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An internally thermalized dark matter (DM) with only gravitational interaction with the standard model
(SM) particles at low temperatures, may undergo number-changing self-scatterings in the early Universe,
eventually freezing out to the observed DM abundance. If these reactions, such as a 3 → 2 process, take
place when the DM is nonrelativistic, DM cannibalizes itself to cool much slower than standard
nonrelativistic matter during the cannibal phase. As shown in earlier studies, if the cannibal phase takes
place during the matter-dominated epoch, there are very strong constraints from structure formation.
Considering scenarios in which the cannibal phase freezes out in the radiation-dominated epoch instead, we
show that cannibal DM decoupled from the SM can be viable, consistent with all present cosmological
constraints. To this end, we solve the coupled evolution equations of the DM temperature and density, and
determine its abundance for different DM self-couplings. We then evaluate the constraints on these
parameters from the cosmic-microwave background power spectrum, the big-bang nucleosynthesis limits
on the relativistic degrees of freedom, the Lyman-α limits on the DM free-streaming length and the
theoretical upper bound on the 3 → 2 annihilation rate from S −matrix unitarity. We find that depending
upon the DM self-couplings, a scalar cannibal DM with mass in the range of around 80 eV to 700 TeV can
make up the observed DM density and satisfy all the constraints, when the initial DM temperature (TDM) is
lower than the SM one (TSM), with TSM=9100 ≲ TDM ≲ TSM=1.1.

DOI: 10.1103/PhysRevD.106.103515

I. INTRODUCTION

The possibility of dark matter (DM) undergoing number-
changing self-interactions was first introduced by Dolgov
in Refs. [1,2], in the context of DM being a glueball of a
strongly interacting hidden gauge theory. This was per-
ceived as a mechanism by which a self-thermalized DM,
with only gravitational interaction with the standard model
(SM), may deplete its number density in order not to
overclose the Universe. The same idea was also proposed
by Carlson, Machacek, and Hall in Ref. [3] with a DM
candidate which behaves, in the context of structure
formation in the Universe, differently from hot DM or
cold DM (CDM), thereby accommodating possible depar-
tures in the matter power spectrum from CDM predictions.

In such scenarios, the DM elastic self-scatterings need to
be at a rate necessary to maintain an internally thermalized
DM with its own temperature. As long as the number-
changing reactions, such as a 3DM → 2DM process, are in
chemical equilibrium, the chemical potential of the DM
vanishes. These self-scattering reactions are exothermic in
nature—if they take place when the DM is nonrelativistic
(NR) with Tχ < mχ , Tχ and mχ being the temperature and
the mass of the DM respectively, the DM cannibalizes itself
to keep warm, with its temperature falling as Tχ ∼ 1= log a,
while its energydensity falls asρχ ∼ 1=ða3 log aÞ,aðtÞ being
the scale-factor in the standard Friedmann-Robertson-
Walker (FRW) metric. This is in contrast to the 1=a2 fall
of the ordinary NR matter temperature, or the 1=a fall
of the temperature of a relativistic species. As observed in
Refs. [3–5], this very different evolution compared to
ordinary NR matter may significantly impact large-scale
structure formation of the Universe.
The earlier studies in Refs. [3–5], and the more recent

detailed analyses in Refs. [6,7] on cannibal DM were
primarily motivated to explore if possible departures in the
matter power spectrum from the CDM predictions can be
addressed using cannibal DM. As emphasized in all of
these works, in order for the cannibal phase to have a
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considerable impact on structure formation, it must take
place during the matter-dominated epoch of the Universe,
and therefore the cannibal freeze-out happens after matter-
radiation equality. Such a possibility is, of course, strongly
constrained by the precise determination of the matter
power spectrum from the cosmic microwave background
(CMB) data, though viable regions accommodating small-
scale anomalies exist [6,7].
In this paper, we study instead in detail the possibility of

cannibal freeze-out during the radiation dominated epoch
of the Universe. Therefore, for this study, we shall assume
that the observed matter power-spectrum is well described
by the CDM cosmology. The main objective of our study is
to determine if a cannibal DM, with only gravitational
coupling to the SM sector at low temperatures, can be a
plausible particle DM candidate making up the observed
DM density, at the same time satisfying all other cosmo-
logical constraints.
In order to address this question, we have accurately

modeled the evolution of the DM temperature and density
by solving the coupled system of evolution equations, and
determined the viable parameter region consistent with the
relic density requirement, details of which are presented in
Sec. II. We have then evaluated the observational con-
straints from the cosmic microwave background power
spectrum, big-bang nucleosynthesis (BBN) constraints on
the relativistic degrees of freedom, the Lyman-α constraints
on the DM free-streaming length and the theoretical upper
bound on the 3 → 2 annihilation rate from S −matrix
unitarity. Our results on the allowed region in the DM
temperature-mass plane in which the DM relic density can
describe the observed abundance, along with the various
cosmological and theoretical constraints are presented in
Sec. III. We summarize our findings in Sec. IV, and provide
further computational details on performing collision inte-
grals in Appendix.
This study should fill a gap in the literature where a clear

picture of the allowed region of the DM temperature and
mass values in this scenario is missing. In particular, we
emphasize that, such a scenario is very much allowed by
the structure formation constraints, even when cannibal
DM cannot dissipate the heat generated during the cannibal
phase to the SM sector, as long as the DM is sufficiently
cold compared to the SM to begin with, but not so cold that
chemical equilibrium of the 3 → 2 process is not achieved.
Thus, the scenario considered in our study is very different
from the so-called SIMP DM, in which the DM is kineti-
cally coupled to and thermalized with the SM sector [8].
For studies on other interesting facets of cannibal DM, we
refer the reader to Refs. [9–12].

