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One of the most common assumptions has been made that the pressure inside the star is isotropic in
nature. However, the pressure is locally anisotropic in nature which is a more realistic case. In this study, we
investigate certain properties of anisotropic neutron stars with the scalar pressure anisotropy model.
Different perfect fluid conditions are tested within the star with the relativistic mean-field model equation of
states (EOSs). The anisotropic neutron star properties such as mass (M), radius (R), compactness (C), Love
number (k2), dimensionless tidal deformability (Λ), and the moment of inertia (I) are calculated. The
magnitude of the quantities as mentioned above increases (decreases) with the positive (negative) value of
anisotropy except k2 and Λ. The universal relation I − Love − C is calculated with almost 58 EOS spans
from relativistic to nonrelativistic cases. We observed that the relations between them get weaker when we
include anisotropicity. With the help of the GW170817 tidal deformability limit and radii constraints from
different approaches, we find that the anisotropic parameter is less than 1.0 if one uses the Bowers-Liang
(BL) model. Using the universal relation and the tidal deformability bound given by the GW170817, we
put a theoretical limit for the canonical radius, R1.4 ¼ 10.74þ1.84

−1.36 km, and the moment of inertia, I1.4 ¼
1.77þ0.17

−0.09 × 1045 g cm2 with 90% confidence limit for isotropic stars. Similarly, for anisotropic stars with

λBL ¼ 1.0, the values are R1.4 ¼ 11.74þ2.11
−1.54 km, I1.4 ¼ 2.40þ0.17

−0.08 × 1045 g cm2 respectively.

DOI: 10.1103/PhysRevD.106.103518

I. INTRODUCTION

Exploration of the internal structure of compact stars
such as neutron stars (NSs) is one of the most challenging
problems because its study involves different areas of
physics. Until now, we do not have a complete theoretical
understanding of this object because it has a complex inner
structure and strong gravity [1]. Besides this, we take
another realistic phenomenon inside the compact objects
termed pressure anisotropy. One of the most common
assumptions in studying a neutron star’s equilibrium
structure is that its pressure is isotropic. However, the
exact case is different due to some exotic process that
happens inside it (for a review, see [2]). For example, very
high magnetic field [3–10], pion condensation [11], phase
transitions [12], relativistic nuclear interaction [13,14],
crystallization of the core [15], superfluid core [16–18],
etc. are the main causes of the anisotropy inside a star.
A diversity of anisotropic models in literature have been

constructed for the matter with a perfect fluid. Mainly
Bowers-Liang (BL) [19], Horvat et al. [20], and Cosenza
et al. [21] models have been proposed. The BL model is
based on the assumptions that (i) the anisotropy should
vanish quadratically at the origin, (ii) the anisotropy should
depend nonlinearly on radial pressure, and (iii) the

anisotropy is gravitationally induced. Horvat et al. pro-
posed that anisotropy is due to the quasilocal equation
as given in Ref. [20]. Different studies put the limit of
anisotropic parameter, e.g., −2 ≤ λBL ≤ þ2 for the BL
model [22] and −2 ≤ λH ≤ þ2 [23] for the Horvat model.
In the present case, we take the BL model, which is
explained in the following subsection.
Several studies explained the effects of anisotropic

pressure on the macroscopic properties of the compact
objects, such as its mass, radius, moment of inertia, tidal
deformability, nonradial oscillation [22–40]. In general, it
is observed that with increasing the magnitude of the
anisotropy parameter, the magnitudes of macroscopic
properties increase and vice versa. Contrary to mass and
radius, the oscillation frequency of the anisotropic NS
decreases [23]. In Ref. [26], it was suggested that the
secondary component might be an anisotropic NS, contra-
dicted in [32]. Deb et al. [27] have claimed that with
increasing anisotropy, the star with a transverse magnetic
field becomes more massive, increasing the star’s size and
vice versa for the radial field. Using the Skyrme model,
Silva et al. [22] claimed that the observations of the binary
pulsar might constrain the degree of anisotropy. Using
GW170817 tidal deformability constraint, Biswas and
Bose [35] observed that a certain equation of state
(EOS) becomes viable if the star has enough anisotropy
without the violation of causality. In Ref. [32], it has been*harish.d@iopb.res.in
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observed that not only the BL model but the Horvat model
is also well consistent with recent multimessenger con-
straints [32].
In this study, we calculate the NS properties for different

