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We revisit D-term inflation with the bounds of the cosmic string tension from gravitational wave
observations and consider the possible deviation of the spectral index compared with the ΛCDM model in
light of prerecombination resolutions of the Hubble tension. D-term inflation requires very small coupling
constants under these constraints. We show that natural coupling constants (g ¼ λ ¼ 0.1) can be achieved
in the case of D-term inflation on the brane.
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I. INTRODUCTION

Since the observation of gravitational waves [1,2], we are
entering a new era of cosmology. More precise measure-
ments would be provided by future experiments such as
LIGO [3], Virgo [4], LISA [5], DICIGO/BBO [6], the
Einstein Telescope (ET) [7], Cosmic Explorer (CE) [8],
Taiji [9], and TianQin [10]. This is bound to have profound
ramifications on cosmology.
The idea of cosmic inflation [11–14] solves many

problems (such as the horizon, flatness, and unwanted
relics problems1) of old hot big bang model and explains
why our universe is so big (compared with the Planck
scale), so long-lived (compared with Planck time), geo-
metrically so flat (and not perfectly flat), and have a large
entropy with a variety of things. It is intriguing that in this
scenario, the origin of all the structures of the universe
(such as galaxies and planets) is ultimately from quantum
fluctuations. It is arguably the standard scenario of the
very early universe. Yet we are still searching for the best
inflation model.
Among the inflationary models, D-term inflation [15,16]

is a supersymmetric (SUSY) realization of hybrid inflation
[17]. Hybrid inflation provides an effective way to produce
small field inflation which is defined to be inflation models
with an inflaton field value smaller than the Planck scale

(at least when our observable universe is leaving the
horizon). Although small field inflation models also pro-
duce primordial gravitational waves, the value of tensor-
to-scalar ratio r is typically too small to be observed in
near-future experiments [18]. Instead, one can study a class
of small-field inflation models in which cosmic strings are
produced after inflation via gravitational waves generated
by those cosmic strings [19]. A salient feature of D-term
inflation is the cosmic string production after inflation. The
energy per unit length of cosmic strings (also known as the
string tension μ) can be significantly large and it can impose
signatures for observations. String tension is commonly
expressed via a dimensionless combination Gμ, where G is
Newton’s constant. Current constraint from CMB (cosmic
microwave background) measurement is Gμ < 1.1 × 10−7

[20]. More precise measurements can be obtained through
observations of gravitational waves since the vibration of
cosmic strings generate gravitational radiation [21]. Current
limit from the European Pulsar Timing Array (EPTA)
implies Gμ≲ 10−11 [22]. Recently there is a possible
signal of stochastic gravitational waves background from
NANOGrav Collaboration [23]. This corresponds to a
string tension Gμ ∈ ð4 × 10−11; 10−10Þ at the 68% confi-
dence level [24].2 In the calculation of the following
sections, we will be using Gμ ¼ 10−11.
On the other hand, recently there is a discrepancy

between observations of the Hubble constant H0

between high redshift [such as observations of CMB and
baryon acoustic oscillations (BAO)] and low redshift
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1What kind of relics are unwanted depends on whether there
are monopoles, gravitinos, or something else beyond the standard
model of particle physics which may be overabundantly produced
in a hot big bang.

2In [25], a slightly different value of Gμ ∈ ð6 × 10−11;
1.7 × 10−10Þ at the 68% confidence level is obtained. There
are some uncertainties regarding the constraints due to the types
and modeling of the string network. In some models, there is a
stronger constraint of Gμ ≲ 4 × 10−15 [26].
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measurements using local distance ladder (such as
Cepheids and SNe Ia). The measurement from CMB is [27]

H0 ¼ 67.4� 0.5 km s−1Mpc−1: ð1Þ

However, the measurement from the SH0ES collaboration
is [28]

H0 ¼ 73.04� 1.04 km s−1Mpc−1: ð2Þ

There are other experiments and the discrepancy cannot be
easily explained by systematic error [29–33]. This discrep-
ancy is known as the Hubble tension (see [34–37] for recent
reviews) and currently the disagreement is about 4σ to 6σ.
Since the result from CMB measurement is based on the
ΛCDM model, many proposed resolutions for the Hubble
tension assume some modifications of the ΛCDM model.
In this case, there may be corresponding modifications
of the spectral index [38–40]. According to observations
based on ΛCDM model, the spectral index is given by
ns ¼ 0.965� 0.004 [27]. On the other hand, in prerecom-
bination resolutions of the Hubble tension (such as early
dark energy), the Monte Carlo Markov chain analysis done
by [40] shows