II. EVOLUTION OF CANNIBAL DARK MATTER
TEMPERATURE AND DENSITY

An internally thermalized cannibal DM χ undergoing
3χ → 2χ reactions in chemical equilibrium, is described by

its mass mχ , temperature Tχ and the rates of the number
changing 3χ → 2χ and number conserving 2χ → 2χ reac-
tions. The latter rate is important in ensuring that the DM
remains internally thermalized, at least throughout the phase
the 3χ → 2χ reactions are taking place. Within such a
simplistic setup, the DM temperature and mass are free
parameters, with the temperature being determined by the
initial conditions in the very early Universe, presumably set
at the reheating epoch in the context of inflationary cosmol-
ogy. The reaction rates are determined in terms of the DM
self-couplings, as will be illustrated in the following.
The basic equation determining the evolution of the DM

phase-space density fχðp; tÞ is the Boltzmann kinetic
equation given by

∂fχðp; tÞ
∂t

−Hp:∇pfχðp; tÞ ¼ C½fχ �; ð2:1Þ

where C½fχ � encodes the collision terms for all the elastic
and inelastic processes affecting the distribution function
fχðp; tÞ, and H is the Hubble expansion rate. Integrating
Eq. (2.1) over the momenta p yields the equation for the
DM number density nχðtÞ as

dnχðtÞ
dt

þ 3HnχðtÞ ¼ gχ

Z
d3p
ð2πÞ3 C½fχ �≡ C0; ð2:2Þ

where the number density for a particle with gχ number of
internal degrees of freedom is defined by

nχ ¼ gχ

Z
d3p
ð2πÞ3 fχðp; tÞ: ð2:3Þ

We can define the temperature of a species as the average
of jpj2=3E over its distribution function as follows [13]

Tχ ≡ gχ
nχ

Z
d3p
ð2πÞ3

jpj2
3E

fχðp; tÞ: ð2:4Þ

As it can be readily verified with explicit computation, this
definition is an identity for both a relativistic and a
nonrelativistic species with an equilibrium distribution.
On taking the moment of the Boltzmann equation (2.1)
with jpj2=3E, we arrive at the evolution equation for the
DM temperature as

dTχ

dt
þ 2HTχ þ

Tχ

nχ

�
dnχ
dt

þ 3Hnχ

�
−
H
3

�jpj4
E3

�
¼ C2

nχ
;

ð2:5Þ

where, C2 stands for the following expression

C2 ¼
Z

d3p
ð2πÞ3

jpj2
3E

C½fχ �: ð2:6Þ
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Here, hjpj4=E3i denotes the average of jpj4=E3 over the
DM phase-space distribution.
In order to obtain explicit expressions for the collision

terms appearing in Eqs. (2.2) and (2.5), we need to define the
relevant processes. For the cannibal DM scenario under

study, the simplest examplewould be to take a real scalar DM
χ, with χχ → χχ elastic scattering, and 3χ → 2χ inelastic
scattering reactions. With these, the collision integral for the
DM number density equation receives contributions only
from the inelastic number changing reactions, and is given by

C0 ¼
1

3!2!

Z
dΠ1dΠ2dΠ3dΠ4dΠ5ð2πÞ4δ4ðp1 þ p2 þ p3 − p4 − p5ÞjMj23χ→2χ

× ½fχðE4ÞfχðE5Þ − fχðE1ÞfχðE2ÞfχðE3Þ� ð2:7Þ

where dΠj ≡ d3pj

ð2πÞ32Ej
, and jMj23χ→2χ denotes the matrix element squared for the 3χ → 2χ process. Due to the isotropy of the

background cosmology, the distribution functions depend only on jpj, and hence can be expressed as a function of E. We can
express the collision integral in Eq. (2.7) in terms of the thermally averaged reaction rate as

C0 ¼ hσv2i3χ→2χðn2χneqχ − n3χÞ ð2:8Þ

where, neqχ is the equilibrium number density of χ, and hσv2i3χ→2χ is defined by

hσv2i3χ→2χ ¼
1

3!

1

ðneqχ Þ3
Z

dΠ1dΠ2dΠ3ð2E12E22E3Þðσv2Þfeqχ ðE1Þfeqχ ðE2Þfeqχ ðE3Þ; ð2:9Þ

with σv2 given by

σv2 ¼ 1

2!

1

2E12E22E3

Z
dΠ4dΠ5ð2πÞ4δ4ðp1 þ p2 þ p3 − p4 − p5ÞjMj23χ→2χ : ð2:10Þ

Let us now consider the collision term in the temperature evolution equation (2.5) due to the χðp1Þ þ χðp2Þ þ χðp3Þ →
χðp4Þ þ χðp5Þ process. When any one of the identical particles with momentum p1, p2 or p3 is in the initial state, these
particles lose energy due to the collision, while the identical particles with momenta p4 or p5 gain energy due to the same
process, and vice versa. Therefore, the collision term can be written, by symmetrizing with respect to the incoming and
outgoing particle momenta, as [6]

C2 ¼
1

3!2!

Z
dΠ1dΠ2dΠ3dΠ4dΠ5

�jp1j2
3E1

þ jp2j2
3E2

þ jp3j2
3E3

−
jp4j2
3E4

−
jp5j2
3E5

�

ð2πÞ4δ4ðp1 þ p2 þ p3 − p4 − p5ÞjMj2p1;p2;p3→p4;p5
ðfχðE4ÞfχðE5Þ − fχðE1ÞfχðE2ÞfχðE3ÞÞ ð2:11Þ

which can be further reduced to the following form

C2 ¼
�
σv2:

�jp1j2
3E1

þ jp2j2
3E2

þ jp3j2
3E3

−
jp4j2
3E4

−
jp5j2
3E5

��
3χ→2χ

ðn2χneqχ − n3χÞ; ð2:12Þ

where the thermal average of the quantity in angle brackets h…i is defined in a similar way to Eq. (2.9), with σv2 given
by Eq. (2.10).
In order to present our numerical results, we need to define an appropriate matrix element squared for the 3χ → 2χ process.

For this purpose, we adopt a simple low-energy toy model for cannibal DM, with a real scalar field χ interacting through the
following interaction Lagrangian density1:

1The stability of the real scalar cannibal DM, as well as the absence of its interactions with the SM can follow from its ultraviolet
dynamics. For example, Refs. [1–3,6] considered χ as the glueball of a hidden non-Abelian gauge theory. Instead of a real scalar field,
one can also consider a very similar low-energy toy model with a complex scalar field stabilized by a Z3 symmetry, including again both
the cubic and quartic scalar interaction terms. All our subsequent discussions will hold in this case as well, with a change of the number
of degrees of freedom for the DM to 2, and with the inclusion of appropriate symmetry factors. In this case, the relic density will be given
by the sum of the DM particle and antiparticle contributions, assuming no asymmetry is generated.
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Lint ¼ −
μ

