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We simulate the decay of isolated, spherically symmetric droplets in a cosmological phase transition.
It has long been posited that such heated droplets of the metastable state could form, and they have recently
been observed in 3D multibubble simulations. In those simulations, the droplets were associated with a
reduction in the wall velocity and a decrease in the kinetic energy of the fluid, with a consequent
suppression in the gravitational wave power spectrum. In the present work, we track the wall speed and
kinetic energy production in isolated droplets and compare them to those found in multibubble collisions.
The late-time wall velocities that we observe match those of the 3D simulations, though we find that the
spherical simulations are a poor predictor of the kinetic energy production. This implies that spherically
symmetric simulations could be used to refine baryogenesis predictions due to the formation of droplets,
but not to estimate any accompanying suppression of the gravitational wave signal.
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I. INTRODUCTION

Many well-motivated extensions to the Standard Model
have one ormore cosmological phase transitions as a feature
(see e.g. [1,2] and references therein). If such a phase
transition is of first order, it can have interesting phenom-
enological consequences, such as the production of a baryon
asymmetry [3], the generation of gravitational waves [4,5],
or the seeding of intergalactic magnetic fields [6,7].
With upcoming gravitational wave detectors like LISA

offering enhanced observational prospects for cosmologi-
cal gravitational wave backgrounds, there have been
increased efforts to understand first-order phase transitions
in precise detail. Recent years have seen advances in the
determination of the asymptotic wall speed for expanding
bubbles [8–16], more precise calculations of the thermo-
dynamic phase transition parameters and nucleation rates
[17–26], and refined baryogenesis computations [27–31].
Holographic techniques have been used to compute phase
transition parameters and gravitational wave signals
[12,16,32–35]. Preliminary studies have explored the
ability of LISA to reconstruct phase transition parameters
[36,37]. New simulation techniques [38], valid for weak
and intermediate thermal transitions, have enabled the
exploration of the effects of density perturbations on the
gravitational wave spectrum [39]. The first simulations of
gravitational wave production from (magneto)hydrody-
namic turbulence (including acoustic turbulence) have been

conducted [40–45], and the gravitational wave signal from
both strong thermal phase transitions [46,47] and vacuum-
like transitions is being explored [48–53].
In Ref. [46], hot droplets of the metastable state were

observed to form for strong transitions. This only occurred
when the reaction front was a deflagration, in which the
fluid is accelerated and heated ahead of the phase boundary.
These hot droplets consist of relatively small regions of the
metastable state (false vacuum) that are heated to well
above the nucleation temperature, with the resulting pres-
sure opposing the progress of the phase boundary.
The formation of droplets in a cosmological transition is

not a new idea, and has been studied previously, primarily in
the context of a QCD-like phase transition. Early works on
cosmological phase transitions posited that, in the small-
supercooling limit, transitions that proceeded via deflagra-
tionswould reheat a substantial fraction of the universe up to
the critical temperature [54–61]. If such reheating were to
take place, the growth of the bubbles would slow, and the
final stages of the transitionwould involve the contraction of
hot droplets of the metastable state. It was also argued that
baryons could become trapped inside these shrinking
droplets, leaving behind a baryon inhomogeneity on evapo-
ration, or even resulting in persistent so-called “nuggets” of
the metastable state. If axions are present during the
transition, this can modify the stability of quark nuggets,
leading to axion quark nuggets [62–65]. Furthermore, it has
been suggested that this mechanism could have taken place
in a dark sector [66], offering another scenario in which
nuggets could comprise dark matter.
Other early works investigated the decay of spherical

droplets using spherically symmetric simulations and found
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that the fluid evolution exhibited self-similar behavior
[67–69]. Spherical simulations of expanding bubbles in
the small-supercooling limit with reflective boundary con-
ditions were studied in Ref. [70]. The reflective boundary
was intended to model the effect of interactions with
“neighboring bubbles.” When the compression wave from
deflagrations collided with the boundary, it was found that
the metastable region was reheated to the critical temper-
ature at which the two phases become degenerate. As it
cooled, the remaining metastable region subsequently col-
lapsed with a substantially slower wall velocity than before.
In light of the above, the novelty of Ref. [46] was that

droplets were observed in three-dimensional (3D) simu-
lations with multiple bubbles, and away from the small-
supercooling limit. Furthermore, it was seen that they were
associated with a reduction in the expected kinetic energy
fraction, which resulted in a suppression of the gravitational
wave signal. The exact physical mechanism of this relation-
ship was unclear.
In this paper, we revisit the formation and decay of

droplets in the case of spherical symmetry. We focus on
transitions with an expanding-bubble asymptotic wall
speed of ξw ¼ 0.24, as the droplets formed in these cases
were the longest lasting in Ref. [46]. We perform a series of
simulations of collapsing droplets with a range of transition
strengths, moving away from the small-supercooling limit
considered in earlier works. We track the wall velocity and
measure the kinetic energy production of the droplets,
comparing it to the multibubble results found in Ref. [46].
The layout of the paper is as follows. In Sec. II, we

review the coupled field–fluid model used to model the
phase transition. In Sec. III, we discuss the dynamics of
expanding bubbles and shrinking droplets in first-order
phase transitions, including similarity solutions and kinetic
energy production. We describe our simulation code and
the initial conditions in Sec. IV. We analyze the wall
velocity and kinetic energy production of our simulations in
Sec. V, and discuss similarity solutions in the context of our
results. We conclude in Sec. VI. In the appendices, we
provide a short description of the wall speed estimators
used in this paper in Appendix A, then investigate the effect
of varying the fractional change in the number of degrees of
freedom and initial droplet radius in Appendices B and C,
respectively.

II. COUPLED FIELD–FLUID MODEL

Hydrodynamical simulations of phase transitions often
employ the coupled field–fluid model, in which a real
scalar field is coupled to a perfect fluid via a dissipative
friction term [60,71].
The energy–momentum tensor of the coupled field–fluid

model is given by

Tμν ¼ðϵþpÞUμUνþpgμνþ∂
μϕ∂νϕ−

1

2
gμν∂ρϕ∂ρϕ; ð1Þ

where ϵ and p are the internal energy density and pressure
of the fluid, ϕ is the order parameter of the transition, and
U ¼ γð1; vÞ with v the fluid 3-velocity and γ the associated
Lorentz factor. The enthalpy of the system is w ¼ ϵþ p.
The energy-momentum tensor can be split nonuniquely

into a field and fluid piece, such that Tμν ¼ Tμν
ϕ þ Tμν

f .
We make the choice that

Tμν
f ¼ ðϵþ pÞUμUν þ gμνpþ Vgμν; ð2Þ

Tμν
ϕ ¼ ∂

μϕ∂νϕ − gμνð∂ϕÞ2 − Vgμν; ð3Þ

where V is the effective thermal potential. We then assume
that the interaction between the field and the fluid can be
modelled via a phenomenological friction term

