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We perform a dynamical system analysis of Myrzakulov or FðR; TÞ gravity, which is a subclass of
affinely connected metric theories, where ones uses a specific but nonspecial connection that allows for
nonzero curvature and torsion simultaneously. We consider two classes of models, extract the critical
points, and examine their stability properties alongside their physical features. In the class 1 models, which
possess Λ cold dark matter (CDM) cosmology as a limit, we find the sequence of matter and dark energy
eras, and we show that the Universe will result in a dark-energy-dominated critical point for which dark
energy behaves like a cosmological constant. Concerning the dark energy equation-of-state parameter, we
find that it lies in the quintessence or phantom regime, according to the value of the model parameter. For
the class 2 models, we again find the dark-energy-dominated, de Sitter late-time attractor, although the
scenario does not possess ΛCDM cosmology as a limit. The cosmological behavior is richer, and the dark
energy sector can be quintessencelike, phantomlike, or experience the phantom-divide crossing during the
evolution.
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I. INTRODUCTION

An increasing amount of observational data has now led
to the establishment of the standard model of cosmology,
according to which the Universe has passed through two
phases of accelerating expansion, one at early and one
at late times. Although the latter can be explained by a
cosmological constant, the possibility of a dynamical
nature, some possible tensions, as well as the necessity
for an additional description of the former phase, may ask
for a kind of modification. In general, one has two ways to
accomplish this. The first is to maintain general relativity as
the underlying gravitational theory but consider extra field
contents such as the dark energy sector [1,2] and/or the
inflaton field [3]. The second way is to construct modified
gravity theories, which in a particular limit tend to general
relativity, but which in general exhibit extra degrees of
freedom that can drive the nonstandard universe evolution
[4–6]. This direction has the additional advantage of
bringing gravity closer to a quantum description [7].
Modified gravity can arise from suitable extensions of

the Einstein-Hilbert action, such as in FðRÞ gravity [8], in
theories with nonminimal coupling between matter and

curvature [9,10], FðGÞ gravity [11,12], Lovelock gravity
[13,14], Horndeski [15] and generalized Galileon [16,17]
gravities, etc. A different way to construct gravitational
modifications is to use as a base the equivalent, teleparallel
formulation of gravity [18,19] and build torsional theories
such as FðTÞ gravity [20–22], theories with nonminimal
coupling between matter and torsion [23,24], FðT; TGÞ
gravity [25], FðT; BÞ gravity [26], teleparallel Horndeski
[27], etc. One can proceed to other geometrical modifica-
tions, thus obtaining novel extended gravity theories, such
as using nonmetricity [28,29] or constructing more com-
plex structures such as in Finsler geometry [30–32].
An alternative way to construct gravitational modifica-

tions is to alter the connection structure of the theory,
namely, the extra degrees of freedom will arise from the
different connection instead of the different action. This
was known in the framework of metric-affine theories
[33–36], as well as in Finsler-like theories where the
nonlinear connection may bring about extra degrees of
freedom [37–41]. In Myrzakulov or FðR; TÞ gravity [42]
[this should not be confused with the FðR; TÞ gravity where
T is the trace of the energy-momentum tensor [43] ], one
uses a specific but nonspecial connection, which allows for
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nonzero curvature and torsion simultaneously, which then
leads to the appearance of extra degrees of freedom that can
make the theory phenomenologically viable [44]. As one
can show, it can be expressed as a deformation of both
general relativity and its teleparallel equivalent. Hence,
this theory lies within the class of Riemann-Cartan family
of theories, which in turn belong to the general family of
affinely connected metric theories [45]. Nevertheless, the
theory at hand maintains zero nonmetricity.
The cosmological applications of Myrzakulov gravity

