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Recent local measurements of the Hubble constant made using supernovae have delivered a value that
differs by ∼5σ (statistical error) from predictions using the cosmic microwave background (CMB), or using
baryon acoustic oscillations (BAO) and big-bang nucleosynthesis (BBN) constraints, which are themselves
consistent. The effective volume covered by the supernovae is small compared to the other probes, and it is
therefore interesting to consider whether sample variance (often also called cosmic variance) is a significant
contributor to the offset. We consider four ways of calculating the sample variance: (i) perturbation theory
applied to the luminosity distance, which is the most common method considered in the literature;
(ii) perturbation of cosmological parameters, as is commonly used to alleviate supersample covariance in
sets of N-body simulations; (iii) a new method based on the variance between perturbed spherical top-hat
regions; (iv) using numerical N-body simulations. All give consistent results showing that, for the Pantheon
supernova sample, sample variance can only lead to fluctuations in H0 of order �1 km s−1 Mpc−1 or less.
While this is not in itself a new result, the agreement between the methods used adds to its robustness.
Furthermore, it is instructive to see how the different methods fit together. We also investigate the internal
variance of the H0 measurement using SH0ES and Pantheon data. By searching for an offset between
measurements in opposite hemispheres, we find that the direction coincident with the CMB dipole has a
higherH0 measurement than the opposite hemisphere by roughly 4 km s−1 Mpc−1. We compare this with a
large number of simulations and find that the size of this asymmetry is statistically likely, but the preference
of direction may indicate that further calibration is needed.
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I. INTRODUCTION

Recent measurements of the Hubble constant [1,2]
using a local distant ladder combining observations of
Cepheids and supernovae (SNe) have given us the con-
straint H0 ¼ 73.04� 1.04 km s−1 Mpc−1. This is in strong
tension with the constraint from Planck [3] cosmic micro-
wave background observations, which givesH0 ¼ 67.37�
0.54 km s−1 Mpc−1 for a flat ΛCDM model, and recent
observations of the baryon acoustic oscillations (BAO)
standard ruler [4] combined with the big bang nucleosyn-
thesis (BBN) observations [5] required to standardize the
ruler, which give H0 ¼ 67.35� 0.97 km s−1Mpc−1. Using
the error bars provided, the tension is at the 5σ level. Many
potential deviations from the ΛCDM model have been
discussed as a solution to this problem [6,7]. Alternative

solutions include an unknown systematic problem with one
of more data or that the error bars are underestimated. It is
also possible that the solution will require a number of
separate contributions [8–11].
Each SN observation probes a region of space-time that

covers the line of sight (LOS) from the observer to the
SN. There will be inhomogeneities along the LOS that will
alter the Hubble constant measured using the redshift and
luminosity distance, compared with that averaged over a
larger patch of space-time. When considered over all of the
supernovae within current samples, recent studies have
shown that this error cannot explain the 5σ tension recently
observed alone [12–16].
The sample variance in the Hubble parameter between

different patches of the Universe is driven by changes in the
matter density. Density fluctuations cause the local universe
to behave differently, dependent on the amplitude of the
fluctuation, which is related to its scale with smaller
fluctuations having more scatter in amplitude than larger
fluctuations. We consider the methods previously used to
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determine the sample variance including considering per-
turbations to the luminosity distance [17], and calculated
using simulations [13,15]. We introduce two further ways
of measuring sample variance, borrowing ideas from work
on supersample covariance [18], and from homogeneous
spherical models [19]. Other than using simulations, the
methods can all be considered to be part of perturbation
theory, and differ in what we are perturbing: the luminosity
distance, cosmological parameters or the curvature of
patches in the Universe.
We consider two simulation based methods: one using

all halos within a particular radius, which is closely
matched to our analytic approaches, and one based on
simulating the Pantheon [20] distribution of SN. Apart
from the latter approach where we directly use the SN
sample, all of the methods require us to define a volume in
order to find the distribution of fluctuations in the over-
density. We present a new method to estimate this for
Pantheon based on defining a zone of influence for each SN
observation. With the same definition of this volume, the
perturbative results all give similar results, matching that
from N-body simulations where we use all halos within the
same volume.
As well as considering larger samples from which the

Pantheon SN sample is assumed to be a typical draw, we
also use internal methods to compare the distribution of
measurements across the Pantheon sample. We split the
sample into opposite hemispheres, optionally including
the Cepheid calibration in this split. After subsampling, we
measure H0 from each hemisphere and compare the
variation in values recovered to that from simulations.
This paper is organized as follows, Sec. II presents the

methods and results estimating H0 variations due to a local
inhomogeneity. Section III presents the estimate of the
volume covered by the Pantheon SNe Ia sample and
compares analytic results for this sample to the variance
of H0 based on simulations. Section IV presents our
reanalysis of SH0ES and Pantheon data cut into various
subsamples. Section V includes our discussion and
conclusions.

