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We review a dynamical dark energy model scarcely studied in the literature and we introduce two
possible generalizations. We discuss separately the behavior of the original model and a minimal extension
of it by exploring some early and late times limits, we find that the cosmic components are related by their
parameters state. In order to have access to the phantom regime we present two dark energy densities
inspired from the holographic approach and from the emergent entropic forces model in the early universe.
For the first case we obtain a type-III singularity and in the second proposal we have a transition from
decelerated to accelerated cosmic expansion that starts as phantom type. However, the final stage of the
universe is a de Sitter state.
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I. INTRODUCTION

Several proposals for the unknown form of energy
density in the universe or simply dark energy can be
found in the literature. The aim of such models is to seek
alternatives to the pervasive philosophy of the cosmological
constant (misnamed dark energy). Despite the ΛCDM
success to fit data, the updated observational evidence
seem to indicate some tensions and issues in the model, see
for instance Ref. [1] and references therein. In addition, it is
difficult to explain the possibility of crossing the phantom
barrier (ω ¼ −1), a barrier whose temperature is zero in
the cosmic fluid analogy, if we consider the cosmological
constant approach. The possibility that we are living in a
phantom stage (ω < −1) it is not ruled out by the current
observational data [2], then the study of cosmological
models allowing the phantom scenario becomes relevant.
The origin for the cosmological constant can be solved

by assuming the existence of vacuum energy, such vacuum
energy is produced from vacuum fluctuations and this
mechanism is well understood in the context of quantum
field theory. However, the tiny value obtained for the
energy density of the cosmological constant is a severe
problem and was widely discussed in [3]. This gave rise to
plethora of works, as can be seen in the literature. For
instance, in Ref. [4] the value of the present time energy
density for the cosmological constant is related to physics
at electroweak scale.

The observed cosmic expansion requires the right
magnitude for the cosmological constant, in Ref. [5] we
can find an interesting proposal: gravity is promoted to be a
low energy effective interaction, then the cosmological
constant emerges from the contribution of some ghost
fields which are supposed to be present in the low energy
effective theory of QCD. On the other hand, ghost fields are
required to exist for the resolution of the Uð1Þ problem,
these auxiliary fields are not physical propagating degrees
of freedom and in order to avoid the appearance of new
degrees of freedom they must be decoupled from the
physical sector; see Ref. [6] for a complete review in this
topic. However, it was found that when the ghost fields are
in a curved spacetime, they contribute to the vacuum energy
with a small amount, ρ ∝ HΛ3

QCD, where H is the Hubble
parameter and ΛQCD is the QCD mass scale, this is usually
termed as Veneziano ghost model. This latter result
provides the right magnitude for the dark energy that
explains the current accelerated expansion. As can be seen,
this running contribution to vacuum energy departs from a
constant behavior but the dynamical scenario for dark
energy is also an interesting approach to explore [7]. See
also Ref. [8], where a dark energy proportional to the
Hubble parameter is also obtained from a generalized form
of the QCD ghost model. A very interesting characteristic
of a vacuum energy linear in the Hubble parameter is the
de Sitter phase that can be obtained when such energy is
introduced in the Friedmann constraint. However, the
origin of this kind of running vacuum energy can be
explained formally from the study of dynamics of the
topologically nontrivial sectors in a strongly coupled
QCD-like gauge theory in an expanding universe with a
given hyperbolic space as background and nontrivial
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holonomy. In this case the energy is due to the tunneling
transitions between different topological sectors and in
consequence cannot be formulated in terms of any local
propagating degrees of freedom, therefore the nontrivial
contributions to the vacuum energy cannot be renormalized
by any UV terms. See Refs. [9,10],1 where the aforemen-
tioned formalism was proposed and profoundly discussed.
Then the ghost fields description for the running vacuum
energy linear in H can be bypassed. It is worthy to mention
that the linear correction for the vacuum energy obtained
in [9,10] is consistent with lattice simulations, see for
instance Ref. [11], where it is studied the dependence of
vacuum energy on the size of the system and Ref. [12]
where the rate particle production turns out to be linearly
proportional to the Hubble constant, rather thanH2 for a de
Sitter background.
In Refs. [13] and [14] we can find two proposals for dark

