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We present a formulation of cosmological-perturbation theory where the Boltzmann hierarchies that
evolve the neutrino phase-space distributions are replaced by integrals that can be evaluated easily with
fast Fourier transforms. The simultaneous evaluation of these integrals combined with the differential
equations for the rest of the system (dark matter, photons, baryons) are then solved with an iterative
scheme that converges quickly. The formulation is particularly powerful for massive neutrinos, where
the effective phase space is three dimensional rather than two dimensional, and even more so for
three different neutrino mass eigenstates. Therefore, it has the potential to significantly speed up the
computation times of cosmological-perturbation calculations. This approach should also be applicable to
models with other noncold collisionless relics.
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I. INTRODUCTION

The publicly available cosmological-perturbation codes
CAMB [1] and CLASS [2] lie at the heart of almost all
analyses in cosmology. These codes solve the differential
equations for the evolution of the gravitational potentials,
the baryon and dark-matter fluid equations, the neutrino
and photon distribution functions, and possibly more
species, depending on the cosmological model considered.
The codes, which build upon nearly half a century of
technical innovations [3], are now remarkably efficient.
However, modern Markov chain Monte Carlo (MCMC)
analyses require these codes to be called tens of thousands
of times to obtain the posterior in a multidimensional
cosmological-parameter space, requiring perhaps days of
CPU time. There is thus incentive to accelerate these
codes.
The most time-consuming parts in these calculations are

the “Boltzmann hierarchies,” which evolve the higher
moments of the photon and neutrino distribution functions.
The real bottleneck, though, is massive neutrinos: Since
their momentum distribution occupies a three-dimensional,
rather than two-dimensional, space, they require, strictly
speaking, an infinitude of hierarchies. Nonzero neutrino
masses are, moreover, becoming increasingly important
given that they will be probed with forthcoming cosmo-
logical measurements [4]. Clever numerical methods are
able to reduce the system of ordinary differential equations
(ODEs) to a manageable size [2]. But the algorithms are still

ultimately limited by the requirement to solve—depending
on the target accuracy—Oð500Þ ODEs (for each Fourier
wave number k) for the Boltzmann hierarchies of photons
and three generations of massive neutrinos. The computa-
tional problem is exacerbated further with the increased
focus on new-physics models with other noncold relics or
neutrino models with nonthermal phase-space distributions;
we list in Refs. [5–10] papers from just the past year on such
relics.
It has long been known that each Boltzmann hierarchy is

formally equivalent to a small set of integral equations [11],
but only recently [12] has this formalism been implemented
for scalar perturbations numerically. Numerical experiments
in which the photon hierarchies were replaced with the
integral equations showed that the new “hierarchyless”
formalism may have the potential to accelerate cosmologi-
cal-perturbation codes. We emphasize that this formalism
provides a numerical solution to the perturbation equations;
it is not an analytical approximation.
Here, we apply this integral-equation approach to neu-

trinos (and other collisionless noncold relics) and show that
it is potentially extremely powerful. First of all, the integral
equations for collisionless particles are simply integrals.
Moreover, each integral can be written as a convolution of
gravitational potentials and a radial eigenfunction, and
the convolution can be done trivially with a fast Fourier
transform (FFT). The only catch is that the collisionless-
sector equations must be solved with the equations for the
rest of the system iteratively. Still, as we show, this iteration
converges quickly. If the collisionless sector dominates the
computational effort, this iterative scheme may provide a
more computationally efficient route to a precise numerical
solution.
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Below, we first derive the integral equations for the
moments of the massive-neutrino distribution functions
and show how they can be written as convolutions. We
then discuss aspects of the iterative scheme [12] to solve the
collisionless-sector perturbations in tandem with the equa-
tions for photons, dark matter, baryons, and gravitational
potentials. We present numerical results from a proof-
of-concept code and end with some concluding remarks.