II. SAMPLE VARIANCE FOR H0

The starting point for analysing sample variance is
fluctuations in density in the Universe. The variance of
these scale-dependent fluctuations at early times and on
large scales can be estimated by integrating the linear
power spectrum PðkÞ multiplied by a window function

σ2R ¼ 1

2π2

Z
∞

0

PðkÞW̃2ðk;RÞk2dk; ð1Þ

where it is common to assume a top-hat (in real-space) filter

W̃ðk;RÞ ¼ 3
sinðkRÞ − ðkRÞ cosðkRÞ

ðkRÞ3 : ð2Þ

For R ¼ 8 h−1 Mpc, we recover the standard definition of
σ8, often used to normalize the power spectrum. We now
consider three methods for translating from δ to give the
local value of H0 measured in a patch of the Universe of a
given size.

A. Perturbing the luminosity distance

The sample variance in local distance-ladder based
measurements of H0 can be determined by considering
the effect of changes in δ on the luminosity distance directly
[17,21–23]. Traditionally, the derivation starts by consid-
ering fluctuations to the Angular Diameter distance,
DA ¼ DA;b½1 − kðzÞ�, where the offset kðzÞ has many
terms, including a term related to magnification. The
dominant term is a shift related to the peculiar velocity
of the source,

kv ¼
�
1 −

1

aeχeHe

�
ve · nþ 1

aeχeHe
vo · n; ð3Þ

where χ is the comoving distance, and v the peculiar
velocity relative to the background model. A subscript e
denotes a quantity evaluated at the point of emission of
the photons, and the unit vector n is in the direction of
propagation from the emitter to the observer. This is
calculated for the same Δz in perturbed and unperturbed
frames. The component due to observer velocity can be
easily corrected using the relative motion with respect to
the CMB frame, so we only consider the peculiar velocity
of the emitters, i.e., the first term. In the Newtonian limit,
the peculiar velocity of the emitter can be derived from the
density contrast of the spherical inhomogeneity and final-
izes the offset [14]

kv ¼
1

3
fδðaHχ − 1Þ; ð4Þ

where f is the logarithmic derivative of the linear growth rate
f ¼ d logD=d loga, and the switch of the sign is due to the
fact that n is directed from the emitter to the observer. For
local fluctuations, aHχ ≈ z, so that the variation in lumi-
nosity distance can be directly related to a change in H0

ΔH0

H0

¼ −
1

3
fδ: ð5Þ

Thus we can translate directly from a distribution of δ0 to a
distribution in the locally measured value of H0.

B. Perturbing the cosmological parameters

So called super-sample covariance (SSC) is commonly
considered in the field of N-body simulations [18] and for
attributing errors to clustering measurements made from
galaxy clustering in small surveys [24]. Simply put, on
large scales, SSC refers to the changes in cosmological
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quantities that occur patch-to-patch due to variations in the
large-scale density. For galaxy clustering, there is also a
link from the large-scale modes driving SSC to small-scale
nonlinear modes [24], but that does not affect us here.
One way of considering how SSC works is to think about
running a large number of small N-body simulations to
understand the patch-to-patch variance where each patch
is the same size as the box. The simplest way to run the
simulations would be to fix the cosmological parameters
at the background values for all boxes and set the average
overdensity within each simulation box to zero. However,
such a set of simulations would not include all of the
variance between patches of the Universe represented by
the boxes. Large-scale modes affect the “DC-level” density,
and one should really sample the properties of each box (or
patch) from a distribution of parameters reflecting the range
of densities driven by large-scale modes on sizes larger than
the box [18,25,26]. This was recently applied to give
covariance matrices for galaxy surveys including SSC [27].
We can use the same formalism to estimate the sample

variance for an analysis of SNe, where we wish to under-
stand the impact of fluctuations larger than the volume
covered by the SNe. Within a background cosmology, we
can consider the situation where we have a large-scale value
of H0 (analogous to a large simulation), but different
patches in the Universe (analogous to small simulations)
each have a local value that changes because of the DC-
mode density. Sirko [18] showed that the parameters used
for each simulation (or patch) should be modified to allow
for SSC via:

apatch ¼ a

�
1 −

DðaÞδb;0
3Dð1Þ

�
;

H0;patch ¼ H0ð1þ ϕÞ−1;
Ωm;0;patch ¼ Ωm;0ð1þ ϕÞ2;
ΩΛ;0;patch ¼ ΩΛ;0ð1þ ϕÞ2;
Ωk;0;patch ¼ 1 − ð1þ ϕÞ2ðΩm;0 þΩΛ;0Þ; ð6Þ

where

ϕ ¼ 5Ωm;0

6

δb;0
Dð1Þ ; ð7Þ

δb;0 is the background mode at redshift 0, D is the linear
growth factor, a, H0, Ωm;0, ΩΛ;0, Ωk;0 define the output
scale factor and cosmology of the ensemble, and apatch,
H0;patch, Ωm;0;patch, ΩΛ;0;patch, Ωk;0;patch are the parameters
given to each realization. The size of the SSC component
depends on the overdensity of the patch considered, with
large patches naturally leading to smaller variations in
overdensity and hence a smaller sample variance contri-
bution to the errors.