energy dubbed as ghost dark energy since they preserve
the dependence on the Hubble parameter in their energy
densities; in both cases a transition from decelerated to
accelerated expansion takes place at the past and for the
late times behavior of the universe a de Sitter evolution is
obtained, i.e., the transition to a phantom scenario is not
allowed. According to latest astrophysical data, some
extensions of the QCD ghost dark energy model are viable
to describe the late times behavior of the observable
universe; see for instance Refs. [15,16], where was found
that this kind of dark energy model could exhibit (in some
cases) a better fit of the cosmological datasets than the
ΛCDMmodel. Besides, in Ref. [17] an improvement in the
fit of cosmological data with respect to the isotropic case
was obtained with the inclusion of anisotropy effects in the
QCD ghost model. However, the parameter state associated
to the best fit values of the cosmological parameters in the
aforementioned references still corresponds in all cases
studied to a quintessence fluid at present time. Then this
kind of dark energy model must be explored in more detail
and extended to the context of phantom cosmologies.
The aim of this work is to establish some extensions of

these ghost dark energy models in order to have access to
the phantom regime. As we will discuss below, one of the
models admits a type-III singularity and our second model
exhibits a transient phantom scenario which tends to a
de Sitter evolution. Due to the fact that not all physical
quantities diverge during the phantom regime, we consider
that both scenarios deserve deeper exploration. In the
present work we will focus on the behavior at early and
late times of the discussed dark energy models.
This paper is organized as follows: In Sec. II we review

a ghost dark energy proposal, highlighting its early and
late times limits. In Sec. II Awe discuss a first extension of
the aforementioned model and its behavior as a function

of the cosmic time. In Sec. III, we explore the phantom
scenario arising from an extension of the original ghost
dark energy model which was inspired from the holo-
graphic approach for dark energy. In Sec. III B we study
some general properties of a model which describes a
phantom evolution with no singularities, except for the
initial state of the parameter state. Section IV is devoted
to our final comments. In this work we will consider
8πG ¼ c ¼ kB ¼ 1 units.

II. GHOST DARK ENERGY

For this dark energy model the energy density is given by
ρde ¼ 3αH [13]. We restrict ourselves to a flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) background, there-
fore the Friedmann constraint for a cosmic fluid charac-
terized by its energy density ρ and pressure p, reads

3H2 ¼ ρþ ρde ¼ ρþ 3αH; ð1Þ

we denote the dark matter sector by ρ. Besides, the
acceleration equation has the usual form

2 _H þ 3H2 ¼ −p − pde: ð2Þ

As usual, H ≔ _a=a is the Hubble parameter where a is
the cosmic scale factor and the dot stands for derivatives
with respect to cosmic time. From Eq. (1) the following
expanding solution for the Hubble parameter can be penned
straightforwardly

H ¼ 1

2
α

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ρ

3α2

r !
: ð3Þ

Notice that ρ ¼ 0 in the above expression leads to the self-
accelerated solution H ¼ α, or in other words; a constant
expansion rate for the cosmic evolution can be obtained as
consequence of the dilution of the energy density of the
dark matter sector. This self-accelerated solution does not
carry instabilities as the one found in the Dvali-Gabadadze-
Porrati model, which in turn results inappropriate for doing
cosmology [18]. Let us consider the case in which both
cosmic components do not interact, therefore we can write
their corresponding conservation equations as follows

_ρde þ 3Hð1þ ωdeÞρde ¼ 0; ð4Þ

_ρþ 3Hð1þ ωÞρ ¼ 0; ð5Þ

where we have adopted a barotropic equation of state for
each specie, pi ¼ ωiρi, the subscript i accounts for differ-
ent species and ω is the parameter state. By means of the
dark energy Ansatz mentioned previously and Eq. (4), we
can identify the parameter state of dark energy

1and references therein for a contextualization on the origin of
running vacuum energy.
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ωde ¼ −1þ 1

