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When the expansion of the Universe is dominated by a perfect fluid with equation of state parameter w
and a sound speed cs satisfying w ¼ c2s ≤ 1, the Hubble parameter H and time t satisfy the bound
Ht ≥ 1=3. There has been recent interest in “ultraslow” expansion laws with Ht < 1=3 (sometimes
described as “fast expanding” models). We examine various models that can produce ultraslow expansion:
scalar fields with negative potentials, barotropic fluids, braneworld models, or a loitering phase in the early
Universe. Scalar field models and barotropic models for ultraslow expansion are unstable to evolution
toward w ¼ 1 or w → ∞ in the former case and w → ∞ in the latter case. Braneworld models can yield
ultraslow expansion but require an expansion law beyond the standard Friedman equation. Loitering early
universe models can produce a quasistatic expansion phase in the early Universe but require an exotic
negative-density component. These results suggest that appeals to an ultraslow expansion phase in the early
Universe should be approached with some caution, although the loitering early universe may be worthy of
further investigation. These results do not apply to ultraslow contracting models.
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I. INTRODUCTION

Consider a universe dominated by a perfect fluid with
equation of state

w ¼ p
ρ
; ð1Þ

where p and ρ are the pressure and density of the fluid,
respectively. The evolution of ρ as a function of the scale
factor a is given by

a
dρ
da

¼ −3ðρþ pÞ; ð2Þ

so that

ρ ∝ a−3ð1þwÞ: ð3Þ
Since the Hubble parameter H corresponds to

H ≡ _a
a
¼

ffiffiffi
ρ

3

r
ð4Þ

(where we take ℏ ¼ c ¼ 8πG ¼ 1 throughout), the scale
factor a evolves as a power of the time t:

a ∝ t2=3ð1þwÞ; ð5Þ
for w > −1. In the standard cosmological model, the
universe undergoes a period of radiation domination
(w ¼ 1=3), followed by an epoch of matter domination
(w ¼ 0), and it is currently entering a period of dark energy
domination with w close to −1.

However, many papers have considered the possibility of
more exotic evolution in the early Universe. For instance,
the possibility that the Universe underwent a period in
which the dominant fluid had a stiff equation of state with
w ¼ 1 and a ∝ t1=3 has been investigated in relation to
baryogenesis [1], big bang nucleosynthesis (BBN) [2], the
relic abundance of dark matter [3–6], and the propagation
of gravitational radiation (Ref. [7] and references therein).
More recently, there has been speculation regarding the

possibility of ultraslow expansion. For example, if the
Universe were dominated by a fluid with ρ ∝ a−n and
n > 6, then a ∝ tα with α < 1=3. Since aðtÞ is strongly
constrained from the era of BBN onward, most of the
discussion of these models concerns the calculation of relic
particle abundances [6,8–10], baryogenesis [11], and lepto-
genesis [12]. Here, we examine the underlying assumption
of these papers: Are there plausible models for which
Ht < 1=3 over some range in t? Note that some of the
terminology in the literature is confusing: An epoch with
ρ ∝ a−n, n > 6 is often referred to as “fast expansion.”
Such an epoch corresponds to fast expansion in the sense
that HðTÞ (where T is the background radiation temper-
ature) is larger than in the standard model, with the ratio
between H in this nonstandard model to H in the standard
model increasing with T. However, the value of H
expressed as a function of time is smaller in the models
we consider here than in the standard model, so we describe
these models as ultraslow expansion.
Models with ultraslow expansion are constrained by the

fact that the speed of sound, c2s ¼ dp=dρ, is required to
be subluminal, so dp=dρ ≤ 1. For a perfect fluid with
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w ¼ p=ρ, we have w ≤ 1 and Ht < 1=3. There are,
however, many models for which dp=dρ ≠ p=ρ, such as
scalar field models, barotropic fluids, and mixtures of
perfect fluids, all of which we discuss below to determine
if they can provide a period of expansion with Ht < 1=3.
We examine previously discussed models (scalar fields and
braneworld expansion laws) in Secs. II and IV, respectively,
and models that have not been previously explored (general
barotropic fluids and loitering early universe models) in
Secs. III and V. Our results are summarized in Sec. VI.

