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We perform the first application of the wavelet scattering transform (WST) to actual galaxy observations,
through a WST analysis of the BOSS DR12 CMASS dataset. We included the effects of redshift-space
anisotropy, nontrivial survey geometry, systematic weights, and the Alcock-Paczynski distortion effect,
following the commonly adopted steps for the power spectrum analysis. In order to capture the
cosmological dependence of the WST, we use galaxy mocks obtained from the state-of-the-art
ABACUSSUMMIT simulations, tuned to match the anisotropic correlation function of the BOSS CMASS
sample in the redshift range 0.46 < z < 0.60. Using our model for the WST coefficients, as well as for the
first 2 multipoles of the galaxy power spectrum, that we use as reference, we perform a likelihood analysis
of the CMASS data. We obtain the posterior probability distributions of four cosmological parameters,
fωb;ωc; ns; σ8g, as well as the Hubble constant, derived from a fixed value of the angular size of the sound
horizon at last scattering measured by the Planck satellite, all of which are marginalized over the seven
nuisance parameters of the halo occupation distribution model. The WST is found to deliver a substantial
improvement in the values of the predicted 1σ errors compared to the regular power spectrum, which are
tighter by a factor of 3–5 in the case of flat and uninformative priors and by a factor of 3–8, when a big bang
nucleosynthesis prior is applied on the value of ωb. Our results are investigative and subject to certain
approximations, which we discuss in the text.
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I. INTRODUCTION

The process of gravitational instability, modulated by
the expansion of the universe and the set of fundamental
interactions between its basic constituents, has led to the
emergence of the large-scale structure (LSS) of the universe
out of the primordial cosmic density field. The observed
3-dimensional (3D) distribution of matter is, as a result, a
powerful probe of fundamental physics, which can reveal
a wealth of information about the nature of the late-time
accelerated expansion of the universe [1], the law of gravity
at large scales [2–4], the nature of dark matter [5], the
properties of massive neutrinos [6,7] and the physics of the
early universe [8]. Aiming to tap into this valuable
resource, a wide array of current and future cosmological
surveys, such as the Dark Energy Spectroscopic Instrument
(DESI) [9], the Vera C. Rubin Observatory Legacy Survey
of Space and Time (LSST) [10,11], Euclid [12], and the
Nancy Grace Roman Space Telescope [13], among others,
will trace the galaxies in the cosmic web with unprec-
edented levels of accuracy, potentially allowing us to
explore and test the vast landscape of cosmological
scenarios that propose to tackle these unresolved questions.

On the theory front, the expected influx of data needs to be
complemented by an associated theoretical framework to
quantify and extract all possible cosmological information
encoded in the LSS of the universe, a step that is underway.
One of the most efficient ways to extract information out of
an observed dataset is through the evaluation of the 2-point
correlation function or its Fourier-space counterpart, the
power spectrum.Combinedwith theoreticalmodeling and/or
state-of-the-art simulations to capture the cosmological
dependence of the target statistic and its covariance matrix,
the values of the cosmological parameters that constitute a
given scenario can be determined, up to a certain degree of
accuracy. Despite serving as a useful first line of attack in
problems of cosmological parameter inference, the power
spectrum analysis is known to be incomplete, because it fails
to capture a significant part of the information content in the
LSS: the non-Gaussian part of the distribution sourced by the
process of gravitational instability that drives structure
formation [14]. In order to fully exploit the additional gains
associated with tapping into the nonlinear regime of the LSS,
one thus needs to evaluate higher-order statistics beyond the
2-point function. Despite significant theoretical progress
made in this direction in the past decade [15–21], including
higher-order moments as part of a standard parameter
inference scheme quickly becomes intractable, both from
a computational standpoint, because of the sharply rising
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dimensionality of the resulting data vector, but also on the
theoretical modeling front. In addition, in more challenging
cases, such as that of a probability distribution with a heavy
tail, even a complete description of all moments would fail
to capture all available information, while at the same time
amplifying outliers by raising the density field to very high
powers [14].
Furthermore, realistic probes of the LSS, such as the 3D

pattern of galaxies observed by spectroscopic surveys, do
not generally perfectly trace the underlying matter distri-
bution, but are rather biased tracers of it [22], due to the
complicated physics of structure formation. In addition,
when galaxies are identified through spectroscopic means,
their peculiar velocities around the Hubble flow lead to a
perceived anisotropy of the observed clustering pattern, the
redshift-space distortions (RSD) [23]. Combined with other
challenges associated with systematic errors or galaxies
observed in a nontrivial survey geometry [24], an additional
layer of complexity is added that makes the modeling and
interpretation efforts more difficult.
Aiming to overcome the former challenge, an active area

of research is focused ondeveloping novel estimators beyond
the 2-point function, attempting to access higher-order
information without having to explicitly evaluate the full
correlation hierarchy. This broad spectrum of approaches
consists of, but is not limited to, attempts to Gaussianize the
density distribution by suppressing the contribution of LSS
from regions with high overdensity [14,25–29], estimators
that harness the information from regions that have not
undergone nonlinear gravitational collapse, the cosmic voids
[30–36], proxy lower-order statistics [37–39], and a variety
of other statistics beyond the power spectrum, such as
Minkowski functionals [40–43], the k-nearest neighbor
cumulative distribution functions [44], the minimum span-
ning tree [45] or 1-point statistics [46]. More recently,
convolutional neural networks (CNNs) [47] have emerged
as a completely novel approach that promises to reliably
identify features of complex datasets, including a potentially
full extraction of their non-Gaussian information content.
Despite very promising results on cosmological applications
[48–51], the extent to which their outcomes can be inter-
preted in order to allow reliable applications on real galaxy
data is still an open question.
In our recent work [52], we investigated the prospect of

bridging the gap between the use of traditional estimators
and CNNs in modern cosmological analyses of the LSS,
using the wavelet scattering transform (WST) estimator
[47,53]. Originally proposed in the context of signal
processing in computer vision, the WST subjects an input
physical field to a series of successive nonlinear operations
(wavelet convolution and modulus), in a network archi-
tecture that resembles the one of a CNN with fixed kernels
[47,53–56]. The outcome of this process is a compact set of
a few coefficients that can serve as a basis that reflects the
clustering properties of the input field beyond the 2-point

function, without raising the field to very high powers, a
common shortcoming of traditional estimators [14], while
at the same time retaining its interpretability, unlike in
CNNs [54–56]. In light of the great promise held in the use
of this estimator, the WST has been recently applied in
the fields of astrophysics [57–59], cosmology [52,60–64]
and molecular chemistry [65,66] (a review can be found
in Ref. [67]).
Through the first WST application to 3D matter density

fields, simulated by the QUIJOTE simulations [68], we
showed in Ref. [52] how the WST can deliver a very large
improvement in the extracted errors on cosmological param-
eters. Motivated by these promising results, in this work we
carry out the first WST application to actual galaxy obser-
vations. In particular, we use the WST to analyze galaxy
observations from the twelfth data release (DR12) [69] of the
Baryon Oscillation Spectroscopic Survey (BOSS), a part of
SloanDigital Sky Survey, SDSS-III [70,71], and in particular
the CMASS sample. We include the effects of redshift-space
anisotropy, nontrivial survey geometry, the shortcomings
of the dataset through a set of systematic weights and the
Alcock-Paczynski effect, following the commonly adopted
steps for the power spectrum analysis. In order to model the
cosmological dependence of the WST coefficients extracted
from galaxy observations, we make use of state-of-the-art
simulatedmocks that have been tuned tomatch the clustering
properties of CMASS, through a set of free parameters
absorbing the physics of galaxy formation, that we margin-
alize over. Using this framework, we perform a likelihood
analysis of the BOSS CMASS dataset, which allows us to
infer the values of cosmological parameters with the WST
estimator. We finally compare our WST results against the
ones obtained by the multipoles of the regular galaxy power
spectrum, which we use as a reference, and clarify certain
approximations in our analysis.
The rest of the paper is structured as follows: in Sec. II we

introduce thewavelet scattering transform, and in Sec. III we
lay out all the details related to the analysis of the BOSS
dataset, and of the associated mocks, using theWSTand the
power spectrum multipoles. We then present our results in
Sec. IV, while concluding in Sec. V. More technical results
are included in Appendices A, B, C, and D.