3!
χ3 −

λ

4!
χ4: ð2:13Þ

Evaluating the matrix element squared for the process
χðp1Þ þ χðp2Þ þ χðp3Þ → χðp4Þ þ χðp5Þ with the interac-
tion Lagrangian in Eq. (2.13), one obtains in the non-
relativistic approximation:

jMj2 ≃ 25μ2

64m4
χ

�
3λ −

μ2

m2
χ

�
2

: ð2:14Þ

The details of the matrix element computation and the
relevant Feynman diagrams are shown in Appendix.
For the following discussion, it will be convenient to

define the ratio of the SM and the DM temperatures at a
particular epoch as

ξðaÞ ¼ TSMðaÞ=TχðaÞ; ð2:15Þ

where aðtÞ is the scale factor at that epoch. The temperature
ratio ξðaÞ remains constant at its initial value ξi until the
epoch with scale factor aNR when the DM becomes
nonrelativistic, with TχðaNRÞ=mχ ∼ 1. This is because,
until this epoch, both the SM and the DM temperatures
fall as 1=aðtÞ, characteristic of relativistic species.
Both the multidimensional phase-space integrals in

Eqs. (2.9) and (2.12) can be further simplified by consid-
ering the kinematics of the 3χ → 2χ process, as detailed in
the Appendix. The resulting integrals are performed using
the Monte-Carlo integration method implemented in CUBA

[14]. With the obtained collision integrals as inputs to the
number density and temperature evolution Eqs. (2.2) and

(2.5), we solve these coupled differential equations using
the FORTRAN library DDASSL [15].
We show the numerical solutions to Eqs. (2.2) and (2.5)

in Figs. 1 and 2. In the left panel of Fig. 1, we show the DM
temperature Tχ as a function of the dimensionless variable
x ¼ mχ=TSM, the latter being used as a measure for the flow
of time. The results are shown for three different values of
the DM quartic coupling λ ¼ 0.1, 1 and 4π, with green

FIG. 1. Left panel: evolution of the DM temperature Tχ as a function of the dimensionless variable x ¼ mχ=TSM, for different values of
the DM quartic coupling λ ¼ 0.1, 1 and 4π, with the other parameters fixed as the DM mass mχ ¼ 1 MeV, the trilinear DM coupling
μ ¼ mχ , and the initial ratio of the SM and DM temperatures ξi ¼ 8.2. For comparison, the SM temperature TSM is also shown. Right
panel: the DM yield Yχ ¼ nχ=s, where s is the entropy density of the SM bath, as a function of x, for the same set of parameters as in the
left panel. For comparison, the equilibrium distribution functions Yeq

χ ðxÞ are also shown. The resulting relic abundance Ωχh2 of the
cannibal DM are indicated in each case in the right panel. See text for details.

FIG. 2. Comparison of the evolution of the DM temperature Tχ

as a function of the dimensionless variable x ¼ mχ=TSM, ob-
tained with the exact numerical solution of the evolution
Eqs. (2.2) and (2.5), and the approximate analytic solution
obtained using entropy conservation in the DM sector along
with the freeze-out approximation. We have set the quartic
coupling λ ¼ 1, with all other parameters same as in Fig. 1.
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long-dashed, blue dashed and red solid lines, respectively.
In each case, the other parameters have been fixed as
follows: the DM mass mχ ¼ 1 MeV, the trilinear DM
coupling μ ¼ mχ , and the initial ratio of the SM and DM
temperatures ξi ¼ 8.2. The value of ξi is chosen such that
the observed DM abundance Ωχh2 ¼ 0.12 [16] is given by
the relic density of the cannibal DM χ with λ ¼ 1. For
comparison, we also show the SM temperature by the
diagonal black dashed line. As we can see from this figure,
until the freeze-out of the cannibal process, the DM
temperature falls as Tχ ∝ 1= logðaÞ, much slower than
the SM temperature. After the cannibal process freezes
out, the DM temperature falls faster than the SM temper-
ature as Tχ ∝ 1=a2, as characteristic of ordinary NR matter.
In order to understand the decoupling point of the

cannibal process better, in the right panel of Fig. 1 we
show the DM yield Yχ ¼ nχ=s, where s is the entropy
density of the SM bath, as a function of x, for the same set
of parameters used as in the left panel. For comparison, the
equilibrium distribution functions Yeq

χ in each case are also
shown with dotted lines. Since Yeq

χ here is shown as a
function of x, and not x0 ¼ mχ=Tχ , and the evolution of Tχ

as a function of x depends upon the coupling λ, we obtain a
different Yeq

χ ðxÞ for different values of the quartic coupling.
The value of x at which the DM yield freezes, and hence the
3χ → 2χ cannibal process stops taking place can be read off
from this figure, which are the same points in which the
turnover from the logarithmic to the quadratic fall in
temperature can be observed in the left panel. We have
also indicated the values of the DM relic abundanceΩχh2 in
the right panel of Fig. 1. One observes that the relic density
evolves very slowly as a function of the coupling λ, and a
factor of 125 increase in the coupling only leads to a factor
of 2.2 decrease in the abundance. On the other hand, for the
same variation of the quartic coupling, the DM temperature
at large values of x may vary by up to one order of
magnitude, thereby affecting the resulting cosmological
constraints significantly.
Although the qualitative behavior of the DM temperature

evolution as Tχ ∝ 1= logðaÞ in the cannibal phase can be
obtained using the separate conservation of the DM
entropy, the precise point at which the turnover from the
cannibal phase to the NR phase with Tχ ∝ 1=a2 occurs can
only be obtained approximately using the freeze-out con-
dition of n2χðaFOÞhσv2iðaFOÞ ¼ HðaFOÞ. The freeze-out
point obtained through the exact numerical solution of
Eqs. (2.2) and (2.5) differs considerably from this estimate,
and therefore the value of the DM temperature at large x
can be modified nearly by an order of magnitude. This is
illustrated in Fig. 2, where we compare the exact numerical
solution for the evolution of Tχ (red solid line) and the
analytical approximation discussed above (blue dashed
line) for the λ ¼ 1 scenario, with all other parameters fixed
at the same value as in Fig. 1.