∂μT
μν
ϕ ¼ −∂μT

μν
f ¼ ηUμ

∂μϕ∂
νϕ; ð4Þ

where η is some constant friction parameter that is then set
by the particle physics theory in question. In principle, η
can be derived from the microphysics of the phase
transition and may depend upon the order parameter and
thermodynamic quantities in the vicinity of the bubble wall
(or, more generally, the phase boundary) [11,14,72–74].
However, in this study we consider a simplified model in
which we treat η as a constant free parameter.
An equation of state is needed to complete the field–fluid

system. Following Ref. [46], we use a baglike equation of
state:

ϵðT;ϕÞ ¼ 3aðϕÞT4 þ V0ðϕÞ; ð5Þ

pðT;ϕÞ ¼ aðϕÞT4 − V0ðϕÞ; ð6Þ

where the zero-temperature effective potential is given by

V0ðϕÞ ¼
1

2
M2ϕ2 þ 1

3
μϕ3 þ 1

4
λϕ4 − Vc: ð7Þ

Here Vc is a constant chosen such that the zero-temperature
potential is normalized to V0ðϕbÞ ¼ 0, where ϕb is the
value of the scalar field in the broken phase. We denote the
potential energy difference at zero temperature with
ΔV0 ¼ V0ð0Þ − V0ðϕbÞ. This choice of equation of state
and effective potential is made for consistency with
Ref. [46], where these droplets were first observed in a
three-dimensional simulation.
The temperature-dependent potential in this model is

then given by

Vðϕ; TÞ ¼ V0ðϕÞ − T4ðaðϕÞ − a0Þ; ð8Þ

where a0 ¼ ðπ2=90Þg� and g� is number of the effective
degrees of freedom in the symmetric phase.
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The function aðϕÞ models the change in the effective
degrees of freedom during the transition. We choose the
form

aðϕÞ ¼ a0 −
ΔV0

T4
c

�
3

�
ϕ

ϕb

�
2

− 2

�
ϕ

ϕb

�
3
�
: ð9Þ

This form is convenient as it ensures that the minima of V0

at ϕ ¼ 0 and ϕ ¼ ϕb remain the minima of V for all
temperatures T. The change in effective degrees of freedom
is given by1

Δa≡ a0 − aðϕbÞ ¼
ΔV0

T4
c
: ð10Þ

Furthermore, the two minima of the potential become
degenerate at T ¼ Tc, which is referred to as the critical
temperature. Note that with our equation of state, the speed
of sound

cs ¼
ffiffiffiffiffiffi
dp
dϵ

r
ð11Þ

is simply that of a relativistic fluid, c2s ¼ 1=3, in both
phases. Although convenient, these choices represent a
significant simplification. This simplification was made in
previous work to ensure numerical stability when exploring
systems with large supercooling. We defer exploration of
more realistic effective potentials and equations of state to
future work.
To describe the phase transition, we define a phase

transition strength which measures the relative energy
released during the transition with respect to the radiation
energy already in the plasma,

α ¼ θð0; TnÞ − θðϕb; TnÞ
ϵrðTnÞ

: ð12Þ

Here Tn is the nucleation temperature and ϵr ¼ 3w=4 is the
radiation energy density in the symmetric phase, in this
case ϵr ¼ 3a0T4

n. The trace anomaly θ is given by

θðϕ; TÞ ¼ 1

4
ðϵðϕ; TÞ − 3pðϕ; TÞÞ: ð13Þ

Assuming spherical symmetry, we can derive the equa-
tion of motion for the scalar field by considering ∂μT

μν
ϕ :

−ϕ̈þ 1

r2
∂rðr2∂rϕÞ −

∂V
∂ϕ

¼ ηγð _ϕþ v∂rϕÞ: ð14Þ

Here v is positive when the fluid velocity is pointed radially
outward. Equations of motion for our other dynamical

variables, the fluid energy density E ¼ γϵ and the fluid
momentum density Z ¼ γ2wv, can be derived from ∂μT

μν
f :

_Eþ 1

r2
∂rðr2EvÞ þ p

�
_γ þ 1

r2
∂rðr2γvÞ

�

−
∂V
∂ϕ

γð _ϕþ v∂rϕÞ ¼ ηγ2ð _ϕþ v∂rϕÞ2; ð15Þ

_Z þ 1

r2
∂rðr2ZvÞ þ ∂rpþ ∂V

∂ϕ
∂rϕ

¼ −ηγð _ϕþ v∂rϕÞ∂rϕ: ð16Þ

In both cases we have taken the friction term of Eq. (4) into
account. These equations can then be discretized and
solved numerically, see Sec. IV.

III. HYDRODYNAMICS OF EXPANDING
BUBBLES AND SHRINKING DROPLETS

In a thermal first-order phase transition, bubbles of the
true vacuum nucleate in the presence of a cosmic plasma.
As the bubbles expand, the friction between the bubble wall
and plasma causes a heated fluid shell to develop. After
sufficient time, the fluid profile reaches an asymptotic
form.
The asymptotic fluid profile takes a qualitatively differ-

ent form depending on the expanding-bubble asymptotic
wall speed ξw.

2 If the wall speed is subsonic, the transition
front propagates as a deflagration. In a deflagration, the
fluid is accelerated and heated at a leading-edge shock
front. The fluid reaches its peak velocity at the transition
boundary. When the fluid crosses the transition boundary, it
decelerates and ends up at rest inside the bubble.
Walls travelling faster than the Jouguet detonation speed

cJ give rise to a detonation. The Jouguet detonation speed is
dependent on the transition strength, but it is always larger
than the speed of sound. In such a transition, the bubble
wall hits fluid that is at rest. The fluid is then heated and
accelerated as it crosses the transition boundary, before
decelerating inside the bubble.
In deflagrations, the heated fluid precedes the advancing

bubble wall. In sufficiently strong phase transitions, when
the heated fluid shells of multiple bubbles meet, the
temperature of the metastable state can become substan-
tially higher than the nucleation temperature. This effect
has been noted recently in hydrodynamical simulations of
multiple bubbles colliding in 3D, see Ref. [46]. In that
paper, it was found that these heated regions of the
metastable state could persist for long periods of time,
effectively extending the duration of the phase transition
and reducing the wall velocity. These long-lasting regions

1Note in some references a0, the degrees of freedom in the
symmetric phase, is denoted aþ. Similarly aðϕbÞ is sometimes
written as a−.

