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We use a particular machine learning approach, called the genetic algorithms (GAs), in order to place
constraints on deviations from general relativity (GR) via a possible evolution of Newton’s constant
μ≡ Geff=GN and of the dark energy anisotropic stress η, both defined to be equal to one in GR.
Specifically, we use a plethora of background and linear-order perturbations data, such as Type Ia
supernovae, baryon acoustic oscillations, cosmic chronometers, redshift space distortions, and Eg data. We
find that although the GA is affected by the lower quality of the currently available data, especially from the
Eg data, the reconstruction of Newton’s constant is consistent with a constant value within the errors. On the
other hand, the anisotropic stress deviates strongly from unity due to the sparsity and the systematics of the
Eg data. Finally, we also create synthetic data based on a next-generation survey and forecast the limits of
any possible detection of deviations from GR. In particular, we use two fiducial models: one based on the
cosmological constant ΛCDM model and another on a model with an evolving Newton’s constant, dubbed
μCDM. We find that the GA reconstructions of μðzÞ and ηðzÞ can be constrained to within a few percent of
the fiducial models and in the case of the μCDMmocks, they can also provide a strong detection of several
σs, thus demonstrating the utility of the GA reconstruction approach.
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I. INTRODUCTION

Currently the de facto cosmological model is widely
considered to be the Λ cold dark matter (ΛCDM) scenario,
which is based on general relativity (GR) and it contains not
only ordinary matter but also incorporates two other
ingredients that are the backbone of this model. The
cosmological constant Λ, is crucial for the description of
the accelerated expansion of the Universe, as well as the
CDM. Ever since the observed accelerated expansion of the
Universe it holds, almost unanimously, the scepters in
the field of cosmology. Lately, however, there is mounting
evidence supporting the idea that perhaps ΛCDM is not
infallible.
To that end, there have been observed a number of

discrepancies/tensions (for comprehensive reviews see
Refs. [1–3]) that emerge when comparing the predictions
made by the model to observational data, such as the S8
tension [4–11], cosmic microwave background (CMB)
anisotropy anomalies [12–17], the lithium problem [18–23],
etc. Arguably though, themost well known of these tensions
is the so-called Hubble tension [1–3,24–29]. This tension

involves the 5σ disagreement between the value of H0 as
given by the Planck collaboration via the CMB data
(H0 ¼ 67.27� 0.60 km s−1Mpc−1) [30], and the one given
by the SH0ES team using SNIa data calibrated by Cepheids
(H0 ¼ 73.04� 1.04 km s−1Mpc−1) [31].
If these tensions are not due to some unknown systematic

effect, then some of them might suggest that ΛCDM needs
to be further modified. As a result, a number of possible
early or/and late time solutions to these tensions have been
proposed in the literature, including a variety of modified
gravity models. A number of recent works [32–38] in the
field argue that in order to reconcile the Hubble and growth
tensions, an evolution of Newton’s constant Geff that leads
to its decrease as the Universe evolves is needed. More
specifically, this modified gravity solution involves ultra-
late time gravitational transitions that, in their core, explore
and enable the possibility of a transition in the Type Ia
supernova (SNIa) absolute magnitude MB, which would
allow for the easing of both the Hubble and S8 tensions,
whilst leaving the standard cosmology intact within the
ultralow redshift range z ∈ ½0.01; 1000�.
This transition in MB could very well be a product of a

gravitational transition ofGeff , since the twoare connected via
the Chandrasekhar mass mch that evolves as mch ∼G−3=2

eff ,
leading to ΔMB ¼ 15

4
log μ [39,40], where
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μ≡Geff

GN
; ð1Þ

and GN is the bare Newton’s constant as measured by
Cavendish-type experiments in a laboratory.
Within the context of this paper, we use machine learning

(ML) in the form of genetic algorithms (GAs) in order to
assess whether current cosmological data from large scale
structure (LSS) probes predict an evolution of the Geff . The
advantage of ML methods, in this case, is that they allow
for a bottom-up reconstruction of Geff solely from the data,
avoiding theoretical biases and enabling us to look for
features that may otherwise not be readily detected via
more traditional approaches [41].
More specifically, we use the Pantheon sample of SNIa

data, an up-to-date collection of baryon acoustic oscilla-
tions (BAO) data, cosmic chronometer (CC) data, an up-to-
date compilation of growth rate/redshift space distortions
data, and a similarly up-to-date collection of Eg data. Via
the GA process, we are able to ascertain the best-fit
functions for the luminosity distance DLðzÞ using the
Pantheon SNIa data, the angular diameter distance
DAðzÞ using the BAO data, the Hubble parameter HðzÞ
using the CC data, the growth rate of perturbations fσ8ðzÞ
via the growth rate data and the P2ðzÞ observable, which is
a model-independent probe of modified gravity defined as
the ratio of the lensing function Σ multiplied by Ωm;0 and
the growth rate f [42,43], using the Eg data. The combi-
nation of these cosmological quantities allows us to probe
the possible evolution of Eq. (1).
In linear order perturbation theory one more quantity can

also be defined in order to parametrize deviations from GR,
namely the anisotropic stress η. The latter is equal to the
ratio of the Newtonian potentials and, in the absence of any
matter-induced anisotropic stresses, is equal to unity. Here,
we also use the GA in order to reconstruct η and we
compare those results with an analysis using earlier data
by Ref. [41].
Having done the GA reconstructions with the currently

available data, we also forecast the constraining power of
approach using mock data based on a future next-
generation survey like Euclid or DESI, albeit without
targeting any of them specifically, in order to determine
how accurately forthcoming surveys will be able to con-
strain deviations from GR. To do so, we use two mocks,
one based on ΛCDM and one more, using parametrizations
for μðzÞ and ηðzÞ.
The structure of our paper is as follows: in Sec. III we

present a brief summary of the GA approach and how it
works, in Sec. IV we present the compilations of currently
available and mock data we use, while in Sec. V we present
the results of our analysis in the cases of both the currently
available and mock data. Finally, in Sec. VI we present our
conclusions.