δns ≃ 0.4
δH0

H0

; ð3Þ

for lifting high redshift H0 and it seems to be pointing to3

ns ¼ 1: ð4Þ

This increase of ns compared with ΛCDM model was
consistent with some earlier works [41–45], where the results
indicate that in order to have H0 ≳ 71 km s−1Mpc−1, the
spectral index is

ns ≳ 0.98: ð5Þ

The physical meaning of the increase of ns is to compensate
for the suppression of small-scale fluctuations in those
models. In [46], cosmological implications of ns ∼ 1 are
considered, in particular on the model of axion curvaton
models. Herewe focus on the implication of ns ∼ 1 to D-term
inflation.

II. D-TERM INFLATION

D-term inflation is a SUSY hybrid inflation. The super-
potential is given by [15,16]

WD ¼ λSΦþΦ− ð6Þ

where S is the inflaton superfield, λ is the superpotential
coupling and Φ� are chiral superfields charged under
the Uð1ÞFI gauge symmetry responsible for the Fayet-
Iliopoulos term. The corresponding SUSY tree-level effec-
tive scalar potential is

VðS;Φþ;Φ−Þ ¼ λ2½jSj2ðjΦþj2 þ jΦ−j2Þ þ jΦþj2jΦ−j2�

þ g2

2
ðjΦþj2 − jΦ−j2 þ ξÞ2; ð7Þ

where ξ is the Fayet-Iliopoulos term and g is the Uð1ÞFI
gauge coupling. From the potential, the true vacuum is
given by

hSi ¼ 0; hΦþi ¼ 0; hΦ−i ¼
ffiffiffi
ξ

p
: ð8Þ

During inflation, when the inflaton field value is larger than
the critical value jSj ≫ jSjc ¼ gξ1=2=λ the field value of S
provides effective masses to Φþ andΦ−, which drives their
field values to zero. The potential minimum is along a flat
valley and is given by

V ¼ V0 ¼
g2ξ2

2
: ð9Þ

The 1-loop inflaton potential is

VðSÞ ¼ V0 þ
g4ξ2

32π2

�
2 ln

�
λ2jSj2
M2

�
þ ðzþ 1Þ2 lnð1þ z−1Þ

þ ðz − 1Þ2 lnð1 − z−1Þ
�
; ð10Þ

where z ¼ λ2jSj2=g2ξ ¼ jSj2=jSj2c and M is a renormaliza-
tion scale. If z ≫ 1, the 1-loop potential can be approxi-
mated by

VðsÞ ¼ V0 þ
g4ξ2

16π2
ln

�
s2

2M2

�
; ð11Þ

where S≡ s=
ffiffiffi
2

p
. In the following calculations, we

assume V0 dominates the potential, namely V ≃ V0 as
hybrid inflation should have. The slow-roll parameters are
given by

ϵ≡M2
P

2

�
V 0

V

�
2

¼ M2
Pg

4

32π4s2
; ð12Þ

and

η≡M2
P
V 00

V
¼ −

M2
Pg

2

4π2s2
; ð13Þ

where MP ¼ 2.4 × 1018 GeV is the reduced Planck mass.
The number of e-folds N is given by

3Very roughly, from Eqs. (1) and (2) we can calculate
ns ¼ 0.96þ 0.4 73.04−67.4

70
¼ 0.99 ∼ 1.
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N ¼ 2π2

g2
ðs2 − s2eÞ; ð14Þ

where se marks the end of inflation. Inflation ends either
when the inflaton drops below its critical value sc ¼
g

ffiffiffi
2

p ffiffiffi
ξ

p
=λ or when the second slow-roll parameter becomes

jηj ¼ 1 at ss:r: ¼ ðg=2πÞMP as can be seen from Eq. (13).
Namely,

se ¼ maxðss:r:; scÞ: ð15Þ

Depending on the mechanism of reheating, N is roughly
50≲ N ≲ 60. We will take N ¼ 60 when a numerical
calculation is needed in the following. It will be useful
to calculate

s2c
s2s:r:

¼ 8π2ξ

λ2M2
P
: ð16Þ

When λ is small, we may have sc > ss:r:. In this case, from
Eqs. (13), (14), and (16),

η ¼ −
1

s2c
s2s:r:

þ 2N
: ð17Þ

It is a novel feature of our calculation to express the results
in terms of s2c=s2s:r:. On the other hand, if λ is big, we may
have sc < ss:r:. In this case,