II. WAVELET SCATTERING TRANSFORM

The wavelet scattering transform estimator [47,53] was
originally proposed in the context of signal processing in
computer vision as a means of capturing the statistical
properties of an input field. In addition to exhibiting a set
of powerful and well-understood mathematical properties
(superseding the ones of the conventional power spectrum)
[53], it was also shown to provide key insights into the nature
of convolutional neural networks [47]. As a result, and as we
will seemore clearly below, it can constitute an ideal middle-
ground between these two types of approaches.
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In the WST approach, a given input field, IðxÞ, is
subjected to two basic nonlinear operations: wavelet
convolution and modulus. That is, if ψ j1;l1ðxÞ is an oriented
wavelet probing a scale j1 and angle l1, under the
fundamental WST operation, IðxÞ will be transformed as:

I0ðxÞ ¼ jIðxÞ � ψ j1;l1ðxÞj; ð1Þ

where � denotes convolution. Taking the expectation value1
of Eq. (1) produces a WST coefficient, S, which is nothing
else than a real number characterizing the field. Combined
with a family of localized wavelets ψ j1;l1ðxÞ probing a
range of scales j1 and angles l1, successive applications of
the above procedure give rise to a scattering network, the
WST coefficients, Sn, of which are given by the following
relations up to order n ¼ 2:

S0 ¼ hjIðxÞji;
S1ðj1; l1Þ ¼ hjIðxÞ � ψ j1;l1ðxÞji;

S2ðj2; l2; j1; l1Þ ¼ hjðjIðxÞ � ψ j1;l1ðxÞjÞ � ψ j2;l2ðxÞji; ð2Þ

where in Eq. (2) and hereafter the angular brackets, h:i,
denote averaging over the sample. Given that a convolution
with an oriented wavelet reflects spatial and angular
information about the input field, it can be intuitively
understood how the WST coefficients of order n encode
clustering information analogous to the 2n-point correlation
function [53,55]. As such, the network in Eq. (2) generates
a compact basis of coefficients that can be used to partially
characterize the higher-order clustering properties of a
physical field, a task of particular interest to modern
cosmology. Furthermore, the fundamental WSToperations,
namely convolution and modulus, together with its hier-
archical architecture resemble a CNN with fixed kernels
[47,53]. The combination of the above properties leads to
a powerful estimator that can capture the non-Gaussian
information content encoded in a physical field, similar to
a CNN, but while retaining the desired interpretability of
conventional clustering statistics (e.g., correlation function)
through a basis of a few WST coefficients. As opposed to
the regular clustering statistics, the WST can extract higher-
order correlations without raising the target field to high
powers [67], which is computationally more efficient.
Lastly, the WST has demonstrated the ability to better
access the information content carried in physical fields
with heavy-tailed probability distributions [67], a case that
is particularly challenging for higher-order moments to
describe [14]. A pedagogical overview of various other
properties of the WST (such as texture characterization or
field generation) can be found in Ref. [67], whereas the

formal mathematical description is discussed in detail in
Refs. [47,53–56].
The relations in Eq. (2) can be generalized to allow for

operations on a target field raised to a given power, q, in the
following manner:

S0 ¼ hjIðxÞjqi;
S1ðj1; l1Þ ¼ hjIðxÞ � ψ j1;l1ðxÞjqi;

S2ðj2; l2; j1; l1Þ ¼ hjðjIðxÞ � ψ j1;l1ðxÞjÞ � ψ j2;l2ðxÞjqi; ð3Þ

where the choice of values of q < 1 or q > 1 emphasizes
underdense or overdense regions, respectively, and q ¼ 1
recovers the basic WST case. In the first 3D WST
application to the large-scale structure of the universe
[52], it was shown that highlighting cosmic voids with
values of q < 1 led to a substantial increase in the
information extracted on fundamental parameters, particu-
larly the sum of the neutrino masses, matching and also
exceeding the performance of the marked power spectrum
[28,31]. In order to leverage this property, we choose to
work with the relations in Eq. (3), a choice also adopted by
the 3D molecular chemistry WST application of [65].
The input WST field IðxÞ, that we will specify in the next

section, can have an arbitrary number of dimensions, as far
as the WST is concerned. In the context of the 3D LSS
observations we will focus on in this work, IðxÞ will be a
3D field. In general, a family of wavelets, ψ j1;l1ðxÞ, can be
generated by performing dilations and rotations on a
mother wavelet, which can similarly take various forms
according to the desired application. In the 3D WST
implementation of this analysis,2 the mother wavelet is a
solid harmonic, multiplied by a Gaussian envelope, of the
form

ψm
l ðxÞ ¼

1

ð2πÞ3=2 e
−jxj2=2σ2 jxjlYm

l

�
x
jxj

�
; ð4Þ

where Ym
l are the familiar Laplacian spherical harmonics

and σ is the Gaussian width in units of the field pixels. The
dilations are then described by the following rescaling of
the wavelet argument:

ψm
j1;l1

ðxÞ ¼ 2−3j1ψm1

l1
ð2−j1xÞ: ð5Þ

If we sum over the index m, and consider l to describe the
angular information of the wavelet family, then the WST
coefficients in this particular case will be given by:

1In practice, this corresponds to taking the spatial average of
the field.

2This was first introduced in the context of molecular chem-
istry applications.
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S0¼hjIðxÞjqi;

S1ðj1;l1Þ¼
�� Xm¼l1

m¼−l1

jIðxÞ�ψm
j1;l1

ðxÞj2
�q

2
�
;

S2ðj2;j1;l1Þ¼
��Xm¼l1

m¼1

jU1ðj1;l1ÞðxÞ�ψm
j2;l1

ðxÞj2
�q

2
�
; ð6Þ

with

U1ðj1; l1ÞðxÞ ¼
� Xm¼l1

m¼−l1

jIðxÞ � ψm
j1;l1

ðxÞj2
�1

2

: ð7Þ

After performing the 1st order convolution of the input
field over a scale determined by j1 in Eq. (6), any
information in scales smaller than that will be obscured
in any subsequent convolutions of said field within the
scattering network. Indeed, the 2D weak lensing (WL)
application by Ref. [60] found that S2 coefficients with
j2 < j1 did not contribute any substantial cosmological
information.3 As a result, we also choose to work with
S2 coefficients with only j2 > j1, as we also did in [52]. We
additionally point out that, as opposed to Eq. (3), the
particular implementation (6) developed by Ref. [65], that
we follow, uses the same angular scale l2 ¼ l1 for the
second order coefficient S2 ≡ S2ðj2; j1; l1Þ. Even though
such a restriction most likely causes some loss of angular
information, it significantly reduces the associated compu-
tational cost of the 3DWST evaluations, a tradeoff that was
found to still perform very well in the 3D LSS application
of [52].
To summarize, given an input 3D field with a resolution

of NGRID cells on a side, a number of total spatial dyadic
scales J [that can never exceed log2ðNGRIDÞ] and total
orientations L, the indices

ðj; lÞ ∈ ð½0;…; J − 1; J�; ½0;…; L − 1; L�Þ; ð8Þ

give rise to a total of

S0 þ S1 þ S2 ¼ 1þ ðLþ 1ÞðJ2 þ 3J þ 2Þ=2 ð9Þ

WST coefficients up to 2nd order. The final choices that
need to be determined for a WST evaluation are the values
of the power q and Gaussian width σ, that we will
appropriately choose in the next section.
We should note, at this point, that when working with

isotropic input fields, dimensionality reduction techniques
can further reduce the number of WST coefficients to work
with. These include averaging over all l orientations for a

given spatial scale j, in order to construct isotropic
coefficients [57,58,60] or less aggressive reduction tech-
niques that aim to retain a larger degree of isotropy [72].
Given that in this work we will apply the WST on an
anisotropic physical field (as is the one determined by
galaxy observations in redshift space), we will not consider
this reduction. Lastly, we note that the WST coefficients are
commonly normalized as follows:

S̄0 ¼ logðS0Þ;
S̄1 ¼ logðS1=S0Þ;
S̄2 ¼ logðS2=S1Þ; ð10Þ

a choice adopted by several past applications
[55,57,58,60,61]. Despite the fact that the WL WST
applications on 2D shear maps [60,61] found this renor-
malized basis to break degeneracies between Ωm and σ8,
our previous 3D application to cosmological density fields
of Ref. [52] did not find any noticeable gains in information
associated with this basis. As a consequence, we choose to
work with the bare WST coefficients given by Eq. (6).

III. ANALYSIS

In this section, we lay out the details of the particular
galaxy dataset and mocks in our analysis, as well as of the
procedure we follow in order to extract the WST and power
spectrum estimators out of them in each case.

A. Dataset

This works uses galaxy observations from the twelfth
data release (DR12) [69] of the BOSS,4 a part of Sloan
Digital Sky Survey, SDSS-III [70,71]. Specifically, we
work with CMASS data in the redshift range 0.46 < z <
0.60 that were observed from two separate parts of the sky,
the North (NGC) and South Galactic Cap (SGC). In light of
the fact that these are two distinct subsets of observations,
we hereafter evaluate our clustering statistics on each one of
them separately and then obtain the average, weighted by
the corresponding values of their angular footprint, follow-
ing the standard procedure in past analyses of BOSS data
[73,74]. To be specific, if XNGC and XSGC is our statistic (be
it WST or PðkÞ multipoles) evaluated from the NGC and
SGC parts, respectively, then the resulting data vector used
in our analysis is always given by:

XNþS ¼
ðANGCXNGC þ ASGCXSGCÞ

ðANGC þ ASGCÞ
; ð11Þ

3We do note, nevertheless, that using equivariant wavelets on
2D fields the work of Ref. [72] did find some residual power to be
carried in those usually discarded coefficients.