degrees of anisotropy with the modern EOSs. Existing
universal relations are explored between different aniso-
tropic NS properties such as the moment of inertia (I), tidal
deformability (Love), and compactness (C) (I − Love − C)
by varying anisotropic parameters. Yagi and Yunes first
obtained the universal relation for the I − Love −Q (where
Q is the quadrupole moment) for the slowly rotating and
tidally deformed NS [41] and also for anisotropic NS [42].
Several studies have been dedicated to explaining the
universal relations between different macroscopic proper-
ties of the compact objects [41–48]. This is because certain
physical quantities are found to be interrelated with each
other, and the relations are almost independent of the
internal structure of the star. Therefore, the EOS insensitive
relations are required to decode the information about
others, which may not be observationally accessible.
Several studies put constraints on some properties of the

NS, such as radius, the moment of inertia (MI), compactness,
etc., using the observational data. Lattimer and Schutz
constrain the EOSs by measuring MI in the double pulsars
system [49]. Brew and Rezzolla [50] have explained some
universal relations for the Keplerian star and also improved
the universal relations given by Lattimer and Schutz. This
study explains the universal relation I − Love − C for the
anisotropic NS. From those relations, we try to constrain the
anisotropy parameter with the help of present observational
data. Also, we put some theoretical limits on MI, compact-
ness, and radius of both isotropic as well as anisotropic stars.
Exploration of compact star properties needs the EOS,

which describes the internal mechanism and interactions
between different particles present inside the star. The EOS
is the relation between pressure and density, which includes
all types of interactions occurring inside the star. For this, we
use the relativistic mean-field (RMF) model [51–56], and the
Skyrme-Hartree-Fock (SHF) model [57–60], which is non-
relativistic in nature. The past few decades, both models
played well in different areas of nuclear astrophysics [61–
66]. In recent years, number of extended RMF (E-RMF)
models have been put forth, and it has been discovered that
the properties of various systems, including finite nuclei,
nuclear matter, and neutron stars, are accurately replicated
and consistent with experimental and observational evidence
[66–69]. More than 200 parameter sets have been modeled
by the different theoretical groups with either relativistic or
nonrelativistic approaches. Among them, only a few EOSs
have satisfied both nuclear matter properties and reproduced
the latest massive NS mass, radius, and tidal deformability
called the consistent model [55,60,70].
In this study, we choose RMF unified EOSs for npeμ

matter which are BKA24, FSU2, FSUGarnet, G1, G2, G3,
GL97, IOPB, IUFSU, IUFSU�, SINPA, SINPB, TM1 with

standard nonlinear interactions and higher-order couplings
from Parmar et al. [71]. Other unified EOSs which are
taken from Fortin et al. [72] are the hyperonic npeμY-
matter variants BSR2Y, BSR6Y, GM1Y, NL3Y, NL3Yss,
NL3ωρY, NL3ωρYss, DD2Y, and DDME2Y; the density-
dependent linear models such as DD2, DDHδ, and
DDME2, and the SHF npeμ-matter models BSk20,
BSk21, BSk22, BSk23, BSk24, BSk25, BSk26,
KDE0v1, Rs, SK255, SK272, SKa, SKb, SkI2, SkI3,
SkI4, SkI5, SkI6, SkMP, SKOp, SLY230a, SLY2, SLY4,
and SLY9. All the EOSs are able to reproduced the mass of
the NS ∼ 2 M⊙. With these EOSs, we calculate the aniso-
tropic star properties and calculate the I − Love − C rela-
tions by varying anisotropy parameters. We use the value of
G and c as equal to 1 in this calculation.

II. ANISOTROPIC CONFIGURATIONS

We consider a static and spherically symmetric equilib-
rium distribution of matter. The stress-energy tensor is
defined as [73]

Tμν ¼ ðE þ PÞuμuν þ Pgμν; ð1Þ

where E and P are the energy density and pressure of the
fluid. The uμ is the four-velocity of the fluid respectively.
The anisotropy of the fluid means when the radial

pressure (Pr) differs from the tangential pressure (Pt).
The stress-energy tensor for the corresponding star is
defined as [22,23,28]