III. COSMOLOGICAL CONSTRAINTS: ALLOWED
RANGE OF DM TEMPERATURE AND MASS

As mentioned earlier, the properties of cannibal DM are
determined by its initial temperature Tχ , its massmχ and the
reactions rates for the elastic 2χ → 2χ and the inelastic 3χ →
2χ processes. In the simple toy model under consideration
with a real scalar DM χ discussed in the previous section, the
reaction rates are determined by the scalar trilinear couplingμ
and the quartic coupling λ. We observed from Figs. 1 and 2
that with a large variation in these couplings, while the relic
abundance of χ is modified only by a small factor, the DM
temperature at late times ismodified significantly.As theDM
temperature controls the cosmological constraints on canni-
bal DM, we expect these constraints to be modified sub-
stantially while varying the self-couplings.
In this section, we shall focus on the different constraints

on the DM temperature and mass coming from the CMB,
BBN and Lyman-α data. We shall also consider the
requirement of the chemical equilibrium of the 3χ → 2χ
process, which is the starting premise of this study. Finally,
we study the implications of S −matrix unitarity, which
sets an upper limit on the total annihilation rate of the 3χ →
2χ process through the optical theorem. In Fig. 3, we show
the resulting constraints on the dark matter massmχ and the
initial SM to DM temperature ratio ξi ¼ ðTSM=TχÞi plane.
Also shown is the contour along which the cannibal DM
reproduces the observed DM abundance Ωχh2 ¼ 0.12. The
results are shown for the DM quartic coupling λ ¼ 0.1 (left
panel) and λ ¼ 4π (right panel), with the trilinear coupling
fixed as μ ¼ mχ . For a given value of the DM mass, while
Ωχh2 ¼ 0.12 is obtained for a particular ξi value, higher
values of ξi lead to scenarios in which the cannibal DM
makes up only a fraction of the observed density, as
indicated in Fig. 3. In this region, the DM fraction fχ ¼
Ωχ=ΩDM drops rapidly, as illustrated in Fig. 4.
We discuss the details of each constraint mentioned

above in the following.

A. Chemical equilibrium and freeze-out
of the cannibal process

To begin with, we are interested in the scenario in which
the DM relic density is determined by the freeze-out of the
3χ → 2χ cannibal process, where the freeze-out takes place
when the DM is nonrelativistic. Therefore, we shall work
in the region of parameter space where the 3χ → 2χ process
is in chemical equilibrium at x0 ¼ mχ=Tχ ¼ 1. This is
ensured by imposing the following condition

n2χ;eqðx0 ¼ 1Þhσv2i3χ→2χðx0 ¼ 1Þ > Hðx ¼ 1=ξiÞ; ð3:1Þ

with x ¼ mχ=TSM, and as defined earlier, ξi ¼ TSM=Tχ is
the initial value of the temperature ratio. The region where
this chemical equilibrium condition Eq. (3.1) in the non-
relativistic regime of the DM is not satisfied is shown by the
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red shaded area on the top right corner of Fig. 3.With a fixed
value ofDMmass andwith x0 ¼ 1, for higher values of ξi, the
SM temperature is higher, as TSM ∝ ξi for a fixed Tχ . This in
turn implies that the Hubble expansion rate Hðx ¼ 1=ξiÞ
increases with increasing ξi, while the 3χ → 2χ reaction rate
Γ3→2ðx0 ¼ 1Þ ¼ n2χ;eqðx0 ¼ 1Þhσv2i3χ→2χðx0 ¼ 1Þ remains
the same. Thus we see that for a fixed DM mass, higher

ξi values do not lead to chemical equilibrium in the non-
relativistic regime. Furthermore, with the increase inmχ , the
annihilation rate hσv2i3χ→2χ decreases as 1=m5

χ , for the
trilinear coupling μ ∼OðmχÞ, in the model described by
the interaction Lagrangian in Eq. (2.13), and is approxi-
mately given by [12]

hσv2i3χ→2χ ≃
25

ffiffiffi
5

p
μ2

147456πm7
χ

�
3λ −

μ2

m2
χ

�
2

: ð3:2Þ

The computational details for the above reaction rate are
shown inAppendix. This reduced reaction rate leads to earlier
decoupling, and hence no chemical equilibrium in the higher
mass and higher ξi region is obtained when the DM is
nonrelativistic. If the quartic coupling λ is increased, one of
course obtains a smaller region excluded by the chemical
equilibrium criterion. For illustration, we have shown the
results in Fig. 3 for two values of the quartic coupling, with
λ ¼ 0.1 (left panel) and λ ¼ 4π (right panel), keeping
μ ¼ mχ fixed.
While the exact value of the scaled DM-temperature x0 at

the freeze-out of the 3χ → 2χ process, x0F, is determined by
solving the coupled evolution equations (2.2) and Eq. (2.5),
we can estimate the value of x0F using the freeze-out
approximation with Γ3→2ðx0FÞ ¼ HðxF ¼ x0F=ξFÞ, where
ξF ¼ TSM;F=Tχ;F is the ratio of the two temperatures at
the freeze-out point. This condition implies the following
transcendental equationwhose solution approximately deter-
mines x0F:

FIG. 3. Constraints on the dark matter massmχ and the initial SM to DM temperature ratio ξi ¼ ðTSM=TχÞi plane from CMB and BBN
data, from the requirement of chemical equilibrium for the 3χ → 2χ process, and from the unitarity upper bound on the DM inelastic
scattering rate. Also shown is the contour along which the cannibal DM reproduces the observed DM abundance Ωχh2 ¼ 0.12. The
results are shown for the DM quartic coupling λ ¼ 0.1 (left panel) and λ ¼ 4π (right panel), with the trilinear coupling fixed as μ ¼ mχ .
The bullet cluster constraints on DM elastic self-scatterings, σ2χ→2χ=mχ < 1 cm2=g, are shown by the vertical dashed lines, with the
region in the direction of the arrow being disfavored, subject to large astrophysical uncertainties (for details, see Sec. III F).