4All BOSS data, as well as the accompanied covariance
PATCHY mocks, are publicly available at https://data.sdss.org/
sas/dr12/boss/lss/.
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where ANGC ¼ 6851 deg2 and ASGC ¼ 2525 deg2. We
should note, at this point, that even though the redshift
range of the entire CMASS sample commonly adopted in
BOSS analyses is actually 0.43 < z < 0.70, we work with a
narrower z cut because this was the one used for the
production of our galaxy mocks, as we will see in the next
section. Due to the same reason, we only work with the
CMASS, rather than also with the LOWZ BOSS sample,
even though our WST estimator can be straightforwardly
applied to any set of galaxy observations.
Each dataset is accompanied by a corresponding random

unclustered catalog, with the exact same angular footprint
and selection function, in order to enable the evaluation
of clustering statistics (as we will see below). We choose to
work with the random catalog that has a number density
50× greater than the one of the corresponding observed
samples, a choice commonly adopted in previous analy-
ses [73,74].
We now proceed to explain the procedure followed to

evaluate the fractional overdensity field from the BOSS
dataset, which serves as the fundamental quantity of
interest needed to extract both the WST and the P(k)
statistic. To do so, we start by converting the observed
galaxy sky coordinates, right ascension (RA), declination
(DEC) and redshift z into comoving Cartesian coordinates,
x, y, z, always assuming a cosmology of Ωm ¼ 0.3152;
h ¼ 0.6736, which, as we will see below, will correspond
to our chosen fiducial cosmology. We account for the
potential errors introduced when assuming an incorrect
cosmology to perform this conversion, which are known as
the Alcock-Paczynski (AP) distortion [75]. We will explain
our strategy in Sec. III C for the power spectrum and in
Sec. III D for the WST. Using the publicly available
package nbodykit,5 we then proceed to embed the
sample into a cubic box with a comoving side equal to
L ¼ 2820 Mpc=h, which corresponds to the smallest
possible cube that can embrace our (irregularly shaped)
sample. Finally, the desired quantity is the (weighted)
fractional overdensity field of data in a realistic survey
format, commonly referred to as the Feldman-Kaiser-
Peacock (FKP) field, FðrÞ [24], which we evaluate on a
mesh through the following relationship:

FðrÞ ¼ wFKPðrÞ
I1=22

½wcðrÞngðrÞ − αrnsðrÞ�: ð12Þ

Here ngðrÞ and nsðrÞ are the observed number density of
the galaxies and the objects of the random catalog,
respectively, and αr denotes the ratio between the
(weighted) total number of objects in the galaxy catalog
over the corresponding value of the synthetic random one.
The BOSS dataset further includes 3 weights that reflect the
incompleteness of the observed sample: a redshift failure

weight, wrf , a fiber collision weight, wfc and a systematics
weight, wsys. They enter Eq. (12) as a combined contribu-
tion [73,74]

wcðrÞ ¼ ðwrfðrÞ þ wfcðrÞ − 1.0ÞwsysðrÞ: ð13Þ

The remaining weight in Eq. (12) is the FKP weight [24],

wFKPðrÞ ¼ ½1þ n̄gðrÞP0�−1; ð14Þ

for P0 ¼ 10−4 Mpc3=h3, which is meant to ensure optimal
extraction of information at small scales and is also
provided for each galaxy of the sample. Finally, the
normalization factor

I2 ¼
Z

d3rw2
FKPðrÞhwcðrÞngðrÞi2 ð15Þ

is meant to normalize the amplitude of the power spectrum
with respect to the observed power in an instance of no
survey selection. It is straightforward to see that in the
absence of a weighting scheme, Eq. (12) gives the regular
galaxy overdensity field evaluated from a sample. The FKP
field from Eq. (12) is the fundamental quantity of interest
to extract from the data, which, as we will see below, can
either be fed into Eq. (6) to obtain the observed WST
coefficients or get Fourier transformed in order to obtain the
multipoles of the anisotropic galaxy power spectrum.
It should be noted, at this point, that the weighting

scheme (13) was designed to account for the impact of the
dataset incompleteness on the power spectrum, rather than
the WST. As a result, it is possible that a different set of
weights is needed in order to fully account for these effects
on the WST coefficients. Given however, that the WST
(partly) contains clustering information comparable to that
in the 2-point correlation function, we expect Eq. (13) to at
least partially capture the shortcomings of the dataset, from
a WST point of view, and consider it a reasonable starting
point for this first WST application. We defer a more
detailed investigation of how to optimally model this effect
for theWST to future work. Likewise, even though the FKP
weights from Eq. (14) were designed to ensure the optimal
recovery of information by the power spectrum, we include
them in the WST analysis as well, in order to maintain
consistent inputs across our pipeline.

B. Mocks

Previous analyses of BOSS data use more traditional
estimators, which mostly relied on perturbation theory
models of various kinds to capture the cosmological
dependence of the target clustering statistics (with a few
representative examples being [20,73,74,76–78]). On the
other hand, given the lack of a first principles theory model
in place to predict its cosmological dependence, the WST
approach demands the use of a full set of simulated mocks.5https://nbodykit.readthedocs.io/en/latest/index.html.
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In this section we introduce the set of mocks we will use for
our model and covariance matrix for the WST (and the
power spectrum, for comparison) in our final likelihood
analysis.

1. ABACUSSUMMIT mocks

In order to model the cosmological dependence of
our estimators, we use the publicly available suite of
ABACUSSUMMIT simulations [79],6 which were performed
using the state-of-the-art ABACUS N-body code [80,81].
Having evolved 69123 dark matter particles in a cubic box
of a side equal to LBox ¼ 2000 Mpc=h (for the “base”
configuration), corresponding to a particle mass resolution
Mp ¼ 2.1 × 109 M⊙=h,

7 these simulations are able to not
only match but also exceed the requirements of DESI [9],
making them the best available set of simulations to work
with. The gravitationally bound dark matter halos in the
ABACUSSUMMIT collection were identified using the state-
of-the-art spherical overdensity halo finder, COMPASO [82].
We will now briefly summarize the cosmological land-

scape of the ABACUSSUMMIT, starting with the fiducial
base configuration, which corresponds to the mean values
of the “base_plikHM_TTT_EEE_lowl_lowE_lensing”
version of the Planck 2018 [83] ΛCDM cosmology.
In order to enable averaging over the effects of cosmic
variance, the base cosmology was also run using 24
additional different random initial phases, in addition to
the base box. We begin by considering constraints around
4 cosmological parameters, fωb;ωc; ns; σ8g ¼ f0.02237;
0.120; 0.9649; 0.8114g, where ωX ¼ ΩXh2 and σ8 refers to
the amplitude of density fluctuations traced by the combi-
nation of cold dark matter and baryons, “cb”, in the
presence of massive neutrinos with ων ¼ 0.0006442.
To capture the cosmological dependence on the above 4
parameters, we further consider additional simulations
which vary each one of the parameters, in turn, and in a
step-wise fashion, away from the fiducial background
while keeping the rest fixed. This enables the evaluation
of first-order derivatives. The exact list (as well as the
associated parameter variations of these ‘first-order deriva-
tive grid’ cosmologies) are listed in Table I, while we also
add that these were phase-matched to the base box, in order
to cancel out the effects of cosmic variance upon taking
central differences. All simulations have kept the value of
the angular size of the sound horizon at last scattering, θ⋆,
fixed to the corresponding value derived from measure-
ments by the Planck satellite [83]: 100θ⋆ ¼ 1.041533,
which implies a corresponding value of h ¼ 0.6736, for
the base cosmology. Even though the Hubble constant was

not explicitly varied in ABACUSSUMMIT, the choice of a
fixed θ⋆ enables the evaluation of h as an additional derived
parameter, an option that we will consider below. The
values of all the other cosmological parameters, which we
keep fixed, together with a detailed description of the
ABACUSSUMMIT simulations can be found in Ref. [79].
In order to generate realistic galaxymock samples from the

underlying dark matter and halo catalogs, ABACUSSUMMIT
uses the Halo Occupation Distribution (HOD) framework
through a flexible package called ABACUSHOD [84].8 In the
baseline HOD implementation [85], simulated halos host
galaxies based on a semi-analytical probabilistic model that
depends on 5 parameters. In particular, if Mcut denotes the
minimummass of a halo that can host a central galaxy, κMcut
the minimum halo mass to host a satellite galaxy and M1

characterizes the typical halo mass that hosts one satellite
galaxy, the mean expected number of central, n̄centðMÞ, and
satellite, n̄satðMÞ, galaxies assigned to a halo of mass M are
given by:

n̄centðMÞ ¼ 0.5 erfc

�
log10ðMcut

M Þffiffiffi
2

p
σ

�
; ð16Þ

and

n̄satðMÞ ¼
�
M − κMcut

M1

�
α

n̄centðMÞ: ð17Þ

The parameters α and σ calibrate the relations (16) and (17),
and fully characterize the standard HOD model. We note
that Eqs. (16) and (17) are applicable to luminous red
galaxies (LRGs) [86,87], which mostly dominate the
CMASS sample that we will work with. Out of a rich

TABLE I. A list of all 8 ABACUSSUMMIT first-order derivative
cosmologies we use in this work, together with the corresponding
values of the 4 cosmological parameters varied. The first row
corresponds to the base cosmology, shown for reference.

ωb ωc ns σ8

0.02237 0.1200 0.9649 0.8114
0.02282 0.1200 0.9649 0.8114
0.02193 0.1200 0.9649 0.8114
0.02237 0.1240 0.9649 0.8114
0.02237 0.1161 0.9649 0.8114
0.02237 0.1200 1.0249 0.8114
0.02237 0.1200 0.9049 0.8114
0.02237 0.1200 0.9649 0.8698
0.02237 0.1200 0.9649 0.7532

6Detailed information on all the simulations, as well as on how
to access them, can be found at https://abacussummit.readthedocs
.io/en/latest/index.html.

7h is the dimensionless Hubble constant, h ¼ H0=
ð100 km s−1 Mpc−1Þ.

8The package is publicly available as part of ABACUSUTILS
http://https://github.com/abacusorg/abacusutils, together with an
associated instruction manual at https://abacusutils.readthedocs
.io/en/latest/hod.html. In particular, we use the ABACUSUTILS
version 1.0.4.