2Note that we distinguish between the asymptotic wall speed
ξw reached at late times for isolated expanding bubbles, and the
wall velocity vw measured or observed at a given time.
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were referred to as droplets of the metastable state, as these
have been discussed previously in the literature, in par-
ticular in reference to the QCD phase transition [56,67,68].
It should be noted that droplets cannot form for detonations
as the fluid is at rest ahead of the bubble wall.
In Fig. 1, we show an example of the evolution of the

temperature for a deflagration (the results of this simulation
were previously presented in Ref. [46]). Three snapshots of
the temperature are shown, taking 2D slices through the 3D
simulation, first early on in the phase transition while the
bubbles remain isolated, then at an intermediate time where
the heated fluid shells have collided, and finally at a late
time where only heated droplets of the metastable state
remain. In the simulation shown, η was chosen such that
the asymptotic expanding-bubble wall speed of isolated
bubbles was ξw ¼ 0.24, and the transition strength was
α ¼ 0.34. As can be seen, once the fluid shells collide, the
phase boundary begins to deform. A clear temperature
difference is seen between the metastable and true vacuum
regions. At late times only small droplets of the metastable
state persist.
The results of Ref. [46] indicated that the walls slowed

down as the transition approached completion, and that the
effect was more pronounced for stronger transitions. To
illustrate how thewall speed slows as droplets form, we have
taken simulations from Ref. [46] with the same asymptotic
expanding-bubble wall speed ξw ¼ 0.24 and a variety of
transition strengths α. For each simulation, we plot the
evolution of the wall speed vw as a function of time in
Fig. 2.As can be seen, initially thewalls accelerate toward ξw,
but at somepoint the fluid shells begin to collide and thus heat
up the metastable state. At the same time the phase bounda-
ries start to decelerate. The stronger the phase transition, the
more the metastable state is heated above the nucleation
temperature, and the more the phase boundary decelerates.
The formation of droplets was associated with a decrease

in the kinetic energy production and substantial suppres-
sion of the gravitational wave signal. The deceleration of

the phase boundary could also have an effect on baryo-
genesis, as it has been shown that the efficiency of
generating a baryon asymmetry has a strong wall velocity
dependence (see e.g. Refs. [30,75]).

A. Similarity solutions

When the phase boundary of a droplet or a bubble
reaches a terminal wall velocity, the fluid profile
approaches an asymptotic shape. To find the form that
this asymptotic profile takes, we need to match the fluid
velocity and enthalpy across the phase boundary.

FIG. 1. 2D slices of the temperature during a 3D simulation from Ref. [46], showing eight bubbles expanding with an asymptotic
expanding-bubble wall speed ξw ¼ 0.24 and a transition strength α ¼ 0.34. The simulation had periodic boundary conditions and one of
the bubbles was nucleated in the corners of the slice. The nucleation temperature was Tn ¼ 0.28Tc. Black lines are used to highlight the
phase transition boundary.

FIG. 2. Wall speed in 3D simulations from Ref. [46] of
colliding bubbles with asymptotic expanding-bubble wall speeds
of ξw ¼ 0.24. The different colors correspond to simulations with
different transition strengths. The lines end when the metastable
state takes up less than 2% of the total volume. A late-time wall
speed for each simulation is shown with an orange dashed line.
The line extends over the times for which jvwj is fitted,
corresponding to when the broken phase takes up between
10% and 2% of the total volume. See Table IV for the late-time
values of jvwj. See Appendix A for a discussion of wall speed
estimators.

CUTTING, VILHONEN, and WEIR PHYS. REV. D 106, 103524 (2022)

103524-4



Taking the energy-momentum tensor for a perfect fluid,

Tμν ¼ ðϵþ pÞUμUν þ gμνp; ð17Þ

with enthalpy w ¼ ϵþ p, the conservation of energy and
momentum density across the phase boundary leads to

wþγ̃2þṽ2þ þ pþ ¼ w−γ̃
2
−ṽ2− þ p−; ð18Þ

wþγ̃2þṽ2þ ¼ w−γ̃
2
−ṽ2−; ð19Þ

where ṽ and γ̃ refer to the fluid velocity and the corre-
sponding Lorentz factor in a frame moving along with the
phase boundary. Subscripts þ and − refer to the quantities
just ahead and just behind the wall, respectively.
Once the velocity and enthalpy have been obtained on

both sides of the phase boundary, it is possible to find a
solution for the rest of the fluid profile by considering the
continuity equation,

∂νTμν ¼ 0: ð20Þ

Imposing spherical symmetry, it is possible to find differ-
ential equations for w and v in terms of a self-similarity
variable constructed from a combination of a radial and
time coordinate, ξ ¼ r=T [76,77]. These differential equa-
tions can be written in the following parametric form, see
e.g. Refs. [78,79]:

dξ
dτ

¼ ξ½ðξ − vÞ2 − c2s ð1 − ξvÞ2�; ð21Þ

dv
dτ

¼ 2vc2s ð1 − v2Þð1 − ξvÞ; ð22Þ

dw
dτ

¼ w

�
1þ 1

c2s

�
γ2μ

dv
dτ

; ð23Þ

where

μðξ; vÞ ¼ ξ − v
1 − ξv

ð24Þ

is the fluid velocity at ξ in a frame moving with velocity ξ.
Solving these differential equations gives us a set of

similarity-profile curves, with the solutions for the velocity
profiles shown in Fig. 3. Values of ξ > 0 correspond to
expanding bubbles. In this case, T is the time since the
nucleation of the bubble, and r the distance from the bubble
centre. On the other hand, profiles with ξ < 0 correspond to
shrinking droplets. Then, r is the distance from the droplet
center, and T Tc ¼ 0 corresponds to the time at which the
droplet evaporates, with the droplet radius Rd → þ∞ when
T → −∞. From the plots, it can be seen that the velocity
curves have fixed points for τ at ðξ; vÞ ¼ ð�cs; 0Þ. For an
indicative sketch of the droplet case, see Fig. 4.

In order to construct the self-similar profile, a wall speed
and a peak fluid velocity are chosen, which sets the initial
point on the ðξ; vÞ plane. Using Eqs. (21) and (22), the
velocity profile can be constructed by integrating back-
wards toward the fixed point at ðξ; vÞ ¼ ðcs; 0Þ. Also drawn
on the plot are lines indicating the sound speed in a frame
moving at velocity ξ, i.e. v ¼ μðξ;�csÞ. For bubbles, this

FIG. 3. Similarity curves for the fluid velocity profiles obtained
from solving Eqs. (21) and (22). Positive values of ξ correspond
to bubbles and negative values to droplets. The similarity curves
are shown in light gray, and the solid-colored lines show example
profiles, from left to right, for a droplet, a deflagration and a
detonation. The two orange dash-dotted lines indicate the sound
speed in a frame moving at velocity ξ, the red dashed line
indicates the velocity of a deflagration shock front, and the black
dotted line indicates the maximum fluid velocity allowed for a
bubble profile. Regions with unphysical velocity profiles are
shaded dark gray. For a thorough treatment on similarity curves in
a cosmological transition, see Chapter 11.1 in Ref. [80].

FIG. 4. Sketch of a droplet similarity solution in context. The
fluid flows outwards as the phase boundary moves inwards (at
speed jvwj). The wedge of fluid becomes thinner with time, as the
outer boundary of the wedge also travels inwards (at speed cs).
However, the width of the wedge in terms of the parameter
ξ ¼ r=T remains constant.
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sets the maximum fluid velocity for a detonation, whereas
for droplets it separates the physical subsonic deflagration
profiles from the unphysical sonic and supersonic defla-
grations (i.e. droplets with ξw ≥ cs). For bubbles, the fluid
velocity cannot exceed v ¼ ξ, as in the wall frame this
would mean that the fluid would be flowing outwards from
inside the bubble. Finally, the speed at which the leading
edge of a deflagration shock propagates is shown for
bubbles. For deflagrations, when the velocity similarity
curve hits this line, there is a discontinuity in the profile
with v ¼ 0 for larger values of ξ. Similar curves can be
constructed for the enthalpy profiles.

