to give

R¼
�
1þ1.73

�
1−

Z
dxfũð0Þ1 ðxÞg2VsolitonðxÞ

��
−1=2

; ð61Þ
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where the function Vsoliton is the reduced (minus) soliton
potential defined by VsolitonðxÞ≡ −Ψ̃solitonðxÞ=Ψ̃ð0Þ. Note
that the reduced potential Vsoliton is a monotonically
decreasing function of x, and it goes to 1 at x → 0 and
0 at x → ∞. Thus the integral given above generally takes
a value in between 0 and 1. Accordingly the ratio R is
expected to be smaller than 1, and is around R ∼ 0.6–1.8

Equation (61) implies that the self gravity of soliton
always makes the core radius small. How it is small actually
depends on the parameters, which are wholly encapsulated
in the integral involving the ground-state eigenfunction
and reduced potential. Note that these functions are solely
characterized by the parameter α. We thus first show the
behavior of the ratio R as a function of α. The result is
plotted in the left panel of Fig. 10. We then found that the
ratioR is nearly constant over a wide range of the parameter
α. As a result, the soliton self-gravity changes the core size
by 20–30%. Here, for illustrative purpose, the plotted range
of the parameter α was chosen to be sufficiently wide,
0.1 ≤ α ≤ 105. While this range partly includes the region
where our analytical estimation of the soliton core size
become inaccurate (i.e., α≲ 1), the resultant change inR is
fairly small, and no notable (sudden) transition appears. In
the right panel, fixing the cosmology and FDM mass to
those in the fiducial setup (see Sec. IVA), the dependence
on the halo mass and concentration parameter is shown for
the case of z ¼ 0. The result depicted as color scales shows
that the impact of soliton self gravity becomes gradually
significant as decreasing the halo mass and increasing the
halo concentration. As a result, the ratio R reaches ∼0.7 as

shown in the bluish upper triangular region. Note that, at
this region, the parameter α also becomes small and
eventually below unity. However, the parameters of this
region are rather extreme, and halos having such a high
concentration parameter can never be realized in numerical
simulations with a relevant cosmological setup.
Hence, we conclude that the soliton self-gravity can be

non-negligible for the setup considered in Sec. IV, but its
impact would not be large, suggesting that our analytical
treatment ignoring the soliton self gravity is still valid, and
can give a solid prediction for soliton core structure even
from a quantitative viewpoint. Nevertheless, we note that
our estimation given here relies on the perturbative treat-
ment, and the contribution of the soliton potential is
assumed to be small enough, compared to the halo
potential. In this sense, the actual size of the impact may
be quantitatively changed. For more accurate estimation, a
nonperturbative approach by numerically solving the S-P
equation is crucial, including self-consistently the soliton
potential. This is left to our future study.

VI. CONCLUSION

In this paper, we have investigated analytically the
structural properties of the soliton core, the stable dense
core formed at the center of virialized halos in the FDM
model. Early numerical studies suggest that the size and
mass of such a structure are tightly related to the host halo
properties, given in a power-law form. On the other hand,
more recent studies with high-resolution simulations reveal
rich dynamical properties of the soliton core, also indicating
that no tight relation between the soliton core structure and
host halo mass exists, but instead there is a large scatter. To
address these issues, we have presented an analytical
description of the soliton core in a cosmological setup.
A crucial step to derive the soliton core properties is to

solve the S-P equation in an analytically tractable manner. In
our treatment, we considered the gravitational potential of

FIG. 10. Left: impact of soliton self-gravity on the core radius. Taking the backreaction of the soliton self-gravity into account, the
estimated core radius is normalized by the one ignored the self-gravity, which we denote byR [see Eq. (61)], and is plotted as a function
of the dimensionless parameter α. Right: same as left panel, but the result is plotted as function of the halo massMh and the concentration
parameter cvir, with the ratio R depicted as color scales. Note that the mass of FDM is fixed to mϕ ¼ 3 × 10−23 eV and we follow the
same parameter setup as adopted in Figs. 6–9 (see Sec. IVA).

8In Eq. (61), we adopt the soliton core density ρc found in
numerical simulations, and the depth of the soliton potential
relative to the halo potential is fixed. In this sense, there is no
control parameter to change the soliton self-gravity itself. Rather,
in our case, the soliton self-gravity is determined by the quantities
characterizing the halo properties.
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halo as a smooth background potential, and ignored the self-
gravity of the soliton. With this setup, the problem to solve
the S-P equation is reduced to a linear eigenvalue problem.
Still, no exact solution is known, and to obtain analytically
the eigenfunctions of soliton core, we have applied the
Langer’s method of uniform asymptotic approximation. We
found that this method provides an excellent approximation
which agrees well with the numerical solution of the linear
eigenvalue problem, and thus gives an accurate description
of the soliton eigenstates over a wide range of model
parameters. Then, from the ground-state eigenfunction,
the key expression characterizing the soliton core radius
was derived [Eqs. (45) or (46)], and combining the fitting
formula for the core density ρc estimated from simulation
[Eq. (41)], the expression for the soliton core mass was
further obtained [Eq. (48)]. While these expressions appa-
rently resemble those found in an early work [53], the newly
derived formulas contain an additional factor, which
depends not only on the cosmology and FDM mass but
also on quantities characterizing the halo properties. Based
on our new analytical formulas, a quantitative prediction of
the soliton core-halo relations was made, and these were
compared with results of numerical simulations of S-P
equation.
Our important findings are summarized as follows:
(i) The soliton core-halo relations, i.e., rc −Mh and