II. THEORY

Here we describe in more detail the theoretical setup of
our analysis, which is based on cosmological perturba-
tion theory, setting the stage for the machine learning
reconstructions in later sections. We mainly follow
Refs. [10,41,44], albeit with slight changes in the notation.
First, we assume a perturbed flat Friedmann-Lemaître-

Robertson-Walker (FLRW) metric

ds2 ¼ −ð1þ 2ΨÞdt2 þ aðtÞ2ð1 − 2ΦÞdx⃗2; ð2Þ
where aðtÞ is the scale factor given in terms of the cosmic
time t, while Φ and Ψ are the scalar potentials in the
Newtonian gauge. Using the field equations it is possible to
show that, for a plethora of different modified gravity
models, in the subhorizon and quasistatic regime, the
Newtonian potentials obey the following Poisson equations
in Fourier space [45]

−
k2

a2
Ψ ¼ 4πGNμðk; aÞρmδm; ð3Þ

−
k2

a2
ðΨþΦÞ ¼ 4πGNΣðk; aÞρmδm; ð4Þ

where k is the wave number, ρm is the matter density, δm ≡
δρm
ρm

is the growth factor of matter density perturbations and
the parameters Σ and μ characterize deviations from GR. In
particular, in GR the corresponding limits are Σ ¼ 2 and
μ ¼ 1, see Refs. [41,44,46], while in other theories they can
be in a general scale and time dependent [45].
Furthermore, modified gravity models in general may

also induce an anisotropic stress, which can be parame-
trized by the parameter η defined as the ratio of the two
potentials

η≡Φ
Ψ
; ð5Þ

which in GR has the limit η ¼ 1 as expected in the absence
of anisotropic stresses from matter (e.g., from neutrinos or
photons [46]). The anisotropic stress or gravitational slip
quantity ηðzÞ is both an element that allows for the
nonminimal coupling of the dark energy with gravity in
the context of the Jordan frame, and a purely geometric
characteristic of higher order modified gravity models
[47–49].
The evolution of the cosmological overdensity δmðaÞ

satisfies, in the absence of neutrinos and for most modified
gravity theories, the following differential equation in the
subhorizon regime

δ00mðaÞ þ
�
3

a
þH0ðaÞ

HðaÞ
�
δ0mðaÞ −

3

2

Ωm;0μðk; aÞ
a5H2ðaÞ=H2

0

δmðaÞ ¼ 0;

ð6Þ
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where primes denote differentiation with respect to a and k
corresponds to the scale. Observations strongly suggest the
existence of a large-scale structure of the Universe that was
created during a matter domination era, typically assumed
to be z ∈ ½1; 104�. It is then easy to show that the growth
should behave as δða ≪ 1Þ ∼ a at an initial time deep in
matter domination.
A related quantity is the growth rate f, which is defined

as

fðaÞ≡ d ln δmðaÞ
d ln a

; ð7Þ

and is a proxy for the growth of matter density perturba-
tions on large scales. However, in the past two decades the
vast majority of LSS surveys report instead the bias-
independent product fσ8ðaÞ ¼ fðaÞ · σ8ðaÞ, where

σ8ðaÞ≡ σ8
δmð1Þ

δmðaÞ; ð8Þ

with σ8 corresponding to the density rms fluctuations
within spheres of radius on scales of about 8h−1 Mpc.
Therefore, given a Hubble rate HðaÞ and a parametriza-

tion for μðk; aÞ, Eq. (6) can be solved either numerically or
analytically and using the solution, the theoretical predic-
tion for fσ8 is readily constructed via Eqs. (7) and (8).
In order to reconstruct the aforementioned parameters μ,

Σ, and η, we follow Ref. [44] and we define a set of
variables

P2ðaÞ ¼
ΣΩm;0

f
; ð9Þ

P3ðaÞ ¼
d ln fσ8
d ln a

; ð10Þ

EðaÞ ¼ HðaÞ=H0; ð11Þ

where Ωm;0 is the present value of the matter density
parameter. Then, it follows that the anisotropic stress is
given by the relation [44]

1þ ηðaÞ ¼ 3P2ðaÞa−3

2EðaÞ2
�
P3ðaÞ þ 2þ d lnE

d ln a

� : ð12Þ

Combining Eqs. (3) and (4) and (5) we can find the
expression

Σ ¼ μð1þ ηÞ; ð13Þ

which then from the definition of P2 via Eq. (9), gives

μ ¼ fP2

ð1þ ηÞΩm;0
: ð14Þ

In the latter equation the final ingredient is the parameter
P2, which can be shown to be related to the so-called Eg

statistic, see Ref. [44] and references therein. In fact, Eg is
the expectation value of the ratio of lensing and galaxy
clustering observables at a scale k

Eg ¼
�
a∇2ðΨþΦÞ
3H0fδm

�
k
; ð15Þ

which after using the Poisson equation (3) and (4) reduces
to Eg ¼ 2P2. As Ωm;0 is not directly observable but can
only inferred by other probes, we can rewrite Eqs. (12) and
(14) in terms of the actual observables as

Ωm;0μðaÞ ¼
2fðaÞEgðaÞ
1þ ηðaÞ ; ð16Þ

1þ ηðaÞ ¼ 3EgðaÞa−3

EðaÞ2
�
P3ðaÞ þ 2þ d lnE

d ln a

� ; ð17Þ

where in what follows we will consider the combination
Ωm;0μðaÞ as it is independent from Ωm;0. Still, any
deviation of Eq. (16) at any redshift from a constant value
would be a smoking-gun signature for deviations from GR
at late times [50], so this makes it an extremely useful
statistic.

III. THE GENETIC ALGORITHMS

In this section we describe the GA, as used in our work.
The GA has had several applications in cosmology, see for
example Refs. [41,51–57], in forecasts of future LSS
surveys [58–60], but also in a wide range of areas such
as particle physics [61–63], astronomy and astrophysics
[64–66] and other fields like computational science, eco-
nomics, medicine and engineering [67,68]. There are also
several other similar symbolic regression methods, see for
example [69–76].
The GA that we use in the present work in order to

identify a possible evolution of Geff correspond to an
unsupervised symbolic regression of data process that in
reality simulates the biological natural selection. Initially, a
set of randomly selected orthogonal basis functions (which
we denote as “grammar”) are chosen and are then subjected
to crossover and mutation operations over time, until a
specific termination criterion is met. For a set of vectors (or
functions), orthogonality is a much stronger statement as it
implies not only they are linearly independent, but also
their dot product is zero. This is necessary in order to avoid
degeneracies between the functions that could otherwise
affect the convergence rate of the algorithm.
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In particular, the initial “grammar” population corre-
sponds to the first generation of functions, in which we
need to impose any appropriate conditions in order to
obtain a physically meaningful result and applying the
maximum likelihood method, a χ2 value is calculated for
each member. Then, convergence is achieved when the χ2

