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Some cosmological models with non-negligible dark energy fractions, in particular windows of the
prerecombination epoch, are capable of alleviating the Hubble tension quite efficiently, while keeping the
good description of the data that are used to build the cosmic inverse distance ladder. There has been an
intensive discussion in the community on whether these models enhance the power of matter
fluctuations, leading de facto to a worsening of the tension with the large-scale structure measurements.
We address this pivotal question in the context of several early dark energy (EDE) models, considering
also in some cases a coupling between dark energy and dark matter, and the effect of massive neutrinos.
We fit them using the Planck 2018 likelihoods, the supernovae of Type Ia from the Pantheon compilation,
and data on baryon acoustic oscillations. We find that ultralight axion-like (ULA) EDE can actually
alleviate the H0 tension without increasing the values of σ12 with respect to those found in the ΛCDM,
whereas EDE with an exponential potential does not have any impact on the tensions. A coupling
in the dark sector tends to enhance the clustering of matter, and the data limit greatly the influence
of massive neutrinos, since the upper bounds on the sum of their masses are too close to those obtained
in the standard model. We find that in the best case, namely ULA, the Hubble tension is reduced to ∼2σ.
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I. INTRODUCTION

The standardmodel of cosmology, also known asΛCDM,
relies, among other assumptions, on the existence of cold
dark matter (CDM) and a constant (immutable) vacuum
energy density that pervades space and is in charge of the
late-time acceleration of the universe [1]. Despite its
apparent simplicity, this model has shown an undeniable
ability to explain a wide variety of cosmological observa-
tions with an incredible accuracy, ranging from the anisot-
ropies of the cosmicmicrowave background (CMB) [2,3], to
the baryon acoustic oscillations (BAO) imprinted in the
distribution ofmatter in the universe [4,5], and to theHubble
diagram of supernovae of Type Ia (SNIa) [6,7]. This is why
theΛCDM is sometimes also referred to as the concordance
model of cosmology. However, apart from very important

and long-standing theoretical problems associated with the
value of the vacuum energy density (see, e.g., [8] and
the review [9]), we have also witnessed in the last years the
stubborn persistence of significant tensions between the
model and some data, which make the ΛCDM less con-
cordant than previously thought. Two of the most prominent
ones are theHubble (orH0) [10] and σ8 (or S8) tensions [11].
These are the tensions we will focus our attention on in this
work, although there are others, such as those linked to the
CMB anomalies, see, e.g., [12,13]. The H0 tension is
between the Hubble constant measured by the SH0ES team
model independently with the cosmic distance ladder
method [14], and the CMB-inferred value by the Planck
collaboration [3], which assumes ΛCDM. These values
read, respectively, H0 ¼ ð73.04� 1.04Þ km=s=Mpc and
H0 ¼ ð67.36� 0.54Þ km=s=Mpc,1 and are in 4.8σ tension.
On the other hand, the S8 parameter is defined as
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1Here, as well as in the evaluation of the S8 tension, we take the
value obtained from the TT;TE;EEþ lowEþ lensing analysis
by Planck [3].
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S8 ¼ σ8ðΩð0Þ
m =0.3Þ0.5, with Ωð0Þ

m the current matter density
fraction, σ8 the rms of mass fluctuations at scales of
R8 ¼ 8 h−1Mpc, and h the reduced Hubble parameter.
The S8 tension is found between, again, the ΛCDM-based
inference by Planck [3], S8 ¼ 0.832� 0.013, and the value
measured by some weak-lensing surveys. For instance, the
combined tomographic weak gravitational lensing analysis
of the Kilo Degree Survey (KiDS +VIKING-450) and the
Dark Energy Survey (DES-Y1) [15] led to the measurement
S8 ¼ 0.762þ0.025

−0.024 , under the assumption of the standard
model. The latter is in 2.5σ tension with Planck. This
tension is actually still compatible with a statistical fluc-
tuation [16], although the first hints for a tension between the
ΛCDM and the large-scale structure (LSS) data appeared
already almost one decade ago [17] and have persisted over
the years [18–21].
These tensions, if not explained by unaccounted sys-

tematic uncertainties in the data, might be calling for new
physics to reestablish the cosmic concordance. Many
models have been already invoked to try to alleviate them,
with more or less success; cf. the dedicated reviews [12,22].
Some of the most promising proposals modify the physics
in the prerecomination epoch either by considering changes
in the gravitational theory [23–28], an early dark energy
(EDE) component [29–33], the effect of primordial mag-
netic fields [34], varying atomic constants [35,36] or
running vacuum models [37]. These changes are usually
accompanied also by some features in the postrecombina-
tion era, and the fitting performance of the various
proposals can vary significantly depending on the particular
dataset under consideration.
In this paper we study some cosmological models with a

dark energy (DE) scalar field in interaction with dark
matter, in which the DE not only plays a role in the late-
time universe, but can also leave some imprints in the
radiation- and matter-dominated epochs (RDE and MDE,
respectively). These models fall into the category of early
dark energy models. While EDE is already present in
standard coupled DE scenarios [38,39], here we consider
the effect of scalar-field potentials that have a direct impact
on the universe’s dynamics already in the RDE and/or
MDE. Recent investigations of uncoupled EDE scenarios
with a non-negligible peak of the EDE fraction before
recombination have proved to be efficient in loosening the
Hubble tension [29,40–42], while respecting the tight upper
bounds on the EDE fraction at the decoupling time [32].
This is because they are able to increase the energy budget
of the universe in that era and, hence, decrease the sound
horizon at the baryon-drag epoch, which forces a larger
Hubble rate at low redshifts to explain the correct location
of the CMB peaks and the BAO data. Some authors have
pointed out, though, that these models might worsen the
tension with the data on LSS; see e.g., [32,43]. There is still
no clear consensus on these matters (see [44,45]), and
further research is needed to shed some light on the

problem at hand. In particular, in this work we address
the question whether the LSS estimators σ8=S8 are appro-
priate for quantifying the tension with the LSS data. We
will see that, as firstly argued in [46], they could lead to
biased results when the posterior distribution for H0 is
significantly different from the ΛCDM one. If so, this can
have of course a direct impact on our understanding of the
cosmological tensions, as we already showed in [32]. The
LSS tension could be directly intertwined with the Hubble
tension. This issue has been discussed in the context of the
ultralight axion-like (ULA) EDE in [47], where the author
concluded that actually this model is able to alleviate the
Hubble tension while keeping the mass fluctuations at
scales of 12 Mpc very close to the preferred value in the
ΛCDM and, hence, without any clear enhancement of the
clustering at these scales. Significant differences at other
scales might exist, though. ULA typically enhances the
power spectrum at small scales, and suppresses it at large
scales. In this paper we will elaborate more on this idea.
We concluded in our previous work [32] that a coupling

between DE and DM could help us, in principle, to alleviate
both tensions at a time, since it could allow the dark matter
energy density to be larger than in the standard model at
the last-scattering surface (which is needed to counteract
the enhancement of the early integrated Sachs-Wolfe
effect [48]) while retrieving standard values of ωcdm.
This possibility has been already explored in the literature
[49,50], where the authors obtained constraints using
data on CMB and other datasets, incorporating in all
cases the prior on H0 from SH0ES [14]. Here, we
perform our fitting analyses sticking to the combination
CMBþ SNIaþ BAO, which contains the main ingredients
to build the inverse distance ladder [51–54]. We do not
include any prior on the Hubble constant. We deem this
important in order to assess the real ability of these models
to alleviate the tensions by checking what is the actual room
for shifts in the parameters of interest according to this
robust cosmological dataset. We provide constraints not
only on σ8=S8, but also on σ12 and the related quantity S12
(see [46]), and discuss the Hubble tension also in terms of
the absolute magnitude of SNIa. Constraints on these
parameters have not been previously reported for the
coupled and uncoupled EDE models explored in this paper.
We study ULA with and without coupling in the dark

sector, but not only. In [32] we showed that EDE models
with scaling solutions during the matter- and radiation-
dominated eras, as those found when the scalar-field
dynamics is governed by an exponential potential in the
MDE and RDE, are not efficient concerning the tensions.
Here we consider the case of DE with an exponential
potential during the MDE and RDE with and without
coupling with DM, and with a cosmological constant
triggering acceleration at late times. We present constraints
on it, and compare our results with the ΛCDM, the
uncoupled model, and the coupled model with a
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trivial flat potential, together with the coupled and
uncoupled ULA.
On top of that, we study the effect of massive neutrinos

in our analyses of uncoupled ULA and coupled quintes-
sence with a cosmological constant. It is very well known
that massive neutrinos suppress the matter power spectrum
at low scales, see, e.g., [55], so they could compensate
some of the enhancement effects found in ULA when a
minimal setup with only one massive neutrino of 0.06 eV
is considered, and also those introduced by the fifth force in
coupled dark energy models. Understanding up to
what extent this is possible is one of the main goals of
this work.
The paper is organized as follows. In Sec. II we present

the main cosmological equations at the background and
linear perturbations level for the coupled dark energy
models studied in this work. In Sec. III we discuss the
most relevant phenomenological aspects of these models in
order to understand their main signatures in the cosmo-
logical observables. In Sec. IV we describe the datasets and
the methodology employed to constrain the models, and in
Sec. VI we present and discuss our results. Our conclusions
are provided in Sec. VII.

II. COSMOLOGICAL EQUATIONS IN COUPLED
DARK ENERGY MODELS

We consider a perturbed flat Friedmann-Lemaître-
Robertson-Walker universe with the spacetime line element
written in the synchronous gauge,

ds2 ¼ a2ðτÞ½−dτ2 þ fδij þ hijðτ; x⃗Þgdxidxj�; ð1Þ

with τ the conformal time and x⃗ the spatial comoving
vector. The two scalar degrees of freedom contained in the
matrix hij,

hij ¼
Z

d3ke−ik⃗·x⃗
�
hk̂ik̂j þ 6η

�
k̂ik̂j −

δij
3

��
; ð2Þ

are its trace hðτ; k⃗Þ and ηðτ; k⃗Þ, with k⃗ the comoving wave
number [56]. We do not discuss here the vector and tensor
perturbations.
Regarding the matter content in the universe, we con-

sider the fields described in the standard model of particle
physics and some extension accounting for the neutrino
masses, cold dark matter, and dark energy. DM is treated as
a pressureless perfect fluid, whereas DE is described in
terms of a scalar field ϕ with an associated potential VðϕÞ.
We consider these two components to be in interaction. The
crosstalk between DM and DE modifies their conservation
equations, which take the following form:

∇μTϕ
μν ¼ þQν; ∇μTdm

μν ¼ −Qν: ð3Þ

The source vector Qν is determined by the concrete nature
of the interaction. In this work we consider the conformal
coupling, namely

Qν ¼ κβTdm∇νϕ; ð4Þ

with κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p ¼ m−1
P the inverse of the reduced

Planck mass and Tdm the trace of the DM energy-
momentum tensor. We use, for simplicity, a constant
dimensionless coupling β. The 0 component of (3) leads
to a modified equation describing the anomalous dilution
law for DM,

ρ̄0dm þ 3Hρ̄dm ¼ −βκρ̄dmϕ0; ð5Þ

and the modified Klein-Gordon (KG) equation for the
scalar field,

ϕ00 þ 2Hϕ0 þ a2
dV
dϕ

¼ βκa2ρ̄dm: ð6Þ

The primes denote derivatives with respect to the conformal
time and H ¼ a0=a. These two equations are valid at the
background level, with ϕ the mean (background) value of
the scalar field and ρ̄dm the background DM energy density.
Equation (5) can be trivially solved in terms of ϕ. If we
assume that the number of DM particles is conserved
throughout the cosmic history, the corresponding number

density reads ndmðaÞ ¼ nð0Þdma
−3 and we find that their mass

evolves according to

mdmðϕÞ ¼ mð0Þ
dme

βκðϕð0Þ−ϕÞ; ð7Þ

with the superscripts (0) denoting current quantities. The
dynamics of ϕ is governed by Eq. (6), and depends, of
course, on the intensity of the interaction and the particular
shape of the scalar-field potential. These features character-
ize the model and determine the evolution of the DM mass
with the expansion as well. The Friedmann and pressure
equations take the same form as in the ΛCDM, but
substituting the constant dark energy density ρΛ ¼ Λ=κ2
and pressure pΛ ¼ −ρΛ by