GEORGIOS VALOGIANNIS and CORA DVORKIN PHYS. REV. D 106, 103509 (2022)

103509-6

https://abacussummit.readthedocs.io/en/latest/index.html
https://abacussummit.readthedocs.io/en/latest/index.html
https://abacussummit.readthedocs.io/en/latest/index.html
https://abacussummit.readthedocs.io/en/latest/index.html
http://https://github.com/abacusorg/abacusutils
http://https://github.com/abacusorg/abacusutils
https://abacusutils.readthedocs.io/en/latest/hod.html
https://abacusutils.readthedocs.io/en/latest/hod.html


variety of extensions going beyond the vanilla HOD
framework described above, we will adopt a version that
accounts for the effect of the velocity bias of LRGs, a step
shown to be necessary for an accurate fit against both
BOSS data [84] and hydrodynamical simulations [88]. The
two additional HOD parameters it introduces are the central
velocity bias, αc, which is meant to account for the
mismatch between the velocity of central galaxies and
the one of halo centers, and the satellite velocity bias, αs,
which captures the equivalent effect for satellite galaxies.
For a more in-depth discussion on more sophisticated HOD
parametrizations (such as, for example, including assembly
bias [89]) interested readers are referred to the relevant
works referenced above.
We can finally proceed to use our adopted 7-parameter

HOD framework in order to generate galaxy mocks for our
BOSS analysis. In particular, we closely follow the pro-
cedure laid out in Refs. [84,90] and search for an ABACUS-
derived galaxy mock that best fits the redshift-space 2-point
correlation function, ξðr⊥; rkÞ, of the BOSS DR12 CMASS
sample introduced in Sec. III A, [averaged over North
and South according to Eq. (11)], for the base cosmology.
Here r⊥; rk are the separations perpendicular and parallel
to the line of sight, respectively, and we fit the CMASS
correlation function using 8 logarithmic bins in the range
0.169–0.30 Mpc=h for r⊥ and using 6 linearly spaced bins
between 0 and 30 Mpc=h for rk, for the redshift cut
0.46 < z < 0.60. The HOD parameters giving the best
fit through this procedure, that we take as the fiducial HOD
parameters, correspond to the following values:

fα; αc; αs; κ; logM1; logMcut; σg
¼ f0.9022; 0.2499; 1.1807; 0.3288; 14.313;
12.8881; 0.02084g; ð18Þ

where Mcut and M1 are expressed in units of M⊙=h. We
then proceed to use ABACUSHOD, always with the param-
eters in Eq. (18) as input, so as to produce CMASS mocks
for each one of the 8 first-order derivative cosmologies
in Table I, as well as for the 25 boxes of the fiducial
cosmology. In order to null out any residual effects of
cosmic variance during the evaluation of the derivatives, in
addition, we generate 20 different HOD realizations for
each one of the 8 derivative cosmologies. Finally, in order
to capture the effects of varying the values of the HOD
parameters, and in a direct analogy to the procedure
followed for the four cosmological parameters, we proceed
to generate first-order derivative mocks for HOD variations.
We kept all parameters fixed to the fiducial values and
successively varied one HOD parameter at a time, in a step-
wise fashion. With θHOD being the vector of HOD param-
eter values from Eq. (18), we take steps θHOD � ΔθHOD as
follows:

fΔα;Δαc;Δαs;Δκ;Δ logM1;Δ logMcut;Δσg
¼ f0.36088; 0.02499; 0.11807; 0.2959; 0.7157;
0.3866; 0.020g: ð19Þ

The resulting output of the procedure described in this
section is a collection of 25 mocks for the base cosmology
and a total of 20 × 2 × 11 ¼ 440 mocks for the cosmo-
logical derivative variations, which constitute the full set of
simulations that we will use in our analysis.

2. PATCHY mocks

In order to construct a Gaussian likelihood for our
inference framework, that we will explain in detail in
Sec. III E, we also need to construct an accurate covariance
matrix in addition to the model for the observable. To do
so, we use the 2048 realizations of the publicly available
MULTIDARK-PATCHY mocks9 [87,91], hereafter referred
to as PATCHY mocks, a collection large enough to make
them ideal candidates for the evaluation of a properly
converged covariance matrix. These mocks were produced
through a hybrid combination of an approximate gravity
solver and a reference simulation [92] that evolved 38403

dark matter particles on a cubic volume of side 2.5 Gpc=h,
using the code GADGET-2 [93], with a baseline cosmology
given by fΩb;Ωm; ns; σ8; hg ¼ f0.0482; 0.307; 0.961;
0.829; 0.6778g. Gravitationally bound halos were identi-
fied using the bound density maximum halo finder [94],
which were subsequently populated with galaxies using
the halo abundance matching technique (HAM) [95],
an alternative to the HOD method described above. The
PATCHY mocks were finally shaped into the realistic
survey geometry of the BOSS CMASS dataset, also split
into the separate NGC and SGC observed parts of the sky,
while each galaxy was assigned a set of systematic weights
[similarly to Eq. (13)]

wcðrÞ ¼ wfcðrÞwvetoðrÞ: ð20Þ

The weights include fiber collisions, wfc, and a veto mask,
wveto, capturing the rest of the associated shortcomings of
the dataset. The galaxies are also assigned FKP weights,
according to Eq. (14). Since the PATCHY mocks were cast
into a survey format, we treat them as the data and repeat
the exact same procedure detailed in Sec. III A in order to
generate the resulting FKP field from Eq. (12), but using
the weighting scheme in Eq. (20) rather than in Eq. (13).
We will assume a cosmology-independent covariance

matrix [96,97] and combine the PATCHY mocks with the
ABACUSSUMMIT suite, even though strictly speaking the
two sets correspond to different fiducial cosmologies and
used different mock-generating procedures. We also note

9Available at https://data.sdss.org/sas/dr12/boss/lss/dr12_
multidark_patchy_mocks/.
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that mixing different ways of modeling the theory vector
and the covariance matrix is common practice in BOSS
analyses (e.g., [20,73,74,76–78]). Under this approxima-
tion, we use the ABACUSSUMMIT fiducial cosmology
(rather than the one of PATCHY) to convert the galaxy
positions from sky coordinates RA, DEC, and z into
comoving Cartesian ones. We finally add that the
PATCHY mocks are accompanied by their own set of
randomly generated catalogs, both for the NGC and the
SGC, each containing ∼50× the number of objects in the
corresponding actual galaxy mock.

C. Power spectrum

In this section we explain how we evaluate the multi-
poles of the anisotropic redshift-space power spectrum, the
predictions of which we will use as a reference to assess the
performance of theWST. Given that the BOSS data (as well
as the PATCHY mocks) and the ABACUSSUMMIT mocks
come in a different format, we will follow a different
strategy to extract the power spectrum multipoles in
each case.

1. BOSS data and PATCHY mocks

When working with galaxy data or mocks in a nontrivial
survey geometry, with a corresponding FKP field from
Eq. (12), the multipoles of the anisotropic redshift-space
power spectrum, P̂lðkÞ, can be evaluated using the
“Yamamoto” estimator [24,98–100]:

P̂lðkÞ ¼
ð2lþ 1Þ

I2

Z
dΩk

4π

�Z
d3r1Fðr1Þeik·r1

×
Z

d3r2Fðr2Þeik·r2Llðk̂ · r̂2Þ − Pshot
l ðkÞ

�
: ð21Þ

Here Ll is the Legendre polynomial of order l, dΩk is the
differential solid angle element in Fourier space and the
term Pshot

l is the shot noise contribution:

Pshot
l ðkÞ ¼ ð1þ αrÞ

Z
d3rw2ðrÞn̄gðrÞLlðk̂ · r̂Þ; ð22Þ

which vanishes for higher order multipoles l > 0, and
where wðrÞ ¼ wcðrÞwFKPðrÞ. We use Eqs. (21) and (22) to
extract the galaxy power spectrum multipoles from the
BOSS catalogs and the PATCHY mocks, both of which are
shaped into a realistic survey geometry. We do so using
nbodykit, which follows the optimized fast Fourier
transform (FFT)-based implementation of Eq. (21), devel-
oped by Ref. [101]. In particular, we use Eq. (12) to
evaluate the FKP field using the triangular shaped cloud
(TSC) mass assignment scheme [102] on NGRID ¼ 500
cubic cells on the side, which corresponds to a high enough
resolution for an accurate description of the scales we
will consider. We then evaluate the first 2 nonvanishing

multipoles, l ¼ f0; 2g, of the power spectrum through
Eq. (21) using 46 linearly spaced bins of width Δk ¼
0.01 h=Mpc within the k range 0.001–0.50 h=Mpc. Our
chosen Δk value has been found to be adequate for
recovering the information encoded in the power spectrum
[103]. We finally discard wavenumbers larger than
kmax ¼ 0.25 h=Mpc, a choice that both matches the ones
of previous BOSS analyses [20,73,74,76–78] and also
guarantees that the power spectrum and WST both reach
a similar minimum scale, such that we perform a fair
comparison between the two estimators.