does not improve or change for a few hundred generations.
As can be seen in Fig. 1 of Ref. [57], when this happens it
typically implies that the algorithm is at the minimum and it
stays there, unlike an MCMCwhere the GA random walker
of a particular chain “oscillates” around it.
Next, the best-fit functions from the first generation are

determined through a tournament selection method, i.e., a
method that randomly chooses a subgroup of candidates
and picks the dominant one from each subgroup. After that,
the second generation of candidate functions is obtained by
sequentially applying the crossover and mutation opera-
tions. Then this process is repeated a thousand times in
order to guarantee convergence. Notice that with the term
“crossover” we refer to the combination of two parties in
order to form a descendant, while with the term mutation
we describe the arbitrary change of an individual. A
flowchart of a typical run of a GA can be seen in Fig. 1.
Naively one could think that grammar selection is crucial in

order to obtain any physically meaningful results, however as
it has been discussed in Ref. [51] the initial population of the
grammar is irrelevant to the outcome and only influences the
convergence rate. Regarding the termination criterion as it has
been extensively discussed in Ref. [51] a number of different
conditions can be applied. In this paper we let the GA reach
the maximum number of generations and choose the best
candidate based on a normal χ2 statistic.
As we have already mentioned one of the advantages of

such a method is its model-independent nonparametric
nature. As a result, the final outcome of the process
corresponds to a group of continuous functions with respect

to a variable x (in our case we choose the variable to be the
redshift z) and not to specific best-fit parameters of a
model. However, this advantage can also be considered as a
simultaneous drawback of the method since the lack of
parameters leads to the abandonment of standard tech-
niques for the calculation/propagation of the errors.
Fortunately, this shortcoming can be bypassed through
the path integral approach, as discussed in Ref. [53].
In a nutshell, as the GA explores the whole functional

space, it effectively (in principle) passes through every
possible value of the reconstructed value fðxÞ at each x.
This is effectively the same as doing a path integral and
normalizing the likelihood reduces to a set of Gaussian
integrals which result to a sum of error functions, see
Ref. [53]. This approach at determining the errors from the
GA has been well-tested against bootstrap Monte Carlo and
fisher matrix techniques and has been found to be in good
agreement. Furthermore, it has the added advantage that it
is much faster compared to bootstrap and requires less
computational power.

IV. THE DATA

As we discussed in Sec. I, in order to constrain a possible
evolution of the evolving Newton’s constant Geff through
the GA, we use up-to-date cosmological data compilations,
including SNIa, BAO, and CC points, as well as growth and
Eg data. Note, we do not use any CMB data (even though it
would have decreased the errors) as that would leave a huge
gap in the points between z ≃ 2 and z ≃ 1090 that we would
have to interpolate in between. The exact compilations and
the details for the likelihoods are described in what follows.

A. Type Ia supernovae: The Pantheon sample

The SNIa dataset that we use in this work is the Pantheon
sample [78]. This sample corresponds to one of the largest
compilations of SNIa, which includes data both in the high
and low redshift regimes that are observed by six different
surveys. As a result, the sample incorporates 1048 SNeIa in
the redshift range z ∈ ð0.01; 2.26�.1 In general, SNIa are
used extensively in the literature in order to measure the
expansion rate HðzÞ since they can be directly connected
with the theoretically predicted apparent magnitude of a
model mthðzÞ through the following equation:

mthðzÞ ¼ MB þ 5log10

�
DLðzÞ
Mpc

�
þ 25; ð18Þ

with MB corresponding to the corrected absolute magni-
tude and DL is the luminosity distance, which in a flat
FLRW Universe is given by

The evolution starts from a population of
randomly generated individuals

Mutation &
Crossover

Best fit
function

Terminate?

Next Generation
Individual solutions are

selected through a fitness
calculation process

The process is repeated until a termination
condition has been reached

Improve the solution by repeating the
operation of the mutation, crossover and

selection

Start Initial population

Fitness
calculation

Selection

Yes

No

Flowchart of a GA

FIG. 1. Flowchart of a typical run of a genetic algorithm (from
Ref. [77]).

1The newer compilation of the Pantheon+ was made publicly
available in the final stages of this work, but we have not included
it as we do not expect it to significantly affect our analysis.
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DLðzÞ ¼
c
H0

ð1þ zÞ
Z

z

0

1

Eðz0Þ dz
0: ð19Þ

Even though some recent works [79–83] argue that the
degenerate combination of this quantity with H0 that
appears when Eq. (18) is expressed using the Hubble free
luminosity distance DLðzÞ may contain useful information,
normally the absolute magnitude MB is treated as a
nuisance parameter and is marginalized [78,84,85] follow-
ing the method discussed in the Appendix C of Ref. [85].
So, in the present work we adopt the standard method and
marginalize overMB, leading as a result to a χ2 function of
the form [41]

χ2SNIa ¼ A −
B2

E
þ ln

�
E
2π

�
; ð20Þ

where

A ¼ Δm⃗ · C⃗−1 · Δm⃗;

B ¼ Δm⃗ · C⃗−1 · ΔI⃗;

E ¼ I⃗ · C⃗−1 · I⃗:

In the above expression C⃗ is the total covariance matrix
(including both the statistical and systematic uncertainties),
I⃗ ¼ ð1; 1;…; 1Þ and Δm ¼ mobsðziÞ −mthðzÞ.
The total covariance matrix C⃗ arises as the sum of two

independent matrices [78]. The first one is a diagonal
matrix that includes the statistical uncertainties of the
apparent magnitudes mobs of each SNIa that has the
following form:0BBBBBBB@

σ2mobs;1
0 … 0

0 σ2mobs;2
… 0

..

. ..
. . .

. ..
.

0 0 … σ2mobs;1048

1CCCCCCCA; ð21Þ

while the second one is a nondiagonal matrix related to
systematic uncertainties. Therefore, for a specific form for
the Hubble rate HðzÞ, the theoretically predicted apparent
magnitude can be produced using Eq. (18) and then the
quality of the fit can be estimated applying the maximum
likelihood method, i.e., minimizing Eq. (20).

