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We present a new Planck CMB lensing-CMB temperature cross-correlation likelihood that can be used
to constrain cosmology via the integrated Sachs-Wolfe (ISW) effect. CMB lensing is an excellent tracer of
ISW, and we use the latest PR4 Planck data maps and lensing reconstruction to produce the first public
Planck likelihood to constrain this signal. We demonstrate the likelihood by constraining the CMB
background temperature from Planck data alone, where the ISW-lensing cross-correlation is a powerful
way to break the geometric degeneracy, substantially improving constraints from the CMB and lensing
power spectra alone.
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I. INTRODUCTION

The integrated Sachs-Wolfe effect (ISW) [1] describes
how photons pick up a net blue or redshift while propa-
gating through time-varying potentials between last scat-
tering and when we observe them today. In terms of the
Weyl potential Ψ, ISW imprints a temperature perturbation

ΔTðn̂ÞISW ≈ 2

Z
χ�

0

dχ _Ψðχn̂; η0 − χÞ; ð1:1Þ

where a dot denotes conformal time derivative, η0 is the
conformal time today, and the integral is along the line of
sight in direction n̂ between us and last scattering at
comoving distance χ�. In a standard cold matter-dominated
universe, linear gravitational potentials are constant
because there is an exact compensation between decay
due to expansion (the separation between comoving masses
gets larger), and growth of the density perturbations
(density perturbations grow proportional to the scale factor
during matter domination). In the late universe, dark energy
relatively increases the expansion rate, leading to a net
decay in the amplitude of potentials with time, and hence a
net ISWeffect. The ISW is therefore a probe of the late-time
density perturbations, with amplitude that depends on the
dark-energy evolution [2], any modification of gravity
(e.g., [3]), or other beyond flat-ΛCDM perturbation growth
(for example curvature, dark matter interactions, massive
neutrinos, etc. (e.g., [4]).
The CMB lensing potential is correlated to ISW because

the same gravitational potentials cause both effects. This is
dominated by the late-time ISW signal from the dark

energy era, which has significant contributions to distances
about 1=3 of theway to last scattering. The early-ISW signal
from potentials near recombination (due to the radiation
density) is not significantly correlated to the lensing signal
because it is produced very close to the last-scattering
surface. The lensing potential-ISW correlation is therefore
a probe of dark energy.
Unfortunately, the ISW signal cannot be measured

independently as we only have access to the total temper-
ature anisotropies including the sources from recombina-
tion. In practice, the primordial fluctuations dominate in
most cosmologies, so that their cosmic variance acts as an
irreducible source of noise for the temperature-lensing
cross-correlation signal. In principle, this can be improved
slightly by also using polarization to constrain the primor-
dial anisotropies, but even with perfect observations the
total signal remains relatively low. This is because the
signal is limited to large scales; for small-scale perturba-
tions there are many density perturbations along the line of
sight, leading to most of the signal canceling between over
and underdensities. On small scales there can be additional
ISW contributions even in matter domination from non-
linear growth of structure (the Rees-Sciama effect [5]),
however these are very small [6–8], so we focus on the
linear contribution.
The correlation between the lensing potential and

ΔTðn̂ÞISW is very high (≳0.9), potentially making CMB
lensing an excellent probe of the ISW signal. A detection
of the Planck lensing-ISW bispectrum was given in [9],
and using temperature lensing cross-correlation in [10].
The ISW can also be seen in cross-correlation with other
large-scale structure probes, as first detected by Ref. [11]
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(see Ref. [12] for a review of subsequent results). CMB
lensing has the nice property that for a given cosmology the
amplitude and redshift kernel are accurately predicted (no
bias or source redshift uncertainty), and the signal can be
reconstructed over most of the sky. Since the correlation is
so high, CMB lensing also has most of the signal. For the
foreseeable future, Planck observations are the only ones
that can reconstruct lensing over the full sky [13] (hereafter
PL2018), so the Planck lensing map will remain the best
lensing probe of the large-scale ISW cross-correlation for
some time. It is therefore worth trying to get the best
reconstruction, and constructing a likelihood that can be
used in cosmological parameter analysis of extended
models. There has been no previously published Planck
ISW likelihood, so this is a new (if admittedly not very
powerful) Planck product.
Previous Planck ISW cross-correlations results are

extensively discussed in Ref. [12]. Planck lensing-
temperature cross-correlation spectrum results were given
in [10], and recently updated in the PR4 lensing analysis
[14] (hereafter PL4). The PR4 lensing analysis uses more
optimal filtering to improve the lensing signal recovery, and
also uses the new NPIPE (PR4) Planck CMB maps [15]
(which include more data from satellite repointing periods
and improve many parts of the data processing). In this
paper we use lensing maps from PL4 to construct an ISW
likelihood, which we then use to constrain the monopole
CMB temperature independently of the COBE/FIRAS
results [16].