2. ABACUSSUMMIT mocks

The ABACUSSUMMIT mocks we work with were pro-
duced, by design, in the regular ABACUS periodic cubic
geometry with LBox ¼ 2000 Mpc=h, with the redshift-
space anisotropy applied along their Cartesian ẑ-axis
and without any systematic weights applied to them. As
a result, their corresponding power spectrum multipoles
can be straightforwardly evaluated using standard FFT-
based algorithms on a periodic box, which are also
supported by nbodykit. We do so using a TSC mass
assignment scheme with NGRID ¼ 1700 cells on the side
and the same k-binning strategy adopted for the data in
Sec. III C 1, a set of choices that was once again confirmed
to guarantee sufficient accuracy for the range of scales
included in our analysis.
However, we should be careful when comparing power

spectra evaluated from data on a survey geometry against
predictions obtained from periodic cubic mocks. This is
because of the fact that, if δðxÞ is the regular galaxy density
field obtained from a periodic volume, andWðxÞ the survey
window function (that includes both the survey geometry
and systematic weights), then a survey will observe a
masked density field, δ0ðxÞ, given by [24,104]:

δ0ðxÞ ¼ δðxÞWðxÞ; ð23Þ

which corresponds to a convolution in Fourier space.
The FKP field of Eq. (12) is such an example. As a
consequence, if PðkÞ is the theory power spectrum corre-
sponding to δðxÞ (estimated, for example, from the
ABACUSSUMMIT mocks or a perturbation theory model)
then the power spectrum, P̂ðkÞ, observed from a survey
with nontrivial geometry will be modified as follows
[24,73,74,104,105]:

P̂ðkÞ ¼
Z

d3k0

ð2πÞ3 PðkÞjW̃ðk − k0Þj2; ð24Þ

where

W̃ðkÞ ¼ αr

I1=22

Z
d3rn̄sðrÞeik·r; ð25Þ
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is the Fourier transform (FT) of the window function, that
obeys the normalization

Z
d3k
ð2πÞ3 jW̃ðkÞj2 ¼ 1: ð26Þ

To evaluate the multipoles, P̂lðkÞ in Eq. (24), we transform
the ABACUS-derived power spectrum multipoles, PlðkÞ, to
get the corresponding correlation function multipoles,
ξlðsÞ, as follows [74,104]10:

ξlðsÞ ¼ il
Z

dkk2

2π2
jlðksÞPlðkÞ; ð27Þ

with jlðksÞ the spherical Bessel functions of order l. Given
the configuration space multipoles of Eq. (25), W2

lðsÞ, we
can modify the correlation function multipoles to account
for this effect. Explicitly, the window-corrected multipoles,
ξ̂lðsÞ, will be given (up to l ¼ 2) by [74]:

ξ̂0ðsÞ ¼ ξ0ðsÞW2
0ðsÞ þ

1

5
ξ2ðsÞW2

2ðsÞ;

ξ̂2ðsÞ ¼ ξ0ðsÞW2
2ðsÞ þ ξ2ðsÞ

�
W2

0ðsÞ þ
2

7
W2

2ðsÞ
�
: ð28Þ

Finally, these can be transformed back to the Fourier space,
in order to give the window-corrected multipoles, P̂lðkÞ,
through:

P̂lðkÞ ¼ ð−iÞl4π
Z

dss2jlðksÞξ̂lðsÞ: ð29Þ

We use Eq. (29) to evaluate the window-corrected power
spectrum multipoles from the ABACUSSUMMIT mocks, to
be compared against the corresponding results from the
BOSS data and the PATCHY mocks.11 To apply Eq. (28),
we use the publicly available results forW2

lðsÞ provided by
Ref. [74] (which evaluates these functions with the pair-
counting method proposed by Ref. [104]), for both the
NGC and the SGC patches of the BOSS CMASS sample,
separately. Following the standard practice in previous
BOSS analyses [73,74,105], we average over the window
contributions for the North and the South, according to
Eq. (11). An alternative way to handle the effects of survey
geometry would be to deconvolve the data, instead, as more
recently proposed by Ref. [107].
Furthermore, as we discussed in Sec. III A, the

assumption of a given (and potentially incorrect) cosmol-
ogy when converting the data (and the PATCHY mocks)

from sky coordinates, RA, DEC and z, into comoving
coordinates might introduce an error in our analysis [75].
To account for this AP effect on the estimation of the power
spectra from the mocks, we work as follows [108]: if rk
and r⊥ are the mock galaxy coordinates parallel and
perpendicular to the line of sight (which coincides with
the Cartesian ẑ direction for the cubic mocks), they should
then be rescaled according to the following relations:

rk;ref ¼ rk;sim

�
HsimðzÞH0;ref

H0;simHrefðzÞ
�
; ð30Þ

and

r⊥;ref ¼ r⊥;sim
dA;refðzÞ
dA;simðzÞ

: ð31Þ

The subscripts “sim” and “ref” in Eqs. (30) and (31) denote
the true cosmology of each mock and the reference
cosmology assumed for the conversion (corresponding
to the fiducial, in our case), respectively, and dA is the
comoving angular diameter distance. That is, before we
apply Eqs. (23)–(29) to evaluate the power spectrum
multipoles, the galaxy coordinates of each mock are first
re-scaled according to Eqs. (30) and (31). Alternatively, one
could use an analytical prediction of the AP effect on
the anisotropic power spectra (as, for example, done in
[20,76–78,109,110]), a procedure that is equivalent to the
one described above.
Finally, in Fig. 1 we show the power spectrum multi-

poles for the base cosmology, as obtained from the
ABACUSSUMMIT mocks using Eq. (29) and for the
BOSS CMASS dataset, as well as the PATCHY mocks,
using Eq. (21). We highlight the excellent monopole
agreement between the ABACUSSUMMIT prediction and
the corresponding one from the data, down to scales smaller
than the ones we work with in this analysis.

D. WST

To evaluate the WST coefficients for all datasets and
mocks used in our analysis, we make use of the publicly
available package KYMATIO [111],12 which implements
the WST Eq. (6) for an input 3D density field IðxÞ.13
We evaluate all input density fields on a cubic box of side
Lbox ¼ 2820 Mpc=h, with NGRID ¼ 282 grids on the
side and the TSC mass assignment scheme, while always
adopting the choices J ¼ 4; L ¼ 4; σ ¼ 0.8 and q ¼ 0.8.
The choice of a grid cell with a side equal to 10 Mpc=h
guarantees that the WST uses information from a minimum

10We use the package mcfit, which is publicly available at
https://github.com/eelregit/mcfit and implements the FFTLog
algorithm [106].

11We use the corrected normalization coefficients for the power
spectrum, as explained in detail in Ref. [107].

12https://www.kymat.io/.
13Strictly speaking, KYMATIO evaluates the sum over all pixels

of the input field, rather than the mean, which is the same up to a
normalization, and thus equivalent for parameter inference
applications.
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scale that is both similar to the one used for the power
spectrum multipoles (for which kmax ¼ 0.25 h=Mpc) and
also ensures that we do not extract information from a
regime that would make the evaluation susceptible to small-
scale systematics. This combination corresponds to a basis
of S0 þ S1 þ S2 ¼ 76 total WST coefficients (from Eq. (9).

1. BOSS data and PATCHY mocks

In order to extract the WST coefficients from the data
and the PATCHY mocks, we need to apply Eq. (6) with the
corresponding FKP field evaluated from Eq. (12), as input.
However, we need to be careful at this point, because
Eq. (6) assumes a periodic 3D cube as input, rather than a
masked density field such as the FKP one. To overcome
this obstacle, we modified the public version of KYMATIO

such that Eq. (6), and in particular its fundamental
operations of wavelet convolution and modulus, can be
used with a masked density field of the form (12) [or more
generally (23)] as input (with the technical details discussed
in Appendix A). We finally proceed to extract the WST
coefficients from the CMASS dataset, as well as from the
2048 PATCHY mocks, using this modified version.

2. ABACUSSUMMIT mocks

As we already discussed in Sec. III C 2, the ABACUS-
derived mocks from ABACUSHOD have a 3D cubic geom-
etry. However, as we discussed in Sec. III D 1, the WST
coefficients extracted from the data were computed from
the masked density field of Eq. (12). This implies that, just
like in the case of the power spectrum, the effect of survey
geometry needs to be taken into consideration in our WST
predictions from ABACUS (in fact, the WST analysis is
even more sensitive to the survey geometry). In the absence
of a model to apply this window correction on the evaluated
statistic directly, such as Eq. (29) for the power spectrum,
we proceed to cut the ABACUS cubes into the shape of the
BOSS CMASS data.14 For this, we use the public code
MAKE_SURVEY [113],15 with the exact CMASS angular
footprint (for each one of the NGC and the SGC patches)
and redshift range, as input. Before feeding the cubic
mocks into make_survey, we first undo the redshift-
space distortions effect originally applied along the
Cartesian ẑ-axis, such that the code can then implement
it along the sky radial direction, resembling the realistic
configuration of the actual survey. The necessary galaxy
velocities for these RSD manipulations are also provided
upon the mock generation by ABACUSHOD. The final
resulting output is an equivalent set of galaxy mocks in
sky coordinates RA, DEC, and z that exactly match the 3D
geometry of the observed CMASS dataset. To make sure
that the clustering properties were not affected during the
cut sky implementation, we evaluate the power spectrum
multipoles from the new reshaped mocks from Eq. (21)
(using, also, an additional set of randoms produced with the
same procedure) and confirm that the result matches the
one from the corresponding cubic box using Eq. (29), for
the fiducial cosmology. One could actually use either of
those ways of evaluating the power spectrum, since they are
equivalent when handled properly, and which choice to go
with is ultimately a matter of preference. Having confirmed
the robustness of this procedure, we then proceed to
evaluate the FKP fields from all the cut ABACUS mocks
using Eq. (12) (but with all the weights set to 1), which we
then feed into the set in Eq. (6) so as to finally get the WST
coefficients for all cosmologies of Table I.

FIG. 1. Redshift-space monopole (top panel) and quadrupole
(bottom panel) of the galaxy power spectrum evaluated from the
BOSS CMASS dataset (blue circles) and the ABACUSSUMMIT
mocks (black squares) for the fiducial cosmology. The 1σ error
bars on the data have been evaluated from the 2048 PATCHY
mock realizations.