Mcore −Mh relations, depends sensitively not only
on the cosmology and FDM mass but also on the
halo concentration characterized by cvir. In general, a
lower concentration halo can host the soliton having
a larger core radius and smaller core mass (see
Fig. 6). Comparison of the predicted core-halo
relations with simulation data suggests that the
soliton core prefers halos with moderately small
values of concentration parameter, cvir ∼Oð1 − 10Þ.

(ii) The predicted core-halo relations plotted as a func-
tion of halo concentration parameter (Fig. 6) shows
that for each halo mass, there exist the allowable
core size and core mass for the soliton states,
respectively, given as the upper and lower bounds.
For fixed cosmological parameters and FDM mass,
the theoretical upper limit on the core radius, rlimit

c ,
and lower limit on the core mass, Mlimit

c , are simply
given as a function of halo mass, and are scaled as
rlimit
c ∝ M−1=9

h and Mlimit
c ∝ M1=9

h [see Eqs. (50) and
(51) for more explicit expressions]. A general
analysis in Appendix C shows that these limits
sensitively depend on the inner slope of halo density
profile [see Eq. (C15)].

(iii) Incorporating explicitly the C-M relation into the
predictions, the resultant core-halo relations gener-
ally deviate from a power-law form. In particular,
the C-M relation monotonically decreasing with the
halo mass, as typically seen in the CDM model,
makes the core-halo relations flatter, apparently

inconsistent with measured results in simulations
(Fig. 9). On the other hand, the nonmonotonic C-M
relation like the one indicated in the FDM model
[56] eventually exhibit a power-law feature at the
small halo masses of Mh ∼ 108–109 M⊙ (Fig. 8),
leading to a close agreement with simulation results.

(iv) Overall, the scatter around C-M relation produces a
non-negligible amount of scatter in the soliton core-
halo relations. This can explain the diversity advo-
cated in Ref. [27]. An interesting trend seen in the
simulation results may be that the scatter in the core-
halo relations gets reduced as we go to small halo
mass. This is rather consistent with predictions, in
which a suppression of scatter is explained by the
fact that the allowable size and mass of the soliton
core are limited.

We have also examined the validity of our treatment
ignoring the soliton self-gravity. A perturbative estimation
of its impact on the soliton core radius indicates that
including the soliton self-gravity makes the effective
potential of the S-P equation deep, leading to a shrinking
of the core radius. The degree to which the core radius
shrinks is characterized only by a single parameter, α, and
adopting the core density ρc found in numerical simulations
[Eq. (41)], we found that the soliton self-gravity may
change the results by ∼20%, irrespective of the parameters
we considered. Hence, the soliton self-gravity cannot be
completely ignored, but its impact may not be large, and the
predicted core-halo relations ignoring the self gravity
would be still relevant, at least qualitatively, hence worth-
while for a further detailed comparison with new numerical
simulations. Nevertheless, the validity of this estimation as
well as a more proper description of soliton core have to be
investigated, and we leave it to future work.
Finally, the analytical description presented in this paper

would provide a useful and powerful route to characterize
the dynamical properties of soliton core. As briefly men-
tioned in Secs. I and II B, the soliton core seen in
simulations is not strictly stable. Through the wave inter-
ference with granules distributed in a halo, the soliton core
undergoes oscillations and random walks. These dynamical
features can be indeed described as a superposition of the
ground and excited states, including those having nonzero
angular momenta [30,31]. Although previous studies have
numerically constructed such a dynamical state, the ana-
lytical construction of the eigenfunctions, described in
Sec. III for l ¼ 0 and Appendix B for l ≠ 0, would be
advantageous to fast realize a dynamical soliton with less
computational cost. Importantly, the present treatment
provides a fairly general way to construct the eigenstates,
and can be applied not only to the soliton in the NFW halo,
but also to the one in a generalized halo profile expressed in
an analytical form. Following proposals by Refs. [67,68],
one can even use our analytical treatment to generate the
FDM halo structure consisting of many granules, each of
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which resembles the soliton eigenstates (see also Refs.
[69,70]). Analytically describing the dynamical soliton
states including halos is a very interesting and important
subject and would offer a useful tool to observationally test
the FDM model (e.g., Refs. [71,72] for related works). We
will address it near future.
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APPENDIX A: HALO DENSITY PROFILE AND
MASS CONCENTRATION

In this appendix, we summarize important characteristics
of the dark matter halos used in the main text.