FIG. 4. The DM fraction fχ ¼ Ωχ=ΩDM in the parameter space
of Fig. 3, with the DM quartic coupling λ ¼ 0.1 and trilinear
coupling μ ¼ mχ .
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x0F þ 2 ln x0F ¼ 27.94þ 3

4
ln

�ð1 GeVÞm4
χhσv2i3χ→2χ

ξ2i

�

−
3

8
ln g�ðxFÞ: ð3:3Þ

B. Big-bang nucleosynthesis constraints on Nν

The effective number of relativistic degrees of freedom
in the big-bang nucleosynthesis epoch determines the
Hubble expansion rate during BBN, and thereby controls
the freeze-out dynamics of the weak-interaction processes
governing the primordial abundance of different chemical
elements. A detailed analysis of these reactions, and its
comparison with recent data on primordial abundance of
different nuclei can thus be used to obtain an upper bound
on the number of relativistic degrees of freedom in the
BBN epoch.
Therefore, if the cannibal DM species is relativistic

during BBN, with Tχ > mχ at temperatures of around
TBBN ∼ 1 MeV, it will contribute to the Hubble expansion,
leading to significant constraints. Although the BBN
reactions take place within some range of the photon
temperature, for our order-of-magnitude estimate we take
the BBN temperature to be TBBN ∼ 1 MeV. At this temper-
ature, the relative heating of the photon bath due to
electron-positron annihilations has not yet occurred, and
therefore the neutrino temperature and the photon temper-
ature remain the same. With this, the energy density
contributed by a relativistic χ species at TBBN is given by

ρχ ¼
π2gχ
30

T4
BBN

ξ4i
; ð3:4Þ

where, as defined earlier, the temperature ratio ξ remains
fixed at its initial value ξi ¼ ðTSM=TχÞi, for Tχ ≥ mχ. Thus
the contribution of χ particles to the effective number of
neutrinos at BBN is given by

ΔNν ¼
4

7

gχ
ξ4i

: ð3:5Þ

Using the recent analysis by Fields et al. [17], we take
the BBN constraint on the effective number of neutrinos
to be

Nν ¼ 2.878� 0.278; 68% C:L: Limit: ð3:6Þ

Thus, the 2σ constraint on ΔNν, taking the SM value of
Nν ¼ 3 translates to a lower bound on ξi if the DM is
relativistic at the BBN epoch as

ξi > 1.07; 95% C :L:Constraint from BBN; for

mχξi < TBBN; ð3:7Þ

where we have taken gχ ¼ 1. This roughly implies that for a
DM mass less than an MeV, its temperature at the BBN
epoch should be lower than the SM temperature. In the
scenario under study, the BBN constraint is independent of
the DM couplings. This is because in order to be con-
strained by BBN, the DM needs to be relativistic at the
BBN epoch, and since we are focussing on the cannibal
process freezing-out when the DM is nonrelativistic, the
cannibal process always takes place after BBN for such DM
mass and ξi values. The BBN constraint is shown as the light
green shaded region in Fig. 3. Our estimate for the BBN
constraint is an approximate one, while a more detailed
analysis of the effect of cannibal species on light element
abundances require significant numerical computations
[18,19], which are beyond the scope of the present study.

C. Constraints from the cosmic microwave
background power spectrum

The strongest constraint on the cannibal DM parameter
space comes from its impact on the cosmic microwave
background power spectrum. As mentioned in the intro-
duction, this impact is largest if the 3χ → 2χ process
freezes-out during the matter-dominated epoch [3,6,7].
In contrast, in this study, we are focussing on a scenario
in which the cannibal process freezes out during the
radiation dominated epoch. Even in this case, as we shall
see in the following, the CMB constraints turn out to be the
most significant one. Essentially, since during the cannibal
phase the DM temperature falls only logarithmically with
the scale factor, it may end up being warmer than standard
cold DM during the CMB epoch. Thus, for a given DM
mass, the initial DM temperature needs to be accordingly
colder to begin with—smaller the mass, stronger the
requirement. Detailed studies of the growth of matter
density perturbations with cannibal DM have been per-
formed in recent years, along with their impact on the CMB
anisotropies [6,7]. As shown in Ref. [7], CMB data requires
the cannibal DM to remain sufficiently nonrelativistic at the
time of photon decoupling so that it behaves like a cold DM
around this epoch. The current CMB constraints can be
approximately translated as a constraint on the DM temper-
ature to mass ratio at the photon decoupling epoch with
scale factor aLS as [7]

TχðaLSÞ
mχ

< 10−5; at TSMðaLSÞ ∼ 0.26 eV; ð3:8Þ

where aLS ¼ a0T0=TSMðaLSÞ ≃ 9 × 10−4, T0 being the
present CMB photon temperature, with the present scale
factor a0 ¼ 1.
In order to compute TχðaLSÞ, we note that after the

freeze-out of the cannibal process at aFO, the DM temper-
ature scales as 1=a2. We also note that the temperature ratio
ξFO at the epoch of freeze-out of the cannibal process can be
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obtained using the conservation of the comoving entropy in
the DM as follows:

ξF ¼ ξix0F
5=6eð1−x0FÞ=3; ð3:9Þ

where, x0F ¼ mχ=TχðaFOÞ, details of the derivation being
shown in Appendix. Combining these results, we obtain

TχðaLSÞ
mχ

¼ TSMðaLSÞ2
m2

χ
ξ−2i x0F

−2=3e2ðx0F−1Þ=3: ð3:10Þ

Therefore, once the freeze-out epoch for the cannibal process
x0F is obtained as a function of the DM mass mχ , ξi and the
DM self-couplings, we can use Eqs. (3.8) and (3.10) to
determine the CMB constraints on the DM parameter space.
The CMB constraints are shown by the light blue shaded
region in Fig. 3. As we can see by comparing the regions
disallowed by CMB for λ ¼ 0.1 and λ ¼ 4π, for a given DM
mass, higher values of ξi are ruled out by CMB for larger
values of the quartic coupling. This is because, larger the
coupling, longer the DM stays in chemical equilibrium
during which its temperature falls only logarithmically with
the scale factor. Thus starting from the same initial ξi the
temperature ratio at freeze-out ξFO is consequently larger,
leading to a higher DM temperature at the epoch of photon
decoupling as well. Therefore, if we decrease the DM self-
couplings, the CMB constraints become consequently
weaker. We see from Fig. 3 that for a 1 keV mass DM,
theCMBconstraints require ξi ≳ 19with λ ¼ 0.1, while ξi ≳
63 with λ ¼ 4π, and increasing the DM mass by an order
of magnitude weakens the CMB bound by a similar order.
Even with λ ¼ 4π, the CMB constraints are not found to be
sensitive for DM masses higher than around an MeV,
for ξi > 0.1.