ρ̄ϕ ¼ ðϕ0Þ2
2a2

þ VðϕÞ and p̄ϕ ¼ ðϕ0Þ2
2a2

− VðϕÞ: ð8Þ

At the linear perturbations level, and following the notation
of [56], we obtain in momentum space the following set of
coupled differential equations [57]:

Hh0 − 2ηk2 ¼ κ2a2
�
δρþ ϕ0

a2
δϕ0 þ dV

dϕ
δϕ

�
; ð9Þ

2η0k2 ¼ κ2½a2ðρ̄þ p̄Þθ þ k2ϕ0δϕ�; ð10Þ
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−h00−2Hh0 þ2ηk2¼ 3κ2a2
�
δpþϕ0

a2
δϕ0−

dV
dϕ

δϕ

�
; ð11Þ

κρ̄dma2βδdm ¼ δϕ00 þ 2Hδϕ0 þ
�
k2 þ a2

d2V
dϕ2

�
δϕþ h0

2
ϕ0;

ð12Þ

δ0dm ¼ −
�
θdm þ h0

2

�
− κβδϕ0; ð13Þ

0 ¼ θ0dm þ ðH − βκϕ0Þθdm þ k2βκδϕ: ð14Þ

The first three correspond to the 00, 0i, and ii perturbed
Einstein equations, respectively. The fourth one is the
perturbed KG equation, and the last two are obtained from
the perturbed 0 and i components of the conservation
equation for dark matter. The conservation equations for the
other species remain the same as in the standard model at
all orders in perturbation theory, since there is no direct
coupling between them and ϕ. The quantities δρ≡P

j δρj
and δp≡P

j δpj are the sum of the perturbed densities
and pressures of the various cosmological components,
without including the scalar-field contribution; δdm and θdm
are the DM density contrast and velocity gradient, respec-
tively; δϕ is the perturbation of the scalar field; and
ðp̄þ ρ̄Þθ≡P

jðp̄j þ ρ̄jÞθj. We use adiabatic initial
conditions.
In order to see how the coupling impacts the large-scale

structure formation processes it is illustrative to obtain the
equations for the baryon and dark matter density contrasts
at deep subhorizon scales in the matter- and DE-dominated
universe, when radiation can be safely neglected. They read

δ00b þHδ0b −
κ2a2

2
½ρbδb þ ρ̄dmδdm� ¼ 0; ð15Þ

δ00dm þ
�
H −

βκϕ0k2

k2 þ a2m2
ϕ

�
δ0dm þ ðδ0b − δ0dmÞ

βκϕ0a2m2
ϕ

k2 þ a2m2
ϕ

−
κ2a2

2

�
ρ̄bδb þ ρ̄dmδdm

�
1þ 2β2k2

k2 þ a2m2
ϕ

��
¼ 0: ð16Þ

These equations encode the nontrivial growth of the
matter perturbations, which depends greatly on the details
of the model under study. Notice that we have also included
the effect of the DE massm2

ϕðaÞ≡ d2V=dϕ2. A larger mass
confines the fifth-force effects to smaller scales, i.e., to
larger k’s. Nevertheless, the DE potentials that are able to
trigger the late-time acceleration of the universe must be
extremely flat at late times to explain the current data; see,
e.g., [3,58]. Hence, mϕ can be neglected at low redshifts.
However, if the shape of VðϕÞ allows for a non-negligible
effective DE mass in previous stages of the cosmic

expansion, competing with the physical wave modes k=a
inside the horizon, this could leave an imprint on the large-
scale structure of the universe, so it is useful to keep the
mass terms in these equations and discuss their effects on a
case-by-case basis.
It is easy to check that in the limit β → 0 of Eqs. (15) and

(16) we recover the results of the ΛCDM and uncoupled
dark energy models, and in the limit mϕ → 0 we retrieve
the well-known result of coupled dark energy with a nearly
flat potential; see, e.g., [59,60],

δ00dm þ ½H− βκϕ0�δ0dm −
κ2a2

2
½ρ̄bδb þ ρ̄dmδdmð1þ 2β2Þ� ¼ 0:

ð17Þ
By combining (9) and (12) one can see that in these coupled
DE scenarios the dark energy component does not cluster at
deep subhorizon scales, since when k2 ≫ H2 we have

δρϕ ¼
ϕ0

a2
δϕ0 þ dV

dϕ
δϕ∼

�
H
k

�
2

× ½β2;βα�×OðδρmÞ; ð18Þ

with α the slope of the potential. This means that galaxies
are tracers of the underlying distribution of dark matter, as
in the ΛCDM.
In this work we study models with a potential of the

following form:

VðϕÞ ¼ V0 þ VedeðϕÞ: ð19Þ
By construction, Vede is not important at z≲ 1, but can have
a sizable impact at z ≫ 1, i.e., during the matter and/or
radiation-dominated epochs. V0, instead, is a constant term
that is responsible for the current-accelerated phase of the
universe. Therefore, V0 ¼ Oðm2

PH
2
0Þ and dominates the

expansion at late times. It is basically the energy density
associated with the cosmological constant. For simplicity,
we do not consider more complicated shapes of the
potential at low redshifts, just not to introduce possible
degeneracies with the features that characterize Vede. This
would hinder the interpretation of our results.
We focus in this paper on three alternative forms of Vede

with and without considering the effect of the coupling in
the dark sector, i.e., studying both the cases with β ¼ 0 and
β ≠ 0. We dedicate the next section to list them and explain
their main phenomenological aspects.

III. PHENOMENOLOGY OF SEVERAL COUPLED
AND UNCOUPLED EDEMODELS IN A NUTSHELL

A. Constant potential

1. Standard model

If VðϕÞ ¼ V0 and β ¼ 0 the model reduces to the
ΛCDM, since in this case the DE has no dynamics and
there is no interaction between DM and DE. This is the only
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model studied in this paper in which the dark energy
density is a pure rigid constant at all times.

2. Coupled dark energy with a flat potential

If VðϕÞ ¼ V0 but β ≠ 0 the interaction in the dark sector
is active, and this gives rise to a very rich phenomenology.
The first coupled DEmodels of this sort were presented and
studied in [38,39]. See also [61]. In this paper we refer to
the model of coupled DE with flat potential as CDE_const.2

For values of the coupling of the order β ≲Oð10−1Þ, such
as the ones preferred by the data [47,59,60,62–70], the
scalar field has a negligible energy density before the
matter-radiation equality time, teq. In particular, its kinetic
energy is derisory, and we can take as initial condition
ϕ0
ini ≡ ϕ0ðziniÞ ¼ 0, with zini ¼ 1014. In this model only the

derivatives of the scalar field enter the equations, so the
cosmological evolution of the relevant quantities is not
affected by the initial value of ϕ. We opt to set ϕini ¼ 0. The
interaction starts to play a role around teq, when the value of
ρ̄dm becomes comparable to the one of the radiation energy
density and the source term in the rhs of the KG equation (6)
starts to accelerate the scalar field. In this model the product
βϕ0 > 0 regardless of the sign of β, i.e., the rhs of Eq. (5) is
negative, so there is a decay of the DM mass that happens
mostly during the matter-dominated era. The model has an
almost exact scaling solution in that epoch, with an EDE
fraction ΩMD

ede ≈ 2β2=3 [39].3 Thus, there is a nonzero
amount of kinetic EDE during the postrecombination
epoch, even when the potential is a simple constant, as
in the case we are studying here. An increase of the absolute
value of the coupling enhances the fifth force and, for fixed
initial conditions, it makes the universe more decelerated
and DM to cluster more efficiently in the matter-dominated
epoch. If we consider that baryons are also coupled to DE
as a first approximation, the deceleration parameter and
density contrast read, respectively, q ¼ −äa= _a2 ¼ 1

2
þ β2

and δm ∼ a1þ2β2 .

A larger mass of the DM particles at the last-scattering
surface could help, in principle, to alleviate the Hubble
tension, since this would decrease the sound horizon at the
baryon-drag epoch, rd, which would require in turn a larger
Hubble function at late times to keep fixed the location of
the first peak of the CMB temperature power spectrum
measured by Planck. In practice, though, current data put
very tight constraints on β and limit strongly the capability
of the model of loosening the H0 tension [60].4

Nevertheless, past studies found a persistent peak in the
posterior distribution of the coupling under various datasets
and with different statistical significance, which is certainly
an interesting feature of the model; see, e.g., [60,64,66].
This peak has recently been shown not to be induced by
volume effects introduced in the marginalization proc-
ess [47].
We deem useful to present in this work the fitting results

for the ΛCDM and coupled DE with a constant potential
and compare them with those obtained with the coupled
and uncoupled EDE models that we describe in the next
two subsections, Secs. III B and III C.

B. Exponential potential

We also study the case of EDE with the following
exponential scalar-field potential:

VðϕÞ ¼ V0 þ
ΩRD

edeρrðainiÞ
3ð1 −ΩRD

edeÞ
exp

�
−2κffiffiffiffiffiffiffiffiffi
ΩRD

ede

p ðϕ − ϕiniÞ
�
: ð20Þ

During the RDE the model has a scaling solution with an
EDE fraction equal to ΩRD

ede [71,72]. This parameter is left
free in our Monte Carlo analyses, with the flat prior
ΩRD

ede ∈ ½0; 1�. It is the only additional parameter with
respect to the ΛCDM. The constant factor that is multi-
plying the exponential term in formula (20) has been
chosen to make the model be already in the scaling regime
at zini, and ϕini can be safely set to 0, since the dynamics of
the scalar field depends only on the difference ϕ − ϕini.

5

TABLE I. Shorthand for the different EDE models studied in
this paper.

Shorthand Model

CDE_const Coupled DE with constant potential
EXP Uncoupled DE with exponential potential
CDE_EXP Coupled DE with exponential potential
ULA Uncoupled DE with ULA potential
CDE_ULA Coupled DE with ULA potential

2In Table I we list the shorthands for the various EDE models
studied in this paper.

3It would be exact if also baryons were coupled to the DE. This
is a possibility that we do not contemplate in this paper, just to
automatically pass the stringent local constraints on fifth forces.

4Weaker constraints on β are obtained when the low multiples
from Planck are combined with ACT and SPT-3G CMB data,
which allows for larger values of H0. However, the alleviation of
the Hubble tension is in this case induced by a reduction of the
statistical power of the overall dataset [70].

5Notice that the scaling regime in the MDE and RDE would be
never reached if the constant factor λ in the exponential e−λκϕ was
λ <

ffiffiffi
2

p
[39,72]. In the latter case the exponential potential would

only become important at low redshifts. Values of λ <
ffiffiffi
2

p
are

required to produce the late-time accelerated phase of the
universe if V0 ¼ 0, of course. Constraints on the model with
V0 ¼ 0 and an exponential potential with λ <

ffiffiffi
2

p
(and other

similar potentials) have been obtained in many previous works in
the literature; see again [47,59,60,62–69]. We remark that the
model CDE_EXP is very different from the latter, since we
automatically have λ >

ffiffiffi
2

p
due to the physical range of values

allowed for ΩRD
ede. The constant term in the potential (20), V0, is

crucial to ensure the phenomenological viability of the model.
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In the MDE the model has two fixed points. The model is
attracted by one or the other depending on the values of
ΩRD

ede and the coupling β [39]. These fixed points are not
stable due to the nonzero constant term V0 in the potential,
which forces the model to abandon the scaling regime when
matter is sufficiently diluted. The universe enters then the
phase of late-time acceleration. Let us analyze first
the phenomenology in the case when there is no coupling
in the dark sector.

1. Exponential potential with no coupling

We haveΩRD
ede ≠ 0, but β ¼ 0. We call this model “EXP”.