Tμν ¼ ðE þ PtÞuμuν þ ðPr − PtÞkμkν þ Ptgμν; ð2Þ

where kμ is the unit radial vector (kμkμ ¼ 1) with uμkμ ¼ 0.
For a spherically symmetric, nonrotating NS, the metric

is defined as

ds2 ¼ eνdt2 − eλdr2 − r2dθ2 − r2sin2θdφ2: ð3Þ

For an anisotropic NS, the modified Tolman-Oppenheimer-
Volkoff (TOV) equations can be obtained by solving
Einstein’s equations as [23]

dPr

dr
¼ −

ðE þ PrÞðmþ 4πr3PrÞ
rðr − 2mÞ þ 2

r
ðPt − PrÞ; ð4Þ

dm
dr

¼ 4πr2E; ð5Þ

where the anisotropy parameter is defined as σ ¼ Pt − Pr.
The “m” is the enclosed mass corresponding to radius r.
Two separate EOSs for Pr and Pt are needed to solve these
TOV equations. We consider the EOS for radial pressure
PrðEÞ from the RMF, SHF, and density-dependent
(DD-RMF) models. For transverse pressure (Pt), we take
the BL model given in the following [19]:
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Pt ¼ Pr þ
λBL
3

ðE þ 3PrÞðE þ PrÞr2
1 − 2m=r

; ð6Þ

where the factor λBL measures the degree of anisotropy in
the fluid.
The TOV equations can be solved using the boundary

conditions r ¼ 0,m ¼ 0, Pr ¼ Pc, and r ¼ R,m ¼ M, and
Pr ¼ 0 for a particular choice of anisotropy. The following
conditions which must be satisfied for the anisotropic NS
for a perfect fluid are [28,40]
(1) The pressure and energy density inside the star must

be positive, Pr, Pt, and E > 0.
(2) The gradient of radial pressure and energy density

must be monotonically decreasing, dPr
dr , and

dE
dr < 0

and maximum value at the center.

(3) The anisotropic fluid configurations with different
conditions such as the null energy (E > 0), the
dominant energy (E þ Pr > 0, E þ Pt > 0), and
the strong energy (E þ Pr þ 2Pt > 0) must be
satisfied inside the star.

(4) The speed of sound inside the star must obey
0 < c2s;r < 1, and 0 < c2s;t < 1, where c2s ¼ ∂P

∂E.
(5) The radial and transverse pressure must be the same

at the origin.
We check all the above-mentioned conditions, which are
well satisfied in this present case, and some of the results
are shown in Figs. 1 and 2 for the IOPB-I parameter set.
The transverse pressure as a function of radius is shown

in the upper panel of Fig. 1 for a fixed central density. We
observe that the value of Pt increases with increasing λBL,
which supports a more massive NS and vice versa. At the

FIG. 1. Upper: the tangential pressure as a function of radius profile of a star with different λBL both for canonical (left) and maximum
mass (right) of the NS corresponds to IOPB-I EOS. The black dashed line is for the isotropic case. Lower: the anisotropy parameter as a
function of radius profile.
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center, both values of Pr and Pt are the same, which
satisfies the above-mentioned condition. At the surface
part, the positive values of λBL provide a positive value of
Pt and vice versa. This negative value gives the unphysical
solutions mainly at the surface part. A more clear picture of
the magnitude of the anisotropy parameter can be seen in
the lower panel of Fig. 1 for both canonical and maximum
mass NS. The magnitude of negativeness increases for the
maximum star compared to the canonical star.
The speed of sound (c2s;t ¼ ∂Pt

∂E ) as a function of radius is
depicted in Fig. 2. The c2s;t satisfies the causality limit in
the whole region of the star except at the surface part for
the negative λBL. The transverse pressure and compactness
increase with increasing λBL for a star. In Ref. [35], it has
been argued that the black hole limit (C ¼ 0.5) is not
possible to achieve by increasing the degree of anisotropy
with λBL ¼ 4.0 for DDHδ EOS. But at the higher central
density, the transverse pressure becomes acausal. We
also observed similar results for the IOPB-I EOS with
λBL > 4.0.
The mass-radius profiles of the anisotropic NS are solved

for IOPB-I EOS for different values of λBL, which is shown
in Fig. 3. The positive values of λBL increase the maximum
masses and their corresponding radii and vice versa.
Different observational data such as x-ray, NICER, and
GW can constrain the degree of anisotropy inside the NS.
Recently, the fastest and heaviest Galactic NS named PSR
J0952-0607 in the disk of the Milky Way has been detected
to have mass M ¼ 2.35� 0.17 M⊙. We also put this limit
to constrain the amount of anisotropy.
The GW190814 event raised a debatable issue: whether the

secondary component is the lightest black hole or the heaviest
neutron star. Several approaches are already provided in the

literature to explain this behavior [26,81–84]. However, in
Ref. [26], they claimed that the secondary component might
be an anisotropic NS. Therefore, we put the secondary
component mass limit M ¼ 2.50–2.67 M⊙ in the mass-
radius diagram to check whether it reproduced the limit
for anisotropy stars within the BL model. We also find that
for λBL ¼ 1.8–2 it reproduces the mass ∼2.50–2.67 M⊙ but
those values of λBL do not obey the new NICER constraints
[80]. In our case, the −0.4 < λBL < þ0.4 almost agrees with
the latest observational data.