3
ð1þ qÞ; ð6Þ

with the usual definition for the deceleration parameter,
q ¼ −1 − _H=H2. Alternatively, from the acceleration equa-
tion (2) and the above expression for ωde, the deceleration
parameter can be written as

q ¼ −1þ 3ð1þ ωÞ
2þ ρde=ρ

; ð7Þ

thus we can relate the parameters state of both cosmic
components as follows

ωde ¼ −1þ ð1þ ωÞ
2þ ρde=ρ

: ð8Þ

According to Eq. (8), we establish the following limits
based on the behavior of the quotient between energy
densities

early times limit∶
ρde
ρ

≪ 1 ⇒ ωde ≈ −
1

2
ð1 − ωÞ; ð9Þ

late times limit∶
ρde
ρ

≫ 1⇒ ωde ≈−1þ ð1þωÞ ρ

ρde
≈−1;

ð10Þ

from the early times limit we can identify the following
cases of interest for each parameter state

ω ¼ 1 ⇒ ωde ≈ 0; ð11Þ

ω ¼ 1

3
⇒ ωde ≈ −

1

3
; ð12Þ

ω ¼ 0 ⇒ ωde ≈ −
1

2
: ð13Þ

Thus, in the era of stiff matter dominance given in Eq. (11),
ρde behaves as cold dark matter. In the epoch of radiation
dominance (12) we have a interesting behavior for the dark
energy sector. In the single fluid description of standard
cosmology, the case ω ¼ −1=3 describes a Dirac-Milne
universe for which, HðtÞ ∝ t−1; this kind of universe also
emerges uniquely from kinematic relativity and cosmo-
logical principle considerations. An interesting work on
Milne model is given in Ref. [19]. In the era dominated by
cold dark matter (13), ρde behaves as a quintessence fluid
with an evolution toward a de Sitter stage.
Assuming the usual form of the redshift parameter

in terms of the scale factor, 1þ z ¼ a0=a, the solution
for ρðzÞ obtained from (5) is given as, ρðzÞ ¼
ρð0Þð1þ zÞ3ð1þωÞ. Using this result for dark matter together
with Eq. (3), the parameter state for dark energy given
in (8) reads

ωdeðzÞ ¼ −1þ ð1þ ωÞ
"
2þ η

ð1þ zÞ3ð1þωÞ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

η
ð1þ zÞ3ð1þωÞ

s !#−1
; ð14Þ

where we have defined the positive constant, η ≔
3α2=2ρð0Þ. From the above expression we can observe
that at present time the dark energy sector behaves as
quintessence fluid, ωdeðz¼0Þ¼−1þð1þωÞ=½2þηð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2=η

p Þ� and for the far future, ωdeðz → −1Þ → −1.
Using the Friedmann constraint and evaluating at present
time, we can fix the value of η according to the normali-
zation condition

3H2ð0Þ ¼ ρð0Þ þ 3αHð0Þ → 1 ¼ Ωð0Þ þ Ωdeð0Þ; ð15Þ

where the fractional energy densities are: Ωð0Þ ¼ ρð0Þ=
3H2ð0Þ and Ωdeð0Þ ¼ α=Hð0Þ. Then, η ¼ Ω2

deð0Þ=2Ωð0Þ.

A. Minimal extension of ghost dark energy

In this section we explore the dark energy density given
as follows [14]

ρde ¼ 3ðαH þ βH2Þ; ð16Þ

as can be seen, this Ansatz includes the next leading order
term in H of the Veneziano ghost field discussed in the
previous section. According to the Friedmann constraint,
we can write for all constituents of the universe

3H2 ¼ ρþ 3ðαH þ βH2Þ; ð17Þ

similarly to the previous case, the self-accelerating solution
reads, H ¼ α=ð1 − βÞ. From this last result we can infer
that the condition, β < 1, is necessary in order to have
expanding solutions. In terms of the redshift the Hubble
parameter turns out to be

HðzÞ ¼ α

2ð1− βÞ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð1− βÞρð0Þ

3α2
ð1þ zÞ3ð1þωÞ

r �
;