B. Baryon acoustic oscillations

Regarding the BAO compilation used in the present
analysis we employ data from different observational
missions such as the 6dFGS [86], WiggleZ [87,88], DES
[89], and Lya [90] surveys as well as other type of BAO
data from the fourth generation of the SDSS mission

(SDSS-IV), i.e., the extended baryon oscillation spectro-
scopic survey (eBOSS) [91]. However, since we incorpo-
rate data from different missions we cannot construct a
unique χ2 formula as we did in the SNIa case, because the
different missions do not constrain the same observational
quantities. In reality, they report different dependent com-
binations that are related to one another. So, before we
establish the corresponding χ2 formula, we need to recall
some basic definitions.
It is known that the BAO correspond to a relic from the

prerecombination era of the Universe that imposes a
characteristic scale occurring either as a peak in the galaxy
correlation function or as damped oscillations in the power
spectrum. The radius of the sound horizon at last scattering
rs is defined as [92]

rsðzdÞ≡
Z

∞

zd

csðzÞ
HðzÞ dz; ð22Þ

where the lower limit of the integration corresponds to the
drag redshift zd, i.e., a redshift shortly after recombination
that can be either calculated through a numerical package
such as CAMB or through the approximate formula dis-
cussed in Ref. [93] [see its Eq. (4)]. The numerator of (22)
describes the sound speed of the baryonic-photon fluid
given as [94]

csðzÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

�
1þ 3Ωb;0

4Ωγ;0

1
1þz

�s ; ð23Þ

where Ωb;0 and Ωγ;0 are the present day baryon and photon
densities, respectively.
Taking into account the physical angular diameter

distance DAðzÞ that in the context of a flat Universe is
given as

DAðzÞ ¼
c

1þ z

Z
z

0

dz0

Hðz0Þ ; ð24Þ

two different observational quantities that are widely used
in the literature can be obtained. The first one corresponds
to the comoving angular diameter distanceDM that is given
through the following simple formula [95]:

DMðzÞ ¼ ð1þ zÞDAðzÞ; ð25Þ

while the second one is the combination

DVðzÞ ¼
�
czD2

MðzÞ
HðzÞ

�
1=3

: ð26Þ

Even though, Eqs. (25) and (26) are the main observational
quantities that are published by the BAO surveys, some
surveys may also report theDH observable that is defined as
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DHðzÞ≡ c
HðzÞ : ð27Þ

Now returning to the specific data compilation of the
current work, we use the results of the following surveys:

(i) The 6dFGS and WiggleZ missions that report the
quantity dz ≡ rsðzdÞ=DVðzÞ giving the following
values

Missions z dz σdz References Date

6dFGS 0.106 0.336 0.015 [86] June 2011
WiggleZ 0.44 0.073 0.031 [87,88] April 2012

0.6 0.0726 0.0164
0.73 0.0592 0.0185

which lead to a χ2 formula of the form

χ26dFS;WigZ ¼ ViC−1
ij V

j: ð28Þ

In this case, the vector Vi is given as Vi ¼ dz;i − dzðziÞ,
whereas the covariance matrix Cij yields0BBBBB@

1
0.0152 0 0 0

0 1040.3 −807.5 336.8

0 −807.5 3720.3 −1551.9
0 336.8 −1551.9 2914.9

1CCCCCA: ð29Þ

(ii) The DES mission, that publishes the combination
DM=rs to be

Mission z DM=rs σDM=rs References Date

DES 0.835 18.92 0.51 [89] July 2021

which gives a χ2 formula of the form

χ2DES ¼
X
i

�
DMðz; iÞ=rs −DMðziÞ=rs

σDMðz;iÞ=rs

�
2

: ð30Þ

(iii) The Lya mission, which constrains the combinations
fBAO ¼ ðDH=rs; DM=rsÞ as

Mission z fBAO σfBAO References Date

Lya 2.33 (8.99, 37.5) (0.19, 1.1) [90] July 2020

Notice that the 1σ errors provided in the above table
correspond to the statistical errors. So taking into account
the two autocorrelations along with the two cross-
correlations as illustrated in Eq. (43) of Ref. [90] the
relevant χ2 function is constructed as

χ2Lya ¼ ViC−1
ij V

j: ð31Þ

In this case, the vector Vi reads as Vi ¼ ðfBAOðz; iÞ −
fBAOðziÞÞ ≡ ðDHðz; iÞ=rs − DHðziÞ=rs; DMðz; iÞ=rs
−DMðziÞ=rsÞ.

(iv) Finally we include the results of the eBOSS mission
which contains measurements in various redshift
ranges as summarized in detail in Table 3 of
Ref. [91]. Using these values, a χ2 formula for each
data point can be constructed of the form

χ2eBOSS ¼ ViC−1
ij V

j; ð32Þ

where the vector Vi corresponds to the difference
between the observational values with the respected
theoretical expressions and Cij is the corresponding
covariance matrix.

Note that some of the individual χ2 terms might be
correlated with each other, e.g., the Lya terms and the
ones from eBOSS. Unfortunately however, it is impossible
to calculate the possible correlations between the terms as
we do not have the necessary covariance matrices, so we
will assume they are uncorrelated. Therefore, to obtain the
total χ2, we add all the individual terms as follows [41]:

χ2BAOðrsh;GAÞ ¼ χ26dFS;WigZ þ χ2DES þ χ2Lya þ χ2eBOSS: ð33Þ

Furthermore, as mentioned earlier the BAO points
depend strongly on the sound horizon at the drag epoch
rsðzdÞ times the dimensionless Hubble parameter
h ¼ H0=ð100 km s−1Mpc−1Þ, i.e., the combination rsh.
Schematically, this means that the χ2 is a function of the
product of the two variables and the functions produced by
the GA, i.e., χ2 ¼ χ2ðrsh;GAÞ. However, since we utilize
the model-independent GA method the evaluation of this
quantity is a rather difficult task.
In order to avoid the dependence on the early time

physics of recombination, we then minimize numerically
the χ2 over the quantity rsh and we construct a new χ2,
which is independent of rsh, namely:

χ2BAOðGAÞ ¼ minrsh½χ2BAOðrsh;GAÞ�: ð34Þ

We find that this is quite fast and does not affect the
efficiency of the GA code.
Note however, that the minimization procedure used here

is effectively using the frequentist profile likelihood, but an
arguably more appropriate (albeit more computationally
costly approach), would be to marginalize over this
parameter. As the latter would slow down the code
significantly, we prefer to use the minimization approach.
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C. Cosmic chronometers