III. MOMENT OF INERTIA

For a slowly rotating NS, the system’s equilibrium
position can be obtained by solving Einstein’s equation
in the Hartle-Throne metric as [85–87].

ds2 ¼ −e2νdt2 þ e2λdrþ r2ðdθ2 þ sin2θdϕ2Þ
− 2ωðrÞr2sin2θdtdϕ: ð7Þ

The MI of the slowly rotating anisotropic NS was calcu-
lated in Ref. [39]:

I ¼ 8π

3

Z
R

0

r5Jω̃
r − 2M

ðE þ PÞ
�
1þ σ

E þ P

�
dr; ð8Þ

where ω̃ ¼ ω̄=Ω, where ω̄ is the frame dragging angular
frequency, ω̄ ¼ Ω − ωðrÞ. J is defined as e−νð1 − 2m=rÞ1=2.

FIG. 2. The speed of sound as a function of radius profile of a
star with different λBL for the maximum mass of the NS
corresponds to IOPB-I EOS.

FIG. 3. Mass-radius profiles for anisotropic NS with −2.0 <
λBL < þ2.0 for IOPB-I EOS. Different color bands signify the
masses of the NS observed from the various pulsars, such as PSR
J0348þ 0432 [74], PSR J0740þ 6620 [75], heaviest pulsars
J0952-0607 [76] and GW190814 [77]. The NICER results are
shown with two green boxes from two different analyses [78,79].
The revised NICER results are also shown for the canonical
star and 2.08 M⊙ (red horizontal error bars) given by Miller
et al. [80].
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The σ ¼ Pt − Pr ¼ λBL
3

ðEþ3PrÞðEþPrÞr2
1−2m=r . Hence Eq. (8), can be

rewritten using Eq. (6) as

I ¼ 8π

3

Z
R

0

r5Jω̃
r − 2M

ðE þ PÞ
"
1þ

λBL
3

ðEþ3PÞðEþPÞr2
1−2m=r

E þ P

#
dr: ð9Þ

The obtained values of MI for anisotropic NS are shown
in Fig. 4 for IOPB-I EOS. The MI of the NS increases with
the mass of the NS. Once the stable configuration is
achieved, the MI starts to decrease. The anisotropic effects
are clearly seen from the figure for different values of λBL.
The error bars represent the MI constraints of the different
systems such as double neutron stars (DNS), millisecond
pulsars (MSP), and low-mass x-ray binaries (LMXB)
inferred by Kumar and Landry [88]. Almost all I ∼M
curves satisfy these constraints.

IV. TIDAL DEFORMABILITY

The shape of the NS is deformed when it is present in
the external field (ϵij) of its companion. Hence, the stars
develop the quadrupole moment (Qij), which is linear
dependent on the tidal field and is defined as [89,90]

Qij ¼ −λϵij; ð10Þ

where λ is defined as the tidal deformability of a star. It
has relation to the dimensionless tidal Love number k2 as
λ ¼ 2

3
k2R5, where R is the radius of the star.

To determine k2, we use the linear perturbation in the
Throne and Campolattaro metric [91]. We have solved the

Einstein equation and obtained the following second-order
differential equation for the anisotropic star [35]:

H00 þH0
�
2

r
þ eλ

�
2mðrÞ
r2

þ 4πrðP − EÞ
��

þH

�
4πeλ

�
4E þ 8Pþ E þ P

dPt=dE
ð1þ c2sÞ

�
−
6eλ

r2
− ν02

�
¼ 0: ð11Þ

The term dPt=dE represents the change of Pt [see Eq. (6)
for the Pt] with respect to energy density for a fixed value
of λBL.
The internal and external solutions to the perturbed

variable H at the star’s surface can be matched to get
the tidal Love number [89,92]. The value of the tidal Love
number can then be calculated using the y2, and compact-
ness parameter C is defined as [69,89,90]