1. Characteristics of halo density profile

The dark matter halo, a virialized self-gravitating dark
matter clump, is known to have a characteristic structure
in density. In particular, a spherical mean of the density
profile measured in cosmological N-body simulations is
known to be quantitatively described by the NFW profile
[46,47]. The comoving density of this profile is expressed
as [Eq. (7)]

ρNFWðrÞ ¼
ρs

ðr=rsÞð1þ r=rsÞ2
; ðA1Þ

where the radius rs describes the transition scale where
the logarithmic slope of the density profile changes from
−3 to −1 as we approach the halo center. The density ρs
represents the characteristic density at r ¼ rs, and it is also
expressed as follows9:

ρs ¼
Δvirρm;0

3

c3vir
lnð1þ cvirÞ − cvir=ð1þ cvirÞ

: ðA2Þ

Here, we introduced the concentration parameter cvir
defined by cvir ≡ rvir=rs with the radius rvir being the
virial radius. The virial radius is linked to the halo mass
through

rvir ¼
�

3Mh

4πΔvirρm;0

�
1=3

: ðA3Þ

The quantity Δvir is the virial overdensity, which character-
izes the mean overdensity of halos within the virial radius.
While this is precisely described by the spherical collapse
model [73–75], a simple and accurate fitting formula,
which can be used in a flat universe with cosmological
constant, is known [76] (see also Ref. [77]):

ΔvirðzÞ¼
18π2þ82fΩmðzÞ−1g−39fΩmðzÞ−1g2

ΩmðzÞ
: ðA4Þ

Here the quantity ΩmðzÞ is the matter density parameter at
redshift z, given by

ΩmðzÞ ¼
ð1þ zÞ3Ωm;0

ð1þ zÞ3Ωm;0 þ ΩΛ;0
; ðA5Þ

with the subscript 0 indicating the quantities given at the
present time.

2. Concentration-mass relations

For a quantitative characterization of the halo density
profile, the key parameter is the concentration parameter
cvir, which characterizes the size and mass concentration of
each halo. In the context of the CDM cosmology, there
have been numerous works to quantify its cosmological
and halo mass dependence based on the cosmological
N-body simulations, and accurately calibrated models have
been exploited. One of such representative models is given
by Ref. [57]. The concentration parameter of this model,
which we denote by cBvir, is expressed as follows:

cBvirðMh; PCDMÞ ¼ A
1þ zcollðMh; PCDMÞ

1þ z
; ðA6Þ

with the constant A chosen as 3.13 [78]. The redshift zcoll
characterizes the collapse time for halos with mass Mh in
the CDM cosmological model with the linear power
spectrum PCDM. It is determined through

DðzcollÞ
DðzÞ σðfcollMh; PCDMÞ ¼ δc; ðA7Þ

where the functionD is the linear growth factor, and σ is the
root-mean-square amplitude of the linear density field
smoothed with the top-hat filter function over the radius
determined by the halo mass Mh, i.e., f3Mh=ð4πρm;0g1=3.
The quantity δc is the critical threshold for the linear density

9In the definition of ρNFW at Eq. (7), a factor of 1=a3 is factored
out from the density profile. As a result, the dependence of ρs on
the scale factor is somewhat different from the one in the
literature.
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contrast, which we adopt the fitting form given by
Ref. [78]: δc ¼ 1.59þ 0.0314 ln σ8ðzÞ with σ8 being the
same rms fluctuation as we defined above, but smoothed at
the specific radius of 8 h−1Mpc. Here, the constant fcoll is
set to 0.01.
On the other hand, in the FDM cosmology, there is a

little numerical work to calibrate the C-M relation based on
the simulations of S-P equation. Still, there are several
analytical works to model it in order to assess the small-
scale problem as well as to constrain the FDM mass from
weak lensing observations [56,79,80]. Here, we adopt the
model presented by Ref. [56] and examine the core-halo
relation based on our analytical treatment. The concen-
tration parameter of this model is expressed as a correction
to the model of Ref. [57] in the following form:

cFvirðMhÞ ¼ cBvirðMh; PFDMÞΔFDM
c ; ðA8Þ

where the concentration parameter cBvir is obtained from
Eq. (A6) with the linear power spectrum PFDM given in the
FDM cosmological model [see, e.g., Eqs. (8) with (9) in
Ref. [6] ]. The correction term ΔFDM

c is defined by

ΔFDM
c ¼

�
1þMðcÞ

0

Mh

�
−γ0

�
1þ γ1

fcollM
ðcÞ
0

Mh

�
−γ2

; ðA9Þ

with the coefficient γ1 defined by γ1 ¼ 15 and indices γ0
and γ2, respectively, given by γ0 ¼ d ln cBvir=d lnMhj4MðcÞ

0

and γ2 ¼ 0.3. Here, the characteristic mass MðcÞ
0 is related

to the scaling mass MðnÞ
0 through MðcÞ

0 ¼ MðnÞ
0 =fcoll, and

MðnÞ
0 is defined by

MðnÞ
0 ¼ 1.6 × 1010 M⊙

�
mϕ

10−22 eV

�
−4=3

: ðA10Þ

APPENDIX B: ANALYTICAL SOLUTIONS l ≠ 0

In this appendix, extending the treatment in Sec. III A,
we construct analytically the approximate solutions of the
S-P equation given at Eq. (12) in the case of l ≠ 0.