C. Perturbed spherical top-hat regions

Rather than consider the effect of variations in over-
density perturbing the cosmological parameters directly,
we now develop a new method using the spherical top-hat
model to understand variations in H0 between different
patches of the Universe. To do this, we borrow heavily from
the methodology developed to estimate the critical density
for collapse, and follow much of the general derivation as
presented in [19]. This follows from derivations for an
Einstein-de Sitter cosmology [28], for open cosmologies
[29] and for flat Λ cosmologies [30].
Following the standard top-hat model, we consider two

equal mass spheres: one following the background with
radius a, and a sphere perturbed by a homogeneous change
in overdensity of radius ap. To leading order, we can define
the overdensity as ap ¼ að1 − δ=3Þ. The perturbed sphere is
governed by the same equations driving a sphere of back-
ground material (the usual case), but with different curvature
resulting from the different overdensity. By considering the
behavior of the spheres at early times (in the linear regime)
we can link that curvature to the overdensity and thus, given
δ0, write down a Friedmann equation for the behavior of the
perturbed region. From this, we can estimate the Hubble
constant in the perturbed region at a time consistent with the
cosmic age—that of the background. This links the per-
turbed Hubble constant to the overdensity.
To start, we assume that the dark energy component is

negligible at early times so we can write the Friedmann
equation for both a and ap (for simplicity we use a
subscript X for quantities that differ for the two spheres
so we do not have to duplicate similar equations),

�
daX

dðH0tÞ
�

2

¼ Ωm;0

aX
þ ϵX;0; ð8Þ

where the curvature term ϵp;0 is allowed to take any real
value for the perturbation, while for the background,
ϵ0 ¼ ΩK;0 ≡ ð1 −Ωm;0 −ΩΛ;0Þ. The matter term is the
same for both perturbation and background as we wish
the sphere’s to contain the same mass and thus the same
density when a ¼ ap ¼ 1. A series solution for aX in the
limit H0t → 0 is given by aX ¼ αðH0tÞ2=3 þ βXðH0tÞ4=3þ
O½ðH0tÞ6=3�, where

α ¼
�
9Ωm;0

4

�
1=3

; βX ¼ 3ϵX;0
20

�
12

Ωm;0

�
1=3

: ð9Þ

From the definition of δ, we have that

lim
H0t→0

δðH0tÞ ¼
3

5

�
3

2Ωm;0

�
2=3

½ðΩK;0 − ϵp;0�ðH0tÞ2=3: ð10Þ

This links the limiting density at early times to the
subsequent curvature of that patch of space-time. We can
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link this to the linearly extrapolated overdensity at present
day using linear growth

δ0
D0

¼ lim
H0t→0

�
δðtÞ
DðtÞ

�
¼ 3

5Ωm;0
½ΩK;0 − ϵp;0�: ð11Þ

Thus given δ0 we can find the curvature ϵp;0 for that patch.
We now need to link this to the Hubble constant for a
perturbed patch of space-time with this curvature. In order
to determine the value of H0 (or other cosmological
parameters) in that patch of space-time at present-day,
we can directly solve the Friedmann equation, valid for that
patch

�
dap

dðH0tÞ
�

2

¼ Ωm;0

ap
þ ϵp;0 þΩΛ;0a2p: ð12Þ

We define present-day as matching the cosmic age for the
background model. Note that with this definition, the value
of H0 assumed for the patch simply fixes the normalization
of ap ¼ 1, and is not the value of H0 at the present-day
time. To find this, we numerically find the value of ap that
gives an age of the universe matching that of the back-
ground by integrating Eq. (12). We then use the same
equation to measure the value of the Hubble parameter
_ap=ap at this time.
The process is illustrated in Fig. 1, which shows the

evolution of the scale factor of the patch ap relative to the
background universe a. Due to inhomogeneity, which leads
to a change in curvature, the patch experiences a different
evolution compared with the background. To get the
curvature, we need to link the early behavior of the patch
where the linear theory is valid to that of the background.
Once we have the curvature we can evolve the patch
forward using the Friedmann equation for the patch until
we match the present-day time of the patch to the back-
ground universe. At this time, the scale factor of the patch
ap is different from unity. The observer inside the patch can
redefine the scale factor just like the background universe,
and this requires a scaling of the cosmological parameters
including H0. Thus we can link a fluctuation in δ to a
fluctuation in H0. While the previous two methods used
perturbation theory linking the value of δ0 to changes in the
recovered cosmological parameters, the spherical top-hat
allows for the full nonlinear evolution of the patch, albeit
within the context of a homogeneous spherical region.