ð18Þ
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where we have considered Eq. (17) and ρðzÞ ¼
ρð0Þð1þ zÞ3ð1þωÞ since noninteracting fluids are under
study as in the previous section. Note that in this case
the Hubble parameter tends to a constant as the universe
evolves, Hðz → −1Þ → α=ð1 − βÞ for ω > −1 and at early
times Hðz → ∞Þ → ∞; this behavior for the Hubble
parameter resembles theΛCDMmodel. The time derivative
of Eq. (16) can be penned in terms of the deceleration
parameter, yielding

_ρde ¼ −3ðαþ 2βHÞH2ð1þ qÞ: ð19Þ

On the other hand, using the Eqs. (2), (4), and (5) together
with the above expression for _ρde and the Friedmann
constraint (1), we can write

2 _H ¼ −p − pde − 3H2

¼ −½ð1þ ωÞρþ ðαþ 2βHÞHð1þ qÞ�; ð20Þ

therefore

q ¼ −1þ 3

2
ð1þ ωÞ

�
1 − ðβ þ α=HÞ
1 − ðβ þ α=2HÞ

�
: ð21Þ

Using the conservation equation for ρde and the results
shown above, we can write as in the previous Ansatz a
relationship between both parameters state

ωde ¼ −1þ ð1þ ωÞ
�
β þ α=2H
β þ α=H

��
1 − ðβ þ α=HÞ
1 − ðβ þ α=2HÞ

�
ð22Þ

thus it is straightforward to verify the following conditions,

ωdeðz → ∞Þ → ω and ωdeðz → −1Þ → −1; ð23Þ

whereH is given in Eq. (18). To sum up, the behavior of ρde
at early times will be dictated by the value of ω and at late
times behaves as a cosmological constant independently of
the value ω.

III. ALLOWING SINGULARITIES:
PHANTOM COSMOLOGY

The previous examples of dynamical dark energy models
are of cosmological interest since they have signs of the
ΛCDM model at early and late times. However, the
transition to a phantom regime, ωde < −1, is not allowed
in the discussed models; the existence of such regime for
dynamical dark energy models is not discarded at all by
latest observations results, see for instance Ref. [2]. In order
to have access to the phantom scenario, we now come up
with a proposal for the dark energy density in which we
consider the addition of the first derivative of the Hubble
parameter to the ghost dark energy given in Eq. (1)

ρde ¼ 3ðαH þ β _HÞ ¼ 3H½α − βHð1þ qÞ�; ð24Þ

with positive parameters α, β. Notice that the dark energy
proposal (24) bears resemblance to the Granda-Oliveros
(GO) holographic cutoff for dark energy which is written
as, ρGO ¼ 3ðγH2 þ δ _HÞ, being γ, δ arbitrary parameters
[20]. It is worthy to mention that in order to have phantom
scenario in FLRW cosmologies, generalized forms (includ-
ing powers or derivatives of the Hubble parameter) for the
energy density of dark energy have been studied exten-
sively, see for instance [21]. We must have in mind that the
GO cutoff is simply a generalization of the holographic
model given as, ρde ∝ R, where R is the Ricci scalar, which
in turn is written as, 6ð2H2 þ _HÞ, for a flat FLRW
background, see Ref. [22].
Considering the Friedmann constraint (1) with ρ ¼ 0 and

the above energy density (24) for dark energy, we can solve
the resulting first order differential equation for the Hubble
parameter, yielding

HðtÞ ¼ α

1þ ðα=H0 − 1Þ exp ½ðα=βÞðt − t0Þ�
; ð25Þ

where H0 is the Hubble constant defined from the initial
condition Hðt ¼ t0Þ ¼ H0. For α ¼ H0, we recover a
de Sitter evolution, i.e., the Hubble parameter (25)
becomes the constant α. Integrating the above result we
can obtain the scale factor explicitly as a function of cosmic
time, therefore

aðtÞ ¼ a0 exp

�
αðt − t0Þ

þ ln
�

α=H0

1þ ðα=H0 − 1Þ exp ½ðα=βÞðt − t0Þ�
�

β
�
;