II. SCALAR FIELDS WITH
NEGATIVE POTENTIALS

Scalar fields providing a significant component of the
energy density of the Universe have frequently been
invoked in cosmology. They were first introduced as the
main component of models for inflation (see, e.g.,
Refs. [13,14] for reviews). Later, under the name “quintes-
sence,” scalar fields were investigated as an alternative to
the cosmological constant as a mechanism to drive the
observed accelerated expansion of the Universe [15–23]
(see Refs. [24,25] for reviews).
The equation governing the evolution of a scalar field ϕ

in a potential VðϕÞ is

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0; ð6Þ

where the dot denotes the time derivative. The pressure and
density of the scalar field are given by

pϕ ¼
_ϕ2

2
− VðϕÞ ð7Þ

and

ρϕ ¼
_ϕ2

2
þ VðϕÞ; ð8Þ

respectively, so the equation of state parameter w from
Eq. (1) is

w ¼
_ϕ2=2 − VðϕÞ
_ϕ2=2þ VðϕÞ : ð9Þ

Note that the sound speed in these models is c2s ¼ 1,
independent of the value of w.
From Eq. (9), it is clear that −1 ≤ w ≤ 1 as long as

VðϕÞ ≥ 0. However, negative potentials can give rise to
w > 1 and ultraslow expansion or contraction. Scalar field
models with negative potentials have long been of interest
[26–30]. In particular, it has been noted that a negative
exponential potential of the form

VðϕÞ ¼ −V0e−λϕ; ð10Þ

where V0 > 0 and λ > 0, can lead to a constant value of w
with w ≫ 1 during the contracting phase of the ekpyrotic
model [31–33]. [Note that the evolution of all of the
physically relevant parameters is invariant if we take
instead VðϕÞ ¼ −V0eλϕ and invert the sign of _ϕ.] It is
then reasonable to assume that this negative exponential
potential can also yield ultraslow expansion. Indeed,
D’Eramo et al. [6] provided a solution to the equation
of motion with the potential of Eq. (10) that yields just such
an expansion:

ϕ ¼ ϕi þ
2

λ
ln

�
t
ti

�
; ð11Þ

which gives an equation of state parameter

w ¼ λ2

3
− 1: ð12Þ

Thus, for λ >
ffiffiffi
6

p
, we have w > 1 and ultraslow expansion.

The first thing to note about this solution is that it
represents a scalar field rolling uphill in the potential,
which corresponds to very unnatural initial conditions.
Second, the solution is unstable. This was first noted by
Heard and Wands [27], who investigated the evolution of
scalar fields with both positive and negative exponential
potentials (see also the later discussion in Ref. [30]). The
corresponding solution for a contracting universe, on the
other hand, is stable.
To illustrate the nature of this instability, and to inves-

tigate the rate at which small perturbations to the fixed-
point solution grow, consider the expression for the
evolution of w for a scalar field in an exponential potential
of the form given by Eq. (10) in the limit where the scalar
field dominates the expansion [34,35]:

a
dw
da

¼ ðw − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ

p
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ

p
− λ�: ð13Þ

The derivation of Eq. (13) assumes that _ϕ > 0, but it is trivial
to generalize it to the opposite case. As expected, this
equation has a solution of the form dw=da ¼ 0 and w given
by Eq. (12), corresponding to the last factor on the right-
hand side of Eq. (13) equal to zero. Now, supposewe perturb
this solution with a small change to w. For w > 1, a positive
change inw gives dw=da > 0 andw → ∞, while a negative
change yields dw=da < 0 and w → 1. Thus, the solution
given by Eqs. (11) and (12) is unstable. Note that the
opposite is true forw < 1; in this case, the solution is stable.
Of course, even a transient solution with w > 1 could be

sufficient to produce interesting changes to the evolution of
relic particle densities, as discussed in Refs. [6,8–12], so it
is important to examine the rate at which w evolves
away from its unstable fixed-point value. If we write
w ¼ w0 þ Δ, with w0 ¼ λ2=3 − 1, and expand Eq. (13)
to linear order in Δ, we obtain
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a
dΔ
da

¼ 3

2
ðw0 − 1ÞΔ; ð14Þ

so the evolution of w near w0 is

w ¼ w0 þ Δ0að3=2Þðw0−1Þ; ð15Þ

where we define a ¼ 1 to be the scale factor at which
w ¼ w0 þ Δ0. Thus, w diverges from its fixed-point value
w0 as a power of the scale factor, with this power increasing
for larger values of w0. As an example, the largest value of
w considered in Ref. [6] is w ¼ 5=3, for which the density
of the scalar field scales as ρϕ ∝ a−8. In this case, we have
w ¼ w0 þ Δ0a. The effects examined in Ref. [6] require
this value of w to be maintained over a factor ∼100 in scale
factor. In order to achieve this, w needs to be initially tuned
to within less than 1% of its fixed-point value.