It is a particular case of the double-exponential potential
firstly studied in [73]. The EDE fraction in the MDE reads
in this case ΩMD

ede ¼ 3ΩRD
ede=4, i.e., it decreases by 25% from

the RDE to the MDE [71,72]. EDE delays the matter-
radiation equality time and slows the growth of matter
perturbations down with respect to the ΛCDM. During the
MDE the matter-density contrast at subhorizon scales
grows as δm ∼ a1−

9
20
ΩRD

ede . The presence of DE near last
scattering affects the relation between the position of CMB
peaks [74,75]. The maximum value of ΩMD

ede is actually
extremely constrained by the CMB data, basically due to
the stringent bounds imposed on the EDE fraction at the
last-scattering surface. We found in [32] an upper bound
ΩMD

ede ≲ 0.3% at 1σ confidence level (CL) using the Planck
CMB data and the supernovae of Type Ia (SNIa) from the
Pantheon compilation. These tight constraints render the
model extremely close to the ΛCDM, in practice, so its
impact on the cosmological tensions is small. Here, we also
provide constraints on this model to ease the comparison
with the results obtained when we take into account the
effect of the coupling.

2. Coupled dark energy with an exponential potential

We call this model “CDE_EXP” throughout this paper.
Here we consider the most general scenario, with both
ΩRD

ede ≠ 0 and β ≠ 0. The concrete scaling solution during
the MDE is usually reached at z ∼Oð100Þ and depends, as
mentioned before, on the values of these two parameters [39].
In region

RGI∶ β > 0 and ΩRD
ede <

16β2

ð3þ 2β2Þ2 ; ð21Þ

the EDE fraction and deceleration parameter in the scaling
regime read ΩMD

ede ≈ 2β2=3 and q ≈ 1=2þ β2, respectively,
and the equation of state (EoS) of the composite matter þ
DE fluid wmϕ ≡ p̄ϕ=ðρ̄m þ ρ̄ϕÞ ≈ 2β2=3. The DM density

contrast δm ∼ a1þ2β2 at subhorizon scales, as it happens also
in the model CDE_const described in Sec. III A. It is
important to remark, though, that in this model the growth
of perturbations can be very different from the one found in
CDE_const in previous stages of the cosmic history due to

the effect of the nontrivial EDE potential (20). We will
discuss this explicitly later on. The exponential potential in
this model does not play any role during the scaling regime,
since DE only has kinetic energy.
Instead, in region

RGII∶ β ≤ 0 or ΩRD
ede >

16β2

ð3þ 2β2Þ2 ; ð22Þ

we have the following scaling formulas:

ΩMD
ede ≈

3

4
ΩRD

ede −
β

2

ffiffiffiffiffiffiffiffiffi
ΩRD

ede

q
þOðβ2ΩRD

ede; βðΩRD
edeÞ3=2Þ; ð23Þ

q ≈
1

2
þ 3

4
β

ffiffiffiffiffiffiffiffiffi
ΩRD

ede

q
þOðβ2ΩRD

edeÞ; ð24Þ

wmϕ ≈
β

2

ffiffiffiffiffiffiffiffiffi
ΩRD

ede

q
þOðβ2ΩRD

edeÞ. ð25Þ

Negative values of β produce larger EDE fractions and a
less-decelerated universe during the scaling period, con-
trary to what we find whenΩRD

ede ¼ 0, i.e., in CDE_const. In
this epoch the growing mode of the matter-density contrast
at subhorizon scales evolves as δm ∼ an, with

n¼1þ6

5
β2þ6

5
β

ffiffiffiffiffiffiffiffiffi
ΩRD

ede

q
−

9

20
ΩRD

edeþOðβ2ΩRD
ede;βðΩRD

edeÞ3=2Þ:
ð26Þ

Notice that in this case there exists a region in the plane
ðβ;ΩRD

edeÞ that leads to values of n < 1, i.e., that lets matter
perturbations grow slower than in the standard model. We
call this region RGIIb to distinguish it from the region with
an enhanced growth, RGIIa. Of course, all these expressions
reduce to the ones found under the condition (21) when
β > 0 andΩRD

ede → 16β2=9þOðβ4Þ.Moreover, as expected,
we also retrieve the expressions for the model EXP in the
limit β → 0. The limitΩRD

ede → 0 is more subtle and counter-
intuitive. One would expect to recover the scaling solutions
of the model CDE_const, but this only happens if we
perform the limit in the region RGI. In RGIIa this limit
leads to different results. In the presence of ΩRD

ede ≠ 0,
regardless of how small it is, there is a clear asymmetry
between positive and negative values of the coupling, which
is not present whenΩRD

ede is exactly equal to zero.We find, for
instance, that during the scaling period, for extremely small
values of the EDE fraction in the RDE, ΩMD

ede is negligible if
β < 0, whereas it is proportional to β2 if β > 0.
In Fig. 1 we show a diagram of the ðβ;ΩRD

edeÞ plane, with
the two regions defined by the conditions (21) and (22), and
also indicating with different colors the regions that
enhance or suppress the growth of matter perturbations
during the scaling time in the MDE with respect to the
ΛCDMwhen the initial conditions and the other parameters
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are kept fixed in the analysis. It is clear that the presence of
EDE in the RDE introduces an asymmetry between the
solutions found for negative and positive values of the
coupling constant β, which was not present in CDE_const.
This asymmetry, though, does not generate big changes in
the power n (26), which satisfies jn − 1j < 2% for all the
points in the region of parameter space shown in Fig. 1. We
will see later that, given some fixed initial conditions, the
largest deviations from the ΛCDM regarding the growth of
matter perturbations happen during the MDE, but before
the scaling period, i.e., in the redshift range 50≲ z≲ zeq,
with zeq ¼ zðteqÞ.
We show in Fig. 2 the evolution of the EDE fraction and

the EoS of the matter þ DE fluid for several values of the
CDE_EXP parameters.
It is also important to understand how the DM mass

evolves in this model, since it can make the radiation-
equality time to happen earlier or later in the cosmic history,
and has an obvious impact on the LSS as well. In contrast to
model CDE_const, in CDE_EXP the mass of the dark
matter particles does not remain constant during the RDE
due to the velocity of the scalar field triggered by the
potential, and can also increase throughout the history of
the universe depending on the sign of β. Using Eq. (7) it is
straightforward to show that

gðaÞ≡ d
da

�
mdmðaÞ
mð0Þ

dm

�
¼ −

mdm

mð0Þ
dm

�
β
dðκϕÞ
da

�
: ð27Þ

During the RDE gRD ∝ −β
ffiffiffiffiffiffiffiffiffi
ΩRD

ede

p
, and during the scaling

period in the MDE

gMD ∝
�−β2 in RGI

−β
ffiffiffiffiffiffiffiffiffi
ΩRD

ede

p
in RGII

: ð28Þ

FIG. 2. Upper: EDE fraction as a function of the redshift for the
CDE_EXP models listed in the legend. Lower: EoS parameter of
the matter þ DE fluid. During the MDE ΩedeðzÞ and wmϕðzÞ tend
to the scaling solutions discussed in the main text.

FIG. 3. Evolution of the mass ratio gðzÞ (27) in the CDE_EXP
model for four different sets of parameters ðΩRD

ede ; βÞ. The second one
(red dotted line) is located in the region RGI; the others are in RGII.
Notice that for ΩRD

ede ≠ 0 if β < 0 the DM mass grows with the
expansion,whereas it decreases ifβ > 0. See themain text for details.

FIG. 1. Diagram in the plane ðβ;ΩRD
edeÞ of CDE_EXP. The black

thick line is the border between regions RGI and RGII. Below it
and in the line ΩRD

ede ¼ 0we have region RGI (21), whereas above
it we have RGII (22). The blue part corresponds to the region of
parameter space that leads to a lower growth of matter fluctua-
tions than the ΛCDM during the scaling regime in the MDE,
δ ∼ an with n < 1, whereas the pink one indicates the region at
which n > 1. The border between the latter is set by the curves
ΩRD

ede ¼ 4β2=ð−1þ ffiffiffiffiffiffiffiffi
5=2

p Þ2 þOðβ2ΩRD
ede; βðΩRD

edeÞ3=2Þ if β ≥ 0

and ΩRD
ede ¼ 4β2=ð1þ ffiffiffiffiffiffiffiffi

5=2
p Þ2 þOðβ2ΩRD

ede; βðΩRD
edeÞ3=2Þ if

β < 0. See Sec. III B for details.

COUPLED AND UNCOUPLED EARLY DARK ENERGY, MASSIVE … PHYS. REV. D 106, 103522 (2022)

103522-7



Thus, the DM mass in the region RGI of parameter space
decreases with the scale factor, since β > 0. In region RGII,
instead, it decreases if β > 0 and increases if β < 0. We
have verified numerically that it is also the case between the
RDE and the scaling period in the MDE. Hence, we find
that if ΩRD

ede ≠ 0 the DM mass grows with the expansion if
β < 0 and decreases if β > 0. If ΩRD

ede ¼ 0 (i.e., in
CDE_const) mdm always decreases. In Fig. 3 we plot the
evolution of the DM mass for different sets of the
parameters ΩRD

ede and β. It is clear that in order to keep
the DM mass around the recombination time
jΔmdm=mð0Þj ≲ 5%, with jβj ∼ 0.04, we have to demand
ΩRD

ede ≲Oð1%Þ, which is a similar upper bound to the one
obtained in the uncoupled scenario. Thus, we do not expect
the non-null coupling to relax the existing tight constraints
on ΩRD

ede very much. We will actually see in Sec. VI that this
is precisely the order of magnitude that we get from our
fitting analyses.
Now, we discuss in more detail the evolution of the DM

density contrast in the CDE_EXP model, fixing the initial
conditions and exploring different values of β and ΩRD

ede. In
the left plot of Fig. 4 we show the relative differences
between the density contrast of DM computed in the
ΛCDM and the other models, as a function of the redshift.
In all cases the effect of the DE mass can be neglected in
good approximation, since the comoving perturbation scale
under study (k ¼ 0.1 Mpc−1) is larger than the product
amϕ after horizon crossing; see Appendix A. The enhance-
ment or suppression of the DM density contrast affects the
evolution of the baryon density perturbations through
Eq. (15), and leads also to the increase or decrease of
the total matter power spectrum; see the right plot in Fig. 4.
First of all let us analyze the simplest scenario, in which

the coupling is switched off and there is a non-null EDE
fraction (yellow curve). Before the scale reenters the

horizon at z ∼ 106 the DM density contrast remains
constant, 1% below the ΛCDM value due to the 1%
additional radiation content in the form of DE. Apart from
this, nothing differs from the standard model, except that
during the MDE the matter fraction is lower and DE is
nonzero. This suppresses the perturbation’s growth.
What does happen, instead, when both β and ΩRD

ede are
sizable? Once the scale reenters the horizon, before the
matter-radiation equality time the matter fraction is negli-
gible. The scalar field has been accelerated during the RDE,
though, so it has some velocity and the friction term in the
equation for δdm (17) modifies the evolution of the density
contrast, since it is proportional to −βϕ0. If β < 0 (β > 0)
the friction is enhanced (suppressed). These departures
from the ΛCDM do not have a huge impact in terms of
absolute differences, since they happen when the density
perturbations are still quite small (see the inner plot in
Fig. 4). After zeq, the matter fraction in the universe starts to
be important and so also the source term in Eq. (17).
The typical variation of κϕ triggered by the potential during
the RDE is of order one and positive for the values
employed to build the orange, red, blue, and cyan curves
(ΩRD

ede ¼ 10−3; 10−2). This statement is easy to prove.
During the RDE the scalar field does not feel the coupling
and evolves as

κϕðaÞ ¼ κϕini þ 2

ffiffiffiffiffiffiffiffiffi
ΩRD

ede

q
ln

�
a
aini

�
: ð29Þ

Thus,

κϕðzeqÞ − κϕini ∼ 50

ffiffiffiffiffiffiffiffiffi
ΩRD

ede

q
∼Oð1Þ ð30Þ

for the aforementioned range of values of ΩRD
ede. This

basically means that at zeq the mass of the DM particles
(7) takes the value

FIG. 4. Left: relative differences between the density contrast of DM computed in the CDE_EXP models specified in the table and the
ΛCDM (our reference model), as a function of the redshift and for k ¼ 0.1 Mpc−1. For the standard model we use the values of the
parameters obtained from the Planck 2018 TTTEEEE analysis [3]. In the inner plot we show the evolution of δdmðzÞ in the ΛCDM, to
understand when these relative differences lead to important absolute differences; Right: the same, but for the linear matter power
spectrum at z ¼ 0, in the relevant range of k’s.
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mdmðziniÞ ¼ mini½1 − β ×Oð1Þ�: ð31Þ