The CC data correspond to another quite useful probe,
since they can directly constrain the Hubble rate HðzÞ at
different redshifts, optimizing the differential age method.
In particular the CC measurements are based on the raw
definition of the Hubble parameter as

HðzÞ ¼ −
1

1þ z
dz
dt

; ð35Þ

avoiding as a result any complex integrations that may
appear in other probes such the SNIa or BAO probes.
However, it is important to note that the calculation of the
ratio dz=dt that appears in the definition (35) is a rather
complex procedure.
In the present work we use the compilation of 36HðzÞ

data discussed in Ref. [96] and include three additions as it
is illustrated in the Table I of the Appendix. Also, our
dataset is similar to that of Ref. [97], but with the addition
of a few more points. Also, here we do not include the full
covariance matrix, for which the main effect from that
compilation is to just increase the errors in the points and
further complicate our analysis.
In any case, using the data of Table I, the standard

maximum likelihood method can also be applied here, by
constructing a χ2 function. So, following the method
proposed in Ref. [41], we minimize over the H0 parameter
(we consider it as a nuisance parameter as we did with MB

in the SNIa case) and find the corresponding χ2 to be

χ2CC ¼ A −
B2

Γ
; ð36Þ

where the parameters A, B, and Γ are given by the following
equations

A ¼
XNH

i

�
Hi

σHi

�
2

; ð37Þ

B ¼
XNH

i

HiEthðzÞ
σ2Hi

; ð38Þ

Γ ¼
XNH

i

�
EthðzÞ
σHi

�
2

; ð39Þ

where EthðzÞ is defined as EthðzÞ≡HðzÞ=H0 and NH
describes the total number of CC data. By taking the
derivative of Eq. (36) with respect to the nuisance para-
meterH0 and setting it equal to zero, it is straightforward to
show that the minimum is at

H0 ¼
B
Γ
: ð40Þ

Note that it is in fact easy to show that for any χ2 that
depends quadratically on a parameter, as is the case for the
CC data and H0, marginalization of this parameter with a
flat prior and direct minimization over it gives the same
result, up to an irrelevant constant. Thus, the approach
shown here is equivalent to marginalizing over H0.

D. Growth rate data

An additional data compilation that we use in the present
work corresponds to the growth rate data compilation
presented in Table II of the Appendix (a compilation
similar to the one used in Ref. [109]). These data are
usually known in the literature as redshift space distortion
(RSD) data, due to a particular phenomenon that occurs at
both large and small scales during the observation.
In a nutshell, due to the peculiar velocities of galaxies an

overdense region seems squashed in redshift space at large
scales, while at small scales an overdense region is
elongated along the line of sight affecting as a result the
two-point correlation function leading to an anisotropic
power spectrum.
However, on large scales, a part of the observed

anisotropy of the power spectrum can also be due to the
use of an incorrect fiducial cosmology HðzÞ that needs to
be taken into account when analyzing the growth rate data
and corresponds to the so-called Alcock-Paczynski (AP)
effect. In the present analysis, we adopt the rough estimate
of Ref. [8], however many alternative forms have been
discussed in the literature.
In order to incorporate the RSD data into our analysis,

we move along the lines of Ref. [41] and perform a
marginalization process over the constant parameters that
appear in fσ8 and just rescale the values of the theoretical
prediction. If we write fσ8 ¼ σ8

δmð1Þ aδ
0
mðaÞ ¼ fσ8;0fsðaÞ

where fsðaÞ ¼ aδ0mðaÞ, then we can marginalize over the
(a priori unknown) scaling constants fσ8;0 ≡ σ8

δmð1Þ. At this
point we also include a correction due to the AP effect, as
discussed in Refs. [7,8]. In particular, the correction can be
approximated as [120]

fσ8ðaÞ ≃
HðaÞDAðaÞ
H̃ðaÞfDAðaÞ

˜fσ8ðaÞ; ð41Þ

where HðaÞ, DAðaÞ are the Hubble parameter and angular
diameter distance of the model at hand, H̃ðaÞ, D̃AðaÞ are
the Hubble parameter and angular diameter distance of the
fiducial cosmology used in the derivation of the data,
usually the flat cosmological constant model with some
reference Ωm;0 value (given for our data in Table II) and
˜fσ8ðaÞ is the reference value of the data, to be corrected.
While RSD surveys account for the AP effect of each

individual point, we still need to correct for it if the
cosmology assumed by the survey is quite far from the
one where we evaluate fσ8. To make matters even more
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complicated, as seen in Table II, the fiducial cosmologies
assumed by the RSD surveys are quite different from each
other. Thus, as it has been noted in the literature, see
Ref. [120] and references therein, applying an AP correc-
tion again can account (to some extent) for any discrep-
ancies caused by the various fiducial Ωm;0 values.

Then we have that fsðaÞ ¼ aδ0ðaÞ HðaÞDAðaÞ
H̃ðaÞ eDAðaÞ

and to do the

marginalization, we write the χ2 as

χ2 ¼ ½fσ8;i − fσ8;0fsðziÞ�C−1
ij ½fσ8;j − fσ8;0fsðzjÞ�;

¼ A − fσ8;0Bþ fσ28;0Γ; ð42Þ

where we have expanded the sum and defined the coef-
ficients A, B, Γ as

A ¼ fσ8;iC−1
ij fσ8;j; ð43Þ

B ¼ fσ8;iC−1
ij fsðzjÞ þ fsðziÞC−1

ij fσ8;j; ð44Þ

Γ ¼ fsðziÞC−1
ij fsðzjÞ: ð45Þ

Then the value of fσ8;0 at the minimum and the corre-
sponding marginalized χ2 are, respectively,

fσ8;0min ¼
B
2Γ

; ð46Þ

χ̃2 ¼ A −
B2

4Γ
; ð47Þ

which is what we use in our analysis. As mentioned earlier,
as the parameter fσ8;0 appears quadratically in the χ2, then
minimizing over it is in fact equivalent to marginalizing
over it.
Finally, even though the RSD and BAO points come in

principle from the same or related datasets, we cannot take
into account these possible correlations as in general, we
have no access to the necessary covariance matrices. Even
in the cases of the eBOSS data where we have the
covariance between the RSD and BAO point, it is difficult
to incorporate the covariance matrix into the analysis as we
perform the GA fitting separately. Thus, to keep the
analysis simple we will assume we can just add the
RSD and BAO χ2 terms together.