were investigated in [42,44,46–52], while the confronta-
tion with observational data has been performed in [53]. In
this work, we are interested in investigating the cosmo-
logical behavior by applying the powerful method of
dynamical system analysis. Such an approach allows one
to extract global information on the cosmological evolu-
tion, independent of the specific initial conditions or the
intermediate-time behavior [54,55]. In particular, by
examining the stable critical points of the autonomously
transformed cosmological equations, one can classify the
infinite number of possible evolutions into a few different
classes obtained asymptotically.
The plan of the work is the following. In Sec. II, we

review Myrzakulov gravity and we present the relevant
cosmological equations. In Sec. III, we perform a detailed
dynamical analysis of various scenarios in this theory,
focusing on the stable late-time solutions, and we discuss
the physical behavior. Finally, Sec. IV is devoted to our
conclusions.

II. COSMOLOGY IN MYRZAKULOV GRAVITY

In this section, we provide the cosmological equations
in a universe governed by Myrzakulov gravity [42,44].
The basic feature of the theory is the modification of the
connection, however, maintaining zero nonmetricity. As it
is known, choosing a general connection ωa

bc one can
construct the curvature and the torsion tensors through the
expressions [25]

Ra
bμν ¼ ωa

bν;μ − ωa
bμ;ν þ ωa

cμω
c
bν − ωa

cνω
c
bμ; ð1Þ

Ta
μν ¼ eaν;μ − eaμ;ν þ ωa

bμebν − ωa
bνeeμ; ð2Þ

with eaμ∂μ as the tetrad field satisfying gμν ¼ ηabeaμebν,
with gμν as the metric, ηab ¼ diagð−1; 1;…1Þ, and where
greek and latin indices run, respectively, over coordinate
and tangent space, with a comma denoting differentiation.
Among the infinite connections, the Levi-Civita Γabc is

the only one that by construction leads to vanishing torsion.
For clarity, we will use the superscript “LC” to denote the
curvature tensor calculated using Γabc, i.e., RðLCÞa

bμν ¼
Γa

bν;μ − Γa
bμ;ν þ Γa

cμΓc
bν − Γa

cνΓc
bμ. Similarly, imposi-

tion of the Weitzenböck connection Wλ
μν ¼ eaλeaμ;ν leads

to zero curvature, and the corresponding torsion tensor

becomes TðWÞλ
μν ¼ Wλ

νμ −Wλ
μν, where we use the super-

script “W” to denote quantities calculated using Wλ
μν.

From contractions of the above tensors, one can find the
Ricci scalar corresponding to the Levi-Civita connection,

RðLCÞ ¼ ηabeaμebν½Γλ
μν;λ − Γλ

μλ;νþΓρ
μνΓλ

λρ − Γρ
μλΓλ

νρ�;
ð3Þ

as well as the torsion scalar corresponding to the
Weitzenböck connection,

TðWÞ ¼ 1

4
ðWμλν −WμνλÞðWμλν −WμνλÞ

þ 1

2
ðWμλν −WμνλÞðWλμν −WλνμÞ

− ðWν
μν −Wν

νμÞðWλ
μλ −Wλ

λμÞ: ð4Þ

In general relativity, one uses RðLCÞ in the Lagrangian,
while in the teleparallel equivalent of general relativity one
uses TðWÞ. Both these theories possess two propagating
degrees of freedom, describing a massless spin-two field,
i.e., the graviton. Thus, in their corresponding modifica-
tions, namely, curvature-based modified gravity or torsion-
based modified theories, one can acquire extra degrees of
freedom by extending the action, and these extra degrees of
freedom are the ones that lead to modified cosmological
evolution. Nevertheless, after the above discussion we
realize that one can introduce extra degrees of freedom
through the consideration of nonspecial connections, i.e.,
going beyond the Levi-Civita and Weitzenböck ones.
Hence, if one applies a connection that has both nonzero
curvature and torsion, a theory with more degrees of
freedom is obtained.
Specifically, as it was presented in [42,44], one can

construct a theory that is based on a specific but not special
connection that leads to both nonzero curvature and non-
zero torsion. The action of such a theory would be