η ¼ −
1

1þ 2N
≃ −

1

2N
: ð18Þ

Let us make a mnemonic rule here, when sc < ss:r:, we just
set s2c=s2s:r: ¼ 0 so that Eq. (17) includes Eq. (18) and there
is no need to duplicate equations in the following dis-
cussion.4 From Eqs. (12) and (13), we can see that

jϵj ¼ g2

8π2
jηj: ð19Þ

Therefore, we neglect ϵ compared with η as we always
consider g ≤ 0.1. In particular, we have the spectral index
given by

ns ¼ 1þ 2η − 6ϵ ≃ 1þ 2η ¼ 1 −
2

s2c
s2s:r:

þ 2N
: ð20Þ

The spectrum is

PR ¼ 1

12π2M6
P

V3

V 02 ¼
ξ2

6M4
P

�
s2c
s2s:r:

þ 2N

�
; ð21Þ

with CMB normalization given by P1=2
R ¼ 5 × 10−5. After

inflation, the Uð1Þ gauge symmetry is spontaneously
broken and cosmic strings form. The string tension μ
(mass per unit length) is

μ ¼ 2πξ: ð22Þ

Experimental constraints for cosmic strings would give a
constraint to Gμ which by using the reduced Planck mass
MP can be written as

Gμ ¼ 2π

8π

ξ

M2
P
¼ ξ

4M2
P
: ð23Þ

Note that ξ determines the scale of inflation via Eq. (9).

III. CONVENTIONAL D-TERM INFLATION

The coupling constants g and λ are free parameters in
D-term inflation. However, aesthetically we may start from
g ¼ λ ¼ 0.1. We refer to this as conventional D-term
inflation. In this case, we have sc < ss:r: due to the small
value of ξ and big value of g. This statement will be verified
soon in the following calculation. From Eq. (21) (and the
mnemonic rule), we have

PR ¼ Nξ2

3M4
P
¼ 20ξ2

M4
P
¼ ð5 × 10−5Þ2 ð24Þ

This gives ξ ¼ 1.1 × 10−5M2
P. By using Eq. (16), we can

now calculate

s2c
s2s:r:

¼ 8.8 × 10−2 ð25Þ

to verify our previous assumption of sc < ss:r: From
Eq. (20) (and the mnemonic rule), we obtain

ns ¼ 1 −
1

N
¼ 0.98; ð26Þ

which satisfies Eq. (5). The running spectral index can be
obtained from ns as

α ¼ −
dns
dN

¼ −
1

N2
¼ −0.00028: ð27Þ

This is compatible with the Planck data jαj < 0.01 [47].
From Eq. (23), we have Gμ ¼ 2.8 × 10−6. However, as
discussed in the Introduction section, we need Gμ ¼ 10−11

to achieve the current experimental bound. Therefore,
conventional D-term inflation is ruled out by experimental

4Practically there is no difference between 1þ 2N and 2N.
This is not only because 121 ≃ 120 but we can have chosen say,
N ¼ 59.5 from the beginning instead of N ¼ 60, and this choice
is equally good concerning the uncertainty of N.
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searches of cosmic strings. We refer to this as the cosmic
string problem.

IV. D-TERM INFLATION WITH SMALL
COUPLING CONSTANTS

It is shown in [48,49] that cosmic string problem with
constraints from CMB can be evaded if we relax the
requirement of g ¼ λ ¼ 0.1. In [48], the authors obtain λ≲
Oð10−4 − 10−5Þ. In [49], the authors obtain g≲ 2 × 10−2

and λ≲ 3 × 10−5. In this section, we calculate the coupling
constants g and λ by using the much more stringent
constraint for cosmic strings from gravitational waves. If
Gμ ¼ 10−11, from Eq. (23) we have ξ ¼ 4 × 10−11M2

P orffiffiffi
ξ

p ¼ 6.3 × 10−6MP. Contrary to conventional D-term
inflation, we have s2c=s2s:r: ≫ 2N due to the smallness of
λ which will be verified later. From Eqs. (16) and (21),
we have

PR ¼ 4π2ξ3

3M6
Pλ

2
¼ 25 × 10−10: ð28Þ

This implies

λ ¼ 1.8 × 10−11; ð29Þ

which is much smaller than those obtained in [48,49]
because we have updated the experimental constraint. In
this case, from Eq. (16), we have

s2c
s2s:r:

¼ 9.4 × 1012 ≫ 2N ¼ 120; ð30Þ

which is in accordance with our assumption. For the
allowed values of the coupling constant g, since we are
considering a small-field inflation model, it is required that

sc ¼
g

ffiffiffi
2

p ffiffiffi
ξ

p
λ

< 0.1MP: ð31Þ

This implies

g < 2.0 × 10−7: ð32Þ

In addition, by noticing that Eq. (28) is independent of N,
we can conclude that the spectrum is scale-invariant,
namely the spectral index ns ¼ 1 which satisfies Eq. (4).5

The requirement of cosmic string constraint drives the
spectrum to be scale-invariant. Interestingly, this is in
accordance with the proposals to alleviate the Hubble
tension mentioned in the Introduction section.