14Alternatively, inpainting techniques could be considered
[112].

15Available at https://github.com/mockFactory/make_survey.
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Lastly, as with the power spectrum analysis laid out in
Sec. III C, we need to also account for the AP effect
introduced by the assumption of a given cosmology when
converting the data into comoving coordinates. In the
WST case, the mock data were converted (using the true
cosmology of each simulation) into sky coordinates upon
the cut-sky procedure we described above. To account for
the AP effect, we then use the reference fiducial cosmology
in order to convert these data back into comoving coor-
dinates, a step that is necessary to evaluate the FKP field
from Eq. (12), out of which the WST coefficients will be
extracted. This step serves as the WST equivalent to the AP
re-scalings applied in Eqs. (30) and (31) for the power
spectrum multipoles.
In Fig. 2, we plot the WST coefficients evaluated from

the ABACUSSUMMITmocks, together with the correspond-
ing results from the CMASS data, for the fiducial cosmol-
ogy. The level of agreement between the ABACUS model
and the data, which is even better than the one in the power
spectrum case, confirms the validity of our model con-
structed for the WST.

E. Likelihood analysis

Having laid out the methodology on how to extract the
clustering statistics from both the data and also from the
two sets of mocks used in this work, we now proceed to
explain our strategy for combining these necessary ingre-
dients into a likelihood analysis of the BOSS dataset. In
particular, ifX is our target estimator (the WST coefficients

or the power spectrum multipoles), we assume a Gaussian
likelihood,16 LðθjdÞ, given by the following relation:

logLðθjdÞ ¼ −
1

2
½Xd −XtðθÞ�TC−1½Xd −XtðθÞ� þ const:;

ð32Þ

where θ is the parameter we want to extract from the data d
and Xd is the value extracted from the BOSS data d. The
covariance matrix C is estimated from the Nmocks ¼ 2048
PATCHY mocks:

C ¼ 1

Nmocks − 1

XNmocks

k¼1

ðXk
P − X̄PÞðXk

P − X̄PÞT; ð33Þ

with X̄P the mean prediction from the Nmocks. In order to
de-bias our prediction for the inverse covariance matrix,
C−1, we apply the Hartlap correction factor [115], as
follows:

Ĉ−1 ¼ Nmocks − Nd − 2

Nmocks − 1
C−1; ð34Þ

where Nd ¼ 58 when working with the l ¼ 0, 2 multipoles
of the galaxy power spectrum (up to kmax ¼ 0.25 h=Mpc)
and Nd ¼ 76 for the WST coefficients as the data vector.
Prior to inversion, we make sure that the covariance
matrices for both estimators are well-conditioned and
can thus be safely inverted in order to be used in the
likelihood in Eq. (32). The convergence of the WST
covariance is confirmed in Appendix B. The correlation
matrix, Cij=ðCiiCjjÞ, of the WST coefficients is shown in
Fig. 3, while the corresponding matrix for the power
spectrum multipoles is presented in Fig. 4, both evaluated
at the fiducial cosmology.
Crucially, the remaining quantity to determine in

Eq. (32) is the model, XtðθÞ, which captures the depend-
ence of each estimator on the target set of cosmological
parameters, θ. In our case this is an 11-dimensional vector
consisting of the 4 cosmological parameters varied in
Table I and the 7 nuisance parameters of the HOD model,
from Eq. (18). We construct this model as follows: if θfid is
the vector of the parameter values determining our fiducial
cosmology, given by the parameters in the first row of
Table I, and the associated best-fit HOD parameters from
Eq. (18), we model the parameter dependence using the
following expansion:

FIG. 2. All 76 WST coefficients evaluated from the BOSS
CMASS dataset (blue circles) and the ABACUSSUMMIT mocks
(black squares) for the fiducial cosmology. The WST coefficients
populate the data vector in order of increasing values of the j1 and
l1 indices, with the l1 index varied faster. The 1σ error bars on the
data (which are too small to be clearly seen on the plot) have been
evaluated from the 2048 PATCHY mock realizations.

16The validity of this assumption was recently tested in the
weak lensing application of Ref. [61], in which the probability
distribution of the WST coefficients was found to be closer to
Gaussian than that of the bispectrum. Also see Ref. [114] for an
in-depth analysis of the validity of this assumption for various
statistics.
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XtðθÞ ¼ XtðθfidÞ þ ðθ − θfidÞ∇θX; ð35Þ

where the gradient ∇θX in Eq. (35) is straightforwardly
determined using the derivatives constructed from the
derivative grid cosmologies of Table I, as we explained
in Sec. III B 1. We have carefully checked and confirmed
that the combination of the vector dimensionality, deriva-
tive step size and number of HOD realizations used is
sufficient for the derivatives to be well-converged, for all

parameters and for both estimators (see Appendix C for
details). It should be clarified, at this point, that being a first
order expansion, Eq. (35) needs to be evaluated using a
fiducial cosmology θfid sufficiently close to the true one,
such that the derivative approximation only breaks down
far away from the (true) maximum of the likelihood and the
correct cosmology is recovered after a likelihood analysis
of the data. Since our chosen θfid corresponds to the mean
values of the Planck 2018 [83] ΛCDM cosmology, and as it
can be also inferred by the very good agreement between
the fiducial theory prediction and the one from the data
shown in Figs. 1 and 2, this requirement is satisfied in our
analysis. We do, however, point out that the since the Taylor
expansion (35) will inevitably break down far away from
the fiducial part of the parameter space, our model will
fail to capture any potential non-Gaussianities in the
likelihood, for which a full model (e.g., an emulator) for
XtðθÞ would be necessary. We add that a very similar
expansion was also recently used in the Dark Energy
Survey (DES) year-1 data re-analysis of Ref. [116], which
employed a hybrid combination of perturbation theory
and ABACUSSUMMIT simulations in order to model the
lensing power spectrum needed for their analysis.17

We leave the construction of an actual WST emulator
for future work. Finally, we clarify that, even though a wide
variety of approaches exist for a more accurate modeling
of the cosmological dependence of the galaxy power
spectrum or correlation function (e.g., perturbation theory
[20,76–78,109,110]) or emulators [90,103,117–119]), we
use the model from Eq. (35) for the power spectrum, as
well, in order to guarantee a fair comparison against the
performance of the WST.
In order to perform a posterior analysis, we sample

the likelihood from Eq. (35) using the Markov Chain
Monte Carlo (MCMC) sampler emcee [120],18 choosing
100 walkers, 500 “burn-in” steps and 100,000 steps for our
main runs. We use flat unrestricted priors (with the walkers
initialized in the range 0–1.05) for all parameters, with the
exception of ωb, for which we also consider the case of a
Gaussian prior determined from big bang nucleosynthesis
(BBN) [83] and the measurement of helium and deuterium
primordial abundances [121–123]:

ωb ¼ 0.02268� 0.00038; ð36Þ

a choice commonly adopted in analyses of BOSS data
[76–78]. Finally, to check the convergence of our chains,
we monitor the mean integrated autocorrelation time and
make sure its value is at least 2 orders of magnitude lower

FIG. 4. Correlation matrix of the galaxy power spectrum
multipoles, l ¼ f0; 2g, evaluated from the 2048 realizations of
the PATCHY mocks for the fiducial cosmology. In the 2 × 2
blocks, from bottom to top and from left to right, we visualize the
auto and cross correlations of P̂0 and P̂2, respectively.

FIG. 3. Correlation matrix of all 76 coefficients for the WST
evaluated at the fiducial cosmology. The WST coefficients
populate the data vector in order of increasing values of the j1
and l1 indices, with the l1 index varied faster, as in Fig. 2.

17We note that Ref. [116] was able to correct the errors caused
by such a Taylor expansion, using the HALOFIT model for the
matter power spectrum. Given that no such possibility is available
for the cosmological dependence of the WST coefficients, a
correction of this kind was not possible in our case.

18Publicly available in https://emcee.readthedocs.io/en/stable/.
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than the total number of steps used, following the procedure
laid out by Ref. [120]. We similarly also monitor the mean
value of the acceptance fraction and make sure it always
falls within the reasonable range of values of 0.3–0.5.