Contrary to what we find when there is no important EDE
fraction in the RDE, the source term in Eq. (17) contains a
contribution that is proportional to β, instead of β2. For
β > 0 the mass is smaller than mini and the DM density
contrast decreases with respect to the one in the ΛCDM. If
the coupling is negative the opposite happens. This behavior
can be clearly appreciated in Fig. 4. When the system
reaches the scaling regime, at z ∼ 50, we can apply the
formulas of δdm shown before. For the values of ðβ;ΩRD

edeÞ
contained in the region RGIIb (blue curve) of the parameter
space there is a suppression of the DM growth during the
scaling period. Nevertheless, as we have already pointed out
before, the largest fraction of the relative differences is
generated between thematter-radiation equality time and the
beginning of the scaling in the MDE.
The brown and green curves in Fig. 4 deserve also some

comments. Due to the very small value of ΩRD
ede in these

cases, the friction term plays no role before teq, and this is
why we do not observe any bump at z > zeq in the plot of
Δδdm=δdm. The mass of the DM particles at that time is very
close to the initial one, mini, so the source term in Eq. (17)

receives only a correction of order β2. Hence, regardless of
the sign of β, δdm starts to grow after teq. The growth is
faster if β > 0, since the increase of the scalar field and the
DM mass is more efficient in this case.
We illustrate in Fig. 5 the behavior of the CMB temper-

ature and polarization spectra and their cross-correlation in
the CDE_EXP models. For fixed initial conditions, a
negative coupling makes the mass of the DM particles
increase with the expansion (see again Fig. 3), which leads
to a larger DM energy density compared to theΛCDM. The
relative difference is larger in the late-time universe and this
produces an increase of the angle subtended by the sound
horizon at the decoupling time. These phenomena, which
are enhanced by larger values of ΩRD

ede, in turn, produce a
decrease of the amplitude of the CMB peaks and their shift
towards lower multipoles. This explains why β is positively
correlated with H0.

C. ULA potential

We also want to test the performance of the coupled and
uncoupled dark energy models ruled by the ultralight
axion-like potential [29,76],

FIG. 5. CMB temperature (TT) and polarization (EE) autocorrelation spectra, and their cross-correlation (TE), obtained for four
different CDE_EXP scenarios. In the top-right plot we zoom in the region l ≳ 500 to better distinguish the differences between the TT
spectra in that multipole range. The black curves correspond to the reference ΛCDM model, the same employed in Fig. 4.
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VðϕÞ ¼ V0 þm2f2½1 − cosðϕ=fÞ�3: ð32Þ

This potential introduces three additional parameters with
respect to the ΛCDM, to wit: m, f, and the initial value of
the scalar field, all of them with dimensions of energy in
natural units. The latter is usually written in terms of the
dimensionless quantity θini ¼ ϕini=f, with θini ∈ ½0; π�.
Deep in the RDE, and regardless of the coupling, the
expansion rate is much larger than the mass of ϕ, i.e.,
H ≫ m, so the scalar field has practically no dynamics
and V≃ const. This allows us to take as initial condi-
tion ϕ0

ini ¼ 0.
We discuss the models with and without coupling

separately in the subsequent subsections.

1. ULA with no coupling

In this case β ¼ 0. We refer to this model simply as
“ULA.” The scalar field gets accelerated when H ∼m. At
that moment it starts to roll down the potential and
eventually oscillates around its minimum. During the
oscillatory phase its energy density decays faster than
radiation, and after the decay the model reduces essentially
to the standard model, with VðϕÞ ≈ V0. If the constant
value of the potential during the RDE is large enough, and
if m ∼HðzeqÞ, it is possible to generate a peak in the EDE
fraction fede close to zeq, at zmax, that can lead to a decrease
of the sound horizon and, therefore, force larger values of
the Hubble rate at low redshifts. This is required to keep the
position of the first peak of the CMB temperature angular
power spectrum as it is measured by Planck, and also to
keep the good fit to the BAO data. The decay of the EDE
density is sufficiently fast to respect the tight constraints on
the DE fraction around the recombination time [32,77].
ULAwas firstly proposed as a viable option to alleviate the
Hubble tension in [29]. After that, some studies pointed out
that this model tends to enhance the large-scale structure in
the universe; see, e.g., [43,78]. In order to mitigate the
increase of the early integrated Sachs-Wolfe (iSW) effect
introduced by EDE the model needs to increaseωcdm and ns
as well; see, e.g., [48]. This, in turn, enhances the LSS if the
other parameters of the theory (including V0) do not allow
for any compensation of this effect. There have been
intensive discussions on this issue in the literature; see,
e.g., [32,43–45,78], and [40,41] for the results obtained
incorporating also the data from the Atacama Cosmology
Telescope [79] and SPT-3G 2018 [42]. These discussions
have been mainly based on the interpretation of the
posterior distributions obtained in several fitting analyses

for the quantities σ8 and S8 ¼ σ8ðΩð0Þ
m =0.3Þ0.5, which tend

to peak at larger values than those found for the ΛCDM
and, therefore, to worsen the σ8=S8 tension. As firstly
argued in [46], these quantities are sometimes difficult to
interpret as clean LSS estimators, though. The reason is
simple. The rms of mass fluctuations at the scale R reads

σ2R ¼ 1

2π2

Z
∞

0

dkk2PðkÞ½WðkRÞ�2; ð33Þ

with R the radius of the spherical top-hat window func-
tion WðkRÞ used to smooth the matter-density field.
The quantity σ8 is computed using R8 ¼ 8 h−1Mpc,
which depends on the reduced Hubble parameter h ¼
H0=ð100 km=s=MpcÞ. This means that in each step of a
Monte Carlo analysis the value of σ8 is not obtained using
the same scale, just because the value of h changes and so
does also R8. Thus, the fact that the posterior distribution of
σ8 is shifted towards larger values in a concrete model with
respect to another model does not necessarily imply that
matter fluctuations are larger in the former. If the posterior
distribution for H0 also peaks at higher values we system-
atically evaluate the rms of mass fluctuations at lower
scales and this can produce an enhancement of σ8 even if
the shape of the matter power spectrum is the same or very
similar in both models.
The author of [46] suggested to use the rms of mass

fluctuations in spheres of radius R12 ¼ 12 Mpc, σ12, and
the related parameter S12 ¼ σ12ðωm=0.14Þ0.4, instead of σ8
and S8. R12 does not depend on h and, hence, σ12 is free
from the aforementioned bias that might affect some
models with posteriors for h that differ from those found
in the ΛCDM. Fitting values of these parameters were
already obtained for the first time in [32] from the
reconstruction of the EDE fraction with various datasets,
showing that the values of σ12=S12 are in all cases lower
than σ8=S8 and that the former lie closer to the ΛCDM
results, which means that these matters can have a direct
impact on the quantification of the tension between the
models and the LSS data.
In [47] it was shown that ULA actually alleviates the H0

tension while keeping the value of σ12 extremely close to
the ones obtained in the standard model. This might be
pointing out that ULA does not worsen the tension with the
LSS data that much, if at all. In this paper we will elaborate
more on this observation, and will show explicitly that the
best-fit ULA model does not suffer from any enhancement
of the parameter σ12. The equation that governs the
evolution of matter fluctuations at k ≫ H from the MDE
onwards is the same as in the ΛCDM, i.e.,

d2δm
da2

þ 3

2a
dδm
da

½2 − ΩmðaÞ� −
3

2a2
ΩmðaÞδmðaÞ ¼ 0: ð34Þ

During the MDE Ωm ≈ 1, so δm ∼ a both in ULA and the
concordance model. Larger values of ns make matter
fluctuations cluster more efficiently at large k0s, though
(at k≳ 0.1 Mpc−1). Nevertheless, ULA is able to accom-
modate values of the cosmological constant much higher
than in the ΛCDM, making Ωm remain close to 0.3 at low
redshifts. This helps to decrease the amplitude of PðkÞ at
larger scales (lower k’s). PðkÞ is therefore larger than the
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one in the ΛCDM at small scales, but lower at large scales
for typical best-fit values (cf. Sec. VI and Fig. 12). We will
see later that there is a compensation in the computation of
σ12 for ULAwith formula (33) (which involves an integral
over a wide range of k’s) that renders its value stable. This
might be pointing out that the assessment of the tension
with the LSS data is more subtle than previously thought,
and that it cannot be certainly carried out by just looking at
the posteriors for σ8=S8. However, as we have mentioned
before, despite the similarity in the values of σ12 in ULA
and the ΛCDM, there exist important differences in the
shape of the matter power spectra. Probing observationally
the clustering at different scales and measuring unambigu-
ous LSS estimators (see, e.g., [80]) can be a good way of
arbitrating this issue. We will come back to this discussion
in Sec. VI.

2. Coupled dark energy with a ULA potential

We call the ULA model with a non-null coupling (i.e.,
with β ≠ 0) “CDE_ULA.”We suggested in the conclusions
of our previous work [32] that a coupling in the dark sector
could help, in principle, some EDE models with a non-
negligible fraction of DE in some windows of the pre-
recombination epoch to suppress the growth of matter
fluctuations, while keeping large values of H0. Some
authors have already worked in this direction [49,50]. In
this paper we also explore this possibility for coupled ULA,
trying to understand more in detail the phenomenology of
the model and taking special care in the interpretation of the
fitting results by providing constraints on some parameters
that can help us to better assess the tensions, and also by
studying the impact of volume effects in the marginaliza-
tion process, which have been already found to be relevant
in the uncoupled ULA model [47,81].
Let us begin analyzing how the coupling affects the

evolution of the EDE fraction and the dark matter mass in
CDE_ULA. If zmax ∼ zeq, the scalar field feels first the
coupling, rather than the curvature of the potential. This is
why positive values of β allow to climb the potential up
before rolling it down. This has two effects: (i) the moment
at whichm ∼H happens at later times (i.e., lower redshifts)
due to the increase of ρ̄ϕ; and (ii) fede is larger. This
can be seen in the two upper plots of Fig. 6, for two
different values of θini. If zmax ≳ zeq these effects are also
observed, but are less prominent and eventually become
negligible when zmax ≫ zeq, just because the coupling does
not have time to act alone, without the influence of the
potential.
Deep in the RDE the scalar field is in good approxi-

mation frozen and the DM mass remains almost constant,
but the coupling injects some dynamics before zmax if
zmax ∼ zeq. In this phase of the cosmic expansion if β > 0

the scalar field grows mildly, whereas if the coupling is
negative ϕ decreases. When the scalar-field dynamics starts
to be dominated by the potential, close to zmax, we find that

negative β’s produce a decrease of mdm due to Eq. (27) and
the fact that dϕ=da < 0. If β > 0, instead, the DM mass
can increase or decrease depending on the value of the
scalar field at zmax. If ϕðzmaxÞ > πf the DMmass decreases
because dϕ=da > 0; see again Eq. (27). If ϕðzmaxÞ < πf
the DM mass increases because the opposite happens.
This is why the initial condition of the scalar field
plays also a role, as it is clear from the lower plots in
Fig. 6. If θini is close enough to π and β > 0 the scalar field
can oscillate around ϕ ¼ 2πf after the decay instead of
around ϕ ¼ 0. If zmax ≫ zeq this possibility is much less
probable and requires either a fine-tuning of θini to π or
larger (positive) values of the coupling to happen. Notice
that the largest fraction of the change of mdm happens
right after zmax, during the rolling-down period. The mean
value of the DM mass is kept constant in the oscilla-
tory phase.
In the upper plots of Fig. 7 we show how the wave mode

k ¼ 0.1 Mpc−1 of the DM density contrast evolves in the
ULA and CDE_ULA models with respect to the ΛCDM,
for fixed initial conditions and two alternative values of θini.
As expected, the larger is fede the larger is the relative
decrease of δdm at ∼zmax, since dark energy fights against
the aggregation of matter. After the decay of the scalar field,
in ULA the relative difference with respect to the ΛCDM
result remains constant, since the equation for the density
contrast (34) is the same to the one in the standard model. In
CDE_ULA, though, the fifth force makes δdm grow faster
in the MDE. This growth can compensate in most of the
cases the negative bump generated around zmax, giving rise
to an increase of the DM density contrast at low redshifts,
but there are also cases in which this compensation is not
complete (see, e.g., the green curve in the left upper plot of
Fig. 7). The oscillations of the scalar field deep in the
MDE (see the inner plots in Fig. 6) cause the friction
term of Eq. (16) to be inefficient, so in CDE_ULA the
equation of the DM density contrast reads, in good
approximation,

δ00dm þHδ0dm −
κ2a2

2
½ρ̄bδb þ ρ̄dmδdmð1þ 2β2Þ� ¼ 0: ð35Þ

During the scaling regime in the MDE, when the matter
fraction oscillates around Ωm ∼ 1–2β2=3, δdm ∼ a1þ6β2=5

[50], so matter fluctuations grow in this epoch slower than
in CDE_const, but faster than in the concordance model.
The relative differences between the matter power spectrum
of the CDE_ULA models and the ΛCDM are shown in the
lower plots of Fig. 7. We remark that these plots have been
obtained fixing the initial conditions. By changing them,
and the parameters of the EDE scalar-field potential we can
make the density perturbations evolve differently, of
course. Here we only wanted to show the impact of the
coupling. For a precise assessment of the ability of these
models to describe the current cosmological data and
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loosen the cosmological tensions we are forced to perform
a detailed fitting analysis. We devote the next sections to
explain the fitting strategy (datasets and methodology) and
report our results.