II. MODELING

We aim to construct a likelihood based on the cross-
correlation spectrum estimator ĈϕT

l between lensing
reconstruction and the CMB temperature. For Planck noise
levels, the covariance between the CMB lensing recon-
struction and the CMB spectra is known to be very weak
and can be neglected [17,18]. The main correlations to
consider are therefore between ĈϕT

l and ĈTT
l , and ĈϕT

l and
Ĉϕϕ
l . The CMB polarization E-mode, being correlated to

the primordial temperature, could in principle be used
to increase slightly the signal to noise of ĈϕT

l [19]. The
prospects are however modest (we forecast an improvement
of at best 9%), and would require thorough understanding
of the low polarization multipoles, where foregrounds and
systematics are certainly more worrisome than in temper-
ature. For these reasons we do not consider this possibility
in this work. For simplicity of use, we create difference
likelihoods containing the additional ISW information, so
that the new likelihoods can simply be combined with the
standard full-resolution Planck likelihoods. We first con-
struct a joint fĈTT

l ; ĈϕT
l ; Ĉϕϕ

l g likelihood at low multipoles
(2 ≤ l ≤ 100). We model the contribution to the likelihood
as a Gaussian ∝ e−

1
2
χ2 with fixed covariance and discard

the constant determinant normalization [20]. We write then

χ2 ≡ χ2ðĈTT
l ; ĈϕT

l Þ − χ2ðĈTT
l Þ ðfor lensing-ISW onlyÞ

ð2:1Þ

for combination with the Planck TT likelihood. For
combination with both the Planck TT and lensing like-
lihoods we instead have

χ2 ≡ χ2ðĈTT
l ; ĈϕT

l ; Ĉϕϕ
l Þ − χ2ðĈTT

l Þ − χ2ðĈϕϕ
l Þ: ð2:2Þ

One can motivate these equations as follows: within our
joint-likelihood model, − 1

2
χ2 of Eqs. (2.1) and (2.2) are the

conditional probabilities lnpðĈϕT
l jĈTT

l Þ and lnpðĈϕT
l jĈTT

l ;
Ĉϕϕ
l Þ respectively. According to Bayes’ theorem, their

combination with the official Planck likelihoods then gives
the joint result including the new cross-correlation measure-
ment. Although we assume Gaussianity for constructing the
ISW-difference likelihood, the combination with full Planck
low-l likelihood accounts more accurately for the non-
Gaussianity of the CMB TT spectrum at low multipoles. To
build our likelihoodswe use the lensing reconstructionmaps,
aswell asWiener-filteredCMBmaps that are obtained by the
lensing reconstruction pipeline as input to the lensing map
estimators. If the instrument noise and CMB are close to
Gaussian with accurately-known spectra, the spectrum of the
Wiener-filtered map is a sufficient statistic for the CMB
likelihood. The noise and foreground model are not accurate
in practice, however the temperature noise is very small on
the largest scales, and foregrounds can be cleaned, so we
ignore these differences. Using a fixed fiducial CTT;fid

l
spectrum for the filtering may be slightly suboptimal, but
this resulting ‘quadratic maximum likelihood’ (QML) esti-
mator [21] can still be used to construct an unbiasedGaussian
likelihood.
In Sec. II A we first discuss the construction of the ĈTT

l

and ĈϕT
l data vectors and the modeling of their predictions.

Their variances and covariances (also to Ĉϕϕ
l ) are discussed

in Sec. II B. Plots of the relevant covariance matrices
are relegated to the end of the paper. We do not discuss
the Ĉϕϕ

l data vector, which is exactly the same as in PL4; it
is built using the most precise, inhomogeneously-filtered,
κ-filtered [22] lensing maps. For simplicity of the model-
ing, when building ĈϕT

l we instead use the PL4 lensing
maps built with the 2018 Planck lensing pipeline, which
uses homogeneous noise filtering at a slight cost in signal
to noise. We use the minimum variance (MV) quadratic
estimator (QE) reconstructions, that combine the temper-
ature and polarization QEs in a way that is approximately
optimal. Our new ĈϕT

l data points can be seen on the lowest
panel of Fig. 1, and formally give a 4σ detection of a
nonzero signal consistent with our fiducial Planck FFP101

1https://github.com/carronj/plancklens/blob/master/plancklens/
data/cls/FFP10_wdipole_params.ini.
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cosmology (shown as the black solid line). Figure 2 shows
how the signal in each bin depends on redshift.