1. Constructing analytical eigenstates

Similarly to the l ¼ 0 case in Sec. III A, we rewrite
Eq. (12) with the normal form, keeping the angular
momentum nonzero. Again introducing the new function
ũnl ≡ xunl, the equation for the radial wave function is
given in the following form:

d2ũnlðxÞ
dx2

þ αglðxÞũnlðxÞ ¼ 0;

glðxÞ≡ −
lðlþ 1Þ

αx2
þ logð1þ xÞ

x
þ E

α
: ðB1Þ

Imposing the same boundary conditions as given at Eq. (18),
we construct analytically the eigenfunction and eigenvalues
of this system. Following the same steps as we examined in
the l ¼ 0 case, we apply the Liouville-Green transformation
ðx; ũnlÞ → ðz; vnlÞ in Eq. (20). Equation (B1) is then
rewritten with

d2vnlðzÞ
dz2

þ
�
α

glðxÞ
fp0ðxÞg2 þ δ

�
vnlðzÞ ¼ 0; ðB2Þ

where the quantity δ is defined by Eq. (22).
Comparing the above equation with Eq. (21) in the

l ¼ 0 case, an important difference appears in the function
gl, which has now the two turning points. That is, the
function becomes zero at x ¼ x1 and x2, and is positive and
negative, respectively, at x1 ≤ x ≤ x2 and x < x1 or x > x2.
In order to obtain a uniformly valid approximation, the
function z ¼ pðxÞ has to be chosen in such a way that it
behaves like the function gl, having two zero-crossing
points. Here, we specify the functional form of z in the
following way [40,41]:

glðxÞ
fp0ðxÞg2 ¼ β2 − z2;

¼ β2 − fpðxÞg2; ðB3Þ

where the quantity β is a constant which will be given later.
Equation (B3) is the first-order differential equation for
the function p, which is analytically integrated to give the
following relations:Z

x

x1

ffiffiffiffiffiffiffiffiffiffiffiffi
glðx0Þ

p
dx0 ¼

Z
p

−β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2− τ2

q
dτ;

¼ 1

2
β2 arccos

�
−
p
β

�
þp
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2−p2

q
; ðB4Þ

for x1 < x < x2,Z
x1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0 ¼

Z
−β

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2− β2

q
dτ;

¼−
1

2

�
β2 cosh−1

�
−
p
β

�
þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − β2

q �
ðB5Þ

for x ≤ x1, andZ
x

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0 ¼

Z
p

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − β2

q
dτ;

¼ −
1

2

�
β2 cosh−1

�
p
β

�
− p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − β2

q �
ðB6Þ

for x ≥ x2.
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From Eqs. (B4)–(B6) given above, one can construct the
function p expressed in terms of the variable x as follows.
Provided the functional form of gl, the integrals at the left-
hand side of these equations are numerically performed,
and the results are given as a function of x. On the other
hand, the functions at the right-hand side of Eqs. (B4)–(B6)
are evaluated as a function of p. That is, Eqs. (B4)–(B6) are
symbolically written in the form as AðxÞ ¼ BðpÞ. Hence,
solving numerically this implicit equation for p, i.e.,
p ¼ B−1ðAðxÞÞ, the functional form of pðxÞ is determined.
In the above, the constant β is arbitrary, but we shall specify
it in such a way that, with the Liouville-Green trans-
formation, the turning points x1 and x2 are mapped to
p ¼ −β and p ¼ β, respectively. From Eq. (B4), this is
equivalent to imposing the following condition:

β2 ¼ 2

π

Z
x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffi
glðx0Þ

p
dx0: ðB7Þ

With the specific choice at Eq. (B3), Eq. (B2) is now
recast as

d2vnlðzÞ
dz2

þ αðβ2 − z2ÞvnlðzÞ ¼ −δðzÞvnlðzÞ: ðB8Þ

Ignoring the term at right-hand side, the general solution
of this equation is described by the parabolic cylinder
functions U and Ū [40,41]10:

vnlðzÞ ¼ c̃1U

�
−
1

2
α1=2β2;

ffiffiffiffiffiffiffiffiffiffiffi
2α1=2

p
z

�

þ c̃2Ū

�
−
1

2
α1=2β2;

ffiffiffiffiffiffiffiffiffiffiffi
2α1=2

p
z

�
ðB9Þ

or

ũnlðxÞ ¼
�jβ2 − fzðxÞg2j

jglðxÞj
�
1=4

×

�
c1U

�
−
1

2
α1=2β2;

ffiffiffiffiffiffiffiffiffiffiffi
2α1=2

p
zðxÞ

�

þ c2Ū

�
−
1

2
α1=2β2;

ffiffiffiffiffiffiffiffiffiffiffi
2α1=2

p
zðxÞ

��
; ðB10Þ

where the coefficients c̃i and ci are the integration
constants.
Note that the parabolic cylinder functions have the

following asymptotic behaviors:

Uðb; ζÞ ∼ζ→∞ 1

ζbþ1=2 e
−ζ2=4;

Ūðb; ζÞ ∼ζ→∞ 21=2ζb−1=2

π1=2
Γ
�
1

2
− b

�
eζ

2=4; ðB11Þ

and

Uðb; ζÞ ∼ζ→−∞ ð2πÞ1=2ð−ζÞb−1=2
Γð1=2þ bÞ eζ

2=4: ðB12Þ

Let us recall from Eqs. (B4)–(B7) that the function pðxÞ or
zðxÞ is a monotonically increasing function of x, and varies
from negative to positive. Thus, the quantity p approaches
a negative constant value at x ¼ 0 and goes to infinity in
the limit of x → ∞. From Eq. (B11), this indicates that the
second term in Eqs. (B9) or (B10) diverge in the limit
of x → þ∞. Hence, to fulfill the boundary condition
ũð∞Þ ¼ 0, the coefficients c̄2 and c2 must be zero.
On the other hand, another boundary condition ũð0Þ ¼ 0

yields

U

�
−
1

2
α1=2β2;

ffiffiffiffiffiffiffiffiffiffiffi
2α1=2

p
zð0Þ

�
¼ 0; ðB13Þ

where we used the fact that the functions glðxÞ and
jβ2 − fzðxÞg2j are nonzero at x ¼ 0. Equation (B13) is
the transcendental equation for the eigenvalue ε=α. That is,
given the parameters α and l, the turning points x1;2 are
determined, and the constant β and quantity zð0Þ are
computed, with both of them given as a function of
E=α. Then, substituting them into Eq. (B13), solving it
yields a discrete set of eigenvalues E=α.
Once the eigenvalues are determined from Eq. (B13), the

functional form of the eigenfunctions for l ≠ 0 are speci-
fied in an unambiguous way except for the normalization
factor. To sum up, the (unnormalized) eigenfunctions for
l ≠ 0 that are constructed analytically are expressed as

ũnlðxÞ ¼ xunlðxÞ ¼
�jβ2 − fzðxÞg2j

jglðxÞj
�
1=4

×U

�
−
1

2
α1=2β2;

ffiffiffiffiffiffiffiffiffiffiffi
2α1=2

p
zðxÞ

�
;

β2 ¼ 2

π

Z
x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffi
glðx0Þ

p
dx0; ðB14Þ

with the function gl given at Eq. (B1). The function
p ¼ zðxÞ is obtained by Eqs. (B4)–(B6).

2. Comparison with numerical solutions

Let us compare the analytical eigenstates for l ≠ 0 to the
numerical results obtained by solving the matrix eigenvalue
problem. For illustration, we below focus on the specific
angular momenta of l ¼ 2, 5, and 10.

10The function U given here is exactly the same one as defined
in Ref. [50]. Also, it is related to the Weber’s parabolic cylinder
function Dλ through DλðxÞ ¼ Uð−λ − 1=2; xÞ. On the other
hand, the function Ū slightly differ from the V in Ref. [50] by
the factor of Γð1=2 − bÞ, i.e., Uðb; xÞ ¼ Γð1=2 − bÞVða; xÞ.
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Table II presents the lowest five eigenvalues for nonzero
angular momenta, fixing the dimensionless parameter α to
α ¼ 103. In Figs. 11 and 12, the corresponding (normalized)
eigenfunctions ũnl and the square of eigenfunctions, junlj2,
are, respectively, plotted as a function of x ¼ r=rs. Line
types and colors are the same as in Fig. 2. Note that, in
obtaining the numerical results, we solve Eq. (39), with the
potential VðxÞ being replaced with VðxÞ ¼ −α logð1þ xÞ=
xþ lðlþ 1Þ=x2.
Overall, we see an excellent agreement between ana-

lytical and numerical results, similarly to the l ¼ 0 case.
Although a closer look at the fractional difference shown in
the bottom panels of Fig. 11 reveals that the eigenfunctions
exhibit discrepancies, these become non-negligible only
when the eigenfunction becomes close to zero, and hence
their net impact is considered to be small. Hence, we
conclude that the analytically constructed eigenstates are
accurate enough even for the nonzero angular momenta,
and would be useful to characterize quantitatively the
dynamical properties of the soliton core.
Finally, one notable behavior in the square of the

eigenfunction, corresponding to the soliton density profile,
is the characteristic peak structure shown in Fig. 12. As
increasing l, the density peak generically appears at a
larger radius, with its width narrower. In particular, the

inner structure exhibits a power-law behavior, which we

find to be scaled as junlj2 ∝ x2
ffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
−1 at x ≪ 1. This is

regardless of whether it is in the ground or excited state (see
gray dashed lines). In Appendix B 3, we derive this power-
law form explicitly based on the WKB approximation.