IV. DATASETS

These are the datasets employed in our fitting analyses:

A. CMB data

We employ the full Planck 2018 TTTEEEþ lowEþ
lensing likelihood [3], i.e., the data on the temperature (TT)
and polarization (EE) anisotropies of the CMB, their cross-
correlations (TE), and the data on the CMB lensing
reconstruction. We vary in our Monte Carlo (MC) runs
the 21 Planck nuisance parameters together with the
cosmological ones. We denote this dataset as Planck18,
in short.

B. Supernovae and BAO

We also fit our models to a richer dataset that incorpo-
rates the observational ingredients usually used to build the
cosmic inverse distance ladder [51–54], which is relevant
for the discussion on theH0 tension. We combine Planck18
with the data on SNIa from the Pantheon compilation [82]
and the BAO information from several galaxy surveys. We
call this dataset Planck18þ SNIaþ BAO. The absolute
magnitude of the SNIa, M, is left free in the MC runs. We
display its value in our tables in all cases in which we
employ SNIa. It is a relevant quantity. The SH0ES
collaboration has measured M using the calibration of
the SNIa in the first steps of the (direct) cosmic distance
ladder, MSH0ES ¼ −19.253� 0.027 [14], which is inde-
pendent from the underlying cosmology. This value is fully
compatible with the one inferred in model-independent
studies of low-redshift cosmological data sets [83,84], but
much higher than the one obtained in cosmological

FIG. 6. Upper: EDE fractions obtained with different ULA and CDE_ULA models. We use in all cases the same values of ωb, V0,
ρ̄dmðziniÞ, log10ðf=eVÞ, and log10ðm=eVÞ. In the left plot we set θini ¼ 2.9, and in the right plot θini ¼ 2.3. We show the results for

β ¼ 0;þ0.05;−0.05; Lower: the value of the mass ratiomdmðzÞ=mð0Þ
dm for the models studied in the upper plots. Positive values of β lead

to a larger fede, but do not necessarily make the DM mass decrease with the expansion. For sufficiently low values of θini a β > 0

producemð0Þ
dm > mdmðziniÞ. Notice also that a very significant fraction of the total variation of the DMmass happens between zmax and the

decoupling time. See the main text for more comments.
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analyses of the ΛCDM using the CMB data from Planck
and high-redshift SNIa. The latter usually lies close to
M ∼ −19.40. TheH0 tension can be thought of as a tension
between the locally measured value of M and the one
inferred from cosmological studies in the context of the
standard model; see, e.g., [85,86]. It can be therefore
enlightening to discuss the H0 tension directly in terms
of M. We do so in Sec. VI.
Our BAO dataset includes the following points:
(i) DV=rd at z ¼ 0.122 provided in [87], withDV being

the dilation scale,

DVðzÞ ¼
�
D2

MðzÞ
cz

HðzÞ
�
1=3

; ð36Þ

and DM ¼ ð1þ zÞDAðzÞ the comoving angular
diameter distance. This data point combines the
dilation scales previously reported by the 6dF
Galaxy Survey (6dFGS) [88] at z ¼ 0.106 and the
Sloan Digital Sky Survey (SDSS) Main Galaxy
Sample at z ¼ 0.15 [89].

(ii) The anisotropic BAO data (DAðzÞ=rd, HðzÞrd)
measured by BOSS using the LOWZ (z ¼ 0.32)
and CMASS (z ¼ 0.57) galaxy samples [18].

(iii) The dilation scale measurements by WiggleZ at
z ¼ 0.44, 0.60, 0.73 [90].

(iv) DAðzÞ=rd at z ¼ 0.81 measured by the Dark Energy
Survey (DES) [91].

(v) The anisotropic BAO data from the extended BOSS
Data Release 16 (DR16) quasar sample at z ¼
1.48 [92].

(vi) The anisotropic BAO information obtained from the
Lyα absorption and quasars of the final data release
(SDSS DR16) of eBOSS, at z ¼ 2.334 [93].

C. A comment on BBN

The only models among those described in Sec. III that
could modify significantly the big bang nucleosynthesis
(BBN) processes are those with the exponential potential
discussed in Sec. III B, i.e., EXP and CDE_EXP, since we
assume that the scaling solution in these models is already
reached at zini ¼ 1014 ≫ zBBN. Nevertheless, we will see in

FIG. 7. Upper: relative differences between the density contrast of DM computed in the CDE_ULA models and the ΛCDM (our
reference model), as a function of the redshift and for k ¼ 0.1 Mpc−1. For the standard model we use the values of the parameters
obtained from the Planck 2018 TTTEEEE analysis [3], and for the CDE_ULA models we use the same values of the parameters as in
Fig. 6. Lower: relative differences of the linear matter power spectrum at z ¼ 0, using the same models.
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Sec. VI that we get very tight constraints on ΩRD
ede from the

CMB data, i.e., using CMB data alone we obtain way lower
upper bounds than those imposed by the BBN data [94], so
even in these models EDE does not have a sizable impact
on the physics at the BBN epoch. On the other hand, the
upper value of the flat prior employed for zmax in ULA and
CDE_ULA (cf. Sec. III C), is five orders of magnitude
lower than zBBN. Hence, the EDE fraction is completely
negligible at the BBN time and therefore does not affect the
nucleosynthesis physics either. Some effects can be intro-
duced by shifts of the baryon energy density in this model,
but they are in any case very small [95]. In summary, we do
not need to consider any BBN constraint in our study.

D. Massive neutrinos

In most of our fitting analyses we use two massless and
one massive neutrino of 0.06 eV. However, we also
constrain some models using the Planck18þ SNIaþ
BAO dataset allowing the three neutrino masses to vary
simultaneously in the Monte Carlo runs, assuming a normal
ordering, i.e., m1 < m2 < m3. The latter is a sufficient
assumption because the constraints on the sum of the
neutrino masses

P
mν are not very sensitive to the neutrino

hierarchy [96]. We consider the constraints from solar and
atmospheric neutrinos, which read, respectively, [97]:
Δm2

21 ≡m2
2 −m2

1 ¼ ð7.50þ0.19
−0.17Þ × 10−5 eV2 and Δm2

31≡
jm2

3 −m2
1j ¼ ð2.524þ0.039

−0.040Þ × 10−3 eV2. We actually vary
m1, Δm2

21 and Δm2
31 in the Monte Carlo, and compute the

masses of the two heavier neutrinos using

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ jΔm2
21j

q
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ jΔm2
31j

q
: ð37Þ

Massive neutrinos reduce the clustering of matter below the
free-streaming scale (see, e.g., [55]) and, therefore, could
have an impact on our analyses if the data give room to
larger values of

P
mν.

We display the fitting results for the models discussed in
Sec. III under the Planck18 and Planck18þ SNIaþ BAO
datasets in Sec. VI.

V. METHOD

We have implemented the background and linear per-
turbations equations of Sec. II and the various scalar-field
potentials presented and discussed in Sec. III in our own
modified versions of the Einstein-Boltzmann system solver
CLASS [98]. All of them have, of course, gone through the
corresponding validation processes in order to check their
correct functioning. For instance, we have checked that we
recover the expected scaling solutions in CDE_EXP and
their nested models CDE_const and EXP, and for ULAwe
have checked that we are able to reproduce other results
found in the literature.

We have used MontePython [99] to sample the likelihood
with the Metropolis-Hastings algorithm [100,101]. It is
constructed from the datasets described in Sec. IV. The
Markov chains obtained in the output have been processed
also with MontePython to obtain the marginalized constraints
for the individual parameters and the absolute best-fit
values, and with GetDist [102] to generate the confidence
contour lines in all the relevant planes of parameter space
and the marginalized one-dimensional posteriors. The
minimum values of the χ2 in each run, i.e., χ2min, and the
corresponding best-fit values of the parameters have been
found applying the procedure described in Appendix D 1 of
[103]. We report our results in the tables and figures of the
next section.
For some parameters of CDE_EXP, ULA, and

CDE_ULA we have also applied the profile distribution
method to get rid of the volume effects that could affect
them; see, e.g., [104]. We comment on these results in
Sec. VI. For previous analyses using this statistical tech-
nique see [47,81,105,106]. We use the same approach
explained in [47], i.e., we compute the individual profile
distributions directly from the Markov chains, instead of
carrying out a series of minimization runs. This allows us to
save a considerable amount of computing time.
In order to minimize the computational time spent in our

Monte Carlo runs, we have tried to modify CLASS avoiding
the use of the shooting method. This is impossible, though,
in the case of ULAwith and without coupling, since in this
case we need to sample the distribution using the pair of
parameters ðfede; zmaxÞ instead of ðm; fÞ; cf. Sec. III C. This
is more reasonable from the cosmological perspective, and
not doing so could hide the evidence for a non-null EDE
fraction fede due to prior issues [43]. We explain the
procedure that we have followed to implement the shooting
method for these models in Appendix B.

VI. RESULTS AND DISCUSSION

We report our main fitting results in Tables II–V and
Figs. 8–15. In Appendix C we present some additional
tables, where we list the contribution of the χ2i ’s of the
individual datasets to the minimum value χ2min in
each model.
We discuss first the output of the analysis of the ΛCDM

and CDE_const. These two models are nested. The former
is described in terms of six cosmological parameters,
whereas the latter has an additional parameter, the coupling
β. It controls the departure of CDE_const from the ΛCDM.
We find that the CMB data from Planck do not exclude
(when used alone) values of β ∼ 0.07 at 2σ CL, but the
value of the coupling is still fully compatible with 0, being
β < 0.04 at 1σ CL (see the second column of Table II). In
Fig. 8 we observe a positive correlation between the
coupling and the Hubble parameter, as expected
[60,66,77], and also between β and the LSS estimator
σ12. The reasons have been already discussed in Sec. III.
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A larger coupling increases the growth of matter perturba-
tions during the MDE and requires a larger expansion rate
at low redshifts to not alter the location of the CMB peaks
and the description of the BAO data. The contours in the
ðH0; βÞ plane show that it is possible to obtain values ofH0

compatible with the distance ladder measurement from
SH0ES [14] at 2σ CL, due the long right tail of the
distribution. There is, though, a shift towards larger values

of σ12, which nevertheless is not drastically big. When we
add the SNIaþ BAO data, we can see that the values of
β ≳ 0.06 get strongly excluded. This, in turn, removes the
tail of the one-dimensional posterior of H0, limiting its
value to H0 ¼ ð68.43þ0.43

−0.53Þ km=s=Mpc at 1σ CL and
keeping the H0 tension at more than 3σ. Although the
difference between Δχ2 ¼ χ2Λ;min − χ2CDE const;min ¼ 2.39 is
small and certainly there is no significant statistical

TABLE II. Mean and 1σ uncertainties of the individual parameters of the ΛCDM and CDE_const models, together with the
corresponding best-fit values (between parentheses). H0 and rd are expressed in km/s/Mpc and Mpc, respectively. In the last two rows
we report the differences Δχ2min ≡ χ2Λ;min − χ2CDE const;min and ΔAIC≡ AICΛ − AICCDE const to better assess the fitting performance of
the aforementioned models. We discuss these results in Sec. VI.