One may not be satisfied with the small coupling
constants given in Eqs. (29) and (32). Especially a very
small gauge coupling g seems to have difficulty connecting
to known gauge couplings in (known) particle physics.
In the following section, we propose a model to make the
coupling constants bigger.

V. D-TERM INFLATION ON THE BRANE

If our four-dimensional world is a 3-brane embedded
in a higher-dimensional bulk, the Friedmann equation
becomes [50–56]

H2 ¼ 1

3MP
ρ

�
1þ ρ

2Λ

�
; ð33Þ

where Λ provides a relation between the four-dimensional
Planck scale M4 ¼

ffiffiffiffiffiffi
8π

p
MP and five-dimensional Planck

scale M5 via

M4 ¼
ffiffiffiffiffiffi
3

4π

r �
M2

5ffiffiffiffi
Λ

p
�
M5: ð34Þ

Here we consider M5 as a free parameter that can be
considerably smaller than M4. The nucleosynthesis limit
implies that Λ≳ ð1 MeVÞ4 ∼ ð10−21MPÞ4. Stronger con-
straints up to Λ≳ 105 MeV4 can be obtained from
Solar System tests [57–59]. A more stringent constraint,
M5 ≳ 105 TeV can be obtained by requiring the theory to
reduce to Newtonian gravity on scales larger than 1 mm,
this corresponds to

Λ ≳ 5.0 × 10−53M4
P: ð35Þ

For D-term inflation on the brane, the slow-roll parameters6

are given by [56,60]

ϵ ¼ M2
P

2

�
V 0

V

�
2 1

ð1þ V
2ΛÞ2

�
1þ V

Λ

�
; ð36Þ

and

η ¼ M2
P
V 00

V

�
1

1þ V
2Λ

�
: ð37Þ

In this case, instead of Eqs. (12) and (13), we have

ϵ ¼ M2
Pg

4

32π4s2
1

ð1þ g2ξ2

4Λ Þ
2

�
1þ g2ξ2

2Λ

�
; ð38Þ

and

5With jns − 1j smaller than 10−12, which can be seen from
Eq. (20) and Eq. (30).

6We use the same notations for the slow-roll parameters as in
the previous sections, but confusion should not be caused due to
the context.
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η ¼ −
M2

Pg
2

4π2s2
1

ð1þ g2ξ2

4Λ Þ
: ð39Þ

We will consider the case g2ξ2=2 ≫ Λ, therefore from
Eqs. (38) and (39), we have

jϵj ≃ g2

4π2
jηj; ð40Þ

which can be compared with Eq. (19) therefore ϵ will be
neglected again in the following discussion. The inflaton
field value ss:r: when slow-roll fails can be obtained by
solving jηj ¼ 1 as

s2s:r: ¼
M2

Pg
2

4π2ð1þ g2ξ2

4Λ Þ
: ð41Þ

The number of e-folds is

N ¼ 2π2

g2

�
1þ g2ξ2

4Λ

�
ðs2 − s2eÞ; ð42Þ

where the end of inflation is determined by the inflaton
field value

se ¼ maxðss:r:; scÞ: ð43Þ

By using sc ¼ g
ffiffiffi
2

p ffiffiffi
ξ

p
=λ, we obtain

s2c
s2s:r:

¼ 8π2ξ

λ2M2
P

�
1þ g2ξ2

4Λ

�
: ð44Þ

This can be compared with Eq. (16). When sc > ss:r:, from
Eqs. (39), (42), and (44), η can be written as

η ¼ −
1

s2c
s2s:r:

þ 2N
: ð45Þ

The spectral index is given by

ns ¼ 1þ 2η − 6ϵ ≃ 1þ 2η ¼ 1 −
2

s2c
s2s:r:

þ 2N
: ð46Þ

Note that Eqs. (45) and (46) appears to have the same form
as Eq. (17) and (20), but the corresponding ss:r: are
different. When sc < ss:r:, our previous rule to neglect
the factor s2c=s2s:r: still applies. The spectrum is