D. S-matrix unitarity limits

We now discuss an important theoretical limit coming
from the consideration of S-matrix unitarity, which implies
a model-independent upper bound on the total DM inelastic
cross section through the optical theorem [20–22]. For the
thermally averaged 3 → 2 s − wave annihilation rate, the
unitarity upper bound is given by [22]

hσ3→2v2relimax; s-wave ¼
8

ffiffiffi
2

p ðπx0Þ2
gχm5

χ
; ð3:11Þ

where x0 ¼ mχ=Tχ , and the number of DM degrees of
freedom in our scenario is gχ ¼ 1. Thus for a given value of
mχ , the maximum possible annihilation rate is determined
by Eq. (3.11). With this cross section and mass, there is a
value of ξi for which the relic density requirement of
Ωχh2 ¼ 0.12 is satisfied. If we take a ξi value lower than
this, the SM temperature is also lower at the freeze-out

point. Therefore, there is less time for the dilution of the
DM number density due to the expansion of the Universe
since freeze-out, leaving us with a higher DM density at the
present epoch, which is disallowed by the observations.
Since the unitarity upper bound on the cross section is
model independent, the unitarity bound, as shown in Fig. 3
using the light orange shaded region, furnishes a constraint
valid for all scenarios realizing a cannibal DM undergoing
3χ → 2χ processes. It is important to note that when the
DM temperature is different from the SM one, the unitarity
upper bound on the DM mass also gets modified accord-
ingly, and is a function of ξi. The reaction rate obtained in
our scenario, with perturbative couplings, is always sig-
nificantly lower than the unitarity limit in Eq. (3.11).

E. Lower limits on the couplings

As emphasized earlier, although the mχ and ξi parameter
values for which the DM relic density is reproduced is less
sensitive to coupling variations, the constraints, especially
those from the requirement of chemical equilibrium of the
3χ → 2χ process and the CMB bounds are very sensitive to
the couplings. Due to these constraints, we find that for a
fixed value of the quartic coupling λ, one can obtain a lower
bound on the trilinear coupling μ, below which there is no
allowed parameter space consistent with the relic density
requirement, and the different cosmological constraints. In
Fig. 5 we show the different constraints in the mχ − ξi
parameter space, for λ ¼ 0.1; μ ¼ 10−8mχ (left panel) and
λ ¼ 0.1; μ ¼ 10−9mχ (right panel). As we can see from
this figure, there exists a small parameter space for
λ ¼ 0.1; μ ¼ 10−8mχ , while for λ ¼ 0.1; μ ¼ 10−9mχ no
viable parameter space exists. Therefore, in order to obtain
a viable scenario for cannibal DM, one requires μ ≳ 10−9mχ

with λ ¼ 0.1, which is a rather weak bound. Similarly, we
find that for λ ¼ 4π, the corresponding lower bound
is μ≳ 10−11mχ .

F. Lyman−α and bullet cluster constraints

Since the Lyman − α measurements are sensitive to
smaller scales for the matter power spectrum than the
CMB, they may also lead to constraints on cannibal DM.
As is well known, collisionless particles can stream out of
overdense regions into underdense regions until t ¼ tEQ,
tEQ being the time of matter-radiation equality when the
DM perturbations become Jeans unstable and begin to
grow. As this process can lead to smoothing out of
inhomogeneities, it is constrained by the observed DM
power spectrum [23]. To this end, we have made a simple
estimate using the DM comoving free-streaming length
λFSH, which approximately captures this effect. Here, λFSH
is defined as the comoving distance travelled by the DM
particles from the time of decoupling of scattering reactions
tdec to the time of matter-radiation equality tEQ [23,24]:
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λFSH ¼
Z

tEQ

tdec

hvðtÞi
aðtÞ dt: ð3:12Þ

This equation can also be rewritten by changing variables
from time t to the scale factor aðtÞ as

λFSH ¼
Z

aEQ

adec

hvðaÞi
a2HðaÞ da: ð3:13Þ

Performing this integral for the cannibal DM scenario
under study, we obtain

λFSH ¼ 3MPlT0ffiffiffiffiffiffiffiffi
ρR;0

p
ffiffiffiffiffi
x0F

p
ξFmχ

ln

�
xEQ
xdec

�
; ð3:14Þ

where, T0 ¼ 2.73 K is the present CMB photon temper-
ature, ρR;0 is the radiation energy density in the present
epoch, xEQ ¼ mχ=TEQ;SM and xdec ¼ mχ=Tdec;SM, with
Tdec;SM being the SM temperature at which the 2χ → 2χ
elastic scattering reactions decouple, and TEQ;SM is the SM
temperature at matter-radiation equality. Details of the
derivation of Eq. (3.14) can be found in Appendix. We
have explicitly checked that in the parameter region of
interest in which the 3χ → 2χ process decouples when the
DM is nonrelativistic, the 2χ → 2χ reaction always decou-
ples after the 3χ → 2χ reaction, i.e., xdec > xF.
For the interaction Lagrangian given by Eq. (2.13), the

decoupling temperature for the 2χ → 2χ elastic scattering
process is governed by the following annihilation rate [12]

hσvi2χ→2χ ≃ ðσvÞ0;2χ→2χ=
ffiffiffiffi
x0

p
; ð3:15Þ

where,

ðσvÞ0;2χ→2χ ¼
�
λ −

5μ2

3m2
χ

�
2 1

64π3=2m2
χ

:

The decoupling temperature xdec in Eq. (3.14) can be
approximately determined by the condition nχðxdecÞ×
hσvi2χ→2χðxdecÞ ¼ HðxdecÞ, which leads to the following
expression for xdec

xdec ¼
�

3

ρR;0

�
1=8M1=4

Pl ðσvÞ1=20;2χ→2χ

hσv2i1=43χ→2χ

T1=2
0 eðx0F−1Þ=2

ξ3=2i m1=2
χ

: ð3:16Þ

We find that, in most of the parameter space of interest,
in which the 3χ → 2χ process decouples in the nonrela-
tivistic regime, the elastic scatterings decouple much later,
often after the matter-radiation equality. Thus, for these
latter parameter points, the free-streaming length as defined
above vanishes. For the region in which Tdec;SM > TEQ;SM,
we find the free-streaming length to be very small, of the
order of 10−4 or smaller with λ ¼ 0.1. We show in Fig. 6 the
contours of fixed values of λFSH, with the quartic coupling
λ ¼ 0.1 (left panel) and λ ¼ 4π (right panel). We could not
find any parameter points for which λFSH ≳ 10−4.The
primary reason for such low values of the DM free-
streaming is the late decoupling of the elastic 2χ → 2χ
scatterings. As we see from Fig. 6, for higher values of ξi,
which leads to relatively earlier decoupling, λFSH is some-
what enhanced. For lower values of the DM quartic
coupling the values of λFSH are correspondingly higher,
for the same reason. Thus none of our parameter region of