S ¼
Z

d4xe

�
FðR; TÞ
2κ2

þ Lm

�
; ð5Þ

with e ¼ detðeaμÞ ¼ ffiffiffiffiffiffi−gp
and κ2 ¼ 8πG the gravitational

constant, however, we mention that T and R are the
torsion and curvature scalars of the nonspecial connection,
namely [25],

T ¼ 1

4
TμνλTμνλ þ

1

2
TμνλTλνμ − Tν

νμTλ
λμ; ð6Þ

R ¼ RðLCÞ þ T − 2Tν
νμ

;μ; ð7Þ

with the semicolon denoting the covariant differentiation
with respect to the Levi-Civita connection. Finally, in the
above action we have also added the matter Lagrangian Lm.
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As one can see from the definitions (1) and (2), T
depends on the tetrad, its first derivative, and the con-
nection, and R depends on the tetrad and its first and second
derivatives and on the connection and its first derivative.
These allow one to introduce the parametrization [44]

T ¼ TðWÞ þ v; ð8Þ

R ¼ RðLCÞ þ u; ð9Þ

with u being a scalar quantity depending on the tetrad, its
first and second derivatives, and the connection and its first
derivative, and v being a scalar depending on the tetrad, its
first derivative, and the connection.
The above theory has nontrivial structure and exhibits

extra degrees of freedom even in the case where the
arbitrary function FðR; TÞ has a trivial form, since the
novel features arise from the nontrivial connection itself,
parametrized by the quantities u and v. If this connection
becomes the Levi-Civita one, we obtain that u ¼ 0 and
v ¼ −TðWÞ, and thus we recover the standard FðRÞ gravity
[which for FðRÞ ¼ R becomes general relativity].
However, if the connection is the Weitzenböck one, then
we acquire v ¼ 0 and u ¼ −RðLCÞ, and therefore we
recover standard FðTÞ gravity [which for FðTÞ ¼ T
becomes the teleparallel equivalent of general relativity].
In order to proceed to the cosmological applications of

the above construction, we follow the minisuperspace
procedure [44]. Imposing the flat Friedmann-Robertson-
Walker metric

ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð10Þ

namely, the tetrad eaμ ¼ diag½1; aðtÞ; aðtÞ; aðtÞ�, with aðtÞ
as the scale factor, we find RðLCÞ ¼ 6ðäa þ _a2

a2Þ and TðWÞ ¼
−6ð _a2a2Þ. Taking into account the dependence of u and v on
the metric and the connection, we deduce that u ¼
uða; _a; äÞ and v ¼ vða; _aÞ. Furthermore, we take the
standard form Lm ¼ −ρmðaÞ [56]. Finally, in order to
explore the dynamics of Myrzakulov gravity arising solely
from the nonspecial connection itself, we make the simple
linear choice FðR; TÞ ¼ Rþ λT, with λ as the dimension-
less coupling parameter.
Inserting the above minisuperspace expressions into (5),

we obtain S ¼ R
Ldt, with

L ¼ 3

κ2
½λþ 1�a _a2 − a3

2κ2
½uða; _a; äÞ þ λvða; _aÞ� þ a3ρmðaÞ:

ð11Þ

We can now perform variation and extract the equations
of motion for a, and we can moreover consider the
Hamiltonian constraint H ¼ _a½∂L

∂ _a −
∂

∂t
∂L
∂ä� þ äð∂L

∂äÞ − L ¼ 0;
hence resulting in the following Friedmann equations [44]:

3H2 ¼ κ2ðρm þ ρMGÞ; ð12Þ

2 _H þ 3H2 ¼ −κ2ðpm þ pMGÞ; ð13Þ

where the dark energy sector that arises effectively from the
nonspecial connection has energy density and pressure