D. Numerical simulations

Within a cosmological N-body simulation, all distances
and velocities are measured with respect to the background
model. Provided that the peculiar velocities are included,
the luminosity distance and redshift will be the same as if
we had followed the evolution of the patch using the patch
or background cosmologies. To see why we need to include

peculiar velocities, consider a patch within a simulation
with a perturbed initial density (as in the SSC discussion
above): the peculiar velocities with respect to the back-
ground of objects at the edges of a patch simply tell us
the difference between the expansion rate of that patch
when considered within the background or within the
cosmological model appropriate to that patch. The change
in distances similarly tell us the change in the size of
the patch. Thus, in order to measure local variations in H0

for the simulation we simply need to estimate the variance
in H0 measurements using a local distance ladder
[13,15,31,32].
For this purpose, we rely on a large-scale N-body

simulation from UNIT1 [33] and the identified halo catalog.
We start with an observer residing in a randomly chosen
dark matter halo of M ∼ 1012−15h−1 M⊙ in the simulation
box, taken to mimic the location of a halo that can host a
galaxy with a mass similar to Milky Way. The variance
caused by peculiar velocity on the H0 measurement of
the observer can be estimated using the method from [15].
In particular, the distance ladder method requires calibra-
tion of the absolute magnitude MB of SNe Ia, and the
cosmic expansion parameter aB, defined as in Eq. (14).
Observations of Cepheids can determine the value of MB,
and aB can be constrained from the Hubble diagram which

FIG. 1. Illustration for the scale factor of a local sphere of the
expected fluctuations for a sphere of radius 20 Mpc, with over/
under density as a function of time. The linear model (red) and
top-hat model (blue) are plotted as a ratio with respect to the
background universe (black). The variance for δ is computed
using Eq. (1), and we plot curves for both 1 and 2σ fluctuations as
labeled.

1http://www.unitsims.org/.
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is affected by the peculiar velocity of the dark matter halos.
Its variance can be estimated via [15]

ΔaB ¼ 1

N

XN
i¼1

1

ln 10
vi

riH0

; ð13Þ

where vi is the peculiar velocity along the line-of-sight, ri is
the distance to the SNe Ia (or host halos), the summation is
through all the halos within distance R to the observer.
Then we can convert this uncertainty to ΔH0 by randomly
choosing a large number of observers.
The previous analytical methods are based on the local

inhomogeneity, computed from the variance of the entire
sub-volume of the top-hat window function. To provide a
fair comparison using simulation, we include all the halos
around the observer within some distance. In Sec. III we
consider a more direct way of matching the Pantheon
sample geometry using a simulation-based method, where
we use the positions of the SNe Ia and match them to the
neighboring halos and inherit the peculiar velocity of these
halos. This will match the measured H0 and thus the
variance calculated here provided that we use the correct
effective volume.

E. Comparison of models

In Fig. 2, we show the change in H0 estimated using the
different methods described above for 1σ shifts in δ as a

function of scale. For the analytical methods, the scale R is
used to compute the change in the overdensity [Eq. (1)],
while for the simulation-based analysis, R is the maximum
distance to include halos. In this work, we apply the Planck
2015 cosmology [34] throughout the computation, to be
consistent with the UNIT simulation. The result shows that
the different analytical methods give consistent estimates
of ΔH0 over a wide range of scales. At large scales where
the overdensity is not significant, the variance on H0 is
dominated by the linear dependence on δ. The difference is
only up to a few percent. At small scales, the overdensity
can affect the cosmological parameters in the inhomoge-
neity depending on the method. This leads to additional
dependence on δ and distinct behavior of ΔH0 and an even
more skewed distribution. Compared with these analytical
methods, the simulation based method is more discrepant,
giving an estimate that is in agreement at large scales, but
shows some deviations at small scales. At small scales, the
averageH0 prefers lower values as expected since the halos
are formed in preferentially overdensity regions with large
scale infall velocity [13,15]. The distribution of over(under)
density becomes more skewed toward smaller scales due to
nonlinear evolution of the density field, and this causes
wider distribution for positive δ and a preference for lower
values of H0. Note that in this analysis, the observer is
located in the CMB rest frame [13], and thus the average
measurement of H0 is close to the background value. If the
observer is included in its own frame, the impact from its
peculiar velocity will shift the overall distribution, but the
level of uncertainty is not affected significantly, see the
comparison from [13]. None of the methods predicts
fluctuations in H0 that could explain the current tension
between observations unless the local measurement is made
within a very small volume.
Although these various methods for estimatingΔH0 give

similar results, we should note that they rely on different
assumptions and limitations. The perturbation of luminos-
ity distance is derived for a Friedmann-Robertson-Walker
metric, whereas the SSC based derivation was proposed to
improve the modeling of small simulations through the
“DC-level” density, and relies on perturbing cosmological
parameters. The variations on the cosmological parameters
from patch-to-patch are required to assure that the small
simulations have the same real space clustering as the large
simulations. But it also means that our result on ΔH0 is
conditional upon this assumption. Our last analytical
method borrows idea from the model of spherical collapse.
All use as their starting point variations in δ. For scales of
tens to hundreds of Mpc, the resulting ΔH0 has a close to
linear dependence on δ and therefore these analytical
methods give very similar estimates. All methods do not
provide a fully consistent picture for the boundary between
the perturbed patch of space-time and the background.
To do this, the situation would be better described by the
Lemaitre-Tolman-Bondi (LTB) frame and would need

FIG. 2. Uncertainty of H0 measurement caused by local
inhomogeneities as a function of scale, comparing analytical
and simulation based methods. For analytical methods, the scale
R is used to compute overdensity from Eq. (1) assuming a Planck
2015 [34] cosmology to be consistent with the simulation. For the
simulation-based method, R is the maximum scale to include
halos around the observer. For analytical methods, the lines
correspond toþδ and −δ, while for simulation-based method, the
dots correspond to 16% (red), 50% (black), and 84% (red)
intervals by randomly choosing thousands of observers in the
simulation.
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careful calculation. However, we would still need to link
the overdensity at the center of the LTB frame to the
overdensity fluctuations using methods such as those we
have described. This will therefore not change our results
significantly but the detailed calculation is beyond the
scope of this paper.