B. Kinetic energy fraction and gravitational waves

An important quantity for the generation of gravitational
waves is the kinetic energy fraction,

K ¼ hwγ2v2i
hwγ2v2 þ ϵi≡

hwγ2v2i
hei ; ð25Þ

namely, the volume-averaged kinetic energy relative to the
volume-averaged total energy density hei at the end of the
transition. It has previously been shown that the amplitude
of the gravitational wave power spectrum is proportional to
K2 [81,82]. Estimates of K that do not require expensive
3D numerical simulations are therefore highly desirable.
The typical procedure is to find the asymptotic profile of a
bubble expanding in isolation and to assume that the value
of K extracted from the fluid profile matches well onto the
final result obtained from many bubbles colliding in the 3D
numerical simulation. While this procedure is known to be
accurate for weak and intermediate-strength transitions
[81,82], it breaks down for strong transitions where heated
fluid shells start interacting with each other nonlinearly. In
particular, heated droplets of the metastable state form in
strong deflagrations, and in Ref. [46] it was proposed that
the formation of these droplets was associated with a drop
in K relative to that predicted from an isolated bubble.
In this work, we track the kinetic energy fraction in the

fluid for spherically symmetric bubbles and droplets. We
define the kinetic energy fraction of a bubble as

KbðtÞ ¼
R
∞
0 dr r2wγ2v2R RbðtÞ

0 dr r2eðt ¼ 0Þ
; ð26Þ

with RbðtÞ the bubble radius at time t after nucleation. The
numerator is the kinetic energy of the fluid shell around the
bubble. For the denominator, we consider the region
converted into the true vacuum by the bubble at time t,
and find the total energy of the system that was contained
within that volume at t ¼ 0. We sometimes use the notation
KbðRrefÞ, which indicates the value KbðtÞ at the time t for
which the radius of the bubble is given by a reference
radius, RbðtÞ ¼ Rref . This is a unique time, as the bubble

radius is monotonically increasing with respect to t for an
isolated expanding bubble.
Similarly, we define the kinetic energy fraction for a

droplet to be

KdðtÞ ¼
R∞
0 dr r2wγ2v2R Rd0

RdðtÞ dr r
2eðt ¼ 0Þ ; ð27Þ

with Rd0 the initial droplet radius. Analogous to the
previous expression, for the denominator we consider
the region converted into the true vacuum at time t and
calculate the initial total energy of the system contained in
that region. Note the different limits of integration when
compared with Eq. (26).
Comparing these two quantities for a droplet released

from Rd0 and a bubble for which RbðtÞ ¼ Rd0 gives a
measure of the relative efficiency of producing kinetic
energy for droplets.
Another quantity that is often measured in simulations is

the enthalpy-weighted mean square fluid 4-velocity

Ū2
f ¼

hwγ2v2i
w̄

: ð28Þ

with w̄ the mean enthalpy density. Ū2
f is related to the

kinetic energy faction via

K ¼ ΓŪ2
f ; ð29Þ

where

Γ ¼ w̄
ē

ð30Þ

is the mean adiabatic index in the fluid.
While we could in principle also estimate Ū2

f from our
spherical simulations, in practice this leads to severe
inconsistencies for strong transitions where w after the
transition can differ significantly from its initial value. To
illustrate this, let us define

Ū2
f;bðtÞ ¼

R∞
0 dr r2wγ2v2R RbðtÞ
0 dr r2wn

; ð31Þ

for bubbles in line with previous three-dimensional simu-
lation work.
The denominator for KbðtÞ in Eq. (26) is the initial total

energy of the system for the volume converted into the true
vacuum by a bubble at time t. For Ū2

f;bðtÞ it is the initial
enthalpy of the system for the equivalent volume. However,
while the energy is conserved, the enthalpy is not.
Therefore, while the denominator of Eq. (26) is an accurate
estimate of the total energy density in Eq. (25), we cannot
easily estimate the denominator of Eq. (28) for an isolated
bubble or droplet.
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IV. METHODS

In this study, we present results from evolving spheri-
cally symmetric bubbles and droplets in the coupled field–
fluid model. Due to spherical symmetry, we are able to
evolve the equations of motion of Eqs. (14)–(16) on a 1D
lattice. To do this, we use a simplified 1D version of the
SCOTTS code used in Refs. [46,81,82]. This is based on
the 1D code of Ref. [60], which implements a Minkowski
space version of the algorithms outlined in Refs. [83–85].
For the evolution of the scalar field, a Crank–Nicolson
update [86] is used. For the hydrodynamical evolution, the
code uses operator splitting to update each term in Eqs. (15)
and (16) and upwind donor cell for the advection terms.
Our initial conditions in the spherical simulations depend

on whether we are performing a simulation of a droplet or a
bubble. For bubbles, we initially prepare the scalar field to
be in the broken phase close to the origin and in the
symmetric phase away from the centre of the bubble. We
use a Gaussian profile

ϕðrÞ ¼ ϕb exp

�
−r2

2R2
c

�
ð32Þ

with

Rc ¼
2σ

Vð0; TnÞ − Vðϕb; TnÞ
; ð33Þ

the critical radius in the thin-wall approximation. In the
equation above, σ refers to the surface tension in the thin-
wall approximation and is given by

σ ¼ ðμ2 þ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4M2λ

p
− 2M2λÞ3=2

24λ5=2
: ð34Þ

For droplets, we instead prepare the field profile to be in
the symmetric phase at the origin and in the broken phase
far away from it. We choose an initial droplet radius, Rd0,
and then fix the wall profile using a tanh-shape. The scalar
field is then set using

ϕðrÞ ¼ ϕb

2

�
1 − tanh

�
Rd0 − r

lw

��
; ð35Þ

with wall thickness lw given by the thin-wall approxima-
tion,

lw ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðϕb; TcÞ

p : ð36Þ

Note that, even for bubbles nucleated with a Gaussian or
“thick-wall” profile like that in Eq. (32), we still expect the
phase boundary to relax to a tanh-like profile as it expands.
This is due to the phenomenological friction term of

Eq. (4), and motivates the form of the initial droplet profile
given above.
In the initial conditions for both droplets and bubbles, we

initialise the fluid such that T ¼ Tn and v ¼ 0 everywhere.
Note that this differs from other studies of the evolution of
droplets, where the simulations are initialized with an initial
temperature jump across the phase boundary [67–69]. In
this work we are also interested in the heating caused by the
collapse of the droplet and the effect this has on the phase
boundary velocity and kinetic energy production. We hence
leave simulations in which a temperature jump is initialized
based on values extracted from droplets formed in 3D
multibubble simulations for future work.
We match our potential parameters to those used in