ρMG ¼ 1

κ2

�
Ha
2

ðu _a þ v _aλÞ −
1

2
ðuþ λvÞ

þ auä
2

ð _H − 2H2Þ − 3λH2

�
; ð14Þ

pMG ¼ −
1

κ2

�
Ha
2

ðu _a þ v _aλÞ −
1

2
ðuþ λvÞ

−
a
6
ðua þ λva − _u _a − λ _v _aÞ

−
a
2
ð _H þ 3H2Þuä −Ha _uä

−
a
6
üä − λð2 _H þ 3H2Þ

�
; ð15Þ

respectively. In the above expressions, H ¼ _a
a is the Hubble

parameter, pm is the pressure of the matter sector, and the
subscripts a, _a, and ä mark partial derivatives with respect
to these arguments. Note that the effective dark energy
sector is conserved, namely, _ρMG þ 3HðρMG þ pMGÞ ¼ 0,
as it is easily deduced from the above imposing the matter
conservation equation _ρm þ 3Hðρm þ pmÞ ¼ 0 too.
In the following, we focus on two classes of the theory at

hand, constructed phenomenologically in order to lead to
interesting cosmological evolution.

A. Class 1

As a first example, we consider the class where u ¼
c1 _a − c2 and v ¼ c3 _a − c4, where c1,c2,c3, and c4 are
constants. For this class, Eqs. (12)–(15) lead to

3H2 ¼ κ2ðρm þ ρMGÞ; ð16Þ

2 _H þ 3H2 ¼ −κ2ðpm þ pMGÞ; ð17Þ

with

ρMG ¼ 1

κ2
½c − 3λH2�; ð18Þ

pMG ¼ −
1

κ2
½c − λð2 _H þ 3H2Þ�; ð19Þ

where we have defined c≡ c2 þ c4. Thus, the effective
dark energy equation-of-state parameter reads

wDE ¼ −1þ 2λ _H
c − 3λH2

: ð20Þ
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It is interesting to mention here that the effective dark
energy density (18) falls within particular subclasses of the
running vacuum cosmology [57–59].

B. Class 2

The second class that we are interested in is the one
characterized by u ¼ c1

_a
a ln _a and v ¼ sðaÞ _a, where sðaÞ is

an arbitrary function. Hence, expressions (12)–(15) give
again the Friedmann equations (16) and (17), but now with

ρMG ¼ 1

κ2

�
c1
2
H − 3λH2

�
; ð21Þ

pMG ¼ −
1

κ2

�
c1
2
H þ c1

6

_H
H

− λð2 _H þ 3H2Þ
�
; ð22Þ

and thus we can find

wDE ¼ −1þ 2λ _H − c1
6

_H
H

c1
2
H − 3λH2

: ð23Þ

Similar to class 1 above, the effective dark energy density
(21) coincides with broader subclasses of the running
vacuum cosmology, and as we show below it can lead
to very interesting cosmological behavior, despite the fact
that it does not have theΛ cold dark matter (CDM) scenario
as a particular limit.

III. PHASE-SPACE ANALYSIS

In the previous section, we presented the cosmological
equations of the scenario at hand. As we can see,
Myrzakulov gravity leads to the appearance of new terms
in the Friedmann equations, which are of geometrical
origin and, in particular, they arise from the nontrivial
connection structure through the parametrization in terms
of u and v. In this section, we proceed to the full phase-
space analysis of these scenarios, by applying the dynami-
cal system method [54,55]. Hence, we will first introduce
suitably the auxiliary variables needed in order to transform
the equations into an autonomous dynamical system
[54,55,60–70], and then we will extract its critical points.
Thus, examining the eigenvalues of the perturbation matrix
around each of them, we can conclude their stability
properties.
In order to perform the dynamical analysis, we introduce

the quantities

A ¼
�
Ha
2

ðu _a þ v _aλÞ −
1

2
ðuþ λvÞ þ auä

2
ð _H − 2H2Þ

�
;