II. INTEGRAL SOLUTION

We start with the linearized collisionless Boltzmann
equation in Fourier space and in synchronous gauge
[13,14],1

∂Ψ
∂τ

þ ikμ
q
ϵ
Ψþ d ln f0

d ln q

�
η0 −

h0 þ 6η0

2
μ2
�
¼ 0; ð1Þ

and follow the notation in Ref. [13] unless stated other-
wise. Here the fractional phase-space-density perturbation
Ψ is related to the phase-space density via fðq⃗; k⃗; τÞ ¼
f0ðqÞ½1þ Ψðq⃗; k⃗; τÞ�with q⃗ being the neutrino momentum
in units of the current neutrino temperature T0 (q≡ jq⃗j)
and f0 being the Fermi-Dirac distribution. Because of
symmetry considerations [13], Ψ depends only on the
momentum magnitude q, the Fourier wave number
k≡ jk⃗j, and the angle μ≡ ðq⃗=qÞ · ðk⃗=kÞ. We have also
introduced the synchronous-gauge metric perturbations
hðk; τÞ and ηðk; τÞ, and use a prime to denote derivative
with respect to conformal time τ. We follow Ref. [2], thus
a small deviation from Ref. [13], in defining the neutrino
energy ϵðq; τÞ≡ ½q2 þ a2ðτÞm2=T2

0�1=2 in units of T0, with
aðτÞ the scale factor, andm the neutrino mass. We omit the
arguments of all quantities if no confusion is caused.
We recognize Eq. (1) as a first-order ODE of Ψ in τ,

labeled by μ, q, and k. Integrating this equation from some
initial time τi to some final time τf, we obtain the formal
solution,

ΨðτfÞ ¼ e−iμkχðτi;τfÞΨðτiÞ þ
Z

τf

τi

e−iμkχðτ;τfÞ

×

�
−η0 þ h0 þ 6η0

2
μ2
�
d ln f0
d ln q

dτ: ð2Þ

Here we define the neutrino comoving horizon
χðτ1; τ2; qÞ ¼

R
τ2
τ1
ðq=ϵÞdτ, and omit the q dependence for

simpler notation. We now define the multipole moments
Ψl ≡ ðil=2Þ Rþ1

−1 ΨðμÞPlðμÞdμ with PlðμÞ the Legendre
polynomials, and use the integral representation

dn

dxn
jlðxÞ ¼

il

2

Z þ1

−1
e−iμxð−iμÞnPlðμÞdμ ð3Þ

of the spherical Bessel functions jlðxÞ (and its derivatives)
to arrive at the central result,

ΨlðτfÞ ¼
X∞
l0¼0

ð−1Þl0 ð2l0 þ 1ÞWll0 ½kχðτi; τfÞ�Ψl0 ðτiÞ
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Here, we have defined the auxiliary function,

Wll0 ðxÞ≡ ilþl0

2

Z þ1

−1
e−iμxPlðμÞPl0 ðμÞdμ

¼ il
0
Pl0

�
i
d
dx

�
jlðxÞ: ð5Þ

Now, we discuss the evaluation of the integral solution
Eq. (4). We choose the initial time τi sufficiently early,
ideally close to neutrino decoupling, when the higher
multipoles ΨlðτiÞ for l > 2 are effectively zero. This
reduces the infinite sum in Eq. (4) to only three terms
(i.e., l0 ¼ 0, 1, 2). Then, ΨlðτfÞ for arbitrary τf > τi can be
computed by performing the integral in Eq. (4). Although
this can be done for arbitrary l too, we only need the
monopole and dipole (i.e., l ¼ 0, 1), as those are all that
appear in the Einstein equations.2 A schematic comparison
between the Boltzmann-hierarchy solver and the new
hierarchyless solver presented in this work is shown
in Fig. 1.
Although similar to the analogous integral equation for

photons in Ref. [12], Eq. (4) is different in a very important
way. The phase-space perturbation ΨlðτÞ does not appear
inside the integral in Eq. (4), so Eq. (4) is merely an integral,
not a bona fide integral equation, a consequence of the fact
that neutrinos are collisionless. As we will see shortly, this
allows for considerable simplification and acceleration.

III. ITERATIVE METHOD

The integrals in Eq. (4) require the metric perturbations
hðτÞ and ηðτÞ, but the Einstein equations that determine
these quantities take as input the neutrino perturbations
(as well as those of any other species). To solve this
chicken-and-egg problem, we solve the coupled system of
equations iteratively, as follows.
We first choose an ansatz for the neutrino sector and

solve the non-neutrino sector using a traditional ODE
solver; then the metric perturbations are used to evaluate

1The hierarchyless approach is equally applicable to the
conformal Newtonian gauge.