Ref. [46] for ease of comparison with earlier 3D multi-
bubble simulations. The potential parameters and the
corresponding wall thickness are given in Table I (see
Appendix B for an investigation of varying the fractional
change in the number of degrees of freedom).
We use a lattice spacing ΔxTc ¼ 1.0 in all the simu-

lations. For our droplet simulations, we set the initial
droplet radius Rd0Tc ¼ 2 × 104 (see Appendix C for an
investigation of the consequences of varying the droplet
radius). Other simulation parameters, such as the timestep
Δt and the simulation duration tfin, are given for the 1D
runs in Table II. We set the number of simulation sites
L ¼ tfin=Δx.
We perform simulations of bubbles which expand with

an asymptotic wall speed ξw ¼ 0.24. In this model, the
strength α is varied by varying Tn, keeping all other input
parameters constant. We pick a range of Tn that gives
transitions spanning from α ¼ 0.005 up to α ¼ 0.41, which
is close to the maximum α allowed3 for ξw ¼ 0.24. For each
value of Tn, we find the value of η that gives ξw ¼ 0.24 for a
bubble, and then also run an equivalent droplet simulation
with this value of η. We list these values in Table II. We also
perform comparisons with 3D multibubble simulations.
These correspond to the simulations with ξw ¼ 0.24 in

TABLE I. Table of key constant quantities for the computations
in this paper. The input parameters are the effective degrees of
freedom during the transition g� and the potential parametersM2,
μ and λ. Using the potential parameters, the broken phase scalar
field minimum ϕb, the change in degrees of freedom Δa during
the transition, Eq. (10), and the reaction front (wall) thickness lw,
Eq. (36), can be derived.

g� M2=T2
c μ=Tc λ ϕb=Tc Δa=a0 lwTc

106.75 0.0427 0.168 0.0732 2.00 0.0059 5.23

3As discussed at the end of Sec. III A, the peak fluid velocity in
a self-similar flow cannot exceed the wall velocity. As increasing
α while keeping ξw fixed increases the peak fluid velocity, this
implies there is a maximum value of α for a self-similar flow with
a given ξw.
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Ref. [46], which we list again here in Table III for
convenience.

V. RESULTS

In our spherical droplet simulations, the phase boundary
is released from rest with initial bubble radius Rd0 at the
start of each simulation. The droplet starts shrinking. At the
same time, an inward-moving fluid shell is generated in
the interior of the droplet and travels toward the center of
the droplet faster than the phase boundary itself. As this
fluid shell propagates, the temperature rises and the phase
boundary begins to slow. When the inward-moving fluid
shell hits the origin, it rebounds, and a reflected fluid shell
is driven back toward the phase boundary. When the

reflected fluid shell meets the phase boundary, part of
the fluid shell can once more be reflected toward the
origin.4 This process can happen several times before
the droplet evaporates. The interaction of the fluid with
the phase boundary can significantly decelerate the phase
boundary, and for stronger transitions the droplet can even
be forced to temporarily grow in size before shrinking
again.
We show the evolution of the scalar field, velocity and

temperature profiles for a droplet with a relatively weak
transition strength α ¼ 0.05 in Fig. 5, and for one with a
stronger transition strength α ¼ 0.34 in Fig. 6. The late-
time evolution of the fluid profile in the simulation of α ¼
0.34 demonstrates self-similarity once the interior of the
droplet no longer contains any significant fluid perturba-
tions. Movies of these simulations are available at Ref. [88].
We track the velocity vw of the phase boundary in our

spherical droplet simulations (see Appendix A). We plot
the evolution of vw for each simulation in the upper panel of
Fig. 7. When vw is negative, the droplet is shrinking, with
the phase boundary moving toward the origin. For positive
values of vw, the phase boundary is moving outward,
causing the droplet to temporarily increase in size. For the
smallest transition strength, α ¼ 0.005, we see that the
phase boundary travels toward the origin with speed close
to that of an expanding bubble, with vw ≈ −0.24. At larger
transition strengths, vw rapidly decelerates as the phase
boundary slows and the temperature immediately inside the
droplet increases. For the strongest transitions it can be
noticed that vw becomes temporarily positive.
As we noted above, the fluid shells can be reflected

between the origin and the phase boundary multiple times.
While this is happening, the phase boundary velocity vw
oscillates with shrinking amplitude, before settling toward
an asymptotic value. We can see that the late-time wall
velocity tends toward zero as the transition strength
increases. Furthermore, for the two strongest transitions,
α ¼ 0.34 and α ¼ 0.41, we see that the final wall velocity is
reached a long time before the droplet evaporates.
Comparison with the late-time evolution of the profiles
in Fig. 6 indicates that a self-similar profile is obtained
before the evaporation of the droplet. Wewill discuss this in
more detail in Sec. VA.
In Fig. 8, we compare the late-time wall velocities vw;late

found in the spherical simulations with those extracted
from the multibubble simulations of Ref. [46]. There is
broad agreement across the range of α we consider,
indicating that the late-time propagation of the phase
boundary in a droplet can bewell modelled from a spherical
simulation. This seems independent of whether or not we

TABLE II. Parameters used for the spherically symmetric 1D
runs, split according to droplet [Eq. (35)] or bubble [Eq. (32)]
initial condition type. For each transition strength α, we list the
nucleation temperature Tn relative to the critical temperature Tc,
the friction parameter η, the timestep Δt and the final time in the
simulation tfin. For the bubble runs we also list the critical radius
Rc as given by Eq. (33).

Type α Tn=Tc η=Tc ΔtTc tfinTc RcTc

Droplet 0.0050 0.79 0.68 0.2 3.0 × 105 � � �
0.050 0.45 1.2 0.2 3.0 × 105 � � �
0.073 0.41 1.3 0.2 3.0 × 105 � � �
0.11 0.37 1.5 0.2 3.0 × 105 � � �
0.16 0.33 1.8 0.2 3.0 × 105 � � �
0.23 0.30 2.4 0.2 3.0 × 105 � � �
0.34 0.28 5.1 0.2 6.4 × 105 � � �
0.41 0.26 11 0.1 6.4 × 105 � � �

Bubble 0.0050 0.79 0.68 0.2 0.9 × 105 12
0.050 0.45 1.2 0.2 0.9 × 105 7.7
0.073 0.41 1.3 0.2 0.9 × 105 7.6
0.11 0.37 1.5 0.2 0.9 × 105 7.5
0.16 0.33 1.8 0.2 0.9 × 105 7.5
0.23 0.30 2.4 0.2 0.9 × 105 7.4
0.34 0.28 5.1 0.2 0.9 × 105 7.4
0.41 0.26 11 0.1 0.9 × 105 7.4

TABLE III. List of 3D multibubble simulations from Ref. [46]
used for comparison in this paper. In addition to the parameters
given above, all simulations had L3 ¼ 9603 lattice sites,
Nb ¼ 8 bubbles, ΔxTc ¼ 1.0, ΔtTc ¼ 0.2 and final time
tfinTc ¼ 4.8 × 103.