III. SAMPLE VARIANCE FOR PANTHEON

In order to use the perturbation theory based estimates
of sample variance, we need an estimate of the average
overdensity in the patch covered by the SNe. That is, to
determine the radius R to use in Eq. (1), we need to know
the effective volume of the region of the Universe probed
by distance measurements from all of the SNe in a
particular sample. In general, this is far smaller than might
be thought given the maximum SN redshift. For the
Pantheon sample [20] containing ∼1000 SN, there are
many more SN at low redshift and the likelihood calcu-
lation includes each SN approximately equally. If we
assume that each SN i contributes equally, and the LOS
traces the density within a region of influence RiðxÞ with
volume Vi, then the set of SN traces a weighted region
wðxÞ ¼ P

i½RiðxÞ=Vi�, where the Vi normalizes the region
to provide equal weighting for each SN. We can define an
effective volume for the sample Veff ¼ ½R wðxÞ�2= R w2ðxÞ
assuming that each small volume element contributes
equally to the sample variance. We can then estimate R
as the radius of a sphere with the same volume.
If we assume that the region of influence of every LOS to

a SN is a sphere centred on the mid-point of the LOS and
touching the SN and us, then for the full Pantheon sample,
using the formula above, the effective volume corresponds
to a sphere of radius ∼270 Mpc, significantly smaller than
the total volume covered by the sample. Limiting to SN
with z < 0.15 corresponding to a comoving distance of
∼610 Mpc, the SNe sample within this range only probes a
volume of radius ∼120 Mpc. Having the region of influ-
ence defined in this way is motivated by the spherical top-
hat model where we consider spherical patches of the
Universe as mini-Universes, each behaving according its
internal density. If instead we were to assume that the
volume of influence occupies a smaller volume around
the LOS to each SN, then the effective volume would be
smaller. We consider ∼170 Mpc to be a conservative
estimate, which matches that adopted in previous analyses:
[15] noted that the number distribution of SNe used for H0

measurement peaks at z ∼ 0.04, a scale of ∼170 Mpc.
Considering all the halos within this distance of the
observer, we estimate from Fig. 2 that the uncertainty of
H0 caused by peculiar velocity is about 1%, consistent with
earlier studies [13] and insufficient to explain the Hubble
tension.
From Fig. 2, the scale R for the size of the inhomoge-

neity is of critical importance to evaluate ΔH0. In addition
to our method of considering an effective volume of

influence, we note that this particular scale has been
explored using various methods such as galaxy density
as a function of distance, we refer the readers to [15] for
more discussions. Due to their wide redshift distribution,
the SNe Ia dataset has also been used to search for an over
or under dense area in the local universe. The authors of
[35,36] parametrize the radial profile of the local density in
the framework of a void model and compare with the
Pantheon data to find the scale of the feature. They report
the scale of the local void of a few hundred Mpc, but can
depend on the data and redshift range. We note that we are
not performing a model fit, but are considering the impact
of each SNe Ia from a statistical point of view.
Within a time-slice of an N-body simulation, we can

directly incorporate the spatial distribution of the Pantheon
data, without having to define the volume separately. The
ideal framework for such an investigation would be a light-
cone simulation, which provide the correct age for struc-
tures given their distance from us. Creating these requires
a careful extraction of particles [37], or interpolation of
merger-tree halos in terms of their position and velocity
with fine time steps [38]. The single time-slice simulation
adopted here is conservative as it assumes that all structure
has evolved to present day, leading to larger fluctuations
than for a lightcone. We consider the Pantheon sample and,
for each SN with 0.023 < z < 0.15, we use the Pantheon
redshift to determine the distance using the background
cosmological model. This redshift range is chosen to match
the primary fit in the distance ladder analysis [1,2]. For this,
we ignore that there is a component of the redshift from the
observed peculiar velocity which will change the sample
slightly, but not affect our results. We then assign each SN
to the nearest dark matter halo. This results in a subsample
of the haloes compared with the previous method. We
repeat this process more than 104 times to get a distribution
of H0 values for different observers and rotations of the
Pantheon sample. This then gives an estimate of the local
sample variance of H0 due to inhomogeneities along the
LOS. Although our calculation differs from previous
investigations [15] in terms of simulation volume, mass
resolution, halo mass cut and other details, we find that the
impact from peculiar velocity on H0 measurement is at a
similar level of ∼0.4 km s−1Mpc−1. This result is compa-
rable to but slightly lower than the prediction using
analytical models assuming a scale of 170 Mpc (Fig. 2),
since the lower redshift cut (z > 0.023) removes nearby
halos that can dominate the variance [Eq. (13)].