3. Asymptotic behaviors near origin

In this appendix, we discuss the asymptotic behavior of
the eigenfunction ũnl near the halo center, and derive
analytically the power-law form of the density profile as
shown in Fig. 12. In doing so, rather than using Eq. (B14),
we apply the WKB approximation and obtain an analytical
expression for the eigenfunction valid near the origin
(x ≈ 0), where the function glðxÞ is supposed to be
negative. The (unnormalized) WKB solution is then given
in the form as

ũWKB
nl ðxÞ ≃ 1

f−glðxÞg1=4

×
�
d1 exp

�
α1=2

Z
x1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0

�

þ d2 exp

�
−α1=2

Z
x1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0

��
ðB15Þ

FIG. 11. Eigenfunctions for the radial wave function having nonzero angular momentum, ũnlðxÞ. From left to right, fixing the
parameter α to 103, eigenfunctions for the lowest five eigenstates are shown for l ¼ 2, 5, and 10, respectively. In the upper panels, thin
solid lines are the eigenfunctions constructed analytically, while the thick dashed lines are the results obtained by solving the matrix
eigenvalue problem numerically. Both of them are properly normalized. Bottom panels show the fractional difference between analytical
and numerical results, defined by ðũnl;analytical − ũnl;numericalÞ=ũnl;numerical (see Fig. 2). Note that to avoid the division by zero, we stop
plotting the results when the amplitude of the wave functions becomes smaller than 10−6 in the inner and outer regions.

TABLE II. Lowest five eigenvalues normalized by α in the cases of the nonzero angular momenta l ¼ 2, 5, and
10, setting the parameter α to α ¼ 103 (see Fig. 11). Analytical results obtained from Eq. (B13) are summarized. For
comparison, parentheses show the results by solving numerically the matrix eigenvalue problem, adopting the
boundaries x1 ¼ 0 and xn ¼ 5 with the number of grids n ¼ 104.

Enl=α l ¼ 2 l ¼ 5 l ¼ 10

n ¼ 1 −0.77454 (−0.77278) −0.67810 (−0.67756) −0.57018 (−0.56999)
n ¼ 2 −0.71757 (−0.71620) −0.63909 (−0.63863) −0.54483 (−0.54466)
n ¼ 3 −0.67142 (−0.67029) −0.60531 (−0.60491) −0.52189 (−0.52174)
n ¼ 4 −0.63259 (−0.63163) −0.57561 (−0.57526) −0.50100 (−0.50087)
n ¼ 5 −0.59911 (−0.59828) −0.54916 (−0.54885) −0.48187 (−0.48175)
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with the upper bound of the integral, x1, being the first
turning point, glðx1Þ ¼ 0. In the above, the coefficients d1
and d2 are not arbitrary, but are related with each other
through the inner boundary condition, ũnlð0Þ ¼ 0. This
relation is rewritten in the following form:

d1
d2

¼ − exp

�
−2α1=2

Z
x1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0

�
: ðB16Þ

Recalling that, near the origin, the function gl is approxi-
mated as gl ≃ lðlþ 1Þ=x2=α, the integral in the exponent
above,

R x1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0, is shown to exhibit a logarithmic

divergence. To be precise, we may replace the lower bound
of this integral with a nonzero small and positive value of η,
and perform the integration. Assuming x1 ≪ 1, this leads toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ=αp

logðx1=ηÞ. Taking the limit η → 0, the inte-
gral thus diverges positively. Note that the logarithmic
divergence generically appears regardless of whether x1 is
small or not. In other words, the right-hand side of
Eq. (B16) becomes vanishing, and hence the coefficient
d1 must be zero. Equation (B15) is recast as

ũWKB
nl ðxÞ ¼ d2

f−glðxÞg1=4
exp

�
−α1=2

Z
x1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0

�
:

ðB17Þ

With the wave function in Eq. (B17), we derive an
asymptotic power-law form at x ≪ 1. To obtain an expres-
sion without assuming a specific value of x1, we consider a
sufficiently small but still finite value of x0ð≪ x1Þ, below
which the function glðxÞ is approximately described by
glðxÞ ≃ lðlþ 1Þ=x2=α. Focusing on the region of x≲ x0,
the integral in the exponent of Eq. (B17) is evaluated to give

Z
x1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0 ¼

Z
x1

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
α1=2

log

�
x0
x

�
: ðB18Þ

Plugging this into Eq. (B17), the WKB solution near the
origin ðx≲ x0Þ is rewritten in the following form:

ũWKB
nl ðxÞ ≃ d2

α1=4

flðlþ 1Þg1=4 x
1=2

�
x
x0

� ffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p

× exp

�
−α1=2

Z
x1

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−glðx0Þ

p
dx0

�
: ðB19Þ

This shows that the density profile for the soliton state,
proportional to junlj2, exhibits a power-law behavior near
the origin and it is proportional to

juWKB
nl ðxÞj2 ¼

				 ũWKB
nl ðxÞ
x

				2 ∝ x2
ffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
−1; ðx ≪ x0Þ:

ðB20Þ

Since the above expression has no explicit dependence on
n, this scaling generally holds for both ground and excited
states. Note cautiously that, in deriving Eq. (B20), we
assumed nonzero l and used the asymptotic behavior of gl.
In this respect, Eqs. (B19) and (B20) are valid only for
l ≠ 0 and cannot be applied to the l ¼ 0 case.