k2 ¼
8

5
C5ð1− 2CÞ2½2ðy2 − 1ÞC− y2 þ 2�

× f2C½4ðy2 þ 1ÞC4 þ 2ð3y2 − 2ÞC3 − 2ð11y2 − 13ÞC2

þ 3ð5y2 − 8ÞC− 3ðy2 − 2Þ� þ 3ð1− 2CÞ2
× ½2ðy2 − 1ÞC− y2 þ 2� logð1− 2CÞg−1; ð12Þ

where y2 depends on the surface value of H and its
derivative

y2 ¼
rH0

H

����
R
: ð13Þ

The gravito-electric Love number (k2) and its dimension-
less tidal deformability (Λ ¼ λ=M5) are shown in Fig. 5 for
the anisotropic NS. Here, we take the positive values of λBL.
This is because the higher negative values predict negative
transverse pressure, and the solutions are unphysical, as
described in Ref. [35]. The anisotropy effects are rather
small for lower negative values of λBL. Hereafter, we
neglect those negative values and take only the positive
value of λBL.
With the increasing value of λBL, the magnitude of k2

and its corresponding Λ decrease. The GW170817 event
put a limit on the Λ1.4 ¼ 190þ390

−120 , which discarded many
older EOSs. In this case, our IOPB-I EOS satisfies both
GW170817 and GW190814 limits (Λ1.4 ¼ 616þ273

−158 under
NSBH scenario). For the anisotropic case, all values of
λBL, the predicted Λ1.4 are almost in the range of the
GW170817, and few higher-order values do not lie in the
GW190814 limit.
For anisotropic NS, the magnitude of Λ1.4 is lesser than

the isotropic case. Hence, the anisotropic NS tidally
deformed less and sustained more time in the inspiral-
merger process compared to the isotropic case.

FIG. 4. The moment of inertia of the NS as the function of
mass. The error bars are taken from the different pulsar analyses
as done in Ref. [88]. We also put the canonical MI, I1.4 ¼
1.77þ0.17

−0.09 × 1045 g cm2 obtained in this study for the isotropic star
case only.
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In Fig. 6, we show the relation between the canonical
dimensionless tidal deformability (Λ1.4) as a function of
canonical radius (R1.4) for different values of anisotropicity
with assumed EOSs. We fit the Λ1.4 and R1.4 with a function
aRb

1.4 for a fix value of λBL. The fitting coefficients are given
in Table I. In Ref. [94], it is found that the values of a and b
are 7.76 × 10−4 and 5.28 respectively with correlation
coefficient r ¼ 0.98. These coefficients are modified for
huge EOS considerations by Annala et al. [95]. They found

a robust correlation having a ¼ 2.88 × 10−6 and b ¼ 7.5.
Malik et al. [96] found that the values are 9.11 × 10−5 and
6.13 with 98% correlation.
In this case, we find that a ¼ 2.28 × 10−5 and b ¼ 6.76

with correlation coefficients r ¼ 0.948 for isotropic NS.
With the inclusion of anisotropicity, the values of a’s are
increasing while b’s are decreasing. Also, we obtained a
more robust correlation for anisotropic NS with higher λBL.
For example, for the isotropic case, the value of r ¼ 0.958.
With increasing λBL, the correlation coefficients are 0.967,
and 0.973 for λBL ¼ 1.0 and 2.0 respectively.

V. UNIVERSAL RELATIONS

Here, we analyze the different types of universal rela-
tions among the moment of inertia, tidal deformability,
and compactness which are already defined. But, here, we
mainly focus on the universal relations for an anisotropic
NS. Such approximate universal relations are quite impor-
tant for astrophysical observations due to the fact that it
breaks the degenerates in the data analysis and model
selections for different observations such as x-ray, radio,
and gravitational waves [42].

FIG. 5. Left: the tidal Love number as a function of mass for different λBL corresponds to IOPB-I EOS. Right: the dimensionless tidal
deformability as a function of mass for different λBL corresponds to IOPB-I EOS. The error bars are the observational constraints given
by LIGO/Virgo events GW170817 (NS-NS merger) [93] and GW190814 (assuming BH-NS merger) [77].

FIG. 6. Relation between Λ1.4 and R1.4 with different anisotropy
parameter for different EOSs. The dashed lines are fitted using the
function aRb

1.4, where a and b are fitting coefficients. We also put
the canonical radius limit, R1.4 ¼ 10.74þ1.84

−1.36 km, obtained in this
study for the isotropic star case only.

TABLE I. The fitting coefficients a, and b with relation Λ1.4 ¼
aRb

1.4 corresponding to different λBL.