E. Eg data

Last but not least, we have used an updated compilation
of seven uncorrelated Eg data points that are presented in
the Table III of the Appendix. These consist of five weak
gravitational lensing datapoints from the Kilo-Degree
Survey (KiDS-1000), juxtaposed with overlapping data
from the BOSS and 2dFLenS galaxy spectroscopic redshift

surveys [121] and two datapoints from the VIMOS Public
Extragalactic Redshift Survey (VIPERS) [122].
The Eg statistic as expressed via Eq. (15) is galaxy bias

independent at linear order, since it was created by
definition as a probe of the ratio of the Newtonian
potentials (Φ, Ψ) of the perturbed FLRW metric given
by Eq. (2). In order to fit the Eg data we can construct and
minimize a χ2 formula of the form

χ2Eg
¼

X
i

�
2Ei

g − P2ðaiÞ
2σEg;i

�
2

: ð48Þ

Furthermore, in our analysis we use the GA pipeline to
directly fit the function P2ðaÞ given analytically from
Eq. (9).
In general, the Eg data have been known to be plagued by

scale and bias-dependent lensing contributions, which in
effect increase the systematic uncertainties [123]. While
this can be ameliorated to a certain extend by adding the
correlations of shear and galaxy clustering, it is unclear
whether the current data have these corrections [124].
One possibility to at least take into account this extra

uncertainty is to introduce an intrinsic systematic error σstat
that has to be determined from the data such that the χ2 per
degree of freedom (d.o.f.) is order unity, i.e., χ2=d:o:f: ∼ 1,
as was done in the past for some SNIa compilations (see
Ref. [125]), but this is a rather questionable statistical
practice as it assumes a priori the validity of the model and
makes model comparison impossible.
Thus, in what follows we will interpret any results

stemming from the currently available Eg data with caution,
even if they are very promising and may already weakly
hint towards some new physics, as it is uncertain if the
possible systematics can explain the observed deviations
from GR [41].

F. The mock data

Here we briefly discuss the mock data we used in our
analysis. In particular, we consider two different fiducial
cosmologies, one based on the ΛCDM model and another
one based on a model with an evolving Newton’s constant
μðk; aÞ and lensing parameter Σðk; aÞ, as defined via the
Poisson equations Eqs. (3) and (4). We call the latter model
the μCDM. Specifically, we use the parametrizations:

μðk; aÞ ¼ 1þ gað1 − aÞm1 − gað1 − aÞ2m1 ; ð49Þ

Σðk; aÞ ¼ 2þ σað1 − aÞm2 − σað1 − aÞ2m2 ; ð50Þ

where ga, σa are some parameters (ga ¼ σa ¼ 0 in the
ΛCDM model), and we set m1 ¼ m2 ¼ 2, inspired by
Ref. [7] such that the models pass the Solar System tests.
The parameters for the μCDM are chosen to be ga ¼
−0.627 and σa ¼ −3.562, which are the best-fit values
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found in Ref. [10] (see the “Datasets fσ8 þ Eg corr.”
combination in their Table IV).
For the rest of the cosmological parameters (which

are common to both fiducial cosmologies) we assume
Ωm;0 ¼ 0.3, h ¼ H0=ð100 km s−1Mpc−1Þ ¼ 0.7, σ8;0 ¼
0.8 and for the dark energy parameters ðw0; waÞ ¼
ð−1; 0Þ, i.e., we assume a ΛCDM background as we are
interested in the effects of the cosmological perturbations.
Having fixed the cosmological parameters for the two

models, we then make the corresponding two sets of data
for the Hubble parameter HðzÞ, the growth rate fσ8ðzÞ and
the EgðzÞ parameter for each model in 20 redshift bins in
the range z ∈ ½0; 2.0� with a fixed bin size of dz ¼ 0.1. We
also add Gaussian noise and errors to the 1% level, which is
within the expectations of forthcoming next-generation
surveys, such as Euclid [126].
In fact, Euclid will obtain precise measurements of these

quantities, albeit its redshift range is much more limited,
e.g., for the spectroscopic survey the range is z ∈ ½0.9; 1.8�
and needs to be complemented by other surveys (e.g., DESI)
in lower redshifts [58–60]. Thus, we consider our method-
ology as a proof of concept approach and the forecasts
as an optimistic case to gauge how well the method works
overall.
With these two mock data sets at hand, we then rerun the

GA pipelines as in the previous section and we again
reconstruct the parameters μðk; aÞ and ηðk; aÞ, aiming to
forecast at which level our ML approach is able to detect
deviations from GR. One key difference from the analysis
of the real data in the previous section is though that in this
case we do not require any SNIa data or any corrections for
the AP effect in the growth data, as all the points will come
from the same source, unlike the compilation of the
currently available points used here, thus allowing us to
perform a much cleaner analysis.
We discuss the results of our analysis in the next section

in detail.

V. RESULTS

Using the methodology described earlier, in order to
directly reconstruct μðzÞ and ηðzÞ we aim to produce
analytic fits for the functions HðzÞ, DLðzÞ, DAðzÞ,
fσ8ðzÞ, and EgðzÞ, via updated compilations of the CC,
SNIa, BAO, RSD, and Eg data for the real data. On the
other hand, fit for the functions HðzÞ, fσ8ðzÞ, and EgðzÞ in
the case of the mock data.
Before running the GA analysis we choose a specific

grammar and we also impose a few physically motivated
hypotheses in order to ensure that the obtained functions
are well-behaved, e.g., smooth, continuous, and singularity
free as expected by physical quantities. In particular, we
impose the following priors:

(i) The luminosity distance DLðzÞ in the low redshift
regime should be approximated by the Hubble law

as DLðz → 0Þ ≃ cz=H0. The same behavior is also
expected for the angular diameter distance DAðzÞ in
the low redshift regime, since the two quantities in
the context of FLRW metric are connected via the
standard distance duality relation

DLðzÞ ¼ ð1þ zÞ2DAðzÞ: ð51Þ

(ii) The present-day value of the Hubble parameter
should be equal to the Hubble constant H0, which
is evaluated via the CC data.

(iii) In the high redshift regime, i.e., deep in the matter
domination era, the growth factor δmðaÞ should
evolve as δmðaÞ ≃ a, as expected from LSS obser-
vations.