A. Data vectors

The public Planck temperature-based likelihoods at 2 ≤
l ≤ 29 are built differently from those at higher multipoles,
and on different sky areas. A large fraction of the signal to
noise on ĈϕT

l comes from this low-l range, but some part of
signal extends at higher multipoles (about 50% of the SN is
located below l ¼ 10, and 5% above l ¼ 75). In order
to model more accurately the covariances with ĈTT

l , we
use two temperature maps to build our bandpowers. For
2 ≤ l ≤ 29, we use temperature maps built on the same
mask as the low-l Planck TT likelihood, with fsky ∼ 86%.
Above l ¼ 30, we construct all bandpowers on the Planck
PR4 lensing mask, which covers 67% of the sky (the lensing
masksdiffer to a veryminimal extent between thePL3orPL4
analyses). In this latter case, we neglect the slight differences
in sky area and methodology used for the high-lTT like-
lihoods (described below). The differences are expected to be
small, with the TT signal to noise on the range 30 ≤ l ≤ 100
matching to percent level that of the PR4 high-lTT that
we use (67.8 compared to 68.9). In any case, our TT-
bandpowers only serve tomodel the small covariance to ĈϕT

l ,
which is at most 0.1 for l ≥ 30. The approximations we
make on the higher multipole range are therefore not critical
(in fact, none of this l range has any impact on the results
on the internal constraint on the CMB temperature shown
in this paper). On the low multipole range, our construction
of the TT likelihood matches the public likelihood very well
(at least for our usage later on, as can be seen from the black
lines in Fig. 3). On the entire multipole range, the lensing
maps are built on the lensing mask.
The first step of our analysis pipeline is to build Wiener-

filtered CMB maps (TWF
lm , E

WF
lm , B

WF
lm ). These maps are used

for the construction of the lensing map and spectrum, and

FIG. 2. Per redshift contribution to CϕTISW
l within ΛCDM, for

the amplitudes bins shown in the legend.

FIG. 1. Change of the CMB temperature and lensing spectra
along themain degeneracy line defined by constantωb=T3

0,ωc=T3
0,

AsT
ns−1
0 and θ⋆ and ns, for varying background CMB temperature

T0 around TFIRAS. Solid (dashed) lines show positive (negative) T0

increments. The impact on the ISW-lensing CϕT
l is much larger in

relative terms than on the lensing spectrum. ForPlanck noise levels,
this results in the lensing and ISW-lensing spectra having almost
equivalent constraining power on T0 when considered independ-
ently, despite the much more precise measurement of the former.
The blue and orange solid lines are obtained using CMB temper-
ature values close to the PR3 and PR4 CMB TT spectra best-fits.
The two lower panels also show the lensing and lensing-ISW PR4
data points used in this work. On the first two panels DTT

l is
lðlþ 1ÞCTT

l =2π. The relative constraining power of these effects
on the spectra can be seen in Fig. 3.

PLANCK INTEGRATED SACHS-WOLFE-LENSING LIKELIHOOD … PHYS. REV. D 106, 103507 (2022)

103507-3



the filtered temperature is also directly used for the ISW-
lensing cross-correlation with the large-scale lensing map,
and to build the covariance to the TT auto-spectrum. On
PR3 data we use the official foreground-cleaned SMICA
maps, and for PR4 data the same SMICA maps that
were built for PL4, to which we refer for details on their
construction. The same Wiener-filtering procedure is
applied to PL3 and PL4, using conjugate gradient descent.
In the case of temperature-only, and using the notation of
those papers, the equation to be solved is

TWF ¼ CTT;fidT †Cov−1Tdat: ð2:3Þ

The fiducial covariance model Cov always uses a fiducial
transfer function model T built out of an isotropic beam
of 50 together with the pixel window function, and an
homogeneous noise level of 32 μK-amin across the
unmasked area, with the exception of the maps used to
construct Ĉϕϕ

l which are built as described in PL4 and
account for noise inhomogeneity.