APPENDIX C: SOLITON CORE SIZE
IN THE LIMIT OF cvir → 0

In this appendix, we discuss the dependence of the
soliton core size on the halo density profile. To be specific,
we investigate how the upper bound on the core radius,
which is obtained by taking the limit cvir → 0, varies with
the inner slope of density profile.
Consider a class of spherically symmetric halos having

a characteristic scale rs, below which the radial profile
asymptotically follows a power-law form. One can write
such a profile formally as

ρðxÞ ¼ ρsDðxÞ; x ¼ r=rs ðC1Þ

with the dimensionless function D asymptotically
behaving as

FIG. 12. Same as Fig. 11, but we plot the square of the normalized wave function, unlðxÞ ¼ xũnlðxÞ, i.e., junlðxÞj2. Line and color
types shown hare are the same as those used in Fig. 11. In each panel, the gray dashed lines are the asymptotic slope of the wave function
at x ≲ 1 predicted by the WKB approximation [see Eq. (B20)].
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DðxÞ ≃x≪1
x−s: ðC2Þ

Note that Eq. (C1) is the comoving density, and a factor of
1=a3 is factorized in the same way as defined in Eq. (7).
Thus, for the NFW profile, ρs is given by Eq. (A2) and D
becomes DðxÞ ¼ 1=x=ð1þ xÞ2. The mass and potential
profiles of this model are, respectively, given by

MðxÞ ¼ 4πρsr3s

Z
x

0

dyy2DðyÞ; ðC3Þ

ΨðxÞ ¼ −
4πGρsr2s

a

Z
∞

x

dy
y2

Z
y

0

dww2DðwÞ;

≡ −
4πGρsr2s

a
Ψ̃ðxÞ: ðC4Þ

Below, we shall consider the case that both the mass and
potential are finite at the center. This implies the inner
slope s has to be less than 2. In such a case, the
dimensionless potential Ψ̃ at x ≪ 1 is generally written
in the following form:

Ψ̃ðxÞ ≃ Ψ̃ð0Þ − x2−s

ð3 − sÞð2 − sÞ ; ðs < 2Þ: ðC5Þ

With the halo mass defined byMh ¼ ð4π=3Þρm;0Δvirr3vir at
r ¼ rvir, the characteristic density ρs and the scale radius
rs are expressed in terms of the concentration parameter
cvir ¼ rvir=rs as follows:

ρs ¼
ρm;0Δvir

3
c3vir

�Z
cvir

0

y2DðyÞdy
�

−1
;

≃
ρm;0Δvir

3
ð3 − sÞcsvir; ðC6Þ

rs ¼ c−1vir

�
3

4π

Mh

ρm;0Δvir

�
1=3

; ðC7Þ

where the last line of Eq. (C6) is valid for cvir ≪ 1.
Provided basic quantities to characterize the halos, we

estimate the soliton core size in the limit of cvir → 0. As we
have discussed in Sec. III, the S-P equation ignoring the
soliton self-gravity is reduced to a linear eigenvalue prob-
lem, and focusing on l ¼ 0, the governing equation is
recast in the form similar to Eq. (17), but the halo potential is
replaced with Eq. (C4). Nevertheless, this modification does
not affect the monotonicity of the halo potential, and we can
follow the same steps as in the case of the NFW profile to
analytically construct the eigenstates. At the end, we obtain
the same analytical expression as given at Eq. (38), from
which the expression of soliton core size can be derived

based on the asymptotic properties of the Airy function
(see Sec. III C). We have11

xc ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6

αg0ð0Þ

s
; p ¼ 0.65; ðC8Þ

with the function g0ðxÞ given by

g0ðxÞ ¼ Ψ̃ðxÞ þ E=α: ðC9Þ

The above expression is regarded as a generalized formula
for the core radius. From this, the comoving core radius rc is
written as

rc ¼ xcrs;

¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

fΨ̃ð0Þ þ E=αg

s
rs
α1=2

: ðC10Þ

In the above, the parameter α is defined similarly as in
the case of the NFW profile, i.e., α ¼ 8πGm2

ϕρsr
4
sa [see

Eq. (11)]. Importantly, however, its dependence on the
concentration parameter differs generally from the one
given in Eq. (13). To explicitly see this, we use Eqs. (C6)
and (C7) to rewrite the expression of α with