B ¼ ½−aðua þ λva − _u _a − λ _v _aÞ − 3að _H þ 3H2Þuä
− 6Ha _uä − aüä�: ð24Þ

Hence, the two Friedman equations can be written as

3H2ð1þ λÞ ¼ κ2ρm þ A; ð25Þ

ð2 _H þ 3H2Þð1þ λÞ ¼ κ2ρmwm þ Aþ B
6
; ð26Þ

where for convenience we have also introduced the matter
equation-of-state parameter defined as wm ¼ pm=ρm.
Let us first examine the limit of the scenario at hand to

the ΛCDM cosmology. In order to achieve this, we need
ρMG ¼ −pMG, which implies that

λ _H ¼ −
B
12

: ð27Þ

Although this condition can be satisfied in many ways, the
simplest one is to consider the case λ ¼ 0, namely, to focus
on a Lagrangian being just the curvature R corresponding
to the nonspecial connection. In this case, if we choose a
connection with u ¼ c1 _a − c2, where c1 and c2 are con-
stants, we acquire

ρMG ¼ −pMG ¼ c2
2κ2

≡ Λ: ð28Þ

Interestingly enough, we observe that we do obtain ΛCDM
cosmology, although in the starting action we had not
considered an explicit cosmological constant. Thus, the
nontrivial structure of the underlying geometry results in
an effective cosmological constant, which reveals the
capabilities of the theory. Note that even in this simple
case where λ ¼ 0, and thus T disappears from the action,
the nonspecial connection still has a nonzero torsion. In
general, such an effective emergence of a cosmological
constant due to the richer underlying connection appears in
other geometrical modified gravities too [40,71] and
reveals the advantages of the theory.
Having the above discussion in mind, we can deduce that

class 1 defined in Sec. II A corresponds to a deviation from
ΛCDM cosmology, accepting it as a particular limit and
thus satisfying the basic requirements to be a viable theory,
while still maintaining the possibility to improve ΛCDM
behavior. On the other hand, class 2 defined in Sec. II B
does not have ΛCDM cosmology as a limit, nevertheless,
and interestingly enough, as we will later show it can lead
to a cosmological behavior in agreement with observations.
We can now proceed to the dynamical analysis of the

above specific classes, keeping a general λ ≠ 0.

A. Class 1

We start with class 1 of Sec. II A. In this case, definitions
(24) lead to

A ¼ 1

2
ðc2 þ λc4Þ≡ C;

B ¼ 0: ð29Þ
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In order to transform the cosmological equations into an
autonomous form, we introduce the dark matter and dark
energy density parameters as our dimensionless variables,
namely,

Ωm ≡ κ2ρm
3H2ð1þ λÞ ; ð30Þ

ΩMG ≡ C
3H2ð1þ λÞ ; ð31Þ

and therefore the first Friedmann equation (16) becomes
1 ¼ Ωm þ ΩMG [note that the case λ ¼ −1 is not physically
interesting, since according to (25) it leads to ρm ¼
−C=κ2 ¼ const:; hence, in the following, we focus on
the case λ ≠ −1]. Additionally, the second Friedmann
equation (17) becomes

_H
H2

¼ −
3

2
ð1þ Ωmwm −ΩMGÞ: ð32Þ

Using this expression, as well as (30) and (31), Eq. (20) can
be rewritten as follows:

wDE ¼ −1 −
3λð1þΩmwm − ΩMGÞ

ΩMGð1þ λÞ − 3λ
: ð33Þ

In summary, the dynamical system can be straightfor-
wardly written as

dΩm

d ln a
¼ −3Ωm½wm −Ωmwm þ ΩMG�; ð34Þ

dΩMG

d ln a
¼ 3ΩMG½Ωmwm þ 1 −ΩMG�: ð35Þ

Since the first Friedman equation acts as a constraint,
we finally remain with one-dimensional phase space. The
corresponding critical points PðΩm;ΩMGÞ are summarized
in Table I, alongside their features and stability conditions.
Note that in this case (33) provides the useful expression