IV. INTERNAL MEASUREMENTS OF H0
VARIATIONS

In this section, we investigate the sample variance forH0

estimated for the latest distance ladder measurements by
considering differences obtained when splitting the sample.
This serves as an internal examination of variance within
the Cepheid and SNe data. As we are interested in spatial
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variations [39], rather than remove individual objects as in a
jacknife approach, we instead consider removing angular
regions.

A. (An)isotropic H0 measurement

We investigate the variance ofH0 measurement based on
the method from [1,2,40]. With observations of both
standardizable Cepheids and SNe Ia, we can construct a
three-rung distance ladder up to redshift where the cosmic
expansion is dominant. Then we fit the relations character-
izing the luminosity and distance of these objects through a
likelihood analysis. The result can include the fiducial
luminosity of Cepheids, SNe Ia and H0. In practice, we
measure Hubble constant via

logH0 ¼ 0.2M0
B þ aB þ 5; ð14Þ

whereM0
B is the fiducial luminosity of SN Ia, and aB is the

parameter describing luminosity distance and redshift [40].
Therefore H0 can be fully determined with these two
parameters.
The first two rungs of the distance ladder constrain the

absolute magnitude of SN Ia, while the third rung deter-
mines the intercept aB of the redshift-distance relation. The
ladder parametersM0

B and aB can be constrained separately,
as in the method of [1] (hereafter R16) or simultaneously
[2]. In the following, we apply the R16 approach and have
tested that our main results are not affected significantly by
different methods. The equations for the calculation are
well described in a compact matrix form as Sec. 2 of [2] and
removing the corresponding columns and rows for SNe Ia
can return to a R16 style analysis easily.
For the first two rungs of the distance ladder, we use the

newly released SH0ES data [2], including the 37 Cepheids
hosts and their SNe Ia. The external constraints and anchors
are also from [2] (see Table 4 of [2] for instance). For the
SNe Ia in the Hubble flow, we use the Pantheon supernovae
data [20]2 within the redshift range of 0.023 < z < 0.15 to
be consistent with [2]. This data has 40 fewer objects
compared with the latest Pantheon plus compilation [41]
but this shouldn’t impact our main result significantly. With
the combined SH0ES Cepheids and Pantheon SNe Ia data,
we find H0 ¼ 72.74� 1.08 km s−1Mpc−1, a 0.3σ offset
compared with [2].
In this work, we perform a simple resampling analysis by

splitting the data based on their angular positions. We first
use the HEALPY [42,43]3 code to pixelize the sky with
parameter NSIDE ¼ 4, resulting in 192 equal-sized pixels
that are uniformly distributed on the sky. For each pixel, we
define the center as the new North pole and select objects
(Cepheids and/or SNe Ia) within an angular separation

smaller than 90 degrees. This forms a subset that only
distribute in one hemisphere, and the rest of the data
produces the other hemisphere. Throughout the analysis,
we only apply this subsampling to the host galaxies in the
second rung (galaxies that have both Cepheids and SNe Ia)
and SNe Ia in the third rung. The external constraints and
Cepheids in the anchors are not split based on their angular
positions for all analyses.
In the top row of Fig. 3, we present measurements of H0

where we consider three variants of the split performed:
(1) use all 37 Cepheid fields but split SNe Ia (left), (2) use all
SNe Ia but split Cepheids (middle), (3) split Cepheid fields
and SNe Ia simultaneously. Note that the value of each pixel
represents the measurement over the entire hemisphere, so
measurements fromnearby pixels are correlated. This leads to
a smooth pattern for themeasurements, since the neighboring
pixels have significant overlaps of their hemispheres and thus
the variations change gradually from pixel to pixel. The
results show a few features: first, the SNe Ia sample has a
much weaker variation (72.08 to 73.54 km s−1Mpc−1) than
the Cepheid fields (70.72 to 74.93 km s−1 Mpc−1). This is
explained by the relative sample sizes (there are more
Cepheids than SNe Ia, but the spatial variation is based on
Cepheid hosts instead of Cepheids). Second, both datasets
seem to indicate similar direction preference. When we split
both Cepheid fields and SNe Ia simultaneously, the pattern is
enhanced slightly. For comparison, we also plot the CMB
dipole direction (168° for right ascension and −7° for
declination [44], red star) and its opposite (black star). The
observation implies that roughly, the hemisphere along the
CMBdipole direction gives a highermeasurement ofH0 than
the opposite direction. Depending on particular direction, the
measurement varies from 70.61 to 75.08 km s−1Mpc−1. This
amount of variationwas also found in [45]when only the first
two rungsof thedistance ladderwereused tomeasureH0, and
larger than just simply halving the dataset (Sec. IVC).
In order to evaluate the significance of the variation, we

define a metric that can normalize the difference of H0 in
two hemispheres by their uncertainties

σ ¼ H0;A −H0;Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2H0;A

þ σ2H0;B

q ; ð15Þ

where the subscripts “A” and “B” denote the two opposite
hemispheres respectively. This allows for anisotropic dis-
tribution of both Cepheids and SNe, which give rise to
varying errors for the H0 measurements from different
hemispheres. We plot the variance weighted measurements
in the bottom row of Fig. 3. The overall pattern is consistent
with the top row. When both SNe Ia and Cepheid fields
are split into hemispheres (lower right panel), we find that
variation is less than 2σ for all the directions that we
consider. The maximum asymmetry is around 1.78σ. This
type of asymmetry is also found in other studies, for

2The Pantheon plus data was not fully publicly available when
this work was started.