2Here, we use the synchronous gauge, where the (0,0) and
ð0; iÞ components of the Einstein equations are sufficient to
evolve the metric perturbations h and η. So we only need the
l ¼ 0, 1 moments of the neutrino distribution function.
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and update the neutrino sector via Eq. (4). This process is
continued until some target precision is achieved. Better
choice of the ansatz enables faster convergence of the
iterations. Here, we discuss several possibilities.
One simple possibility is to start with a solution to the

ODEs truncating the neutrino hierarchies at a low multi-
pole. These trial solutions typically take far shorter to
compute compared to the full hierarchy, but nonetheless
provide enough crude features in the solution for the
iterative process to refine on. The numerical results shown
below are obtained with this ansatz.
In the context of parameter inference, where a thorough

exploration of the parameter space is needed, another
possibility is to use the neutrino-sector solution from the
previous MCMC step as the ansatz. A converging MCMC
typically only samples fairly concentrated points around the
best-fit model in the parameter space. Thus, presumably, a
solution from the previous step is a very good approxima-
tion to the true solution of the current step. Along this line of
reasoning, one can even maintain a small cache of certain
previous MCMC steps that more or less uniformly cover the
parameter space of interest, then, in the current step, only
retrieve the closest candidate as the ansatz (although the
required interpolation may be costly). A related possibility

is to do something similar using the solutions for Ψl from a
previous k value in the calculation, rescaling the conformal
time so that kτ is fixed.

IV. FFT ACCELERATION

The line-of-sight integral can be written as a convolution
between a cosmology-independent kernel and the metric
perturbations. The integral in Eq. (4) can be written
schematically as

IðτfÞ ¼
Z

τf

τi

FðτÞK½xðτfÞ − xðτÞ�dτ: ð6Þ

For the first term in the integral in Eq. (4),

FðτÞ≡ −η0
d ln f0
d ln q

and KðxÞ ¼ jlðxÞ; ð7Þ

and for the second term in the integral in Eq. (4),

FðτÞ≡ −
h0 þ 6η0

2

d ln f0
d ln q

and KðxÞ ¼ j00l ðxÞ; ð8Þ

but the following derivation applies to both cases. We
define xðτÞ≡ kχðτi; τÞ, and we have used the fact that these
distances are additive, i.e., χðτi; τÞ þ χðτ; τfÞ ¼ χðτi; τfÞ.
Now, we change the integration variable using the inverse
function τ ¼ τðxÞ and dτ=dx ¼ ϵðxÞ=ðqkÞ, giving

I½τðxfÞ� ¼
Z

xf

0

ϵðxÞ
qk

F½τðxÞ�Kðxf − xÞdx; ð9Þ

where xf ≡ kχðτi; τfÞ. Defining the function GðxÞ≡ ϵðxÞ
F½τðxÞ�=ðqkÞ, we have

I½τðxfÞ� ¼
Z

xf

0

GðxÞKðxf − xÞdx ¼ ðG⋆KÞðxfÞ: ð10Þ

Here, G⋆K denotes the Laplace convolution between G
and K. The discrete samples of I½τðxfÞ� can be computed
from the discrete samples ofGðxÞ and KðxÞ very efficiently
via FFT. Note that the x-samples (or τ-samples) do not need
to be uniform, in which case the nonuniform FFT can be
used without impacting the OðN logNÞ complexity.

V. NUMERICAL DEMONSTRATIONS

Our calculation proceeds as follows. (1) We first solve the
complete set of ODEs for the baryons, dark matter, photon
moments, gravitational potentials, and neutrinos. However,
we truncate all the neutrino Boltzmann hierarchies at l ¼ 3.
This then provides an initial solution for the potentials hðτÞ