III. BAROTROPIC MODELS

As noted in the Introduction, a perfect fluid with w ¼
p=ρ has a sound speed c2s ¼ w, so c2s ≤ 1 forces w ≤ 1.
However, we can break the equivalence between w and c2s
by going to a more complex relation between p and ρ. In
barotropic models, the pressure is a fixed function of the
density:

p ¼ fðρÞ: ð16Þ

(Perfect fluids are the special case for which p ¼ wρ.)
Barotropic models have been studied extensively as pos-
sible models for dark energy. Particular models of this form
include the Chaplygin gas [36,37] and the generalized
Chaplygin gas [38], the linear/affine equation of state
[39–43], the quadratic equation of state [42], the van der
Waals equation of state [44,45], and more complicated
equations of state [46,47]. A general study of the properties
of barotropic models for dark energy was undertaken in
Refs. [48,49]. Note that there is a simple mapping between
the barotropic models discussed here and purely kinetic
k-essence models [48], so the results presented here can be
extended in a straightforward way to the latter set of
models.
These models seem plausible as a source for ultraslow

expansion because we now have dp=dρ ≠ p=ρ, so one can
construct models for which c2s ¼ dp=dρ ≤ 1 but p=ρ > 1.
As an example, consider one of the simplest barotropic
models, in which p is a linear function of ρ [39–43]:

p ¼ p0 þ αρ; ð17Þ

where p0 and α are constants. The requirement that c2s ≤ 1
gives α ≤ 1. Using Eq. (2), we find the following relation
between the density and scale factor:

ρ ¼ Ca−3ðαþ1Þ −
p0

αþ 1
; ð18Þ

where C is a constant. In the limit of early times (small a),
the first term dominates and the density simply scales as a
perfect fluid with w ¼ α. When the two terms on the right-
hand side of Eq. (18) become of roughly equal magnitude,
there is a transient period for which w > 1 and the
expansion becomes ultraslow. However, we rapidly have
w → ∞ and ρ → 0.
This fate for barotropic fluidswithw > 1 is not peculiar to

this particular choice of model; it is generic to all such
models. To seewhy this is the case, we use the expression for
the evolution of w in barotropic models given in Ref. [48]:

a
dw
da

¼ 3ð1þ wÞðw − c2sÞ: ð19Þ

If c2s ≤ 1 (as required) and w > 1, then the evolution is
manifestly unstable; dw=da > 0, and w rapidly evolves to
∞. Hence, it does not appear that any barotropic model can
provide sustained ultraslow expansion.

IV. BRANEWORLD MODELS

In braneworld cosmologies, the observable universe is a
brane embedded in a higher-dimensional bulk. The standard-
model fields are confined to our 3-brane, while gravity alone
propagates in the bulk. The most widely investigated model
of this type is the type II Randall-Sundrum model, in which
the brane has positive tension and the bulk contains a positive
cosmological constant [50,51]. In such models, in flat
spacetime, we can write the Hubble parameter as

H2 ¼ ρ

3

�
1þ ρ

ρ0

�
þ C
a4

þ Λ
3
; ð20Þ

where C and ρ0 are constants, with the latter depending on
the 5-dimensional Planck mass, and Λ is the cosmological
constant. At early times, if we neglect C, the Hubble
parameter evolves asH ∝ ρ instead ofH ∝ ffiffiffi

ρ
p

. The effects
of this altered evolution on the relic dark matter abundance
were investigated in Refs. [52–55]. Reference [53], in
particular, noted that this modification to the Friedman
equation could lead to ultraslow expansion. When H ∝ ρ,
we have, instead of Eq. (5),

a ∝ t1=3ð1þwÞ: ð21Þ
Thus, even a radiation-dominated universe leads to ultra-
slow expansion at early times, with a ∝ t1=4. For an
arbitrary perfect fluid, with w ≤ 1, the slowest possible
expansion is given by a ∝ t1=6.
It is clear that braneworld models can produce evolution

slower than the bound set by a stiff perfect fluid. However,
such behavior comes with an expansion law that does
not obey the standard Friedman equation, so standard
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calculations of, e.g., relic particle evolution must incorpo-
rate this modified expansion law, as was done in
Refs. [52–55].