λBL 0.0 1.0 2.0
að10−5Þ 2.28 3.07 3.10
b 6.76 6.37 6.25
r 0.948 0.967 0.973
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A. I −Λ relations

The I − Love relation was calculated by Yagi and Yunes
[41] for slowly rotating NS with few EOSs and also
included some polytropic EOSs. Later on, these relations
were extended by several works to different systems of
anisotropic [42–48]. Here, we calculate the I − Love
relations for anisotropic NS.
The MI of the anisotropic NS is calculated using Hartle-

Throne approximations. The dimensionless moment of
inertia (Ī ¼ I=M3) is plotted as the function of dimension-
less tidal deformability (Λ) in Figs. 7–9 with λBL ¼ 0–2 for
anisotropic NS. We fit these relations with the formula
given in Refs. [88,97],

log10Ī ¼
X4
n¼0

anðlog10ΛÞn; ð14Þ

and the coefficients are listed in Table III. Our fit is almost
similar with Yagi and Yunes [41] and Landry and Kumar
[97]. But the coefficients are slightly modified due to the
anisotropicity. The residuals are computed with the formula

ΔĪ ¼ jĪ − Īfitj
Īfit

; ð15Þ

with reduced chi-squared (χ2r) errors and are also enumer-
ated in Table III. With increasing the anisotropy, the value
of χ2 errors increases, which means the EOS insensitive
relations get weaker with the addition of anisotropy.
With the help of tidal deformabilities data from the

GW170817 and GW190814 events, we put constraints on Ī
for isotropic star and found to be Ī1.4 ¼ 14.88þ1.42

−0.76 , and
21.50þ1.13

−0.91 respectively (see Table II). Landry and Kumar
[97] obtained the limit as Ī ¼ 11.10þ3.64

−2.28 . From the
GW170817 event, the value of Λ1.4 ≤ 800, which put
the upper limit, is found to be Ī ≤ 16.07 [97]. The
theoretical upper limit for the isotropic case almost matches
the GW170818 limit. There are many theoretical limits on
the MI of the NS [44,49,50,98–102]. The constraints on its
value become tighter if we may detect more double pulsars
(like PSR J0737-3039) in the near future. For anisotropic
cases, the magnitudes for the Ī and I are larger than the

FIG. 7. Ī − Λ relation with anisotropy parameter λBL ¼ 0 for
assumed EOSs. The orange dashed line is fitted with Eq. (14).
The magenta shaded region is canonical tidal deformability data
from the GW170817 paper [93]. The lower panel shows the
residuals for the fitting calculated using the formula in Eq. (15).

FIG. 8. Same as Fig. 7, but with λBL ¼ 1.

FIG. 9. Same as Fig. 7, but with λBL ¼ 2.

TABLE II. The canonical dimensionless MI (Ī1.4), and MI
(I1.4×1045gcm2) inferred from GW170817 and GW190814 data.

GW170817 GW190814

λBL Ī1.4 I1.4 Ī1.4 I1.4

0.0 14.88þ1.42
−0.76 1.77þ0.17

−0.09 21.50þ1.13
−0.91 2.56þ0.14

−0.11

1.0 20.14þ1.48
−0.72 2.40þ0.17

−0.08 30.51þ1.15
−0.90 3.63þ0.14

−0.11

2.0 22.99þ1.50
−0.72 2.74þ0.18

−0.85 35.31þ1.15
−0.89 4.20þ0.14

−0.11
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isotropic case. Because of anisotropy, the mass of the NS
increases, which gives rise to the magnitude of MI.

B. C −Λ relations

The universal relation forC − Λ for the isotropic star was
first pointed out by Maselli et al. [103]. Later on, it was
extended to an anisotropic star by Biswas et al. [35] for a
few EOSs such as SLy4, APR4, WFF1, DDHδ, and GM1
EOSs. We fit the relation between C and Λ using Eq. (16)
for considered EOSs with λBL which varies from 0 to 2 and
the fitting coefficients are listed in Table III. With increas-
ing λBL, the magnitude of bn decreases, implying that the
fitting is more robust than the isotropic case. The inferred
compactness of the isotropic star is more in comparison
with the anisotropic star. This signifies that the anisotropic
star is less compact than the isotropic one (see Table IV).
We calculate the tidal deformability of the anisotropic

NS for the λBL ¼ 0, 1, 2 and shown in Figs. 10–12. We
perform the least-squares fit using the approximate for-
mula,

C ¼
X3
n¼0

bnðlnΛÞn; ð16Þ

where bn are the coefficients of the fitting given in Table III.
The fit residuals are calculated as ΔC ¼ jC − Cfitj=Cfit and
displayed in the lower panel of Fig. 10. We infer the values
of both compactness and radius of the canonical star with
Λ1.4 ¼ 190þ390

−120 given by GW170817 [104] and Λ1.4 ¼
616þ273

−158 by GW190814 [77] which are enumerated in

TABLE III. The fitting coefficients are listed for I − Λ, C − Λ, and C − I relations with λBL ¼ 0.0, 1.0, 2.0. The reduced chi-squared
(χ2r) is also given for all cases.