PR ¼ 1

12π2M6
P

V3

V 02

�
1þ V

2Λ

�
3

¼ ξ2

6M4
P

�
1þ g2ξ2

4Λ

�
2
�
s2c
s2s:r:

þ 2N

�
ð47Þ

In the following, we define

�
1þ g2ξ2

4Λ

�
≡ L; ð48Þ

since this factor appears a lot. Our purpose here is to
avoid small couplings, therefore we start by assuming
g ¼ λ ¼ 0.1. In this case, sc < ss:r: as will be verified later.
From Eq. (47) (and setting s2c=s2s:r: ¼ 0), the spectrum is

PR ¼ ξ2L2N
3M4

P
¼ 25 × 10−10: ð49Þ

By using N ¼ 60 and ξ ¼ 4 × 10−11M2
P, we obtain L ¼

2.8 × 105. This can be achieved if Λ ¼ 1.4 × 10−29M4
P,

which satisfies Eq. (35). We can now calculate [by using
Eq. (44)]

s2c
s2s:r:

¼ 8π2ξL
λ2M2

P
¼ 8.8 × 10−2 ð50Þ

to verify our previous assumption of sc < ss:r:
From Eq. (39), one may naively guess that η would be

very small since we have L ∼Oð105Þ in the denominator.
However, from Eq. (45) (and our mnemonic rule of setting
s2c=s2s:r: ¼ 0 when sc < ss:r:), we actually have η ¼ −1=2N
and this implies ns ¼ 1þ 2η ¼ 0.98. This spectral index is
the same as Eq. (26) of conventional D-term inflation,
which satisfies Eq. (5). Here we have assumed g ¼ λ ¼ 0.1,
but if we allow λ to be smaller, it is possible to obtain
the scale-invariant spectrum ns ¼ 1. In order to show it,
firstly, we assume g ¼ 0.1, λ ¼ 10−3 and s2c=s2s:r: ≫ 2N.
The spectrum is then

PR ¼ 4π2ξ3L3

3M6
Pλ

2
¼ 25 × 10−10: ð51Þ

By using ξ ¼ 4 × 10−11M2
P, we obtain L ¼ 1.4 × 105

(which corresponds to Λ ¼ 2.9 × 10−29M4
P). From

Eq. (44),

s2c
s2s:r:

¼ 8π2ξL
λ2M2

P
¼ 442; ð52Þ

which is larger (although not too much larger) than
2N ¼ 120. Secondly, we can consider g ¼ 0.1 and
λ ¼ 10−4. Through similar calculations, we have L ¼
3.1 × 104 (which corresponds to Λ ¼ 1.3 × 10−28M4

P)
and s2c=s2s:r: ¼ 9790. Note that for λ ∼Oð10−3–10−4Þ the
requirement of small field inflation sc ¼ g

ffiffiffi
2

p ffiffiffi
ξ

p
=λ <

0.1MP is satisfied even with g as large as g ¼ 0.1. From
Eq. (46), we can see that ns is driven to ns ¼ 1 [which
satisfied Eq. (4)] by having a smaller λ. Comparing Eq. (51)
with Eq. (28), we can understand the reason why λ is not as
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small as the case in the previous section. It is because the
condition of small λ2 is now changed to small λ2=L3.
Thanks to large L, λ need not be so small.

VI. CONCLUSION AND DISCUSSION

The simplest D-term inflation can be consistent with the
cosmic string bound provided by observations of gravita-
tional waves with very small coupling constants. This
drives the spectral index to ns ¼ 1 which may be an
interesting result in light of the Hubble tension. We show
that in the case of D-term inflation on the brane, the
coupling constants can be g ¼ λ ¼ 0.1. In this case, we
have ns ¼ 0.98. If we lower one coupling constant to
λ < 10−3, the spectral index ns ¼ 1 can be achieved.
To some extent, the requirement of small coupling

constants for the simplest model to work is intuitively

expected. From ss:r: ¼ ðg=2πÞMP we can see that although
D-term inflation is a small field inflation model, the field
value is not far below MP for a large g. This means the
energy scale of the potential is about the scale of grand
unified theories (GUT). Therefore, the tension of cosmic
strings would also be large. On the other hand, D-term
inflation on the brane can effectively reduce the inflation
scale via the L factor. Future constraints on extra dimen-
sions would provide a better understanding of M5, Λ, and
the L factor.
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