V. LOITERING EARLY UNIVERSE

The loitering universe is an idea that goes back to
Lemaitre [56]. This model requires a spatially closed
universe containing matter and a cosmological constant,
so H is given by

H2 ¼ ρM0

3

�
a
a0

�
−3

þ Λ
3
−

κ

a2
; ð22Þ

where ρM0 and a0 are the present-day matter density and
scale factor, respectively; Λ is the (positive) cosmological
constant; and κ ¼ 1 is the curvature. The last term in
Eq. (22) must be large enough to alter the evolution of H at
late times, but not so large that H ever reaches 0, which
corresponds to recollapse. There has been persistent inter-
est in this model [57], but it is clear that it does not
correspond to our best current observations; in particular,
the curvature of the universe is now known to be very small
[58]. To remedy this defect, Sahni and Shtanov [59]
proposed a loitering model in the context of braneworld
models. This model allows loitering to occur in a flat
universe and at somewhat higher redshifts than in the
original model described by Eq. (22).
However, neither model can accommodate loitering

in the early Universe. The reason is that both of these
models evolve asymptotically to a cosmological-constant-
dominated evolution. This is desirable at present but cannot
be incorporated into an acceptable evolution in the early
Universe. Instead, we require a loitering solution that
evolves asymptotically to a radiation-dominated early
universe consistent with observations. (Note also that
Ref. [60] proposed a loitering phase in the context of
brane gas cosmology; this phase takes place in the very
early Universe, before the epoch of interest here.)
In analogy to Eq. (22), we seek a universe containing

multiple perfect fluids but which is dominated by radiation
(with density ργ ∝ a−4) at late times. Therefore, any addi-
tional fluids we add to the radiation must have a density that
decreases faster than a−4. The fastest possible decay occurs
for a stiff fluid with c2s ¼ 1 and ρS ∝ a−6. Finally, to allow
for a loitering phase, we add a component with an
intermediate equation of state and negative energy density,
ρ5 ∝ a−5 and ρ5 < 0. Then, for this mixture of fluids, the
total density is given by

ρ ¼ ργi

�
a
ai

�
−4

− ρ5i

�
a
ai

�
−5

þ ρSi

�
a
ai

�
−6
; ð23Þ

where ai is an arbitrary fiducial value of the scale factor at
which the densities of the three components are given by ργi,
ρ5i, and ρSi. The first and second derivatives of the scale

factor are given by ð _a=aÞ2 ¼ ð1=3Þρ and ä=a ¼
−ð1=6Þðρþ 3pÞ. Setting _a ¼ ä ¼ 0 at a ¼ ai gives ρ5i ¼
2ργi and ρSi ¼ ργi. Choosing ρSi, ρ5i, and ργi near these
values will then give loitering behavior for a near ai. This is
illustrated in Fig. 1, where we set ρ5i ¼ 2ργi and choose ρSi
close to ργi to produce varying degrees of loitering.
It is clear from Fig. 1 that the density given by Eq. (23)

can lead to a quasistatic expansion or simply a significant
slowing of the expansion rate, depending on the relative
densities of the components. However, this model has
several problems. It requires a fine-tuning of the ratios of
the densities in Eq. (23), although this is also true of the
original late-time loitering universe. It also introduces a
poorly motivated component with negative energy density,
while in the standard loitering model, the curvature
automatically behaves as an effectively negative energy
density with the desired evolution. Models with pairs of
perfect fluids having, respectively, positive and negative
densities were examined in Ref. [61], which also gives
some motivation for the latter. Despite these problems, the
evolution produced by this model is rather intriguing. It is
capable of producing an expansion rate slower than any of
the other models considered here; for an appropriate choice
of parameters, the universe can approach a nearly static
state for a significant period of time.

VI. CONCLUSIONS

We find that there are no compelling models for ultra-
slow expansion within the framework of the standard

FIG. 1. Evolution of the scale factor a as a function of time t for
the loitering early universe produced by the density given in
Eq. (23) with ρ5i ¼ 2ργi and ρSi=ργi ¼ 1.1, 1.01, 1.001 (top to
bottom).
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Friedman equation. Scalar field models and barotropic
models are both unstable. Braneworld models allow for
ultraslow expansion but only in the context of a modified
expansion law. The loitering early universe introduced in
the previous section is perhaps the most interesting, as it
allows for a nearly static phase in the early Universe.

It would be interesting to explore such a phase in
connection with models for relic particle evolution and
baryogenesis. However, this model requires a negative
energy component with an unusual equation of state,
and it is not clear that there is a plausible motivation for
such a component.
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