3http://healpix.sourceforge.net.
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instance [46–48] with higher significance. But we note that
the datasets in these analyses are not exactly the same. Our
analysis only adopts data from Cepheids and low-redshift
SNe Ia. Thus it can be regarded as an additional variant as
in the SH0ES analysis [2]. Bringing in external data such as
QSO or selecting data in other redshift range may change
the significance of the asymmetry but it seems that it
doesn’t induce a great conflict. Among these analyses, the
amplitude of the asymmetry can vary, but it preferentially
shows a higher H0 value in the CMB dipole direction. This
may come from the effect of peculiar velocities at low
redshift and a thorough examination of systematics may be
of importance. We now consider the statistical significance
of this offset.

B. Statistical significance of the asymmetry

In order to access the significance of the observed 1.78σ
difference for the maximal asymmetry, we generate sim-
ulations for both Cepheids and SNe Ia following a variant
of the method described in Sec. III and repeat the above
analysis. In particular, we choose the best-fit parameters
using the entire SH0ES Cepheids and Pantheon data to get
the theoretical predictions of the magnitude for Cepheids
and/or SNe Ia, then we add noise generated from the
observed covariance matrix as the simulated data vector.
Note that in this process, the SNe Ia in the Cepheid hosts
are also included in the simulation, and the covariance
matrix for the Pantheon sample include contributions from

both statistical error and systematics. In addition, the
angular coordinates of the Cepheid fields and SNe Ia are
randomly distributed on the sky. For each simulated data-
set, we perform an anisotropic measurement as in the
previous section and find the maximal difference ofH0 and
σ (Eq. (15). The distribution from one thousand simulations
is presented in Fig. 4 considering three scenarios: split SNe
Ia only (blue), split Cepheid fields only (green), and split
both (red). The result from SH0ES and Pantheon is the
vertical lines with the same color. For comparison, the two
panels show the difference of H0 with (left) and without
(right) normalization.
The result clearly shows that the observed asymmetry is

statistically likely, for both SNe Ia and Cepheid fields.
A more quantitative evaluation such as p-value can be
easily computed as the fraction of the simulation with more
extremal asymmetry. In our analysis, it is above 0.3,
indicating that the asymmetry with this amplitude is
consistent with statistical fluctuations. This is in somewhat
tension with other results based on QSO and SNe Ia [47]
that find that the variation is more significant.

C. Dependence of ΔH0 on the number of Cepheid
fields and SNe Ia

Our previous analysis reveals a variation of ΔH0 ∼
4 km s−1 Mpc−1 between opposite hemispheres. We quan-
tify this offset using current data in this section.

FIG. 3. Top: measurement of H0 using SH0ES Cepheids and Pantheon SNe Ia as a function of angular coordinates in equatorial
coordinate system. The value of each pixel represents the result using a subset of data within an angular separation smaller than 90°
around the center of the pixel. Bottom: offset of H0 between two hemispheres, normalized by the uncertainty, i.e., Eq. (15). Left: only
SNe Ia are split into hemispheres; Middle: only Cepheid fields are split into hemispheres; Right: Both Cepheid fields and SNe Ia are split
into hemispheres.
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The number of Cepheid fields is of critical importance in
the local measurement of H0, with the accuracy improving
from 4.8% (or 3.6 km s−1 Mpc−1) with 6 Cepheid hosts [40],
to 2.4% (or 1.74 km s−1Mpc−1) with 19 hosts [1] and 1.4%
(or 1.04 km s−1Mpc−1) with 37 hosts [2]. The size of the
current SH0ES dataset enables an exploration of the scaling
relation between ΔH0 and the number of data points. In
order to do so, we perform a jackknife-like subsampling
method by randomly choosing a number of Cepheid fields
and SNe Ia and remeasure ΔH0 for each realization. Since
the number of Cepheid in one host can vary significantly, for
instance M101 has 259 fits, while N0105 only has 5 fits, we
repeat this process 500 times with different random seeds
and take the average to represent the uncertainty of H0.
Figure 5 displays the contour plot as a function of the
number of Cepheid fields and SNe Ia respectively.

The result clearly shows the monotonic increase of
accuracy with more and more Cepheid fields, especially
when the number of Cepheid fields is low. Compared with
Cepheids, the number of SNe Ia contributes less in the
determination of H0. However, both objects become satu-
rated at certain threshold, i.e., the accuracy of H0 increases
more and more slowly with higher number of Cepheids
and SNe Ia, which is not surprising. On the other hand,
the average error of H0 is around 1.3–1.4 km s−1Mpc−1

with ∼20 Cepheid fields and ∼120 SNe Ia. Assuming
the independence of each Cepheid field and SNe Ia, the
∼4 km s−1Mpc−1 difference found by maximizing the
measurement in hemispheres in previous section is sta-
tistically likely.