ð26Þ
being a0 a constant defined as aðt ¼ t0Þ ¼ a0. It is worthy
to mention that the Hubble parameter (25) becomes
singular at t ¼ ts, where

ts ¼ t0 þ
β

α
ln

�
1

1 − α=H0

�
; ð27Þ

and α=H0 < 1. Notice that under this last condition the
scale factor (26) remains bounded, then is its first derivative
of aðtÞ that diverges at ts. This kind of behavior is
characteristic of a type-III singularity. We would like to
mention that in the GO model a future singularity of type-I
(big rip) is allowed for γ < 1 since in this case we can write

HðtÞ ¼ H0

1 −H0½ð1 − γÞ=δ�ðt − t0Þ
and

ts ¼ t0 þ
�

δ

1 − γ

�
H−1

0 : ð28Þ
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Then the future evolution of these dark energy models
differs considerably despite the similarities between both
models; the full classification for future singularities can
be seen in Ref. [23]. From Eqs. (4), (24), and (25), we can
obtain by direct calculation the following expression

ωdeðtÞ ¼ −1þ 2

3

ðα=H0 − 1Þ
β

exp

�
α

β
ðt − t0Þ

�
; ð29Þ

therefore this parameter state describes a phantom fluid
under the assumption, α=H0 < 1 and takes a finite value
for t ¼ ts.
On the other hand, for α=H0 > 1 we can verify the

following conditions for (25)

Hðt ≪ t0Þ → α; ð30Þ

Hðt ≫ t0Þ ∼
�

α

α=H0 − 1

�
exp ½−ðα=βÞðt − t0Þ�; ð31Þ

i.e., this universe evolves from a de Sitter-like expansion at
early times to a final stage given by Hðt → ∞Þ → 0.

A. Scalar field correspondence

The pressure and energy densities associated to a scalar
field, ϕ, are given as [24]

pϕ ¼
_ϕ2

2
− VðϕÞ; ρϕ ¼

_ϕ2

2
þ VðϕÞ; ð32Þ

for a flat FLRW geometry, being VðϕÞ the scalar field
potential. Then, for a barotropic equation of state we can
write the parameter state as follows

ωϕ ¼
_ϕ2 − 2VðϕÞ
_ϕ2 þ 2VðϕÞ : ð33Þ

Comparing the last expression with Eq. (29) one gets

_ϕ2 − 2VðϕÞ
_ϕ2 þ 2VðϕÞ ¼ −1þ 2

3

ðα=H0 − 1Þ
β

exp

�
α

β
ðt − t0Þ

�
; ð34Þ

together with the equation

ρϕ ¼
_ϕ2

2
þ VðϕÞ ¼ 3ðαH þ β _HÞ; ð35Þ

and the Hubble parameter (25), we can solve to obtain
explicit results for the scalar field and the potential, to wit

ϕðtÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2β

α=H0 − 1

s
ln

�
H0

α

�
1þ

�
α

H0

− 1

�
exp

�
α

2β
ðt − t0Þ

���
; ð36Þ

where ϕ0 is an integration constant given by ϕðt ¼ t0Þ ¼ ϕ0, besides

VðϕÞ ¼ α2

β

f3β − ðα=H0 − 1Þ−1ð1 − ðα=H0Þ exp ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðα=H0 − 1Þ=2βp ðϕ − ϕ0Þ�Þ2g

f1þ ðα=H0 − 1Þ−1ð1 − ðα=H0Þ exp ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðα=H0 − 1Þ=2βp ðϕ − ϕ0Þ�Þ2g2

: ð37Þ

The exponential potential has been widely explored in the
scalar field approach, it is well known that such potential
can produce accelerated cosmic expansion. However, as
can be seen in our results, the condition α=H0 > 1 must be
guaranteed in order to have well-defined square roots; thus
if we carry the aforementioned condition to Eq. (29), we
find that this scalar field describes a quintessence scenario
despite the correspondence established with a phantom
model. As found in Ref. [25], the dynamical transition to a
phantom evolution by a standard scalar field is in general
physically implausible.