FIG. 5. Same as Fig. 3, for the DM self-couplings λ ¼ 0.1; μ ¼ 10−8mχ (left panel), and λ ¼ 0.1; μ ¼ 10−9mχ (right panel).
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interest is constrained by the Lyman − α measurements
which exclude λFSH ≳ 10−1 [25].2

DM elastic self-scattering cross sections, which played a
major role in determining the DM free-streaming in the
discussion above, can be constrained using the observations
of colliding galaxy clusters, such as the bullet cluster
[29,30], which indicate an approximate upper bound of
σ2χ→2χ=mχ < 1 cm2=g. This bound is shown with the
vertical dashed lines in Fig. 6, as well as in Figs. 3 and
5. We find that with μ ¼ mχ , the bullet cluster observations
disfavor a DMmass ofmχ ≲ 40 MeV for λ ¼ 4π, andmχ ≲
10 MeV for λ ¼ 0.1, for the scenario considered in this
study, where the limit is subject to astrophysical uncer-
tainties. However, the relationship between the 3χ → 2χ
and 2χ → 2χ scattering rates is model dependent, and in the
context of the cannibal DM cosmology discussed in the
previous sections, a 2χ → 2χ rate necessary to maintain
kinetic equilibrium for the DM until the freeze-out of the
cannibal process suffices.

IV. SUMMARY

To summarize, we have studied a scenario in which DM
has only gravitational interaction with the standard model
(SM) particles at low temperatures. Such a DM may be
internally thermalized, and may undergo number-changing
self-scatterings in the early Universe, eventually freezing
out to produce the observed DM abundance. If the number-
changing reactions, such as a 3 → 2 process, take place
when the DM is nonrelativistic, DM cannibalizes itself
to cool much slower than standard nonrelativistic matter
during the cannibal phase. It has been shown in earlier
studies that if the cannibal phase takes place during the
matter-dominated epoch, there are very strong constraints
from structure formation. We considered instead scenarios
in which the cannibal freeze-out happens during the
radiation-dominated epoch, and showed that cannibal
DM decoupled from the SM can be a viable possibility,
consistent with all present cosmological constraints.
In order to accurately determine the abundance of the

cannibal DM, we solved the coupled evolution equations
of the DM temperature and density. We observed that the
relic density evolves very slowly as a function of the DM
self-couplings, and a factor of 125 increase in the DM
quartic coupling only leads to a factor of 1.6 decrease in
the abundance. On the other hand, for the same variation
of the quartic coupling, the DM temperature at late epochs
may vary by up to one order of magnitude, thereby
affecting the resulting cosmological constraints signifi-
cantly. We also found that for an accurate modeling of the
DM temperature, solving the coupled evolution equations
is necessary, as the analytic approximations using comov-
ing DM entropy conservation can result in up to an order

FIG. 6. Contours of fixed values of the free-streaming length λFSH, with the DM quartic coupling λ ¼ 0.1 (left panel) and λ ¼ 4π (right
panel). The region in which the DM 2χ → 2χ elastic scatterings decouple after matter-radiation equality, Tdec;SM < TEQ;SM is also
shown. The Bullet Cluster limit on the elastic DM self-scattering, σ2χ→2χ=mχ < 1 cm2=g, is indicated with the vertical dashed lines. See
text for details.

2For scenarios in which the elastic 2χ → 2χ scatterings
decouple late, considerations of dark acoustic oscillations can
be relevant, and may lead to different constraints from the Lyman-
α data than indicated by the free-streaming length analysis
[26–28]. Inclusion of these effects can lead to a lower bound
of a few keV on the mass of DM that undergoes elastic self-
scatterings. For these mass values, in our scenario the cannibal
DM only constitutes about 1% of the total DM density, for
couplings μ ¼ mχ and λ ¼ 4π or λ ¼ 0.1 (see, Figs. 3 and 4) and
therefore, the constraints will be significantly altered compared to
the studies in Refs. [26–28], the details of which is beyond the
scope of this work.
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of magnitude error in the value of the DM temperature at
late epochs.
We evaluated the constraints on the DM mass and initial

temperature from the cosmic-microwave background
power spectrum, the big-bang nucleosynthesis limits on
the relativistic degrees of freedom, the Lyman-α limits on
the DM free-streaming length and the theoretical upper
bound on the 3 → 2 annihilation rate from S −matrix
unitarity. The 95% C.L. BBN bounds require the initial
temperature ratio ξi ¼ ðTSM=TχÞi > 1.07, for DM particles
that are relativistic during BBN. This roughly implies that
for a DM mass less than an MeV, its temperature at the
BBN epoch should be lower than the SM temperature. The
unitarity bound sets amodel independent lower limit on ξi for
a given DM mass, and is applicable to all cannibal DM
scenarios undergoing 3 → 2 annihilations. None of our
parameter region of interest is constrained by the Lyman −
α measurements, since the DM free-streaming length is
found to be rather small. This is primarily because of the very
late decoupling of the elastic 2 → 2 DM self-scatterings,
which, in a large region of the parameter space, takes place
after the matter-radiation equality. However, scenarios lead-
ing to a large DM elastic self-scattering may be constrained
further by bullet cluster observations.
The CMB matter power spectrum leads to the strongest

cosmological constraint on cannibal DM, as depending
upon its initial temperature, cannibal DM might not be
sufficiently cold during the photon decoupling epoch,
leading to modifications in the power spectrum. For larger
values of DM self-couplings, the CMB constraints become
stronger. For a 1 keV mass DM, the CMB constraints
require ξi ≳ 19 with λ ¼ 0.1, while ξi ≳ 63 with λ ¼ 4π,
and increasing the DM mass by an order of magnitude
weakens the CMB bound by a similar order. Even with
λ ¼ 4π, the CMB constraints are not found to be sensitive
for DM masses higher than around an MeV, for ξi > 0.1.
Although the CMB bounds make larger values of ξi