wDE ¼ −1 −
3λΩmð1þ wmÞ

ð1 −ΩmÞð1þ λÞ − 3λ
: ð36Þ

As we observe, point P1 corresponds to a dark-energy-
dominated Universe, in which dark energy behaves like a

cosmological constant, and the fact that in the usual case of
dust matter it is stable implies that it will be the late-time
state of the Universe independent of the initial conditions.
On the other hand, point P2 is a matter-dominated, non-
accelerating solution, and the fact that for dust matter
equation of state it is a saddle point implies that this point
can describe the necessary intermediate era of the Universe,
in which matter structure is formed [69,70].
In order to show the above feature in a more transparent

way, in Fig. 1 we present the behavior of the system in the
ðwDE;ΩmÞ space, in the case of dust matter, for various
values of λ. As we can see, the system passes through the
saddle point P2 before it results in the stable late-time
attractor P1. Additionally, in order to examine the system at
both intermediate and late times, in Fig. 2 we present Ωm
as a function of the redshift z ¼ −1þ a0=a (setting the
current scale factor a0 ¼ 1), since _H¼−ð1þzÞHðzÞH0ðzÞ,
with primes denoting derivatives with respect to z. We

TABLE I. The physically interesting critical points of class 1,
namely, of (16) and (17) with (18) and (19), their features, and
their stability conditions.

Point ðΩm;ΩMGÞ Existence wDE Acceleration Stability

P1 (0,1) Always −1 Yes wm > −1
P2 (1,0) Always wm wm < − 1

3
wm < −1

FIG. 1. The behavior of the system in the ðwDE;ΩmÞ space for
class 1 models of (16) and (17) with (18) and (19), for wm ¼ 0
and with λ ¼ 0.02 (blue dashed), λ ¼ 0 (green solid), and
λ ¼ −0.02 (orange dotted).

FIG. 2. The evolution of the matter density parameter ΩmðzÞ as
a function of the redshift, for class 1 models of (16) and (17) with
(18) and (19), for wm ¼ 0 (blue dashed) and wm ¼ 0.1 (orange
dotted).
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choose different values of wm, and we fix C in order to have
Ωmðz ¼ 0Þ≡Ωm0 ≈ 0.31 as required by observations [72].
As we observe, the Universe follows the required evolution,
with the sequence of matter and dark energy epochs.
Moreover, in Fig. 3 we depict the corresponding behavior

of the dark energy equation-of-state parameter wDE for
various values of λ. As we see, although for every λ at
asymptotic late times (i.e., for z → −1) wDE is stabilized at
the cosmological constant value −1, as it was found in
Table I, the behavior at intermediate redshifts and at the
present Universe is different. In particular, for λ < 0 the dark
energy sector behaves as quintessence, while for λ > 0 the
wDE lies in the phantom regime. This was expected from
the form of (36) and reveals that class 1 offers a unified
description of both quintessence and phantom regimes,
without pathologies. Finally, as we see, in the case λ ¼ 0
the scenario at hand recovers ΛCDM cosmology.

B. Class 2

Let us now proceed to the investigation of class 2 of
Sec. II B. In this case, definitions (24) lead to

A ¼ c1
2
H ≡DH: ð37Þ

Similar to the class 1 case, for λ ≠ −1 we can introduce the
dimensionless auxiliary variables

Ωm ≡ κ2ρm
3H2ð1þ λÞ ; ð38Þ

ΩMG ≡ D
3Hð1þ λÞ ; ð39Þ

and thus the first Friedmann equation becomes the con-
straint 1 ¼ Ωm þ ΩMG. Additionally, for λ ≠ −1 the sec-
ond Friedmann equation becomes