V. DISCUSSION AND SUMMARY

We have considered how local inhomogeneities affect
measurements of H0. We have compared the “standard”
method which considers fluctuations in the luminosity
distance with methods that consider the parameters of
different perturbed patches in the Universe. Specifically we
present a new application of a method previously devel-
oped to correct for supersample covariance in numerical
N-body simulations, and present a new method based on
spherical top-hat regions similar to that used to measure the
critical density for collapse.
We compare these analytical methods with a simulation-

based approach and find that they give similar estimates
of ΔH0 over a wide range of scales. A full relativistic
description of a locally perturbed background within a
cosmological model is provided by the LTB model. This
model provides a more accurate framework for local
perturbations, but does not predict the distribution of
expected perturbation sizes. It simply provides a model
to link the perturbed spherical top-hat regions considered
here with the background. Postulating that we live in a LTB

FIG. 4. Distribution of the maximal hemispherical asymmetry of H0 measurement from one thousand simulations, using current
observations from SH0ES and Pantheon. The vertical lines represent the value from real data. Left: results normalized by uncertainty
[Eq. (15)]; Right: raw measurement in unit of km s−1 Mpc−1.

FIG. 5. Contour plot of the uncertainty of H0 using distance
ladder, as a function of the number of Cepheid fields and SNe Ia.
The value represents the average of multiple subsamplings based
on current data.
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Universe requires too large a local underdensity to explain
dark energy [49,50], but it has also been used to understand
sample variance for H0 measurements [35,51]. The key
issue for such models is the same that we address here and
requires similar techniques: statistically, how likely is it that
we see a large enough fluctuation to address the Hubble
tension? This is the question we have tried to address,
and thus we consider our analysis to be applicable to
LTB-based analyses as well as the more general ideas we
have used to understand the sample variance of local H0

measurements.
The size of the patch in our analysis is of critical

importance since it determines the amplitude of the density
contrast and thus ΔH0. One may simply choose the
maximum redshift of SNe to define spherical mini-universe.
However, the Cepheids and SNe Ia are not randomly
sampling the underlying density field: their distribution is
sparse and highly nonuniform in both angular and radial
directions which significantly reduces the probed volume.
On the other hand, one could directly estimate δ using the
simulated density field along the LOS to each SN and simply
take the average. We find that this method usually gives a
higher variance for δ than a sphere of ∼100h−1 Mpc. This
indicates that the scale of ∼120h−1 Mpc used in previous
studies [15] to estimate the density contrast may be a
conservative choice. The measured ΔH0 may just represent
a lower limit and the actual variance due to this small volume
can be larger and even accommodate the observed H0

tension. However, this may require a better and robust
estimate of the volume that Cepheids and SNe Ia data have
sampled, which can be nontrivial.
In addition to sample variance, we note that there are

other effects that also contribute to the ΔH0 estimate. One
is the gravitational redshift resulting from the difference
of gravitational potential between the observer and SNe.
Although the amplitude of this effect is rather small, ∼10−5,
earlier studies such as [52] show that ignoring this effect
can lead to a 1% change in the constraints on cosmological
parameters. We model this effect in our simulation-based
analysis by approximately assuming that the gravitational
redshift can change the total velocity by a factor of
ð1þ zgÞ, where zg is determined by the difference of
gravitational potential between observer and SNe, which
depends on the density contrast. Assuming that the typical
amplitude of δ is a few percent, this effect is negligible in
estimating ΔH0.
Another effect comes from the redshift uncertainty of the

SN/host galaxies. The data from BOSS survey shows that

this uncertainty grows with redshift [53] and the amplitude
is at the level of a few tens of km/s. Although the SNe
sample is at lower redshift and this redshift uncertainty is
not fully relevant to the host galaxies of the SNe, we can
artificially model this effect in the ΔH0 estimate using
simulation. We add an independent velocity component
into the peculiar velocity by random draw from a Gaussian
distribution with dispersion ∼50 km=s. Note that this
dispersion is higher than the measurement using repeat
observations from [53]. The result shows that this addi-
tional term also has a negligible impact on ΔH0. This is not
surprising since the Hubble flow and peculiar velocity
dominate the variance.
As a complementary analysis to understanding the

sample variance due to local inhomogeneity using models,
we have also investigated the uncertainty of H0 measure-
ment using internal methods applied to real data. We split
the data of Cepheid and SNe Ia based on their angular
coordinates and investigate the spatial variation of H0. By
changing the angular direction to define hemispheres, we
find that the maximal difference of H0 between two
opposing hemispheres is around 4 km s−1Mpc−1, larger
than the typical uncertainty quoted using half of the data.
We further examine the significance by running a large
amount of simulations and obtain a distribution of this
maximal asymmetry. The result shows that the amplitude of
the signal from real data is consistent with statistical
fluctuations. However, it is interesting that the direction
of this maximal asymmetry is close to the CMB dipole
direction, similar to the results from literature [46–48]
using data other than Cepheids, which may indicate that the
calibration of the data can be improved to further tighten
the constraint on H0.
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