B. A novel proposal for dark energy

In this section we propose a dark energy density that
depends only on H as in the examples reviewed in Sec. II.
We consider the following Ansatz for the energy density

ρde ¼ 3α2H4; ð38Þ

this specific dependence on H is encouraged from two
sources, the Einstein-Gauss-Bonnet gravity in five dimen-
sions, where the Friedmann constraint involves terms of
this type [26] and from the introduction of correction terms
of this form in the inflationary epoch, which are interpreted
as entropic forces [27]. The Friedmann constraint (1) in this
case reads

3H2 ¼ ρþ 3α2H4; ð39Þ

from the previous equation a self-accelerated solution
appears again for ρ ¼ 0 given as H ¼ 1=α. For ρ ≠ 0
the solution for the Hubble parameter is obtained from a
quartic algebraic equation and is given by
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H2
�ðzÞ ¼ H2

�ðzsÞ
 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρðzÞ
ρðzzÞ

s !
; ð40Þ

where we have defined H�ðzsÞ ≔ 1=
ffiffiffi
2

p
α and ρðzzÞ ¼

3=4α2. In order to avoid a complex nature in the Hubble
parameter we observe that the dark matter density ρðzÞ
has an upper bound given by ρðzzÞ. Using this result for H
we can determine the following expression for the dark
energy density

ρdeðzÞ ¼ ρðzzÞ
 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρðzÞ
ρðzzÞ

s !2

: ð41Þ

Using the Friedmann constraint (38), it is straightforward to
obtain the normalization condition for the fractional energy
density parameters as performed previously, Ωi ¼ ρi=3H2,
then the value of the parameter α can be obtained by
evaluating our expression at present time (z ¼ 0)

1 ¼ Ωð0Þ þ α2H2ð0Þ → α2 ¼ 1 −Ωð0Þ
H2ð0Þ ; ð42Þ

when ρðzÞ ¼ ρðzzÞ in Eq. (41), we obtain the equality
ρdeðzÞ ¼ ρðzzÞ, therefore

ρdeðzzÞ ¼ ρðzzÞ ¼
3H2ð0Þ

4½1 −Ωð0Þ� ; ð43Þ

if we define, λ ≔ 4½1 −Ωð0Þ�Ωð0Þ, we can write for the
Hubble parameter

H2þðzÞ ¼
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λð1þ zÞ3

p
2½1 −Ωð0Þ�

!
H2ð0Þ; ð44Þ

where we have considered the solution coming from (5) for
dark matter sector with ω ¼ 0, as in the previous section,
we are dealing with no interacting fluids. Then one gets for
the dark energy density

ρdeðzÞ¼3½1−Ωð0Þ�
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λð1þzÞ3

p
2½1−Ωð0Þ�

!
2

H2ð0Þ: ð45Þ

The cosmic coincidence parameter, rðzÞ, can be con-
structed by means of the quotient between the energy
densities of both components, rðzÞ ≔ ρðzÞ=ρdeðzÞ, which
in turn results as

rðzÞ ¼ λð1þ zÞ3
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λð1þ zÞ3

p
Þ2 ; ð46Þ

this expression of r is useful if we desire to fix the value
of λ. In Ref. [28] was established that independently of the

cosmological model, the universe has a transition from
decelerated to accelerated expansion approximately at
z ¼ 0.64, this means that around that redshift value the
dark energy dominance began, therefore ρde ≈ ρ; this
condition leads to λ ≈ 0.23 if we consider the aforemen-
tioned value for the redshift, note that rðz → −1Þ → 0,
which is consistent with a growing dark energy model. As
discussed previously, from the Eq. (4) and our Ansatz
for ρde we can write

1þ q ¼ 3

4
ð1þ ωdeÞ; ð47Þ

and from the time derivative of the Friedmann constraint we
have for the dark matter sector

1þ q ¼ 3

2
ð1þ ωÞ r

r − 1
: ð48Þ

From these latter results we can write the dark energy
parameter state as a function of the coincidence parameter
and the parameter state ω, yielding