FIG. 1. Comparison between the traditional solver using a
truncated Boltzmann hierarchy and the new solver proposed in
this paper. In the new approach, the infinite hierarchy is being
replaced by two line-of-sight integrals—for the monopole and
dipole of the distribution function—that are evolved simulta-
neously with the differential equations for the rest of the system
via an iterative scheme. The line-of-sight integrals are computed
very efficiently via fast Fourier transforms.
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and ηðτÞ. (2) We then evaluate the neutrino monopoles
Ψ0ðτÞ and dipoles Ψ1ðτÞ for all momenta q from Eq. (4)
using the FFT method described above. (3) We then go back
and solve the ODEs for the baryons, dark matter, photon
moments, and gravitational potentials. However, this time
we use the results of step (2) for the neutrino source terms in
the Einstein equations. (4) We then iterate steps (2) and
(3) until the desired precision in the neutrino moments or the
gravitational potentials are achieved.
For step (2), one could alternatively simply evaluate the

integral equation for either the monopole or the dipole
(rather than both) and then obtain the other from the
continuity equation. We have found, though, that the
solutions converge more rapidly if they are both evaluated
with the integral equation, with little additional computa-
tional effort.
We develop a proof-of-concept PYTHON code to dem-

onstrate the potential of the new hierarchyless solver. We
adopt a ΛCDM (cold dark matter) cosmology with one
species of massive neutrino with mν ¼ 0.06 eV. The
cosmological parameters are chosen to be the default in
CLASSv3.0.1. As an example, we solve the k ¼ 0.2 Mpc−1

mode in the conformal-time interval τ ∈ ½1; 250� Mpc, and
discretize the q integration with five Gauss-Laguerre

nodes. We choose τmax ¼ 250 Mpc so that kτmax ¼ 50,
which is significantly larger than the standard values to
switch on the fluid approximation for the noncold colli-
sionless relics (e.g., the standard value in CLASS is 31).
In Fig. 2, we demonstrate the rapid convergence of the

iterative process and the accuracy of the converged solution.
Here, we construct the ansatz by solving the system with a
short neutrino hierarchy truncated at l ¼ 3, and iterate six
times from that. We then compare the result from the last
iteration with the Boltzmann-hierarchy approach truncated
at l ¼ 30. (We note that this does not necessarily give a
better solution than the final iteration.) In each iteration, we
compute the neutrino line-of-sight integral via a FFTofN ¼
1024 points. Whenever there is a need to solve ODEs, we
use the RK45 adaptive integrator with rtol ¼ 10−4

and atol ¼ 10−8.
In Fig. 3, we compare the computation time for neutrinos

in obtaining Fig. 2 defined to be the total time spent on the
neutrino hierarchy (for the Boltzmann-hierarchy case and
for obtaining the ansatz) or on the neutrino line-of-sight
integral (for the iterations). The time for the ansatz can be
eliminated if we obtain the ansatz from the previous
MCMC step, or a previous k. The time for each iteration
is expected to scale as OðN logNÞ.

FIG. 2. Numerical results of the hierarchyless solver. We show (from left to right) the evolution of the neutrino distribution-function
monopole Ψ0, dipole Ψ1, and the synchronous-gauge metric perturbation h. The top panels show the initial ansatz (blue dashed,
obtained by solving a very short hierarchy cut at l ¼ 3), the results of six iterations (light blue to dark blue, solid), and the solution
obtained from a Boltzmann hierarchy truncated at l ¼ 30 (red solid). Note that the iterations are overlapping due to the rapid
convergence. Each bottom panel shows the absolute differences between the lines in the corresponding top panel comparing to the
results of the sixth iteration.
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VI. CONCLUSIONS

We have shown that each of the Boltzmann hierarchies for
collisionless species can be replaced by a set of integrals that
can be evaluated efficiently with FFT, but at the price of
solving the equations for the rest of the system iteratively.
Even so, our simple numerical experiments suggest that the

iteration can converge quickly with even a simple initial
ansatz and thus hold the prospect to accelerate cosmological-
perturbation calculations, especially in models with multiple
mass eigenstates.
Moreover, we emphasize that the new approach

described in this work can be used to accelerate models
with other noncold collisionless species [5–9], without
much adaptation. It should also apply to scenarios where
these (or the neutrino) species have nonthermal homo-
geneous distribution function f0 [10]. In general, we
expect the acceleration to be more significant with a
larger noncold collisionless sector. Still, the optimization
of the computational efficiency subject to some precision
threshold is a difficult problem, both for the traditional
approach and the one we have suggested here. It will
require more work to determine more conclusively
whether this can be implemented to improve the perfor-
mance while providing the type of reliability and flex-
ibility available with current codes.