_H
H2

¼ −
3ð1þ Ωmwm −ΩMGÞ

2 −ΩMG
: ð40Þ

Hence, using this expression and (38) and (39), we can
rewrite expression (23) as

wDE ¼ −1 −
ð1þΩmwm −ΩMGÞ½λð2 −ΩMGÞ −ΩMG�

ð2 − ΩMGÞ½ð1þ λÞΩMG − λ� :

ð41Þ

For this class of scenarios, the dynamical system can be
straightforwardly written as

dΩm

d ln a
¼ 3Ωm½ΩMG − wmð−2þ ΩMG þ 2ΩmÞ�

ΩMG − 2
; ð42Þ

dΩMG

d ln a
¼ 6ΩMGðΩMG − wmΩm − 1Þ

ΩMG − 2
: ð43Þ

Because of the constraint first Friedman equation, we result
to a one-dimensional phase space. Hence, in this case (41)
gives the useful expression

wDE ¼ −1 −
Ωmð1þ wmÞ½λ − 1þ Ωmðλþ 1Þ�
ð1þ ΩmÞ½ð1þ λÞð1 − ΩmÞ − λ� : ð44Þ

The critical points are summarized in Table II. In the
same table, we provide their features and their stability
conditions. Interestingly enough, class 2 exhibits the
same critical points as class 1, namely, the dark-energy-
dominated, de Sitter universe P1, which is stable for dust
matter, and the matter-dominated, nonaccelerating universe
P2, which is a saddle point for dust matter equation of state.
The importance of the current behavior is that it is obtained
not only without the consideration of an explicit cosmo-
logical constant, but also through the quite rich and
complicated dark energy density (21), which does not
accept the ΛCDM model as a particular limit.
Nevertheless, although class 2 has the same critical

points as class 1, the behavior of the system at intermediate
times is radically different. In Fig. 4 we show the
ðwDE;ΩmÞ diagram, in the case of dust matter. Although
the system passes through the saddle point P2 before it
results in the stable late-time attractor P1, the corresponding
curves are different from those of Fig 1. Furthermore, in
Fig. 5 we present Ωm as a function of the redshift z and

FIG. 3. The evolution of the dark energy equation-of-state
parameter wDEðzÞ as a function of the redshift, for class 1 models
of (16) and (17) with (18) and (19), for wm ¼ 0 and with λ ¼ 0.02
(blue dashed), λ ¼ 0 (green solid), and λ ¼ −0.02 (orange
dotted).

TABLE II. The physically interesting critical points of class 2,
namely, of (16) and (17) with (21) and (22), their features, and
their stability conditions.

Point ðΩm;ΩMGÞ Existence wDE Acceleration Stability

P1 (0,1) Always −1 Yes wm > −1
P2 (1,0) Always wm wm < − 1

3
wm < −1
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fixing D in order to have Ωmðz ¼ 0Þ≡Ωm0 ≈ 0.31, where
we can see the sequence of matter and dark energy eras.
Finally, in Fig. 6 we present the evolution of the dark

energy equation-of-state parameter wDEðzÞ for various
values of λ. Similar to the previous class of models, at
asymptotically late times wDE tends to the cosmological
constant value −1, as it was found in Table II; however, in
the present case this is not trivial since the scenario at
hand does not possess ΛCDM cosmology as a limit.
Additionally, the behavior at intermediate redshifts is even
more different, and the dark energy sector can lie in the
quintessence regime, in the phantom regime, or experience
the phantom-divide crossing during the evolution. This was
expected from the form of (44) and reveals the capabilities
of this class of models.