The particular prior for the distances is implemented by
demanding that the luminosity distance behaves as
DLðzÞ ¼ cH−1

0 z½1þ z · GAðzÞ�, where GAðzÞ is the func-
tion predicted by the GA. This ensures that the prior is
actually enforced at all times for well-behaved functions (as
are the ones created by our implementation of the GA).
Also, in order to maximize the freedom in the reconstruc-
tions in this work we follow Ref. [41] and perform a
separate analysis by using two separate GA functions for
DLðzÞ and HðzÞ.
However, for completeness we also compared the

expressions for the luminosity distance: one determined
directly by the GA and the other by integrating the Hubble
parameter. Doing so we find that in the redshift range z ∈
½0; 2� the agreement between the two approaches is on
average ∼1.2% and always below 2%. Thus, there is
reasonable agreement between the two function, even if
we do not enforce Eq. (19).
On the other hand, in the high redshift regime, i.e., deep

in the matter domination era, while the growth factor δmðaÞ
should evolve as δmðaÞ ≃ a, as expected from LSS obser-
vations, these high redshifts (z ∈ ½102; 104�) are not yet
probed by LSS observations and are only indirectly con-
strained by the CMB, so any deviations from the expected
behavior are only speculative at the moment. Still, in order
to probe for any deviations, we extend the GA grammar
used, by considering also polynomials of fractional powers
of the scale factor a.
Finally, the initial functions are then subjected to the

crossover and mutation operations and after this process is
repeated several times (until we reach a maximum number
of generations to ensure convergence), the final expressions
for the best-fit functions are obtained.

A. Currently available data

Running the GA pipelines for the currently available
data, the following best-fit function forms are obtained:
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�
HðzÞ
H0

�
2

¼ 1þ z½0.262ð0.153zþ 1Þ3 − 0.618z − 1.281�2;

ð52Þ

DLðzÞ ¼
c
H0

z½1þ zð0.872 − 0.129zÞ2�; ð53Þ

fσ8ðaÞ ¼ f0fa − a4½1.680ð0.0730.073aa0.073aÞ1.720
þ 0.003a5.680 − 0.412a1.533�2g; ð54Þ

P2ðaÞ¼ð−0.160 ·0.1800.361aa0.361aþ4.758a9−2.869a3Þ2;
ð55Þ

where f0 ¼ 1.109 � 0.272 and H0 ¼ ð67.17�
12.22Þ km s−1 Mpc−1, which is compatible with the
Planck 2018 measurements. The redshift evolution of the
growth rate fσ8ðzÞ and of the quantity P2ðzÞ as

reconstructed by the GA using the RSD and Eg data, is
illustrated in Fig. 2 (blue and brown lines), while the
evolution of the Hubble rate HðzÞ, of the luminosity
distance DLðzÞ and of the angular diameter distance
DAðzÞ as reconstructed by the GA using the CC, the
BAO, and the SNIa data, is illustrated in Figs. 3 and 4
accordingly (red, green, and magenta lines). In each plot we
also include the best fit of the ΛCDM scenario (dashed
black lines) as well as the 1σ errors regions (shaded areas)
utilizing the path integral approach.
Clearly, the ΛCDM case is consistent with the results of

the GA, i.e., the black dashed line is allocated well within
∼1σ in almost all of the cases except the results produced
from the Eg data, where the P2ðzÞ function as derived by
the GA pipeline presents a large deviation from the one
predicted for the ΛCDM case. However, it is important to
note that even the ΛCDM scenario does not fit well the Eg

data compilation, the fact that the χ2 per d.o.f. is ≃1.8,
which is an indication that the Eg results should be
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FIG. 2. The best-fit fσ8ðzÞ (left) and P2ðzÞ (right) functions (blue and brown lines), with their respective data points, as predicted by
the GA pipelines using growth and Eg data accordingly, along with their 1σ error bands (light blue and light brown areas). We see that
while on one hand, the predicted fσ8ðzÞ function is consistent with the one produced assuming ΛCDM (dashed black line) the same
cannot be said for the predicted P2ðzÞ function, which is affected by the low quality of the data.
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FIG. 3. The best-fit for the luminosity distanceDLðzÞ (left) and Hubble rateHðzÞ (right) functions (green and red lines) as predicted by
the GA using CC and SNIa data accordingly, with the CC data points, along with their 1σ error bands (light green and light red areas).
The dashed black line corresponds to the ΛCDM best fit.
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interpreted with care. Interestingly, a similar deviation from
the ΛCDM case was also observed for P2ðzÞ in Ref. [41].
Using the aforementioned GA reconstructions we finally

calculate the evolution of the parameter Ωm;0μðzÞ using the

theoretical expressions presented in Sec. II. The final result
is shown in the left panel of Fig. 5 where we show the GA
reconstruction in a solid black line along with the 1σ errors
as the shaded region. Overall we find that while there is
good agreement with the expectation of a constant value,
but we find that the errors are quite large due to the lower
quality of the currently available data compared to the ones
from forthcoming surveys in the near future, thus not
allowing us to draw any strong conclusions on any
deviations of Ωm;0μðzÞ from a constant value.
We also perform the GA reconstruction of the anisotropic

stress η, which is shown in the right panel of Fig. 5 in the
redshift range z ∈ ½0.2; 0.9� where we have the Eg data, but
we find that it deviates strongly fromunity. The reason for this
is that theEg data aremost likely plaguedwith systematics (as
discussed in detail in Sec. IV E), which most likely drive the
deviation seen. Of course, the possibility of new physics also
cannot be excluded as the systematics in the data are unlikely
to account for thewhole deviation fromunity observed in η. A
similar result was found for η in Ref. [41] using an earlier
compilation of the data.
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FIG. 4. The best-fit angular diameter distance DAðzÞ function
(magenta line) as predicted by the GA using a compilation of
BAO data, along with its 1σ error band (light magenta area). The
dashed black line corresponds to the ΛCDM best fit.
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FIG. 5. The reconstructions of Ωm;0μðzÞ (left) and ηðzÞ (right) given by Eqs. (14) and (12), respectively, where the relevant functions
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area. Note that we only show the reconstruction of η in the redshift range z ∈ ½0.2; 0.9� where we have the Eg data.
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FIG. 6. The GA reconstruction of Ωm;0μðzÞ (left) and ηðzÞ (right) for the ΛCDM mock. The gray-shaded regions correspond to the 1σ
confidence level, while the dashed red line corresponds to the fiducial model μðzÞ ¼ ηðzÞ ¼ 1, i.e., GR and the ΛCDM model. In both
cases the GA is able to constraint the correct underlying fiducial model to within a few percent.
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B. Mock data