ACKNOWLEDGMENTS

We thank V. Poulin for useful discussions. This
work was supported by the Simons Foundation and by
National Science Foundation Grant No. 2112699. J. L. B.
was supported by the Allan C. and Dorothy H. Davis
Fellowship.

[1] A. Lewis, A. Challinor, and A. Lasenby, Efficient computa-
tion of CMB anisotropies in closed FRWmodels, Astrophys.
J. 538, 473 (2000).

[2] J. Lesgourgues and T. Tram, The cosmic linear anisotropy
solving system (CLASS) IV: Efficient implementation
of non-cold relics, J. Cosmol. Astropart. Phys. 09 (2011)
032.

[3] R. A. Sunyaev and Y. B. Zeldovich, Small scale fluctua-
tions of relic radiation, Astrophys. Space Sci. 7, 3 (1970);
P. J. E. Peebles and J. T. Yu, Primeval adiabatic perturba-
tion in an expanding universe, Astrophys. J. 162, 815
(1970); J. Silk, Fluctuations in the primordial fireball,
Nature (London) 215, 1155 (1967); J. R. Bond and G.
Efstathiou, Cosmic background radiation anisotropies in
universes dominated by nonbaryonic dark matter, As-
trophys. J. 285, L45 (1984); The statistics of cosmic
background radiation fluctuations, Mon. Not. R. Astron.
Soc. 226, 655 (1987); M. L. Wilson and J. Silk, On the
anisotropy of the cosmological background matter and
radiation distribution. 1. The radiation anisotropy in a
spatially flat universe, Astrophys. J. 243, 14 (1981); N.
Vittorio and J. Silk, Fine-scale anisotropy of the cosmic
microwave background in a universe dominated by cold
dark matter, Astrophys. J. 285, L39 (1984); U. Seljak and

M. Zaldarriaga, A line of sight integration approach
to cosmic microwave background anisotropies, Astrophys.
J. 469, 437 (1996); arXiv:astro-ph/9603033; F. Y.
Cyr-Racine and K. Sigurdson, Photons and baryons before
atoms: Improving the tight-coupling approximation, Phys.
Rev. D 83, 103521 (2011).

[4] D. Green, M. A. Amin, J. Meyers, B. Wallisch, K. N.
Abazajian, M. Abidi, P. Adshead, Z. Ahmed, B.
Ansarinejad, R. Armstrong et al., Messengers from the
early universe: Cosmic neutrinos and other light relics, Bull.
Am. Astron. Soc. 51, 159 (2019).

[5] F. D’Eramo and A. Lenoci, Lower mass bounds on FIMP
dark matter produced via freeze-in, J. Cosmol. Astropart.
Phys. 10 (2021) 045.

[6] S. Das, A. Maharana, V. Poulin, and R. Kumar, Non-thermal
hot dark matter in light of the S8 tension, Phys. Rev. D 105,
103503 (2022).

[7] K. E. Kunze, CMB anisotropies and linear matter power
spectrum in models with non-thermal neutrinos and pri-
mordial magnetic fields, J. Cosmol. Astropart. Phys. 11
(2021) 044.

[8] Q. Decant, J. Heisig, D. C. Hooper, and L. Lopez-Honorez,
Lyman-α constraints on freeze-in and super-WIMPs, J.
Cosmol. Astropart. Phys. 03 (2022) 041.

FIG. 3. Comparison of computation time for neutrinos in
obtaining Fig. 2. Here, the computation time is defined to be the
total time spent on the neutrino hierarchy (for the Boltzmann-
hierarchy case and for obtaining the ansatz) or the neutrino
line-of-sight integral (for the iterations). As a reference, we plot
the computation time for baryons, CDM, and metric as a gray
horizontal line.