IV. RESULTS

Before presenting our results from the likelihood analy-
sis explained in Sec. III E, we briefly summarize the
procedure we follow in order to determine the posterior
of the Hubble constant, h, as a derived parameter. As stated
in Sec. III B 1, in the ABACUSSUMMIT simulations the
value of the angular size of the sound horizon at last
scattering, θ⋆, is kept fixed to the corresponding mean value
derived from measurements by the Planck satellite,
100θ⋆ ¼ 1.041533. This implies that we can compute h
for each point in our chains and derive its posterior, which
we will also discuss below as the fifth cosmological
parameter determined from our analysis.
We now discuss the results of our analysis of the BOSS

CMASS data using the WST and the power spectrum
multipoles, starting with the case in which the BBN prior
(36) was imposed on the value of ωb. In Fig. 5, we show the
resulting 2-dimensional posterior probability distribution
function of the three other cosmological parameters explic-
itly varied in the likelihood (32), together with the derived
Hubble constant h, all of which have been marginalized

over the seven nuisance parameters of the HOD model. In
addition, the mean and 1σ error values obtained from the
two estimators for all cosmological parameters are listed
in Table II, while the full corner plot is presented in
Appendix D.
We notice the relative consistency between the corre-

sponding mean values for the parameters extracted from the
two estimators, the differences of which never exceed the
respective 1σ values from the power spectrum. Furthermore,
all values are broadly consistent with the ones found from
recent re-analyses of BOSS data [20,76–78,109,110], a fact
that confirms the robustness of the WST as a tool to be used
for cosmological analyses. More importantly, in addition to
being able to serve as a reliable clustering statistic to infer
cosmological parameters from the LSS, the WST is found to
deliver significant improvements in the inferred 1σ errors
for all cosmological parameters, in the range 3 − 8× tighter.
This finding demonstrates the potential carried in the use of
the WST as a way to access the non-Gaussian information
encoded in the LSS data (as suggested in our previous work
[52]), and thus subsequently improve the errors obtained on
cosmological parameters.
In Fig. 6 we show a case with no priors on any of the

cosmological parameters (the results are also summarized in
Table II). We observe a similar trend as in the previous case,
with the WST once again outperforming the regular power
spectrumwith respect to the obtained 1σ errors, by a factor of
3–5. The inferred mean values of the 5 cosmological
parameters are once again consistent, within 1σ, between
the two statistics, despite the fact that the totally unrestricted
priors led to a relatively lower value of ωb (relative to the
BBN prior), and subsequently of h (through the fixed θ⋆).
We also briefly comment on the results obtained from a

likelihood analysis using the vector of WST coefficients up
to first order, only. In this case, the inferred 1σ errors from
the WST are improved compared to the corresponding
power spectrum results by a factor of 1.1 to 2.0.
A fair comparison with previous analyses of the BOSS

data [20,76–78,109,110,124,125] is difficult given several

FIG. 5. Constraints on the cosmological parameters obtained
from the combined monopole and quadrupole of the galaxy
power spectrum evaluated up to kmax ¼ 0.25 Mpc=h (red con-
tours), as well as from the WST coefficients defined in Sec. III D
(blue contours). The results shown above were obtained
after imposing a BBN Gaussian prior on the value of ωb ¼
0.02268� 0.00038.

TABLE II. Mean values and 68% confidence intervals for all
cosmological parameters resulting from the posterior analysis of
the power spectrummultipoles and theWSTcoefficients in the case
of a BBN prior applied on the value of ωb (left half), and the case
of unrestricted priors (right half). All results are presented in the
format meanþ1σ

−1σ , after marginalization over all HOD parameters.

BBN prior on ωb Unrestricted priors

P(k) WST P(k) WST

ωb 0.02268þ0.00036
−0.00036 0.02225þ0.00034

−0.00034 0.0217þ0.0043
−0.0043 0.0184þ0.0011

−0.0011
ωc 0.1225þ0.0037

−0.0037 0.120þ0.00041
−0.00041 0.1217þ0.0058

−0.0058 0.1154þ0.0012
−0.0012

ns 0.927þ0.063
−0.063 0.914þ0.018

−0.018 0.921þ0.057
−0.049 0.931þ0.018

−0.018
σ8 0.77þ0.13

−0.13 0.67þ0.023
−0.023 0.762þ0.11

−0.094 0.691þ0.023
−0.023

h 0.675þ0.014
−0.014 0.68þ0.0025

−0.0025 0.668þ0.024
−0.024 0.653þ0.0074

−0.0074
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differences between those works and ours, the major ones
being the approximate model we employed from Eq. (35)
and the fact that the Hubble constant was not explicitly
varied in our analysis, but was rather derived from a fixed
θ⋆.19 This is also the case when attempting to compare
against recent BOSS analyses using emulators of the
redshift-space power spectrum [126] or the correlation
function [90,119], with the additional difference that the
correlation function analyses focused on much smaller
scales than the ones we worked with. It should be also
noted that the 1σ errors reported above are purely statistical,
since we did not attempt to quantify how the various
systematics and approximations adopted by our analysis
would affect the final results.
Furthermore, we clarify that in ourWSTanalysis we have

purely worked with unreconstructed density fields. In the
context of traditional BOSS analyses, reconstruction algo-
rithms [127] have been shown to enable a more precise
determination of the baryon acoustic oscillation (BAO) peak
position, the complementary information of which can
further improve the constraints obtained using the full shape
of the power spectrum [78,109] and also the bispectrum
[20]. Whether a WST analysis applied to the reconstructed
density field can improve the constraints extracted on
cosmological parameters is an interesting question, that
we plan to explore in the future. Putting these differences
aside, we do highlight that the relative 1σ error from the

power spectrum obtained on the Hubble constant is found to
be equal to 2%,when using theBBNprior onωb, a value that
is similar to the one recently found by Refs. [20,76,78,109].
Finally, we finish this section by commenting on the fact

that themeanvalue of σ8 obtained fromourWSTapplication
is in very good agreement with results from recent BOSS
reanalyses, which are also found to be in tension with the
corresponding Planck value, in particular for the case of an
unrestricted prior on ns [20]. Imposing a Planck prior on ns
somewhat raises the recovered mean value of σ8 [20,109],
but is not large enough to completely alleviate the tension.
Furthermore, cross-correlating BOSS clustering data with
CMB lensing measured by Planck has been recently found
to further lower the inferred value of σ8 [124].

V. CONCLUSIONS

In thiswork,we present the first application of thewavelet
scattering transform on actual galaxy observations, through
a WST analysis of the BOSS DR12 CMASS dataset.
Building upon our previous LSS application to 3D

matter overdensity fields [52], we lay out the detailed
methodology to capture additional layers of realism that are
necessary to analyze galaxy observations obtained from a
spectroscopic survey, such as BOSS. After capturing the
effects of redshift-space anisotropy, nontrivial survey
geometry, the shortcomings of the dataset through a set
of systematic weights and the Alcock-Paczynski effect, we
show how to transform a galaxy sample from redshift-space
sky coordinates into the weighted Feldman-Kaiser-Peacock
(FKP) field, which serve as the input of a WST scattering
network. The resulting WST coefficients can then be
treated as a well-defined basis that reflects the clustering
properties of the observed sample, which we use as the
main object of our BOSS analysis.
In order to model the cosmological dependence of the

WST coefficients we use the state-of-the-art suite of
ABACUSSUMMIT simulations [79]. These span the cosmo-
logical parameter space around the Planck 2018 ΛCDM
cosmology [83], and have been HOD-tuned to match small-
scale redshift-space correlation function of the BOSS
CMASS sample in the redshift range 0.46 < z < 0.60.
For the evaluation of the WST covariance matrix, which
is also necessary in addition to the model, we employ the
publicly available MULTIDARK-PATCHY mocks [87,91].
We take all necessary steps to ensure that our mock theory
predictions satisfy the same level of realism as the observa-
tions we compare them against, and also evaluate the
multipoles of the anisotropic galaxy power spectrum, which
weuse as a benchmark to assess the performance of theWST.
We then use our model to perform a likelihood analysis

of the CMASS observations with the WST coefficients and
the power spectrum multipoles. We obtain the posterior
probability distributions of the 4 target cosmological
parameters, fωb;ωc; ns; σ8g, as well as the Hubble param-
eter, h, derived from the fixed value θ⋆, all of which were

FIG. 6. Same as in Fig. 5, but using a flat and uninformative
prior on ωb.

19We also worked with a subset of the CMASS sample, rather
than with the full CMASS and LOWZ samples, due to the
limitations imposed by the HOD procedure.
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marginalized over the seven nuisance parameters of the
HOD model. The analysis reveals a substantial improve-
ment in the values of the 1σ errors predicted by the WST,
which are tighter than the corresponding ones from the
regular power spectrum by a factor of 3–8, when a BBN
prior is applied on the value of ωb, and by a factor in the
range 3–5 in the case of flat and uninformative priors for all
of the parameters. At the same time, the inferred mean
values of all cosmological parameters by the WST (as well
as the power spectrum) are always found to be broadly
consistent with the ones found by recent re-analyses of
BOSS data [20,76–78,109,110,124], demonstrating, over-
all, that the WST can be reliably used as a powerful
estimator in modern analyses of LSS data.20

We should take note, at this point, of certain limitations
of our current analysis, that we plan to tackle in a follow-up
work. First, the Taylor expansion from Eq. (35), that we
used to emulate the parameter dependence of our model
vector in the likelihood [Eq. (32)] is inevitably expected to
break down in parameter regions far away from the fiducial
cosmology, a fact that essentially prevents us from captur-
ing any substantial non-Gaussianities present in the like-
lihood. In order to do this, a full model for the nonlinear
dependence of the WST coefficients as a function of the
cosmological parameters will need to be developed, similar
to the training procedure of an emulator for a given
clustering statistic. We envision that well-established emu-
lation techniques (such as the one presented in Ref. [90] for
the correlation function, or emulators at the field level
[128]) could be straightforwardly expanded to enable a full
WST application, such as the one we performed in this
work. Second, the Hubble parameter was not explicitly
varied in our analysis, but rather obtained as a derived
parameter through the fixed angular scale θ⋆ (to the
value measured by the Planck satellite [83]) in the
ABACUSSUMMIT simulations. This limitation can be easily
overcome by using a different set of mocks, in which h is
explicitly varied. Furthermore, the current set of ABACUS
mocks we used did not account for the effect of light-cone
evolution of the galaxy clustering within the survey
volume,21 an effect that can be rather easily overcome
using the next generation of ABACUS mocks already in
production. Lastly, the weighting scheme (13) and (14),
which we adopted to correct for the data systematics, was
designed for the power spectrum case, rather than for the
WST. Even though this option is expected to capture these
effects to some extent, a correction scheme tailored to the
WST estimator would be preferred. After all of the above
improvements are implemented, a fair comparison against
the results obtained by state-of-the-art reanalyses of BOSS