α Tn=Tc η=Tc RcTc

0.050 0.45 1.2 7.7
0.073 0.41 1.3 7.6
0.11 0.37 1.5 7.5
0.16 0.33 1.8 7.5
0.23 0.30 2.4 7.4
0.34 0.28 5.1 7.4

4Note that similar reflections of the fluid at phase boundaries
can be seen in the movies of the temperature for the multibubble
transitions in Ref. [46], which are available at Ref. [87].
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FIG. 5. Evolution of ϕ, v, and T for a spherical droplet simulation with α ¼ 0.05. The top panel in each row shows the profile of the
scalar field at various times, the middle panel shows the profile of the fluid velocity, and the bottom panel shows the temperature.
The left column shows the evolution at early times, when the fluid shell is beginning to develop. The middle column shows intermediate
times, after the fluid shell has been reflected at the origin. The right column shows late times, shortly before the droplet evaporates.
As we do not find a similarity solution for weak transitions before the droplet evaporates, the late-time behavior of the system appears
less straightforward than for the strong transition seen below in Fig. 6. Note that the y-axis ranges change between columns for v and T.
A movie of this simulation is available at Ref. [88].

FIG. 6. Evolution of ϕ, v, and T for a spherical droplet simulation with α ¼ 0.34. As in Fig. 5, we show the situation at early,
intermediate and late times. Note, however, that the exact times differ, as the droplet shrinks at a slower rate. Notably, the late-time
behavior in this case is that of a similarity solution of the fluid equations. Again, the y-axis ranges change between columns for v and T.
A movie of this simulation is available at Ref. [88].
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reach a similarity solution in the spherical droplet
simulation.
Next, we look at the kinetic energy fraction Kd [see

Eq. (27)] for droplets, noting that it is a key parameter for

predicting gravitational wave power spectra. In the bottom
panel of Fig. 7, we show the evolution of Kd in the
aforementioned spherical droplet simulations. We normal-
iseKd by usingKbðRrefÞ [see Eq. (26)], which is taken from
a bubble with the same value of η and α at a given reference
radius Rref . In this case, we set Rref ¼ Rd0. This quantity
then provides a measure of the relative efficiency for which
a droplet system produces kinetic energy compared to an
isolated, expanding bubble.
From Fig. 7 we see that kinetic energy is produced in

excess of that expected from KbðRrefÞ. This is most likely
due to the initial shell of fluid produced by the droplet when
it is released from rest. Unlike an expanding bubble which
grows to a large size from a macroscopic one, a droplet
shrinks from a large size until it evaporates. The effect of
the initial conditions is therefore emphasized in the droplet
simulations. We see that Kd decreases initially as the
droplet shrinks, before rebounding when the fluid shell
hits the origin. After this, Kd slowly decreases until the
droplet evaporates. It is worth noting that if we used the
similarity solution as an initial condition for the fluid
profile, then Kd would simply tend toward zero as the
droplet would shrink, since the fluid shell size of the
similarity solution is relative to the radius of the droplet.
However, it is not clear if a similarity solution would be

reached for a realistic three-dimensional simulation, where
the initial droplet is nonspherical and the initial velocity
field is nonzero. Furthermore, we need to know the final
wall velocity for a given η corresponding to the shrinking

FIG. 7. In the top panelwe show the evolution of thewall velocity
in the spherical droplet simulations. See Appendix A for a
discussion on wall speed estimators. Each solid line corresponds
to an individual simulationwith a givenα. These lines endwhen the
phase boundary reaches the origin. We average over vw when
0.05Rd0 < Rd < 0.25Rd0 to find The values of vw;late and the times
averaged over are shown with dashed orange lines. In the bottom
panel we show the evolution of Kd in each simulation. We
normalize Kd [see Eq. (27)] according to the value of KbðRrefÞ
[see Eq. (26)] for a bubblewith the same values of α and η and with
radius Rref ¼ Rd0. The black crosses on the bottom panel refer to
the time at which the phase boundary reaches the origin. Values of
vw;late and ofKd=KbðRrefÞ at the black crosses are given inTable IV.

FIG. 8. Late-time wall speeds jvw;latej in both 3D multibubble
simulations and spherical droplet simulations. Values are taken
from Table IV, see the caption for details.

TABLE IV. Comparison of results from the spherically sym-
metric 1D droplet simulations and the 3D multibubble simula-
tions of Ref. [46]. We show the late-time wall speed jvw;latej and
the relative kinetic efficiency K=KbðRrefÞ for each transition
strength. The value of jvw;latej is found from a fit to jvwj for
0.05Rd0 < Rd < 0.25Rd0 in the spherical droplet simulations,
and for when the broken phase volume is between 10% and 2% in
the multibubble simulations. See Appendix A for a discussion on
wall speed estimators. The values ofK=KbðRrefÞ refer to the value
of Kd [see Eq. (27)] at droplet evaporation in the spherical
simulations, see black crosses in Fig. 7, and to the peak value of
K [see Eq. (25)] in the multibubble simulations. KbðRrefÞ [see
Eq. (26)] corresponds to the kinetic energy of an isolated bubble
with radius Rref ¼ Rd0 for the spherical droplets and with Rref ¼
R�=2 for the multibubble simulations.

jvw;latej K=KbðRrefÞ
α Droplet Multibubble Droplet Multibubble

0.0050 0.23 � � � 0.99 � � �
0.050 0.20 0.22 1.3 0.91
0.073 0.19 0.20 1.2 0.81
0.11 0.16 0.18 1.1 0.63
0.16 0.14 0.15 1.0 0.46
0.23 0.099 0.11 0.91 0.26
0.34 0.045 0.051 0.76 0.11
0.41 0.020 � � � � � � � � �
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similarity solution in order to generate appropriate initial
conditions. Currently, this requires running a simulation in
any case, making the simulation of the true shrinking
similarity solution an iterative process.
Measuring the values forKd=KbðRrefÞ at evaporation, we

compare these to equivalent values from 3D multibubble
simulations. For the multibubble simulations, we plot the
maximumvalue ofK [see Eq. (25)] from the simulation, and
normalise to KbðRrefÞ with Rref ¼ R�=2 and R� the mean
bubble separation in the simulation. The resulting plot is
shown in Fig. 9. We note that K=KbðRrefÞ is consistently
larger for the spherical droplet simulations than in the 3D
multibubble simulations. However, there is a consistent
downward trend in both sets of simulations as α is increased,
with the exception of α ¼ 0.005 for the spherical droplets.
Looking at the bottom panel of Fig. 7, we note that the initial
value of Kd is significantly larger than KbðRrefÞ, with the
value for α ¼ 0.005 noticeably smaller. This indicates that
we cannot fairly compare our current droplet results to the
multibubble results because much more kinetic energy is
produced from the initial condition in the droplet case. On
the other hand, as explained above, if we did use the
similarity solution as an initial condition, the final Kd from
a droplet would be close to zero. An accurate estimation of
the kinetic efficiency for droplets formed in a multibubble
simulation using spherical droplet simulations is therefore
unlikely, regardless of the initial conditions used.