COSMOLOGICAL PERTURBATIONS: NONCOLD RELICS … PHYS. REV. D 106, 103531 (2022)

103531-5

https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1088/1475-7516/2011/09/032
https://doi.org/10.1088/1475-7516/2011/09/032
https://doi.org/10.1007/BF00653471
https://doi.org/10.1086/150713
https://doi.org/10.1086/150713
https://doi.org/10.1038/2151155a0
https://doi.org/10.1086/184362
https://doi.org/10.1086/184362
https://doi.org/10.1093/mnras/226.3.655
https://doi.org/10.1093/mnras/226.3.655
https://doi.org/10.1086/158561
https://doi.org/10.1086/184361
https://doi.org/10.1086/177793
https://doi.org/10.1086/177793
https://arXiv.org/abs/astro-ph/9603033
https://doi.org/10.1103/PhysRevD.83.103521
https://doi.org/10.1103/PhysRevD.83.103521
https://doi.org/10.1088/1475-7516/2021/10/045
https://doi.org/10.1088/1475-7516/2021/10/045
https://doi.org/10.1103/PhysRevD.105.103503
https://doi.org/10.1103/PhysRevD.105.103503
https://doi.org/10.1088/1475-7516/2021/11/044
https://doi.org/10.1088/1475-7516/2021/11/044
https://doi.org/10.1088/1475-7516/2022/03/041
https://doi.org/10.1088/1475-7516/2022/03/041


[9] G. F. Abellan, R. Murgia, V. Poulin, and J. Lavalle, Hints for
decaying dark matter from S8 measurements, Phys. Rev. D
105, 063525 (2022).

[10] J. Alvey, M. Escudero, and N. Sabti, What can CMB
observations tell us about the neutrino distribution func-
tion?, J. Cosmol. Astropart. Phys. 02 (2022) 037.

[11] S. Weinberg, Damping of tensor modes in cosmology, Phys.
Rev. D 69, 023503 (2004); D. Baskaran, L. P. Grishchuk,
and A. G. Polnarev, Imprints of relic gravitational waves in
cosmic microwave background radiation, Phys. Rev. D 74,
083008 (2006); R. Flauger and S. Weinberg, Tensor micro-
wave background fluctuations for large multipole order,
Phys. Rev. D 75, 123505 (2007); J. R. Pritchard and M.
Kamionkowski, Cosmic microwave background fluctua-
tions from gravitational waves: An analytic approach,

Ann. Phys. (Amsterdam) 318, 2 (2005); S. Weinberg, A
no-truncation approach to cosmic microwave background
anisotropies, Phys. Rev. D 74, 063517 (2006); M. Shoji and
E. Komatsu, Massive neutrinos in cosmology: Analytic
solutions and fluid approximation, Phys. Rev. D 81, 123516
(2010); 82, 089901(E) (2010).

[12] M. Kamionkowski, Cosmological perturbations without
the Boltzmann hierarchy, Phys. Rev. D 104, 063512
(2021).

[13] C. P. Ma and E. Bertschinger, Cosmological perturbation
theory in the synchronous and conformal Newtonian
gauges, Astrophys. J. 455, 7 (1995).

[14] D. Blas, J. Lesgourgues, and T. Tram, The cosmic linear
anisotropy solving system (CLASS) II: Approximation
schemes, J. Cosmol. Astropart. Phys. 07 (2011) 034.

JI, KAMIONKOWSKI, and BERNAL PHYS. REV. D 106, 103531 (2022)

103531-6

https://doi.org/10.1103/PhysRevD.105.063525
https://doi.org/10.1103/PhysRevD.105.063525
https://doi.org/10.1088/1475-7516/2022/02/037
https://doi.org/10.1103/PhysRevD.69.023503
https://doi.org/10.1103/PhysRevD.69.023503
https://doi.org/10.1103/PhysRevD.74.083008
https://doi.org/10.1103/PhysRevD.74.083008
https://doi.org/10.1103/PhysRevD.75.123505
https://doi.org/10.1016/j.aop.2005.03.005
https://doi.org/10.1103/PhysRevD.74.063517
https://doi.org/10.1103/PhysRevD.81.123516
https://doi.org/10.1103/PhysRevD.81.123516
https://doi.org/10.1103/PhysRevD.82.089901
https://doi.org/10.1103/PhysRevD.104.063512
https://doi.org/10.1103/PhysRevD.104.063512
https://doi.org/10.1086/176550
https://doi.org/10.1088/1475-7516/2011/07/034