1. TT data

From the TWF
lm filtered maps, we first build fiducial

amplitude estimates. Using the available FFP10 noise-only
simulations of our foreground-cleaned maps (for PR4,
these also include large-scale foregrounds residuals), we
estimate a noise contribution N̂l to the auto-spectrum of the
filtered data map by filtering them and averaging their
spectra, and then build

ÂTT
l CTT;fid

l ≡
�

1

fTTl ð2lþ 1Þ
Xl
m¼−l

jTWF
lm j2

�
−
N̂WF

l

fTTl
: ð2:4Þ

The factor fTTL applies a preliminary crude isotropic
normalization, accounting for masking and the Wiener
filter,

fTTl ≡ fsky

�
CTT;fid
l

CTT;fid
l þ NTT;fid

l

�2

: ð2:5Þ

In this equation NTT;fid
l is the white noise prediction of our

fiducial covariance model. Both N̂WF and NTT;fid are tiny
corrections and largely irrelevant on all scales considered
for the cross-correlation to the lensing. The amplitude
estimator ÂTT

l is close to unbiased, matching expectation
across simulations to about 5% on most scales and up to
15% on the very smallest multipoles. This mismatch is
caused by the residual mode-coupling still present after
Wiener filtering. We define the response matrix RTT

llsky to
the true CMB spectrum CTT

lsky
as

hÂTT
l i ¼

X
lsky

RTT
llsky

 
CTT
lsky

CTT;fid
lsky

!
: ð2:6Þ

We get the response matrix as follows: Let F
lskymsky

lm be the
matrix representation of the linear Wiener-filtering oper-
ation, connecting the Wiener-filtered CMB Tlm mode to
the sky mode Tlskymsky

. In terms of the fiducial covariance
matrix model of Eq. (2.3), F may be written

F≡ CTT;fidT †Cov−1T : ð2:7Þ

From its definition, Eq. (2.6), together with Eq. (2.4), the
response matrix is directly proportional to

RTT
llsky ∝

X
m;msky

���Flsky;msky

lm

���2: ð2:8Þ

For all purposes in this paper, l is at most 100, and the
coupling extends only across a small range of multipoles.
For these reasons the matrix F remains small enough that it
can be explicitly calculated via brute force calculation:
Wiener-filtering an input map with a single nonzero
ðlsky; mskyÞ mode directly gives the corresponding entire
matrix row. There are ðlmax þ 1Þ2 modes up to multipole
lmax. The entire matrix can thus be obtained by filtering
ðlmax þ Δlþ 1Þ2 maps, where Δl is a buffer accounting
for the couplings to modes smaller than lmax. Since all
modes are degree scale or larger, for this we can use a
degraded version of the filter working at a coarser pixel
resolution than the 1.7’ of the native Planckmaps. We used
four times larger pixels and a very generous Δl ¼ 100.
The unbinned coupling matrix is shown in Fig. 4. Due to the
approximate symmetry of the mask with respect to the
galactic equator, the nondiagonal elements of RTT are most
prominent for jl − lskyj ¼ 2, but always very small. On the
Planck lensing mask, we see almost constant couplings
of size 9%, 3%, and 0.2% relative to the diagonal for
jl − lskyj ¼ 2, 4, and 1 respectively. On the larger sky area
used below l < 30, the matrix is almost perfectly diagonal.
We use RTT not to undo the couplings in our amplitude

estimates (which would require inverting the matrix), but
rather to correct the prediction of the amplitude; this choice
does not affect the information content of the spectrum
likelihood. On the FFP10 simulation suite, the estimates are
then biased at most by a tenth of an error bar.

2. ϕT data

Similarly, from the filtered temperature multipoles and
lensing reconstruction estimator ϕ̂lm we first build fiducial
amplitudes
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ÂϕT
l CϕT;fid

l ≡ 1

fϕTl ð2lþ 1Þ
Xl
m¼−l

ϕ̂lmT
WF;†
lm ; ð2:9Þ

with

fϕTl ≡ fsky

�
CTT;fid
l

CTT;fid
l þ NTT;fid

l

�
: ð2:10Þ

Compared to the TT case, it might appear less natural to use
an amplitude defined with respect to a fiducial CϕT;fid

l here,
which can be zero in some models. However, the fiducial
spectrum, as well as any prefactor like fϕTl , cancels out in
the Gaussian likelihood and hence does not affect final
results. Since we only consider large scales, the temperature
field entering the cross-correlation has negligible lensing
contribution and can be treated as unlensed. The correlation
with the lensing quadratic estimator is therefore completely