A. Self-similar droplets

In this section we explore whether any of the droplets in
our simulations reach a similarity solution before evapo-
rating. We qualitatively discuss the process by which a
similarity solution forms and its implications for multi-
bubble simulations.
To begin with, we consider the droplet simulation with

α ¼ 0.34. This appeared to display signs of approaching a

similarity solution in the rightmost column of Fig. 6. We
first need to reconstruct ξ ¼ r=T , where T is defined such
that T Tc ¼ 0 corresponds to the evaporation of the droplet
(see the detailed discussion in Sec. III A). To compare the
result of our simulation with the similarity profile, we take
T ¼ RdðtÞ=vwðtÞ, where vw is negative for a contracting
droplet. The velocity and enthalpy profiles in the simulation
at late times are plotted as a function of ξ in Fig. 10. We
also plot the similarity curves found by integrating
Eqs. (21)–(23) starting from ξ ¼ vw and with the initial
velocity (enthalpy) taken from the maximum (minimum) of
the corresponding simulation profile. The predicted
enthalpy for the similarity solution inside the droplet can
be found from Eq. (19). From Fig. 10 we can see that there

FIG. 9. Comparison of the relative kinetic efficiency
K=KbðRrefÞ in the spherically symmetric 1D droplet simulations
and the 3D multibubble simulations of Ref. [46]. The values of
K=KbðRrefÞ are taken from Table IV, see the caption for details.

(a)

(b)

FIG. 10. Comparison between the late-time fluid profile in one
of our spherical simulations and a self-similar profile. The upper plot
(a) shows the fluid velocity, while the lower plot (b) gives the
enthalpy w normalised to the symmetric phase enthalpy at nucle-
ation temperature wn ≡ wð0; TnÞ. The simulation shown here in
blue has α ¼ 0.34. Six equally spaced snapshots of the simulation
between tTc ¼ 192000 and tTc ¼ 320000 are shown in blue, with
later snapshots shown using darker shades. The self-similarity
variable ξ¼r=T , where in this case T ¼RdðtÞ=vw;late with vw;late ¼
−0.0452. The dashed line corresponds to the similarity solution
obtained by matching v and w against the last timestep shown.
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is good agreement at late times for the droplet simulation
with α ¼ 0.34 and a similarity solution.
A self-similar solution has the fluid at rest inside the

droplet.5 Therefore, for a droplet to become self-similar, the
fluid perturbations arising from the inward-propagating
shell created by the initial conditions must first exit the
droplet. Where we observe this to occur, the process takes
place over multiple collisions of the fluid perturbations
with the phase boundary and the origin. In each collision
with the phase boundary, part of the fluid perturbation is
transmitted to the exterior of the droplet. Sufficient time is
therefore required for the fluid perturbations to make
multiple repeat journeys between the phase boundary
and the origin before the droplet evaporates.
As can be seen from Fig. 7, stronger phase transitions

cause the phase boundary to propagate at a reduced speed,
effectively delaying the evaporation of the droplet and
allowing the interior of the droplet to settle to a constant
temperature, with the fluid at rest. It is not clear if self-similar
solutions would be obtained for the weaker transitions we
consider if Rd0 were to be increased; we leave this for
future study.

VI. CONCLUSIONS

In this work, we studied the collapse of spherically
symmetric droplets in the coupled field–fluid model with
a baglike equation of state. We found the value of η that
corresponded to an asymptotic expanding-bubblewall speed
of ξw ¼ 0.24 for a range of transition strengths. This value of
η was then used to perform a collapsing droplet simulation.
Our initial conditions consisted of an at-rest tanh-like

profile for the scalar field, with the fluid at rest and at the
nucleation temperature everywhere.Upon release, an inward-
moving fluid shell develops in front of the phase boundary.
The fluid shell reboundsupon collisionwith the origin orwith
thephase boundary,which can happenmultiple times.During
a collision with a fluid shell, the phase boundary is decel-
erated and can even temporarily reverse direction. This effect
is more pronounced at higher transition strengths.
The late-time wall velocity for these spherically sym-

metric droplets approximately agrees with the late-time
wall speed found in the multibubble simulations, despite
the droplets of Ref. [46] not being spherical. This possibly
indicates that the wall velocity is determined by the local
conditions across the phase boundary, rather than the large-
scale geometry of the droplet itself. On the other hand, the
kinetic energy efficiency in the droplets does not match that
extracted from multibubble simulations, although the same
downward trend in the kinetic efficiency as α increases is
observed in both cases. The discrepancy between the
simulations is presumably caused by a burst of kinetic

energy associated with the generation of the initial fluid
shell in the spherical droplet case.
For the strongest transitions, the droplet approaches a self-

similarity solution at late times, whereas for our weak and
intermediate transitions this does not occur. The approach to
a self-similarity solution requires the fluid perturbations to
first exit the droplet. In our simulations, this only occurs for
strong transitions in which the phase boundary slows
significantly. This allows for repeated collisions of the fluid
perturbations with the phase boundary and for the pertur-
bations to eventually leave the droplet. Despite this, it
appears that the late-time wall velocity found in droplets
is more generic than one might expect, as the wall speed in
the spherical simulations seem to approximately match the
multibubble simulations regardless of whether a self-similar
solution develops.
In the case of the strongest transition we considered, the

magnitude of the droplet wall velocity drops to less than
10% of that of an isolated expanding bubble with the same
value of η. This could modify baryogenesis predictions for
strong transitions, as the baryon asymmetry that is gen-
erated during a phase transition is strongly dependent on
the wall velocity (see Refs. [27–31] for recent results on
this phenomenon).
While the kinetic energy efficiency disagrees between the

spherical droplet and multibubble simulations, in both cases
we saw a decrease in K=KbðRrefÞ as α increased. For a self-
similarity solution, Kd tends toward zero as the droplet
shrinks. From the spherical simulations, we saw that stronger
transitions have longer to relax toward a similarity solution
due to the deceleration of the phase boundary. It is possible
that this is also occurring in themultibubble simulations, and
that we are seeing the same effect obscured by the fluid
perturbations induced by the different initial conditions.
An interesting question is whether a self-similarity

solution would eventually develop for a droplet that is
produced in a multibubble collision. It seems unlikely that
this would occur, as not only are the initial droplets
nonspherical, but also in a realistic phase transition there
are long-lasting fluid perturbations that propagate in all
directions. These fluid perturbations would prevent the
interior of the droplet from completely relaxing, which in
turn prevents the similarity solution from fully developing.
Our results indicate that important phase transition quan-

tities such as the late-time wall speed can be computed from
spherical simulations, reducing the need for expensive 3D
multibubble simulations. Other quantities, like the kinetic
energy production, are harder to match onto multibubble
simulations. One quantity we have not discussed in this work
is the fraction of the universe in which droplets are formed. If
this fraction could also be estimated using spherical simu-
lations, it could be used in conjunctionwith the late-timewall
speed to provide an estimate for the enhancement factor for
the baryon asymmetry. If the kinetic energy efficiency factor
for droplets could also be estimated, then a suppression factor
for gravitational wave production could be determined using
spherical simulations.