I − Λ C − Λ C − I

λBL ¼ 0.0 1.0 2.0 λBL ¼ 0.0 1.0 2.0 λBL ¼ 0.0 1.0 2.0

a0ð10−1Þ ¼ 7.5026 7.9782 8.3145 b0ð10−1Þ ¼ 3.6873 3.4833 3.4156 c0ð10−2Þ ¼ 5.2024 6.2526 7.3034
a1ð10−2Þ ¼ 4.1857 5.3001 5.6152 b1ð10−2Þ ¼ −4.1113 −4.0443 −4.0723 c1ð10−1Þ ¼ −5.1531 −6.0861 −7.0385
a2ð10−2Þ ¼ 8.0495 10.3482 11.1359 b2ð10−3Þ ¼ 1.5301 1.5771 1.6364 c2 ¼ 1.5903 1.87517 2.1721
a3ð10−3Þ ¼ −8.9478 −15.3418 −18.1670 b3ð10−5Þ ¼ −1.8874 −2.0472 −2.1929 c3 ¼ −1.3667 −1.7363 −2.1099
a4ð10−4Þ ¼ 5.4767 10.9879 14.4628 b4 ¼ � � � � � � � � � c4 ¼ 0.4289 0.6017 0.7684
χ2rð10−5Þ ¼ 0.4133 2.6245 4.5281 χ2rð10−5Þ ¼ 1.0981 0.9022 0.8409 χ2rð10−4Þ ¼ 0.0948 0.8379 4.5028

TABLE IV. The canonical compactness (C1.4), and radius (R1.4)
inferred from GW170817 and GW190814 data.

GW170817 GW190814

λBL C1.4 R1.4 C1.4 R1.4

0.0 0.192þ0.03
−0.03 10.74þ1.84

−1.36 0.163þ0.01
−0.01 12.69þ0.71

−0.53

1.0 0.177þ0.03
−0.03 11.74þ2.11

−1.54 0.149þ0.01
−0.01 13.94þ0.80

−0.62

2.0 0.169þ0.03
−0.03 12.18þ2.27

−1.65 0.142þ0.01
−0.01 14.58þ0.88

−0.66

FIG. 10. C − Λ relation with anisotropy parameter λBL ¼ 0 for
assumed EOSs. The orange dashed line is fitted with Eq. (16).
The orange-shaded region is canonical tidal deformability data
from the GW170817 paper [93]. The lower panel is the residual
of the fitting.

FIG. 11. Same as Fig. 10, but with λBL ¼ 1.
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Table IV. Several studies put a limit on the canonical radius
of the star with different conditions [88,94,95,105–118].
All the radii constraints are listed in Table 2 of Ref. [116].
Here, we also put the limit on R1.4 and C1.4 with the help of
observational data. It is observed that the highest limit on
R1.4 is 13.76 km by Fattoyev et al. [94] using GW170817
data. If we stick to that limit, then our predictions for R1.4
are matched for both isotropic and anisotropic with
λBL ¼ 1.0. In case of the lower limit of R1.4, the λBL ¼
0.0 satisfies the limit given by the Tews et al. [110] and De
et al. [114]. Hence, it is observed that the anisotropy inside
the NS must be less than 1.0 if one uses the BL model.

C. C− I relations

The dimensionless MI can be expressed as a function of
compactness via a lower order polynomial, and it was first
pointed out by Ravenhall and Pethick [119]. Later on,
several authors have studied and modified the same
relations for the double pulsar system with higher-order
polynomial fitting [49], scalar-tensor theory andR2 gravity
[120,121], rotating stars [50], and strange stars [122]. In the
present case, we study the C − I relations for aniso-
tropic NS.
Brew and Rezzolla explain the universal behavior of

dimensionless MI (I=M3) which is more accurate than the
dimensionless MI defined earlier (I=MR2). Hence, in this
study, we use I=M3 rather than I=MR2. The compactness
and dimensionless MI are related in the following poly-
nomial given as [88,97]

C ¼
X4
n¼0

cnðlog10ĪÞ−n; ð17Þ

where cn is the fitting coefficients and are listed in Table III.
The relations between them are depicted in Figs. 13–15 for

FIG. 12. Same as Fig. 10, but with λBL ¼ 2.