Here we repeat the GA reconstruction analysis, however
this time using the mock data described in Sec. IV F. In
particular we run the whole GA pipeline on the ΛCDM and
μCDM mocks and from there we reconstruct the quantity
Ωm;0μðzÞ which is related to the effective Newton’s con-
stant and the anisotropic stress parameter ηðzÞ using
Eqs. (16) and (17), respectively.
In Fig. 6 we show the results of these reconstructions for

the ΛCDM mock. In particular, we show Ωm;0μðzÞ in the
left panel and ηðzÞ on the right panel of Fig. 6 respectively
and as can be seen, in both cases the GA is able to recover
the correct underlying cosmology within the errors, given
by the gray-shaded regions at the 1σ confidence level.
On the other hand, in Fig. 7 we show the GA recon-

structions for the μCDM mock, again Ωm;0μðzÞ in the left
panel and ηðzÞ in the right panel, respectively. Here we find
that even though the fiducial cosmology is quite extreme,
the GA is able to reconstruct both functions to within a few
percent and provide a detection, quantified as a deviation
from a constant value, at several σs.

VI. CONCLUSIONS

In this work, we used a particular ML approach, called
the GA, in order to perform nonparametric reconstructions
of two key quantities that parametrize deviations from GR,
namely the effective Newton’s constant Geff and the
anisotropic parameter η [127,128].
To perform the reconstructions we used both the cur-

rently available data, coming from the BAO, the CC, the
growth of matter perturbations, and the so-called Eg
statistics compilations but also synthetic data assuming a
next-generation survey in order to forecast, in an optimist
scenario, how well we will be able to constrain deviations

from the null hypothesis, either the ΛCDM model or a
model with an evolving Newton’s constant, dubbed μCDM.
In the case of the currently available data we find, as

expected, that the GA reconstructions are affected by the
lower quality of the currently available data. WhileΩm;0μðzÞ
seems to be in good agreementwith having a constant value at
all redshiftswithin theerrors, on the other hand the anisotropic
stress η is more difficult to interpret as the fit is plagued by the
systematics of theEg data, in agreementwith previousworks.
While it might have been interesting to repeat the same
analysiswithout theEg data, it is in fact not possible to do that
asΩm;0μðzÞ does not contain theEg function but ηðzÞ requires
it, thus we cannot do a separate analysis.
The situation is more clear when using the fiducial data

based on the two different mocks. Here we find that in both
cases theGA reconstructions are in good agreement with the
fiducial models, either the ΛCDM for which μ ¼ η ¼ 1 or
the μCDMmodel, which had a more complicated evolution.
In particular, we see in Figs. 6 and 7 that the GA

reconstructions are well within the 1σ errors of the true
fiducial model and the GA is able to constrain the correct
underlying fiducial model to within a few percent. This is
possible for both mocks, and in the case of the μCDM
mock, which was based on a rather extreme cosmology, can
provide a strong detection of several σs.
Overall, we find that this reconstruction method is a very

useful tool in performing model-independent reconstruc-
tions of the two key quantities Ωm;0μðzÞ and ηðzÞ that can
be used to parametrize most modified gravity models and
for which any deviations from unity would be smoking
guns for new physics if the systematics are under control.
Numerical analysis files.—TheMathematica codes used

by the authors in the analysis of the paper will be made
publicly available upon publication at https://github.com/
snesseris/.
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FIG. 7. The GA reconstruction of Ωm;0μðzÞ (left) and ηðzÞ (right) for the μCDM mock. The gray-shaded regions correspond to the 1σ
confidence level, while the dashed red line corresponds to the fiducial model described by Eqs. (49) and (50) and the parameters
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APPENDIX: DATA COMPILATIONS

We present the updated compilations of cosmological
data that were used in the analysis.

TABLE I. A compilation of 39 cosmic chronometer data dating from 2009 to 2022, in units of km s−1 Mpc−1.

Index z HðzÞ � σH References Date

1 0.09 69� 12 [98] July 2009
2 0.17 83� 8 [98] July 2009
3 0.27 77� 14 [98] July 2009
4 0.40 95� 17 [98] July 2009
5 0.48 97� 62 [98] July 2009
6 0.88 90� 40 [98] July 2009
7 0.90 117� 23 [98] July 2009
8 1.30 168� 17 [98] July 2009
9 1.43 177� 18 [98] July 2009
10 1.53 140� 14 [98] July 2009
11 1.75 202� 40 [98] July 2009
12 0.44 82.6� 7.8 [87] June 2012
13 0.60 87.9� 6.1 [87] June 2012
14 0.73 97.3� 7.0 [87] June 2012
15 0.179 75� 4 [99] February 2013
16 0.199 75.0� 5 [99] February 2013
17 0.352 83.0� 14 [99] February 2013
18 0.593 104.0� 13 [99] February 2013
19 0.68 92.0� 8 [99] February 2013
20 0.781 105.0� 12 [99] February 2013
21 0.875 125.0� 17 [99] February 2013
22 1.037 154.0� 20 [99] February 2013
23 0.35 82.7� 8.4 [100] August 2013
24 0.07 69.0� 19.6 [101] May 2014
25 0.12 68.6� 26.2 [101] May 2014
26 0.20 72.9� 29.6 [101] May 2014
27 0.28 88.8� 36.6 [101] May 2014
28 0.57 96.8� 3.4 [102] June 2014
29 2.34 222.0� 7.0 [103] December 2014
30 1.363 160.0� 33.6 [104] March 2015
31 1.965 186.5� 50.4 [104] March 2015
32 0.3802 83.0� 13.5 [105] May 2016
33 0.4004 77.0� 10.2 [105] May 2016
34 0.4247 87.1� 11.2 [105] May 2016
35 0.4497 92.8� 12.9 [105] May 2016
36 0.4783 80.9� 9.0 [105] May 2016
37 0.47 89� 50 [106] February 2017
38 0.75 98.8� 33.6 [107] October 2021
39 0.80 113.1� 20.73 [108] May 2022
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