5Fluid moving inside the droplet would impose a length scale,
breaking the self-similarity; it would also have to fit into an ever
smaller space as the droplet collapses and T Tc → 0−.
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APPENDIX A: WALL SPEED ESTIMATORS

The wall speed can be a challenging quantity to estimate.
For isolated droplets and bubbles in our the spherical
simulations, the wall speed can be calculated directly
from the position of the phase boundary. However, the
situation becomes more complicated for 3D multibubble
simulations.
In the spherical simulations, we find the wall velocity by

tracking the midpoint of the phase boundary. Throughout
the simulation we regularly find the position R for which
ϕðRÞ ¼ ϕb=2. The wall velocity vw is then found via a the
time derivative of R using a first-order forward difference

vwðtÞ ≈
Rðtþ NΔtÞ − RðtÞ

NΔt
; ðA1Þ

where N refers to the number of timesteps between
successive outputs of the position R.
To find an approximate measure of the wall speed jvwj in

the 3D multibubble simulations of Ref. [46], we use two
different methods. The first approach is to measure the rate
of change of the volume in the broken phase and the area of
the phase boundary. On the lattice we approximate the
volume in the broken phase to be

Vbroken ¼ ðΔxÞ3
X
n

�
1 if ϕn ≥ ϕb=2;

0 otherwise:
ðA2Þ

where n denotes the lattice coordinate vector and the
summation is over the whole lattice. To find the surface
area of the phase boundary we use

A ¼ 2

3
ðΔxÞ2

XN
n

½fðϕn;ϕnþ{̂Þ þ fðϕn;ϕnþ|̂Þ

þ fðϕn;ϕnþk̂Þ�; ðA3Þ

where the function

fðϕ;ϕ0Þ ¼
�
1 if ðϕ − ϕb=2Þðϕ0 − ϕb=2Þ < 0;

0 otherwise:
ðA4Þ

checks whether the field crosses ϕb between two sites.
The factor of 2=3 compensates for the over counting of a
the surface area of a sphere represented on a cubic grid
in the asymptotic limit of infinitesimally small grid
spacing [89]. The average wall speed jvwj can then be
approximated by

jvwj ≈
1

A
dVbroken

dt
: ðA5Þ

We can alternatively compute the wall speed from the
kinetic and gradient energies in the scalar field. Assuming
that at the phase boundary the scalar field obeys a transport
equation

∂tϕ − vw ·∇ϕ ¼ 0; ðA6Þ
the average wall speed can then be estimated using

jvwj ≈
ffiffiffiffiffiffi
EK

ED

s
; ðA7Þ

where EK and ED are the average kinetic and gradient
energy densities in the simulation, respectively. We have
made use of the fact that the scalar field varies only at the
phase boundary.
We compare these two methods in Fig. 11. Both velocity

estimators agree for the majority of the duration of all the
simulations. The largest disagreement is at late times for the
simulation with α ¼ 0.34, but even here the estimator from

FIG. 11. Comparison of the two different wall speed estimators
discussed in this appendix (cf. Fig. 2). The solid line corresponds
to the wall speed as estimated using the broken phase volume and
phase boundary surface area [cf. Eq. (A5)], whereas the dashed
line gives the speed as estimated using the kinetic and gradient
energies [cf. Eq. (A7)].
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the kinetic and gradient energies differs by at most 20%
from the estimator using the broken phase volume and
boundary surface area. We use the broken phase volume
and boundary surface area estimator in the main body of
this paper.

APPENDIX B: EFFECT OF VARYING THE
FRACTIONAL CHANGE IN THE DEGREES

OF FREEDOM

In the main body of this paper, we focus on a particular
choice of the change in the number of light degrees of

FIG. 12. Plots showing the effect of varying the fractional change in degrees of freedom, Δa=a0 on the wall velocity vw and
normalized kinetic energy fraction Kd=KbðRrefÞ. Four choices of α are shown, with the same three choices of Δa=a0 shown for each. To
allow comparison, the axes are the same for all choices of α; the α ¼ 0.34 case is therefore cut off at t ¼ 300000=Tc, before the droplets
evaporate. As α is increased, the effect of varying Δa=a0 becomes milder.
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freedom Δa=a0 ≈ 0.0059. One might expect that stronger
transitions are easier to achieve with larger changes in the
number of light degrees of freedom; for example, they will
in general require less supercooling to achieve a compa-
rable transition strength. It is therefore worth exploring the
extent to which the results we present in the main body of
this paper depend on our choice of Δa=a0.
In Fig. 12 we plot the wall velocity and Kd=KbðRrefÞ as a

function of time for several phase transition strengths α, for
a variety of choices of the fractional change in the number
of degrees of freedom across the transition, including
Δa=a ≈ 0.0059 used in the main body of the paper.
In varying Δa=a, we keepM2 and lw constant. We allow

μ and λ to change and then adjust Tn and η to achieve the
desired α and ξw.
For large αwe see good agreement between the different

choices of Δa=a0 for the observables of interest. Therefore,
for strong transitions, the droplet behavior we see in the
main body of the paper is expected to occur, independent of
the choice of Δa=a0.
For smaller α there is some disagreement, with larger

changes in the number of degrees of freedom beginning
with a shift in the amount of kinetic energy generated at
early times. We note that, with our equation of state, the
pressure difference across the wall at Tn is

Δp≡ pðTn; 0Þ − pðTn;ϕbÞ

¼ −
Δa
a0

�
1 −

Δa
a0

1

3α

�
a0T4

c: ðB1Þ

The magnitude of the pressure difference is approximately
linear in Δa=a0 for sufficiently large α, but it decreases
for Δa=a0 > 3α=2.
The initial pressure difference determines the initial wall

velocity—even though we have adjusted η so that an
expanding bubble would reach the same asymptotic wall
velocity ξw. A slower initial wall velocity leads to less
kinetic energy transfer, which has long-lasting conse-
quences for Kd=KbðRrefÞ. We believe that this explains
the results for Δa=a0 ≳ α seen in Fig. 12.

APPENDIX C: CONVERGENCE
WITH INITIAL DROPLET RADIUS

In Fig. 13 we show how the wall velocity and
Kd=KbðRrefÞ vary with time for a variety of different initial
droplet radii Rd0. We normalise the time by the initial

radius, and find that for initial radii over one order of
magnitude the results collapse onto a single line. Note that
the reference radius taken for KbðRrefÞ is, in line with the
choice made in Sec. V, the initial droplet radius Rd0 and
hence is different for each case shown.
The only meaningful combination of length scales in the

initial conditions is the bubble wall width relative to the
initial radius. In the early universe, the wall width will
likely be many orders of magnitude smaller than the radius
of a hot droplet, given the difference in scale between the
bubble wall width lw and the typical distance between
bubbles R�. The collapse of these curves onto a single line
gives us confidence that our results can be extrapolated to
the physical case, where the separation is potentially much
larger.

FIG. 13. Plot showing the effect of the initial droplet radius on
the results of interest in the main body of the paper, with
α ¼ 0.11. The wall velocity vw and droplet radius Kd normalized
to the initial bubble radius KbðRrefÞ are both shown, as a function
of time normalized to initial droplet radius Rd0. The curves
generally collapse onto a single line, showing minimal depend-
ence on the initial droplet radius. As in Fig. 7, the lines in the
upper plot end when the phase boundary reaches the origin. The
measurement interval was kept constant at 1500 timesteps,
leading to some aliasing in the results.
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