FIG. 14. Same as Fig. 13, but with λBL ¼ 1.

FIG. 13. C − I relation with anisotropy parameter λBL ¼ 0 for
assumed EOSs. The orange dashed line is fitted with Eq. (17).
The lower panel is the residual of the fitting.

FIG. 15. Same as Fig. 13, but with λBL ¼ 2.
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different anisotropy. We can put the constraints on the Ī and
C from our previous limit as given in Tables II–IV.

VI. DISCUSSIONS AND CONCLUSION

In this study, we calculate the properties of the aniso-
tropic star based on a simple BL model with 58 parameter
sets spanning from relativistic to nonrelativistic cases. The
macroscopic property magnitudes such as mass and radius
increase due to the anisotropy since an extra contribution
comes due to the pressure difference between radial and
transverse components. This difference is always model
dependent, for example, in the BL and Horvat models.
Some of these conditions must be satisfied, such as both
transverse and radial pressure, and central energy density
must be greater than zero inside the whole star. Extra
conditions like null energy, dominant energy, and strong
energy are well satisfied inside the whole region of the star.
Also, the sound speeds for both components are still valid
for the anisotropic stars.
The magnitude of transverse pressure increases by

varying λBL for both canonical and maximum mass stars.
But the magnitude is greater for the maximum mass case
than for the canonical star. Both transverse pressure and the
speed of sound at the surface part become negative, which
gives the unphysical solution for higher negative values
of anisotropy. Therefore, we do not take such anisotropy
cases further in this study. The moment of inertia of the
anisotropic star is obtained with a slowly rotating aniso-
tropic star, and it is found that the magnitude increases with
anisotropy. Other macroscopic properties, such as tidal
Love number and dimensionless tidal deformability, are
calculated for the IOPB-I parameter set. We observe that
the effects of anisotropy decrease the magnitude of both k2
and Λ. This implies that the star with higher anisotropy
sustains more life in the inspiral-merger phase and vice
versa. This is because the star with higher Λ deformed
more, the merger process accelerates, and the collapse will
happen earlier, as described in Ref. [62]. Hence, one should
take the anisotropy inside the NS to theoretically explore
the gravitational waves coming from the binary NS
inspiral-merger-ringdown phase.
This study calculates the universal relation I − Love − C

for the anisotropic star. The universal relations are mainly
required to extract information about the star properties,

which does not become accessible to detect by our
detectors/telescopes. The universal relations such as
I − Λ, C − Λ, and C − I are calculated by changing the
anisotropy value. We fit all the relations with a polynomial
fit using the least-square method. Our coefficients are
almost on par with the different approaches available in
the literature. We find that the reduced chi-square errors for
I − Λ, C − Λ, and C − I are 0.4133 × 10−5, 1.0981 × 10−5

and 0.0948 × 10−4 respectively for the isotropic star. With
anisotropy λBL ¼ 1.0, the errors are 2.6245 × 10−5,
0.9022 × 10−5 and 0.8379 × 10−4 respectively. The sensi-
tiveness of the universal relations such as I − Λ and C − I
is weaker for the anisotropic star in comparison with the
isotropic star. But we obtain the relation between C − Λ
gets stronger with increasing anisotropy.
We constrain the value of anisotropy using the obtained

universal relations from the GW170817 data and find that
the value of λBL is less than 1.0 if one uses the BL model.
The canonical radius, compactness, and moment of inertia
are found to be 10.74þ1.84

−1.36 km, 0.192� 0.03, 14.88þ1.42
−0.76

respectively for the isotropic star. For an anisotropic star,
the magnitudes of both the canonical radius and the MI
increase, but canonical compactness decreases. From the
various canonical radius constraints inferred from the
GW170817 data, we enumerated the radius of the aniso-
tropic star is less than the R1.4 ¼ 13.85 km if one uses the
BL model. This limit can be modified with different
anisotropy models by including phenomena like a magnetic
field, quark inside the core, dark matter, etc., in detail.
Hence, one can check the different aspects which may
produce the anisotropy inside the compact stars and can
constrain its degree with the help of observational data.
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