data using perturbation theory ([20,76–78,109,110,124]) or
emulators ([90,103,117–119,126]) will finally be possible,
a step that we reserve for future work.
OurBOSS analysis hints at awide range of exciting future

applications of theWST in the context of LSS cosmology. In
our previous work [52], we showed that the WST coef-
ficients are particularly sensitive to the properties of massive
neutrinos, thanks to their innate ability to capture clustering
information beyond the traditional 2-point function, com-
bined with their ability to trace the properties of voids. Even
though we did not include neutrinos in our current analysis,
since they were not varied in the ABACUSSUMMIT simu-
lations, they can be easily incorporated using a future set of
mocks that captures their effect, which could then poten-
tially allow us to obtain powerful constraints on the sum of
the neutrino masses. This is also the case for a variety of
other ΛCDM extensions, such as theories for modified
gravity or dynamical dark energy. We also emphasize here
that the procedure we laid out is very flexible, and can be
straightforwardly applied to any future set of spectroscopic
galaxy observations, given an associated set of systematic
weights and mock catalogs, both of which are commonly
produced to support analyses using traditional estimators.
For example, and subject to the additional improvements
discussed above, our framework can be easily adjusted for a
future application to spectroscopic observations by DESI.
We note that despite their impressive performance in the

context of an LSS analysis, the wavelets we used to imple-
ment the scattering network from Eq. (6) were proposed in
the context of a 3Dmolecular chemistry application [65,66].
One could envision developing wavelets optimized for a
cosmological application, which can further improve the
benefits of a WST analysis. For example, equivariant
wavelets [72] can find a natural application in the case of
fields with a particular directional dependence, as is the
galaxy overdensity observed in redshift space, that we have
used as the input field in the current work.
In addition, we comment on the fact that the second order

WST used in this analysis encodes information from
correlation functions up to 4th order. It would be interest-
ing, as a result, to compare a BOSS analysis usingWSTand
the 4-point correlation function [21] in future work.
Through this first application of the wavelet scattering

transformon actual galaxyobservations,we demonstrate that
this technique can serve as a promising tool for current and
future applications of cosmological parameter inference.
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APPENDIX A: WST FOR MASKED
DENSITY FIELDS

In the original WST implementation (3) in KYMATIO,
the input field is assumed to be a periodic 3D cube, such
as, for example, the output of an N-body simulation.
Given that in this application, however, we work with data
that occupy the nontrivial survey geometry of BOSS, we
need to make the necessary modifications. In particular,
and in direct analogy to the power spectrum case, we start
by embedding the masked density fields (23) (both from
the data and the cut-sky mocks) into 3D cubes using
nbodykit. These 3D grids, which contain both the
actual volume of the survey and also the part of the cube
that lies outside of the BOSS mask, are fed as input into
KYMATIO. We then need to make sure that the funda-
mental WST evaluations, wavelet convolution, modulus
and averaging, include only the contributions from
regions within the mask. In practice, we modify
KYMATIO such that regions of the 3D grid that lie outside
the mask do not contribute to the convolutions in Eq. (3),
in any order. This is straightforward to implement with
minimal modifications, given the exact knowledge of the
survey binary mask. Likewise, the regions outside the
mask are always zeroed out and do not receive any
contributions from the density field through the wavelet
convolutions. Finally, we take the modulus and average
over the parts of the field that lie within the survey
footprint, in order to get the WST coefficients from a

masked input field. This procedure is analogous to the
corresponding evaluation of the power spectrum monop-
ole for an input masked field.
In addition to occupying an irregular survey geometry, we

also note that the density fields we work with in this
application are anisotropic, due to the effects of RSD, with
the survey line-of-sight lying along the radial direction in a
spherical coordinate system. Given that the basis of solid
harmonic wavelets we adopted was designed for an isotropic
input field, without treating any direction as special, the
current WST configuration might not fully leverage all the
information encoded in the RSD field (similar to evaluating
only themonopole of the power spectrum, that averages over
all directions). Such a shortcoming is indeed possible to
overcome, for examplewith the directional-dependent equiv-
ariant wavelets of Ref. [72]. We defer this study for
future work.

APPENDIX B: NUMERICAL CONVERGENCE

Given that the covariance matrix of the WST coefficients
is evaluated from simulations, we need to make sure
that the number of realizations used is sufficient to guarantee
the numerical convergence of the results. We show in Fig. 7
the 1-σ errors on the cosmological parameters as a function
of the number of PATCHYmock realizations used to evaluate
the covariance matrix. We find that the change (relative to the
results obtained from the full suite of Ncov ¼ 2048 realiza-
tions) is smaller than 1.8% for all parameters, when using
Ncov ≥ 1800 realizations. This confirms the numerical con-
vergence of the WST covariance.

APPENDIX C: DATA COMPRESSION

In addition to the covariance matrix convergence dis-
cussed in the previous section, we also confirm the numeri-
cal stability of the derivatives entering the Taylor expansion
in Eq. (35). After testing how the 1-σ errors obtained on the
cosmological parameters change as a function of the number

FIG. 7. The 1-σ errors on the cosmological parameters, σθ,
plotted as a function of the number of PATCHY mock realiza-
tions, Ncov, used to evaluate the WST covariance matrix. The y
axis is normalized with respect to the 1-σ errors obtained when
using the total number of available Ncov ¼ 2048 realizations.
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of realizations used to evaluate the derivatives, we found
variations of at most 6% when using half of the total
realizations. Furthermore, we note again that the simulations
used to construct the derivatives were run with phase-
matched initial conditions. This fact, in combination also
with the much higher volume and resolution of ABACUS
compared to other existing simulations, is expected to
modulate the noise due to cosmic variance, at least to some
extent. Given, however, the relatively low number of 20
HOD realizations available for the evaluation of these
derivatives, we also test the numerical stability by repeating
our analysis using a compressed data vector.
In particular, for a likelihood LðθjdÞ, the quantity [129]

t ¼ ∇θLðθjdÞ; ðC1Þ
corresponds to a compression from the original data vector
of dimensionalityNd down to one with dimensions equal to
the number of parameters, n. In the case of a Gaussian
likelihood with a data covariance independent of the
cosmological parameters, Eq. (C1) is further simplified to

t ¼ ∇θXTC−1½Xd −XtðθfidÞ�; ðC2Þ
which represents a linear and lossless compression that
preserves the Fisher matrix of the original estimator
[130,131]. The Gaussian likelihood of the compressed
statistic is

logLtðθjdÞ ¼ −
1

2
½t − tðθÞ�TC−1

t ½t − tðθÞ� þ const:; ðC3Þ

where

tðθÞ ¼ ∇θXTC−1½XtðθÞ −XtðθfidÞ�; ðC4Þ
andwithCt the covariancematrix of t. In the particular case of
the WST, the original data vector of Nd ¼ 76 coefficients is
compressed down to n ¼ 11 numbers. Reductions of this
kind greatly reduce the challenges associated with parameter
inference from high-dimensional data vectors and have been
utilized in bispectrum applications [132–134]. More impor-
tantly for our case, the compression (C1) leads to a statistic
that is less sensitive to numerical noise, being a weighted
average of the original data points. Indeed, such a compres-
sion has been recently used to accelerate the convergence of
Fisher forecasts, the numerical stability of which is notori-
ously challenging in the case of noisy derivatives [135–137].
We compress the WST and the power spectrum multi-

pole vectors using Eqs. (C2)–(C4) and then repeat the
parameter inference application of the analysis section,
sampling from the likelihood (C3). In Fig. 8, we compare
the marginalized 2-dimensional posteriors obtained for the
cosmological parameters using the compressed WST,
against the results obtained from the original, uncom-
pressed, WST analysis in the case of a BBN prior. The
very small differences between these two sets of results
serve as additional confirmation of the robustness of the

FIG. 8. Constraints on the cosmological parameters obtained
from the original WST coefficients defined in Sec. III D (red
contours), as well as from the compressed version of the WST
data vector from Eqs. (C2)–(C4) (blue contours). The results
shown above were obtained after imposing a BBN Gaussian prior
on the value of ωb ¼ 0.02268� 0.00038.

FIG. 9. Constraints on the cosmological parameters obtained
from the galaxy power spectrum multipoles (red contours), as
well as from the compressed version of the power spectrum data
vector from Eqs. (C2)–(C4) (blue contours). The results shown
above were obtained after imposing a BBN Gaussian prior on the
value of ωb ¼ 0.02268� 0.00038.
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main analysis. Finally, in Fig. 9 we show the same
comparison for the multipoles of the galaxy power spec-
trum, reaching a similar conclusion.

APPENDIX D: FULL PARAMETER SPACE
FOR P(k) AND WST

For completeness, in this appendix we show the full
corner plots from our likelihood analysis, including the

marginalized posteriors of the seven parameters of our
HOD model, that we treated as nuisance parameters. In
particular, in Fig. 10 we show the full corner plot of the
analysis with a BBN prior on the value of ωb, while Fig. 11
illustrates the results for the case of unrestricted priors on
all parameters. We see that the 12 parameters shown are
consistent (within 1σ) for the mean values recovered using
the WST coefficients and the power spectrum multipoles.

FIG. 10. Same as in Fig. 5, but now including the 7 parameters of the HOD model. Mcut and M1 are expressed in units of M⊙=h.
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