Planck18 Planck18þ SNIaþ BAO

Parameter ΛCDM CDE_const ΛCDM CDE_const

102ωb 2.239� 0.015 (2.240) 2.235þ0.014
−0.015 (2.229) 2.247þ0.013

−0.014 (2.252) 2.239þ0.014
−0.015 (2.242)

ωcdm 0.1203þ0.0011
−0.0013 (0.1209) 0.1187þ0.0028

−0.0012 (0.1194) 0.1190� 0.0008 (0.1189) 0.1187� 0.0008 (0.1180)
ns 0.966� 0.004 (0.966) 0.965þ0.004

−0.005 (0.961) 0.968� 0.004 (0.966) 0.966� 0.004 (0.964)
τreio 0.056þ0.007

¼0.006 (0.054) 0.055þ0.007
−0.008 (0.055) 0.058þ0.007

−0.008 (0.061) 0.057þ0.007
−0.008 (0.054)

σ12 0.807� 0.008 (0.809) 0.811þ0.009
−0.010 (0.819) 0.799� 0.007 (0.798) 0.808þ0.009

−0.010 (0.808)
H0 67.47þ0.56

−0.48 (67.29) 68.55þ0.56
−1.73 (68.31) 68.03þ0.35

−0.36 (68.15) 68.43þ0.43
−0.53 (68.95)

β � � � <0.040 (0.040) � � � 0.028þ0.017
−0.013 (0.041)

rd 146.93þ0.25
−0.27 (146.75) 146.88þ0.26

−0.28 (146.69) 147.18þ0.20
−0.22 (147.15) 146.99þ0.27

−0.24 (146.89)
M � � � � � � −19.408� 0.010 (−19.404) −19.397þ0.012

−0.015 (−19.381)
S8 0.832þ0.012

−0.013 (0.836) 0.827þ0.015
−0.013 (0.838) 0.818þ0.010

−0.009 (0.816) 0.824þ0.010
−0.011 (0.821)

σ8 0.814� 0.005 (0.814) 0.827þ0.007
−0.021 (0.833) 0.811� 0.006 (0.810) 0.822þ0.009

−0.013 (0.827)
S12 0.813þ0.010

−0.009 (0.817) 0.814� 0.010 (0.823) 0.803� 0.008 (0.801) 0.810þ0.009
−0.010 (0.809)

Δχ2min � � � 1.93 � � � 2.39
ΔAIC � � � −0.07 � � � 0.39

TABLE III. As in Table II, but for the EXP and CDE_EXP models.

Planck18 Planck18þ SNIaþ BAO

Parameter EXP CDE_EXP EXP CDE_EXP

102ωb 2.236� 0.016 (2.235) 2.256þ0.020
−0.019 (2.247) 2.248þ0.014

−0.013 (2.250) 2.247þ0.016
−0.026 (2.256)

ωcdm 0.1210þ0.0015
−0.0015 (0.1201) 0.1229þ0.0023

−0.0030 (0.1211) 0.1191þ0.0008
−0.0009 (0.1192) 0.1189þ0.0009

−0.0009 (0.1195)
ns 0.964� 0.004 (0.965) 0.964� 0.005 (0.965) 0.968� 0.004 (0.969) 0.967� 0.004 (0.968)
τreio 0.056þ0.007

−0.008 (0.056) 0.051� 0.008 (0.042) 0.060þ0.007
−0.008 (0.058) 0.055þ0.010

−0.007 (0.051)
σ12 0.805þ0.009

−0.008 (0.803) 0.814þ0.011
−0.015 (0.821) 0.797� 0.007 (0.802) 0.811þ0.010

−0.015 (0.824)
H0 67.20þ0.64

−0.63 (67.45) 65.43þ1.95
−1.48 (66.54) 68.01� 0.37 (67.97) 68.28þ0.58

−0.70 (67.72)

ΩRD
ede [%] <0.22 (0.06) <0.29 (0.03) <0.13 (0.00) <0.13 (0.00)

β � � � −0.061þ0.018
−0.038 (−0.079) � � � −0.008þ0.090

−0.115 (−0.055)
rd 146.65þ0.42

−0.28 (146.97) 146.83þ0.41
−0.35 (147.09) 147.07þ0.24

−0.22 (147.10) 146.99þ0.36
−0.48 (147.12)

M � � � � � � −19.409� 0.010 (−19.405) −19.401þ0.016
−0.019 (−19.417)

S8 0.833� 0.014 (0.827) 0.855� 0.021 (0.852) 0.817� 0.010 (0.821) 0.829þ0.011
−0.017 (0.846)

σ8 0.810þ0.008
−0.006 (0.809) 0.803þ0.019

−0.021 (0.820) 0.808� 0.006 (0.812) 0.825þ0.009
−0.015 (0.833)

S12 0.813� 0.011 (0.809) 0.826þ0.014
−0.016 (0.829) 0.801� 0.008 (0.805) 0.814þ0.010

−0.014 (0.829)
Δχ2min 2.75 7.51 −0.15 3.75
ΔAIC 0.75 3.51 −2.15 −0.25
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TABLE IV. As in Tables II and III, but for ULA and CDE_ULA.

Planck18þ SNIaþ BAO

Parameter ULA CDE_ULA

102ωb 2.265þ0.016
−0.022 (2.269) 2.271þ0.016

−0.022 (2.290)
ωcdm 0.1225þ0.0016

−0.0041 (0.1237) 0.1211þ0.0011
−0.0029 (0.1201)

ns 0.974þ0.005
−0.009 (0.978) 0.974þ0.005

−0.007 (0.978)
τreio 0.059� 0.007 (0.060) 0.054þ0.009

−0.010 (0.049)
σ12 0.799� 0.007 (0.796) 0.822þ0.018

−0.021 (0.839)
H0 69.08þ0.56

−1.20 (69.75) 68.99þ0.46
−0.81 (69.24)

fede [%] <4.80 < 9.46 (5.17) <2.24 < 7.70 (1.13)
zmax 7806þ1000

−6000 (3874) 5317þ1600
−2500 (4724)

θini >2.01 (2.63) >1.39 (1.83)
β � � � −0.017þ0.110

−0.083 (−0.089)
log10ðm=eVÞ −26.66þ0.34

−0.79 (−27.30) −26.86þ0.34
−0.60 (−27.10)

log10ðf=eVÞ 26.51þ0.21
−0.39 (26.51) 26.52þ0.42

−0.51 (26.63)
rd 145.26þ2.04

−0.78 (144.37) 145.72þ1.51
−0.40 (145.89)

M −19.376þ0.017
−0.037 (−19.355) −19.380þ0.012

−0.025 (−19.373)
S8 0.825þ0.011

−0.012 (0.823) 0.845þ0.019
−0.021 (0.859)

σ8 0.819þ0.008
−0.012 (0.822) 0.842þ0.018

−0.021 (0.862)
S12 0.811þ0.010

−0.013 (0.811) 0.831þ0.018
−0.021 (0.846)

Δχ2min 5.41 7.87
ΔAIC −0.59 −0.13

TABLE V. As in the previous tables, but for the three models: ΛCDM, CDE_const, and ULA, with the
Planck18þ SNIaþ BAO dataset, and allowing the sum of the neutrino masses

P
mν to vary in the Monte Carlo, as

explained in Sec. IV. The constraints on this parameter are given in eVat 95% CL See the discussion of these results
in Sec. VI.

Planck18þ SNIaþ BAO [3 massive neutrinos]

Parameter ΛCDM CDE_const ULA

102ωb 2.248þ0.014
−0.013 (2.246) 2.238� 0.015 (2.243) 2.267þ0.017

−0.022 (2.271)
ωcdm 0.1187� 0.0008 (0.1186) 0.1181þ0.0010

−0.0008 (0.1177) 0.1222þ0.0016
−0.0040 (0.1257)

ns 0.968� 0.004 (0.970) 0.966� 0.004 (0.966) 0.974þ0.005
−0.010 (0.982)

τreio 0.059þ0.007
−0.008 (0.064) 0.058þ0.007

−0.009 (0.056) 0.060þ0.008
−0.009 (0.066)

σ12 0.798þ0.007
−0.008 (0.803) 0.805þ0.009

−0.011 (0.801) 0.797þ0.009
−0.008 (0.801)

H0 67.89� 0.36 (67.98) 68.34þ0.45
−0.55 (68.64) 68.91þ0.62

−1.20 (69.99)P
mν 0.06 < x < 0.12 (0.07) 0.06 < x < 0.18 (0.06) 0.06 < x < 0.13 (0.07)

fede [%] � � � � � � <5.05 < 9.47 (7.59)
zmax � � � � � � 8200þ1700

−6000 (6709)
θini � � � � � � >2.11ð2.89Þ
β � � � 0.033� 0.015 (0.031) � � �
log10ðm=eVÞ � � � � � � −26.64þ0.39

−0.82 (-26.78)
log10ðf=eVÞ � � � � � � 26.49þ0.27

−0.40 (26.43)
rd 147.32þ0.22

−0.21 (147.37) 147.10þ0.32
−0.23 (147.29) 145.31þ2.10

−0.80 (143.50)
M −19.412þ0.011

−0.010 (−19.410) −19.400þ0.012
−0.015 (-19.393) −19.381þ0.019

−0.037 (−19.346)
S8 0.816þ0.009

−0.010 (0.821) 0.820� 0.011 (0.813) 0.822þ0.012
−0.013 (0.833)

σ8 0.808� 0.007 (0.814) 0.819þ0.010
−0.013 (0.817) 0.815þ0.010

−0.013 (0.829)
S12 0.800� 0.008 (0.806) 0.806þ0.010

−0.011 (0.801) 0.808þ0.011
−0.014 (0.820)

Δχ2min � � � 1.25 3.94
ΔAIC � � � −2.75 −4.06
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preference for an interaction in the dark sector, it is worth to
point out the existence of a peak in the posterior of β when
we include the full dataset. The maximum is located ∼2σ
away from 0, and the mean reads β ¼ 0.028þ0.017

−0.013 at
68.2% CL. This peak has also been found in past analyses
using similar data configurations (see [60,66,77]), and it
was recently shown in [47] that it is not sourced by spurious
marginalization effects. It allows a better description of the
CMB data (cf. Table VII).
By allowing the mass of the neutrino masses to vary in

the analysis we find very similar results; see Table V.