ωdeðzÞ ¼ −1 − 2ð1þ ωÞ rðzÞ
1 − rðzÞ : ð49Þ

Here lies the singular nature of this cosmological model. At
the moment at which the dark energy domination begins,
r ≈ 1, its parameter state diverges negatively and eventually
evolves to a cosmological constant like behavior since
rðz → −1Þ → 0, i.e., the phantom behavior in this scenario
is transitory; this is not atypical in cosmology, as pointed
out in Ref. [29], the consideration of some mechanisms
could help to prevent (or to kick away) singularities, then
the phantom stage can be seen as a transient epoch in the
cosmic evolution. See also Ref. [30], where the consid-
eration of quantum gravity effects in a phantom scalar-
tensor model leads to a future singularity-free cosmic
evolution. Notice that in our model we do not depend
on extra instruments to get over the phantom stage, we only
reckon on the fact that dark energy evolves displaying a
growing behavior. According to our results, this dark
energy model is applicable only from the redshift value
at which ρde begins to dominate until the far future, z ¼ −1.
For this model the squared adiabatic sound speed has the

usual form

c2s ¼
_pde

_ρde
¼ ωde þ _ωde

ρde
_ρde

; ð50Þ

where a barotropic equation of state was considered. In
Fig. 1 we show the behavior of this quantity in terms of the
redshift and within the region of validity for the cosmo-
logical model. As can be seen we have, c2s > 0, this is
signal of stability in this dark energy model. In the case of
the dark energy model (24) we have unstable behavior,
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i.e., c2s < 0, for α < β and α > β. However, we must have
in mind that our proposal extends the ghost dark energy
model [13] by the addition of the _H term.

IV. CONCLUDING REMARKS

We explored some dynamical dark energy models
emerging from the QCD Veneziano ghost. We enlarge
the cosmological description of this kind of model by
discussing some extensions of the ghost dark energy since
it has been insufficiently treated in the literature. For the
original model as well as for its first extension (given by the
addition of a quadratic term of the Hubble parameter) we
find that at early and late times the behavior of the dark
energy component is prescribed by the dark matter sector,
i.e., the parameter state of the components are related to
each other, although we are not considering interacting
fluids. In summary, for both cosmological scenarios the
cosmic evolution tends to a de Sitter expansion, thus the
dynamical transition to a phantom evolution is not allowed.
Mimicking the holographic approach for dark energy, we

have considered the inclusion of the _H term in the energy
density of the original ghost dark energy. In this case we
found that the model allows a future singularity of type-III,
or in other words, the scale factor remains bounded despite
the singular fate of the universe. The correspondence
between this model and the standard scalar field approach

was explored, obtaining that the scalar field describes at
most a quintessence scenario with a specific form for the
potential, VðϕÞ, which is reconstructed from the back-
ground dynamics. An interesting extension for this scalar
field correspondence could be given by establishing a
connection with other generalized models for the scalar
field, where the phantom stage is allowed. For instance, in
Ref. [31] was found that the Horndeski model is compatible
with a phantom cosmology and alleviates the H0 and σ8
tensions. We will explore this elsewhere.
Additionally, inspired from other cosmological scenar-

ios, we have also discussed our fresh proposal for dark
energy which can be seen as a quartic version of the
original ghost dark energy model. As discussed previously,
our scheme admits a phantom scenario whose singularity
lies only on the parameter state of dark energy and appears
in the deceleration-acceleration transition stage; from there
the model tends to a de Sitter evolution, i.e., our approach
allows a transient phantom regime. A signal of stability for
this dark energy model is obtained from the positivity of the
squared adiabatic sound speed.
On the other hand, the extended model depending on _H

is unstable under the squared adiabatic sound speed
criterion. However, we leave for future investigation if
these extensions of the ghost dark energy are also a ghost
model. In such case the models describe nonphysical
degrees of freedom for which the signal of instability is
irrelevant and is consequence of treating them as conven-
tional propagating degrees of freedom satisfying a classical
equation of motion. Finally, we would like to comment that
the quartic model for dark energy can be also extended by
considering the inclusion of a _H term in the energy density;
in such case depending on the values of the cosmological
parameters, the model preserves its phantom nature or
could also provide a quintessence scenario. We will review
this subject elsewhere.
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