α ¼ 8πGm2
ϕa

ρm;0Δvir

3

�
3

4π

Mh

ρm;0Δvir

�
4=3

×

�
cvir

Z
cvir

0

y2DðyÞdy
�

−1
:

Thus, taking the limit cvir ≪ 1, we obtain

α ≃
�
6

π

�
1=3

Gm2
ϕa

�
M4

h

ρm;0Δvir

�
1=3

ð3 − sÞcs−4vir : ðC11Þ

In Eq. (C10), the expression of the soliton core size also
involves the factor Ψ̃ð0Þ þ E=α, which is given as a function
of α. To express its dependence on α analytically, we make
use of the approximation in the limit of α ≫ 1. As we saw in
Eq. (C11), this limit is ensured if we also take the limit
cvir → 0 for the inner slope of the halo profile, s < 3. Then,
the key expression is Eq. (35). Similarly to what we did in
Sec. III A, we use the expression for Ψ̃ valid near the center,
i.e., Eq. (C5). Recalling that the function g0 vanishes at the
turning point xc ≃ ½ð3 − sÞð2 − sÞfΨ̃ð0Þ þ E=αg�1=ð2−sÞ and
assuming xc ≪ 1, we obtain

11In deriving Eq. (C8), we consider only the leading-order term
proportional to α, and ignore other contributions.
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α1=2
Z

xc

0

ffiffiffiffiffiffiffiffiffiffiffiffi
g0ðx0Þ

p
dx0 ¼

�
n −

1

4

�
π

⇒ α1=2
fð3 − sÞð2 − sÞg1=ð2−sÞ

2 − s
B
�

1

2 − s
;
3

2

�

× fΨ̃ð0Þ þ E=αg1=2þ1=ð2−sÞ ¼
�
n −

1

4

�
π; ðC12Þ

where the function B is the beta function. Setting the integer n to unity (this corresponds to the ground state), the above
equation is recast as

Ψ̃ð0Þ þ E=α ¼ α−ð2−sÞ=ð4−sÞ
�
3π

4

�
2ð2−sÞ=ð4−sÞ� 2 − s

fð3 − sÞð2 − sÞg1=ð2−sÞ
1

Bð1=ð2 − sÞ; 3=2Þ
�
2ð2−sÞ=ð4−sÞ

: ðC13Þ

Substituting Eq. (C13) into Eq. (C10), the comoving core radius valid in the limit α ≫ 1 leads to

rc ¼ p
61=2rs
α1=ð4−sÞ

�
4

3π

fð3 − sÞð2 − sÞg1=ð2−sÞ
2 − s

B

�
1

2 − s
;
3

2

��ð2−sÞ=ð4−sÞ
: ðC14Þ

Substituting further Eqs. (C11) and (C10) into the above, we arrive at the final expression for the core radius in the limit of
cvir → 0:

rc ¼ 3.59½kpc� T ðsÞ
T ð1Þ a

−1=ð4−sÞ
�

p
0.65

��
mϕ

10−22 eV

�
−2=ð4−sÞ� Mh

109 M⊙

�
−s=3=ð4−sÞ�Δvir

200

Ωm;0h2

0.147

�
−ð1−s=3Þ=ð4−sÞ

; ðC15Þ

where the function T ðsÞ is defined by

T ðsÞ≡ 49.064f721.305ð3 − sÞg−1=ð4−sÞ
�
4

3π

fð3 − sÞð2 − sÞg1=ð2−sÞ
2 − s

B

�
1

2 − s
;
3

2

��ð2−sÞ=ð4−sÞ
: ðC16Þ

Notice that the dependence on the concentration parameter
cvir disappears at Eq. (C15). This means that for a fixed
cosmological model and a given halo mass, Eq. (C15) gives
a bound on the core radius. Note that setting the slope s to
unity, the above expression reproduces the upper bound
given at Eq. (50).
Figure 13 plots the functions T normalized by the one

evaluated at s ¼ 1. This shows that the function T is a
monotonically decreasing functions of s, and approaches
zero at s → 2, indicating that for halos with the inner slope
of s ¼ 2, the soliton core disappears. Since the potential at
the halo center generally diverges for s ≥ 2, this implies that
for s ≥ 2, the fuzzy dark matter soliton, if exists, does not
form a flat core, but rather can have a cusp at the center.
Figure 14 shows the core-halo relations in the cvir → 0

limit, focusing specifically on the soliton core radius.
Setting the model parameters to those adopted in
Figs. 6–8, we vary the inner slope of halo profiles from
s ¼ 0 to 1.5. Here, Steepening the inner slope substantially
reduces allowable core sizes, and the predicted curve for
s ¼ 1.5 is inconsistent with simulations.

FIG. 13. Behavior of the function T ðsÞ. The result normalized
by the one evaluated at s ¼ 1 is plotted as a function of the inner
slope of the density profile, s.
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