The peak is still present, and slightly displaced to the
right (β ¼ 0.033� 0.015) due to the positive correlation
between the coupling and

P
mν, which allows to

compensate the enhancement of the matter power spectrum
caused by the fifth force. This positive correlation, which is
more evident in the range β > 0.03, also explains
the weaker constraints on

P
mν, which in CDE_const is

< 0.18 eV at 95% CL, whereas in the ΛCDM < 0.12 eV.
Lower values of the parameter σ12 are allowed due to
the suppression of power at low scales introduced by the
massive neutrinos, but the differences are small. The

FIG. 8. One-dimensional posterior distributions for some parameters of the ΛCDM and CDE_const, and the corresponding contour
plots at 1σ and 2σ CLThe constraints from neutrino experiments (cf. Sec. IV) do not allow

P
mν to be lower than ∼0.06 eV. The green

vertical bands in the first column correspond to the measurement of H0 by the SH0ES team [14], whereas the gray horizontal bands are
the weak-lensing constrain on S8 from KiDSþVIKING-450þDES-Y1, which is obtained under the assumption of the ΛCDM [15].
Both are provided at 1σ and 2σ CL See the comments in Sec. VI.
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contours in the ðH0; βÞ plane of Fig. 8 show, as expected,
that the large values of β are less able to lead to larger
values of the Hubble parameter than in the case in which we
consider a minimal neutrino setup with only one massive
neutrino of 0.06 eV.
We use the Akaike information criterion (AIC) [107] to

penalize the additional degrees of freedom and perform a
fairer comparison of the statistical performance of the
models. For a sufficiently large number of data points,
the AIC is defined as

AIC ¼ χ2min þ 2 k; ð38Þ

with k the number of parameters of the model. The
difference between the AIC values obtained in two models

(1 and 2) can be used as an approximation of the logarithm
of the Bayes ratio B12, AIC12 ¼ AIC2 − AIC1 ≈ 2 lnB12,
with B12 ¼ E2=E1 and Ei the Bayesian evidence of model i.
The small differences ΔAIC≲Oð1Þ between the ΛCDM
and CDE_const confirm that from the Bayesian point of
view the two models perform similarly well in the descrip-
tion of the Planck18 and Planck18þ SNIaþ BAO data-
sets. There is a slight decrease of the χ2min in CDE_const,
but the addition of the coupling β is not especially favored
in the light of Occam’s razor.
EDE with an exponential potential (20) is already very

constrained by the CMB data, which limit ΩRD
ede < 0.22% at

1σ CL, basically due to the tight upper bound that the EDE
fraction has to satisfy at the decoupling time [32]. Our
fitting results for this model are reported in Table III. There

FIG. 9. Triangle plot for the EXP model, with the parameters that are relevant for the discussion of the cosmological tensions. As in
Fig. 8 and the other triangle plots in this paper, we show the constraint from SH0ES [14] in green and the one from
KiDSþVIKING-450þDES-Y1 [15] in gray.

ADRIÀ GÓMEZ-VALENT et al. PHYS. REV. D 106, 103522 (2022)

103522-18



is no room in this model for an alleviation of the
cosmological tensions. The addition of SNIaþ BAO gives
even less margin, since ΩRD

ede < 0.13% at 1σ CL. In Fig. 9
we can see that the constraints on σ12 and H0 are actually
very similar to those found in the ΛCDM, with a negative
correlation between these two parameters and with a peak
of the posterior lying very far away from the SH0ES bands.
We have checked that volume effects are unimportant in
this model.
CDE_EXP allows us to explain much better than the

ΛCDM the CMB data. The corresponding χ2min is 7.51 units
below the values obtained in the standard model, and this is

thanks to a 2σ departure of the coupling from zero, with the
posterior of β peaking in the negative region. Notice that
due to the nontrivial potential (20), the coupling can acquire
larger values than in CDE_const. The regions RGIIa and
RGI of parameter space are preferred (see Figs. 1 and 10),
the former being more probable when we allow for larger
values of the EDE fraction in the RDE. This is supported
also by the AIC. We obtain ΔAIC ¼ þ3.51, which
according to Jeffreys’ scale corresponds to moderate
evidence for CDE_EXP. However, this hint for new physics
is washed out by the SNIa and BAO data; cf. Table III. In
Fig. 10 we cannot appreciate any decrease of σ12 compared

FIG. 10. Contour plots at 1σ and 2σ CL and one-dimensional posterior distributions for the CDE_EXP model, obtained with the
Planck18 and Planck18þ SNIaþ BAO datasets.
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to the ΛCDM, although the model allows for larger values
of H0. The tension is only mildly loosened, though, at a
similar level at which it is in CDE_const. Under the
Planck18þ SNIaþ BAO dataset we find a peak at
β > 0. This dataset seems to prefer a decrease of the
DM mass with the expansion. The constraints on ΩRD

ede are
similar to those obtained in the absence of coupling.
ULA offers the interesting possibility of generating a

peak in the EDE fraction around zeq while respecting the
very tight constraints on Ωede at recombination [32] (see
Fig. 6). We show in Table IV and the contours plots of
Fig. 11 the constraints on the main parameters of the
model obtained with the dataset Planck18þ SNIaþ BAO.
There is a large positive correlation between fede and
the Hubble parameter. Values of H0 ∼ 71 km=s=Mpc,

accompanied by values of fede ∼ 10%, fall inside the 2σ
region according to the marginalized posterior. This seems
to render the H0 tension at the ∼2σ level. However, it
has been recently demonstrated in [47,81] that volume
effects play an important role in the marginalization process
in this model. The constraints obtained with the profile
distributions, which are not subject to these issues, are
quite different, and favor larger values of fede and H0

(cf. Fig. 5 and Table II in [47]). The constraints derived
with the marginalized posteriors read fede < 0.048 and
H0 ¼ ð68.4þ1.3

−0.5Þ km=s=Mpc,6 whereas with the profile

FIG. 11. Confidence regions at 1σ and 2σ CL and one-dimensional posterior distributions obtained with the Planck18þ SNIaþ BAO
dataset with the ΛCDM and ULA. The parameters fede, zmax and θini ¼ ϕini=f are the maximum EDE fraction, the redshift at which
there is the peak, and the initial value of the scalar field at zini ¼ 1014, respectively (cf. Sec. III). For ULAþP

mν we allow the sum of
the neutrino masses to vary in the Monte Carlo analysis, using the approach described in Sec. IV.

6Here, we provide the location of the peak of the posterior for
H0 and the corresponding uncertainties, instead of the mean.
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distribution we obtain fede ¼ 0.052þ0.022
−0.021 and H0 ¼

ð69.8þ0.9
−1.0Þ km=s=Mpc. A peak in fede is found with the

profile distribution approach, 2σ away from 0 [47,81].
Regarding the LSS estimators, it is true that the model

prefers values of S8 and σ8 larger than in the ΛCDM, but
due to the points firstly raised in [46] and subsequently
discussed also in [47] and Sec. III of this paper, we think it
is safer to discuss the impact of the model on the linear
perturbations in terms of the parameter σ12, although we
also provide the fitting values of σ8, S8, and S12 in our
tables. The constraint on σ12 obtained in ULA is almost

identical to the one obtained in the standard model, which
means that ULA, when analyzed under the Planck18þ
SNIaþ BAO dataset, does not prefer an enhancement of
the rms of mass fluctuations at scales of 12 Mpc. Actually,
one can see in the contours in the ðH0; σ12Þ plane of Fig. 11
that it is possible to reach the 2σ band of SH0ES keeping a
low σ12 ∼ 0.79–0.8. In Fig. 12 we show the shape of the
matter power spectrum obtained with the best-fit param-
eters in the ΛCDM and ULA. There is a significant relative
decrease of power at large scales in ULA (k≲ 0.1 Mpc−1),
and an increase at low scales. These two opposite behaviors
compensate each other in the computation of σ12 [cf. for-
mula (33)], yielding σ12 ∼ 0.8. Although the model requires
a larger value of ωcdm to counteract the early iSW effect
caused by fede, it is also able to accommodate a larger value
of the cosmological constant, which is positively correlated
with the current matter energy density. Despite being larger

than in the ΛCDM, Ωð0Þ
m still takes reasonable values,

around ∼0.3; see Fig. 13 (Ωð0Þ
m ∼ 0.26 in the standard

model). This larger matter fraction and the increase of ns
cause the enhancement of PðkÞ at large k’s, which is
compensated by the decrease at low k’s that is induced by
the bluer tilt of the primordial power spectrum. Constraints
on the power spectrum at low scales will be important to
further assess the viability of this model. According to the
value of ΔAIC (see again Table IV) the model is not
statistically preferred under the Planck18þ SNIaþ BAO
dataset with respect to the ΛCDM, although it allows an
alleviation of the H0 tension.
If we leave the sum of the neutrino masses

P
mν free in

the Monte Carlo analysis with ULA, we find very similar
results to the case in which we use only one massive
neutrino of 0.06 eV (cf. Table V). We obtain

P
mν <

0.13 eV at 95% CL, which is very close to the upper bound
derived with the ΛCDM,

P
mν < 0.12 eV. A larger mass

of the neutrino masses increases the uncertainties of σ12,
but only slightly. This does not have a significant impact on
the cosmological tensions, as it has been also recently
reported in [108], where the authors obtained

P
mν <

0.15 eV at 95% CL using Planck and BOSS galaxy
clustering data, and showed that the constraints onP

mν are not affected by marginalization issues. We obtain
a somewhat tighter constraint, closer to the lower bound of
the inverted mass hierarchy.
If we extend the model to incorporate a coupling in the

dark sector we do not gain that much. The value ofΔAIC is
very close to zero. The results for CDE_ULA are shown in
Table IV and Fig. 14. As expected, when θini ≲ π there is a
symmetry between positive and negative values of the
coupling, which is broken when θini is not sufficiently close
to π. In all cases there is a preference for a decay of the dark
energy mass with the cosmic expansion (as found also with
CDE_EXP), and this is why for θini ≪ π the fit prefers a
negative β. This explains why the peak at β < 0 is larger.
The latter is, though, still compatible with 0 at only 2σ CL.

FIG. 13. Scatter and contour plots at 1σ and 2σ CL in the

ðωcdm; V0Þ and ðωcdm;Ω
ð0Þ
m Þ planes of the ULA model, obtained

from the fitting analysis with the Planck18þ SNIaþ BAO
dataset. We indicate the value of σ12 at each point of the scatter
plot. There is a significant positive correlation between the
current CDM energy density and the value of the cosmological

constant, which allows to have Ωð0Þ
m ∼ 0.3 in the 1σ region even

for large values of ωcdm ∼ 0.13. See the comments in
the main text.

FIG. 12. Left: comparison of the linear matter power spectrum
of the ΛCDM and ULA using the best-fit values obtained in
the fitting analysis with the Planck18þ SNIaþ BAO dataset
(cf. Sec. IV). Upper right: this is the term with the window
function that enters the equation of σ12 (33). Plotting this function
is useful to see the range of k’s that is more important in the
computation of the rms of mass fluctuations at R12 ¼ 12 Mpc;
Lower right: relative difference between the power spectra of the
two models, ΔP ≡ ðPULA − PΛCDMÞ=PΛCDM.
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It is clear from the contours in the ðβ; σ12Þ plane that
when we move away from the uncoupled scenario, i.e.,
from β ¼ 0, σ12 grows. Large values of σ12 ∼ 0.85 are not
excluded by the Planck18þ SNIaþ BAO dataset. As
already mentioned, the latter prefers values of β ∼ 2σ away
from 0, and this is what generates a broader posterior for
σ12, peaking also at larger values compared to the
uncoupled ULA model. The required values of fede to
alleviate the Hubble tension can only be obtained in the
vicinity of β ¼ 0, so the preference of the data for a non-
null coupling, despite being still mild, inevitably leads
to a tighter constraint on the maximum EDE fraction,
which is now below 7.7% at 95% CL. Unfortunately, in the
absence of a prior from SH0ES, we do not find an
alleviation of the tensions caused by the coupling. We
have verified that these results are not strongly affected by
volume effects.
Before closing the discussion on our results, we would

like to remark that the quantification of the Hubble tension,
when formulated as a tension between the value of the
absolute value of SNIaM obtained from the distance ladder
by SH0ES and the value obtained from the fitting analysis
involving high-z supernovae, gives similar but not exactly
equal results [32]. The latter tends to lead to slightly larger
estimates of the tension. In the left plots of Fig. 15 we

summarize our constraints on H0 and M for all the models
studied in this paper, and compare them to the measurement
carried out by the SH0ES Team [14]. We find that ULA is
the model that alleviates the H0 tension more, and that
neither a constant coupling between the dark components
nor a larger sum of the neutrino masses can help to further
mitigate it.
In the right plots of Fig. 15 we summarize the constraints

on σ12 and S8 obtained for the various models. Some
comments are in order. All the values of these LSS
estimators are compatible with the result in the ΛCDM.
There is no model leading to a significant decrease of these
quantities. The constraints on σ12 in ULA and ULAþP

mν are actually almost identical to those found in the
standard model. The estimation of the level of tension
between the models and the weak-lensing measurement
from KiDSþVIKING-450þDES-Y1 is not straightforward
and can be misleading for the issues discussed in [46],
and also in Sec. III. Moreover, it is important to bear
in mind that the observational constraint on S8 from
KiDSþVIKING-450þDES-Y1 (see the green bands
shown in the lower-right plot of Fig. 15) has been obtained
under the assumption of the ΛCDM, so it could lead to an
overestimation of the level of tension in the context of
nonstandard cosmologies.