IV. DISCUSSION

We performed a dynamical system analysis of
Myrzakulov gravity. The latter is a subclass of affinely
connected metric theories, in which one uses a specific but
nonspecial connection, which allows for nonzero curvature
and torsion simultaneously. Thus, one obtains extra degrees
of freedom, which in turn lead to extra terms in the
Friedman equations that can lead to interesting phenom-
enology. Hence, by applying the dynamical system
approach and performing a phase-space analysis, one is
able to bypass the nonlinearities of the equations and
investigate the global behavior of the system, independent
of the specific initial conditions or the intermediate-time
behavior evolution.
We considered two classes of models and for each case

we transformed the equations into an autonomous dynami-
cal system. We extracted the critical points, and we
examined their stability properties alongside their physical
features. In the class 1 models, which possess ΛCDM
cosmology as a limit, we found that independent of the
initial conditions the Universe will result in a dark-energy-
dominated critical point in which dark energy behaves like
a cosmological constant. Moreover, we found a matter-
dominated, nonaccelerating solution, which is a saddle
point and thus it can describe the necessary corresponding
intermediate matter era of the Universe. Hence, the
Universe follows the required evolution, with the sequence
of matter and dark energy eras. Concerning the dark energy
equation-of-state parameter wDE, we showed that, although
at asymptotic late times it is stabilized at the cosmological
constant value −1 for every value of the model parameter λ,
the behavior at intermediate redshifts and at the present
Universe is different, since for λ < 0 the dark energy sector
behaves as quintessence, while for λ > 0 the wDE lies in the
phantom regime.
For the class 2 models, we again found the dark-energy-

dominated, de Sitter late-time attractor and the saddle
critical point corresponding to a matter-dominated,

FIG. 4. The behavior of the system in the ðwDE;ΩmÞ space for
class 2 models of (16) and (17) with (21) and (22), forwm ¼ 0 and
with λ ¼ 0.02 (blue dashed), λ ¼ 0 (green solid), and λ ¼ −0.02
(orange dotted).

FIG. 5. The evolution of the matter density parameter ΩmðzÞ as
a function of the redshift, for class 2 models of (16) and (17) with
(21) and (22), for wm ¼ 0 (blue dashed) and wm ¼ 0.1 (orange
dotted).

FIG. 6. The evolution of the dark energy equation-of-state
parameter wDEðzÞ as a function of the redshift, for class 2 models
of (16) and (17) with (21) and (22), for wm ¼ 0 and with λ ¼ 0.02
(blue dashed), λ ¼ 0 (green solid), and λ ¼ −0.02 (orange
dotted).
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nonaccelerating universe. Furthermore, at asymptotically
late times, wDE tends to the cosmological constant value
−1. However, the interesting feature is that this was
obtained without the scenario possessing ΛCDM cosmol-
ogy as a particular limit. This class can also describe the
sequence of matter and dark energy epochs; nevertheless, at
intermediate times the behavior is radically different than
the previous class, since the dark energy sector can lie in the
quintessence regime, in the phantom regime, or experience
the phantom-divide crossing during the evolution.
Let us stress here that, as we mentioned above, the two

examined classes of theories, at a cosmological framework,
fall within the class of generalized running vacuum theories
[57–59]. Hence, one can perform the big bang nucleosyn-
thesis analysis in the same way [73] and deduce that the
early-universe evolution is not spoiled in the present
models, too.
In summary, the phase-space analysis revealed the

interesting features of Myrzakulov gravity and, in particu-
lar, the ability to possess a stable de Sitter solution as a late-
time attractor even without the explicit consideration of a
cosmological constant. It would be interesting to apply the
Noether symmetry approach [74] in order to extract exact
analytic solutions at intermediate times too. Furthermore,

since the resulting cosmological equations are similar to
subclasses of the running vacuum cosmology, it is neces-
sary to further investigate their possible connection and
examine whether the current framework offers the way to
provide a Lagrangian for running vacuum models, a well-
known open issue in the corresponding literature. Finally,
it would be interesting to investigate the relation and
differences of the present theory with theories with Weyl
connection (not to be confused with Weyl gravity, which
uses the standard Levi-Civita connection), which have an
altered connection but nonzero nonmetricity [75]. These
studies will be performed in separate works.
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