preferred, the requirement of chemical equilibrium when
the DM is nonrelativistic puts an upper bound on the
possible values of ξi for a given DMmass. Thus, combining
both these requirements leads to a significant restriction on
the DM parameter space, although large regions remain
viable. We find that for the DM quartic coupling λ ¼ 4π,
and trilinear coupling μ ¼ mχ , a scalar cannibal DM with
mass in the range of around 28.2 keV to 707 TeV can make
up the observed DM density and satisfy all the constraints,
when the initial temperature ratio is in the range
3.3≲ ξi ≲ 9120. For λ ¼ 0.1, the allowed mass is in the
range of 9.3 keV to 5.7 TeV, with 2.7≲ ξi ≲ 1950. We find
that for couplings as small as μ ¼ 10−8mχ and λ ¼ 0.1,
some of the parameter space are viable, with the allowed
DM mass being in the narrow range of 79 eV to 407 eV,
with 1.1≲ ξi ≲ 2.45. We further observe that with λ ¼ 0.1,
for μ≲ 10−9mχ no parameter space remains viable for a
cannibal DM candidate consistent with all the cosmological

constraints. Similar conclusions are obtained for μ≲
10−11mχ with λ ¼ 4π.
To conclude, a cannibal DM freezing out during radi-

ation domination is very much allowed by the structure
formation constraints, even when the DM cannot dissipate
the heat generated during the cannibal phase to the SM
sector, as long as it is sufficiently cold compared to the SM
to begin with, but not so cold that chemical equilibrium of
the 3 → 2 process is not achieved. Future more precise
determination of the matter power spectrum remains the
best probe for the allowed scenarios of such DM.
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APPENDIX: SUPPLEMENTARY RESULTS

1. Some useful formulas

With the interaction Lagrangian density given by
Eq. (2.13), the different class of Feynman diagrams which
contribute to the 3χ → 2χ number changing process are
shown in Fig. 7, with the additional diagrams within each
class obtained by the permutations of different momenta, as
indicated in this figure. The corresponding matrix element
is given by the coherent sum of these diagrams and is found
to be

M3χ→2χ ¼
5μ

8m2
χ

�
3λ −

μ2

m2
χ

�
: ðA1Þ

Using this matrix element, we compute the annihilation
rate hσv2i3χ→2χ defined in Eq. (2.9) and σv2 defined
in Eq. (2.10).
The thermally averaged 3χ → 2χ cross section is given by,

hσv2i3χ→2χ ¼
1

3!2!

1

ðneqχ Þ3
Z

dΠ1dΠ2dΠ3dΠ4dΠ5ð2πÞ4δ4

× ðpχ1 þ pχ2 þ pχ3 − pχ4 − pχ5ÞjMj23χ→2χ ;

ðA2Þ

When jMj23χ→2χ is constant the phase space integrals in
Eq. (A2) can be done analytically, and one obtains [31],

hσv2i3χ→2χ ¼
ffiffiffi
5

p

2304πm3
χ
jMj23χ→2χ : ðA3Þ

Therefore, for our model the thermally averaged
hσv2i3χ→2χ is [12]
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hσv2i3χ→2χ ≃
25

ffiffiffi
5

p
μ2

147456πm7
χ

�
3λ −

μ2

m2
χ

�
2

: ðA4Þ

The collision integral in Eq. (2.12) can be evaluated in a

similar way, by expressing the jpij2
Ei

factors in terms of the
integration variables s;m12; m23, and E0. The resulting
expressions are tabulated below.

jp1j2
E1

¼ ðs −m2
23 þm2

χÞ2 − 4E2
0m

2
χ

2E0ðs −m2
23 þm2

χÞ
jp2j2
E2

¼ 2E2
0 − 2sþm2

12 þm2
23 − 2m2

χ

2E0

−
2E0m2

χ

2E2
0 − 2sþm2

12 þm2
23 − 2m2

χ

jp3j2
E3

¼ ðs −m2
12 þm2

χÞ2 − 4E2
0m

2
χ

2E0ðs −m2
12 þm2

χÞ
jp4j2
E4

¼ s2 − 4E2
0m

2
χ

2E0s

jp5j2
E5

¼ ð2E2
0 − sÞ2 − 4E2

0m
2
χ

2E0ð2E2
0 − sÞ : ðA5Þ

2. Derivation of ξF and λFSH
a. Derivation of ξF

Using comoving entropy conservation for dark matter
during the cannibal phase which starts at TχðaiÞ ¼ mχ and
ends at TχðaFOÞ ¼ mχ=x0F, we obtain

aFO
ai

¼ x01=6F eðx0F−1Þ=3; ðA6Þ

where cannibal comoving entropy density is defined as
sðTχÞ ¼ mχnχðTχÞ=Tχ . Now, the temperature ratio at
freeze-out is related to the corresponding ratio at Tχ ¼
mχ as follows:

ξF=ξi ¼
TSMðaFOÞ
TχðaFOÞ

TχðaiÞ
TSMðaiÞ

¼ ai
aFO

x0F; ðA7Þ

⇒ ξF ¼ ξix
05=6
F eð1−x0FÞ=3; ðA8Þ

where we have used aiTSMðaiÞ ¼ aFOTSMðaFOÞ and
Eq. (A6).

FIG. 7. Different class of Feynman diagrams contributing to the 3χ → 2χ number changing process, with the additional diagrams
within each class obtained by the permutations of different momenta, as indicated.
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b. Derivation of λFSH
The free-streaming length is given by:

λFSH ¼
Z

aEQ

adec

hvðaÞi
a2HðaÞ da; ðA9Þ

where, a ¼ T0=TSM ¼ T0

mχ
x. Now, we can write,

da
a2HðaÞ ¼

ffiffiffi
3

p
MPlT0ffiffiffiffiffiffiffiffi
ρR;0

p
mχ

dx; ðA10Þ

and hvðaÞi ¼
ffiffiffiffiffiffi
3Tχ

mχ

q
¼

ffiffiffiffiffiffi
3x0F

p
ξFx

.

Therefore, we can write,

λFSH ¼ 3MPlT0ffiffiffiffiffiffiffiffi
ρR;0

p
ffiffiffiffiffi
x0F

p
mχξF

Z
xEQ

xdec

dx
x
; ðA11Þ

⇒ λFSH ¼ 3MPlT0ffiffiffiffiffiffiffiffi
ρR;0

p
ffiffiffiffiffi
x0F

p
ξFmχ

ln

�
xEQ
xdec

�
: ðA12Þ
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