FIG. 14. Confidence regions at 1σ and 2σ CL and one-dimensional posterior distributions obtained with the Planck18þ SNIaþ BAO
dataset with the ΛCDM and CDE_ULA.
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VII. CONCLUSIONS

In this paper we have studied some coupled and
uncoupled EDE models with different shapes of the
EDE fraction, confronting them with the CMB data from
Planck, the Pantheon compilation of supernovae of Type Ia
and data on baryon acoustic oscillations, without including
any prior on H0 or M from SH0ES. We have considered
three different forms of the potential-energy density for the
scalar field, to wit: a constant potential, an exponential
potential (20) that produces a scaling regime in the matter-
and radiation-dominated epochs, and a ULA potential (32)
able to generate a peak in Ωede, typically around the matter-
radiation equality time. We have discussed in detail the
phenomenology of these models. Motivated by the fact that
EDE has some difficulties in relieving simultaneously the

H0 and LSS tensions, we have explored in this paper the
impact of a coupling between EDE and dark matter, and
the presence of massive neutrinos. The coupling can make
the dark matter mass decay with the expansion, leading to a
faster decrease of the dark matter energy density. This fact
could in principle slow down the clustering of matter in
the universe, and massive neutrinos could also help to
suppress the amount of large-scale structure at low scales.
Nevertheless, the coupling can also enhance the matter
power spectrum due to the fifth force. In order to elucidate
their net effect, we have put these ideas to the test, by
performing dedicated fitting analyses.
When the EDE potential is constant we find under the

Planck18þ SNIaþ BAO dataset a preference for a non-
null coupling at 2σ CL. This result resonates well with

FIG. 15. Left: marginalized constraints on M and H0 (in km/s/Mpc) at 1σ and 2σ CL for all the models studied in this paper
(cf. Sec. III), obtained with the Planck18þ SNIaþ BAO dataset. The green bands correspond to the baseline values of M and H0

measured by SH0ES [14]. ULA is the model that alleviates the Hubble tension the most. No significant improvement is achieved by
considering a coupling in the dark sector (CDE_ULA) or more massive neutrinos (ULAþP

mν). Upper right: same as the left plots,
but for σ12. The bands in this case are taken from the marginalized Planck18þ SNIaþ BAO constraint on σ12 in ΛCDM; see Table II.
The constraint on σ12 from ULA is almost identical to the one from the standard model. Lower right: marginalized constraint on S8 at 1σ
and 2σ CL for all the models. The green band indicates the combined measurement of S8 by KiDSþVIKING-450þDES-Y1, again
under the assumption of the standard model [15].
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previous studies in the literature [60,64,66], and is not
caused by volume effects [47]. Nevertheless, if we penalize
the additional complexity of the model through the calcu-
lation of the AIC we find that the improvement in the
description of the data is not sufficient to justify the need of
the interaction in the dark sector. The H0 tension is
alleviated, yes, but persists at ∼3σ. Massive neutrinos give
some room for lower values of σ12, but the gain is not
substantial, and is accompanied by a slight decrease
of H0 as well. The upper bound of the sum of the neutrino
masses reads

P
mν < 0.18 eV at 2σ CL, and is consid-

erably larger than in the ΛCDM,
P

mν < 0.12 eV. This
might indicate that probing the neutrino mass hierarchy
with cosmological data in a model-independent way might
be quite difficult. Constraints obtained in the context of
other models can be even more loosened; see, e.g., [26].
This complication will presumably remain with the advent
of future data.
Moreover, our results show that EDE models with an

exponential potential have almost no impact on the cos-
mological tensions. We already reached this conclusion in
[32], but here we have also checked the effects introduced
by the coupling. The latter allows us to describe the CMB
data considerably better and we even find a moderate ∼2σ
hint for a non-null interaction in the dark sector when only
the Planck likelihood is considered. Nevertheless, this
signal is diluted when we combine CMB with the SNIa
and BAO datasets, and the tensions remain large.
ULA is able to decrease the H0 tension below the 2σ

level, basically because it allows to have a larger EDE
fraction around the matter-radiation equation time while
respecting the stringent bounds at recombination [32]. The
tension is even lower when it is quantified with the profile
distribution method [47]. The values of the LSS estimator
σ12 are similar to those found in the standard model. We
have seen, though, that the shape of the power spectrum
exhibits some important differences at small and large
scales, so it could be useful to prove in the future the
nonlinear regime to study the viability of this model. For
instance, there could be significant differences between the
number counts of clusters in ULA and the ΛCDM obtained
using the best-fit values of the parameters from our
analysis. By allowing the mass of the neutrinos to take
larger values in the fitting analysis we get an upper bound
which is extremely close to the one obtained in the ΛCDM,P

mν < 0.13 eV at 2σ CL, and its posterior peaks very
close to the minimum value allowed by the experiments on
atmospheric and solar neutrinos, at 0.07 eV. Massive
neutrinos do not induce any significant shift on the other
parameters and, hence, they are unable to lower the
tensions. This has been reported recently also in [108],
and this conclusion is not affected by marginalization
issues of any kind. Unfortunately, when we activate the
coupling in the context of ULA we do not appreciate any
improvement regarding the tensions either.

The cosmological tensions tackled in this paper cannot
be fully alleviated by an interaction with a constant
coupling between the two dark components nor neutrinos
with larger masses. In the best case, namely ULA, the H0

tension is reduced to ∼2σ, and the amount of clustering at
linear scales is similar to the ΛCDM. A more detailed
treatment of the nonlinear scales in these models and the
inclusion of weak-lensing and galaxy-clustering data in the
analysis could shed more light on the status of the tensions,
of course. This could be done by performing scale cuts on
CMB and weak-lensing data to explore only the effect of
linear scales or by modeling accurately the nonlinear power
spectrum (on the lines of, e.g., [109]) to exploit the
statistical information contained in the full range of scales
covered by the CMB and LSS data. This goes beyond the
scope of this paper, and is left for a future work.
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APPENDIX A: IMPACT OF THE DARK ENERGY
MASS ON THE LSS

In this brief appendix we discuss the impact that
the nonzero dark energy mass m2

ϕ ¼ d2V=dϕ2 has on the
LSS both in CDE_EXP and CDE_ULA. In the upper plot
of Fig. 16 we can see that for typical values of ΩRD

ede
and the coupling in the CDE_EXP models, the
comoving modes that are relevant for the LSS, i.e.,
10−2 Mpc−1 ≲ k≲ 1 Mpc−1, are already larger than the
comoving mass of the DE at the horizon crossing, i.e.,
when the modes of interest are equal to khor in the plot. The
corresponding comoving scales rapidly become much
smaller than the range of the fifth force. This means that
the mass termsmϕ in the equation of the density contrast of
DM (16) can be safely neglected in this model.
In the CDE_ULA model the evolution of the DE mass is

very different from the one in CDE_EXP. The aforemen-
tioned modes do not feel the non-null DE mass when these
scales reenter the horizon, since for these modes k ≫ amϕ

already at the crossing time. This is shown in the lower plot
of Fig. 16. The scales that reenter the horizon at
30≲ z≲ 103, though, are sensitive to the oscillatory
behavior of the DE mass. Nevertheless, these modes are
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not relevant for the LSS, and the mean value of amϕ is still
much smaller than khor.

APPENDIX B: SHOOTING METHOD FOR ULA
AND CDE_ULA

We implement a shooting method in ULA and
CDE_ULA in order to map every combination of the input
parameters ðfede; zmaxÞ to the corresponding parameters

ðm; fÞ of the ULA potential; see formula (32) in Sec. III.
We apply the following steps:

(i) We start with an initial guess for ðlog10ðm=eVÞ;
log10ðf=eVÞÞ. We build a grid around it and find the
location of xð1Þ ≡ ðlog10ðm=eVÞð1Þ; log10ðf=eVÞð1ÞÞ
that leads to the minimum χ2 value on the grid. The
associated values of the cosmological (input) param-

eters are labeled as yð1Þ ≡ ðfð1Þede; log10ðzmaxÞð1ÞÞ. This
step is important to start the main part of the
shooting sufficiently close to our final target yðFÞ.

(ii) We build the Jacobian matrix Jð1Þij ≡ ∂yð1Þi

∂xð1Þj

, approxi-
mating it as follows:

Jð1Þ ≈

0
B@

y1ðx1þδx1;x2Þ−yð1Þ1

δx1

y1ðx1;x2þδx2Þ−yð1Þ1

δx2

y2ðx1þδx1;x2Þ−yð1Þ2

δx1

y2ðx1;x2þδx2Þ−yð1Þ2

δx2

1
CA;

with δx1 and δx2 two sufficiently small increments.
(iii) A new trial xð2Þ is related to yðFÞ and the Jacobian

matrix Jð1Þ through the relation

xð2Þ ¼ xð1Þ þ ðJð1ÞÞ−1ðyðFÞ − yð1ÞÞ; ðB1Þ

where the matrix ðJð1ÞÞ−1 is the inverse of Jð1Þ.
Equation (B1) is nothing else than the Taylor
expansion of x around yð1Þ evaluated at yðFÞ, trun-
cated at linear order. We compute the new Jacobian
matrix Jð2Þ following the previous steps to obtain
xð3Þ, and we repeat this iterative process until
reaching convergence (within the desired precision).

APPENDIX C: TABLES WITH THE
INDIVIDUAL Δχ 2i

This appendix contains Tables VI, VII, and VIII, where
we list the contribution from the individual datasets to the
total χ2min for each model and fitting analysis carried out in
this work. These tables complement the information
reported in the tables of Sec. VI.

FIG. 16. Comoving wave mode at horizon crossing, khor, and
comoving dark energy mass, amϕ, as a function of the redshift for
several CDE_EXP (upper) and CDE_ULA (lower) models. The
parameters that are not specified explicitly in the legends are set
as in Fig. 2 and the left plots of Fig. 6, respectively.

TABLE VI. Differences Δχ2i;j ≡ χ2i;Λ − χ2i;j for the individual datasets i and nonstandard cosmological models j,
using the best-fit values obtained in the analyses with Planck18 data. In the last row we show the total differences,
Δχ2min;j ¼ χ2Λ;min − χ2j;min. For theΛCDM, instead, we show in the first column the individual values of χ2i;Λ, and their
sum.

Planck18

Δχ2i ΛCDM CDE_const EXP CDE_EXP

CMB highl 2351.83 2.00 3.19 7.54
CMB EE lowl 396.03 0.32 −0.13 −0.59
CMB TT lowl 23.27 −0.08 −0.21 0.72
CMB lens 8.81 −0.31 −0.10 −0.16
Total 2779.94 1.93 2.75 7.51
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TABLE VIII. As in Table VII, but allowing the neutrino masses to vary in the Monte Carlo runs.Δm2
21;Δm2

31 refer
to the priors employed for these quantities; see Sec. IV.

Planck18þ SNIaþ BAO [3 massive neutrinos]

Δχ2i ΛCDM CDE_const ULA

CMB highl 2348.37 −1.72 3.88
CMB EE lowl 399.14 2.71 −0.24
CMB TT lowl 22.76 −0.68 1.44
CMB lens 8.77 −0.74 −0.41
SNIa 1025.75 0.12 −0.13
BAO 9.64 0.50 0.42
Δm2

21;Δm2
31

0.23 0.10 −1.18

Total 3814.66 1.25 3.94

TABLE VII. As in Table VI, but for the analyses with the Planck18þ SNIaþ BAO dataset.

Planck18þ SNIaþ BAO

Δχ2i ΛCDM CDE_const EXP CDE_EXP ULA CDE_ULA

CMB highl 2349.83 1.19 −0.4 2.28 2.58 4.33
CMB EE lowl 397.90 1.87 1.12 2.19 0.84 2.16
CMB TT lowl 23.51 −0.79 0.73 1.06 1.88 2.08
CMB lens 9.14 0.20 0.22 0.05 −0.39 −1.29
SNIa 1025.77 −0.26 −1.19 −0.16 0.03 0.14
BAO 9.45 0.19 −0.65 −1.71 0.43 0.42
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