dominated by contractions proportional to CϕT
l and the

lensing response functions are chosen to make the cross-
correlation estimator nonperturbatively unbiased on the full
sky [24]. We may therefore write the general estimator
response as

hÂϕT
l i ¼

X
lsky

RϕT
llsky

 
CϕT
lsky

CϕT;fid
lsky

!
; ð2:11Þ

for some matrix RϕT . In contrast to RTT , RϕT now has a
dependence on the cosmological model (though only
weakly so) through the lensing QE estimator response.
We account for this in our likelihood in a way described
further below. We first obtain an unbinned matrix RϕT in
the fiducial cosmological model in the following manner.
We produce CMB-only simulations in pairs, where

the members of each pair share the same unlensed T
and E maps. The lensing potentials deflecting these
unlensed CMB are also very similar, with the difference
that the first pair member has the expected (small) cross-
correlations CϕT

l and CϕE
l , while for the second they have

been set to zero. We then perform the Planck MV QE
reconstruction on both maps, resulting in ϕ̂w:ISW and ϕ̂n:ISW

respectively, and obtain an estimate of the response matrix
through the cross-spectra

ˆRϕT
llsky ∝

X
m;msky

ðϕ̂w:ISW
lm − ϕ̂n:ISW

lm ÞFlskymsky

lm Tunl
lskymsky

; ð2:12Þ

where Tunl is the unlensed temperature of the pair, and F
the dense filtering matrix calculated in the previous sub-
section [see Eq. (2.3)]. Using this QE difference greatly
reduces the Monte Carlo noise of this estimate, by cancel-
ing to a very high degree the lensing reconstruction noise as
well as the mean-field of the signal-carrying ϕ̂w:ISW, and
provides good estimates of all of the matrix entries. As for
ÂTT , we use this matrix to forward-model the couplings in
our amplitude predictions.
It is well known that in addition to the main dependency

on the lensing spectrum, the lensing QE gets an additional
model dependence through its normalization: on an iso-
tropic sky, we may write the QE signal part to good
accuracy as

ϕ̂lm ∝
RlðθÞ
RlðθfidÞ

ϕlm; ð2:13Þ

where RðθfidÞ is the (arbitrary) normalization that was
applied to the estimate, and RðθÞ the true sky lensing
response. This is almost always a very small effect, since
the CMB spectra are known empirically to a very high
accuracy already, leaving little wiggle room for significant
variations in the response in most models. The dependency

FIG. 3. Illustration of the relative constraining power of differ-
ent parts of Planck data on the H0-T0 degeneracy (see also
Fig. 1). The curves are obtained by evaluating likelihoods in the
toy one-parameter model defined by constants ωb=T3

0, ωc=T3
0,

AsT
ns−1
0 and θ⋆ (as well as fixed ns and τ), which captures well

the qualitative behavior of the full ΛCDMþ T0 results (see
Figs. 8 and 9). The black curve (Planck low-lTT) captures the
large-scale ISWeffect. The high-l CMB constraints (comparable
to that of the low-l) come from the differential lensing smoothing
effect, and differ somewhat significantly between PR4 (blue) and
PR3 (dashed blue), owing to the larger sky area used for the PR4
CamSpec likelihood compared to the PR3 Plik likelihood. The
orange curve is obtained with the PR4 lensing power spectrum
alone. The green curve shows the constraint from the lensing-
ISW data alone, and is new to this work. The black dashed and
dot-dashed (‘HL’, Ref. [23]) lines are approximations to the
Planck low-lTT likelihood that we build and use to take into
account the covariance of the ϕT and TT spectra as discussed in
the main text. The centre of the approximately flat region of these
posteriors corresponds to ΩΛ changing sign and becoming
increasingly negative at high CMB temperature. In the full
ΛCDMþ T0 parameter space, additional degeneracies slightly
reduce the statistical power of the lensing spectrum.
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enters exclusively through the CMB spectra, and is linear in
them. We include it in our likelihood by precomputing the
matrices d lnRl=d lnCXY

l0 forXY ∈ ðTT; TE; EEÞ, allowing
us to recalculate quickly the isotropic response for each point
in a Monte Carlo Markov Chain (MCMC) parameter space.
We then rescale the prediction by the response ratio of
Eq. (2.13). In doing so we neglect the mask-induced
couplings for the purpose of the parameter dependence,
which is perfectly adequate since the couplings are them-
selves a few percent level correction already.

B. Covariances

In this section we describe how we build the various
covariance matrix blocks. We build these blocks in the
same way, but using temperature maps built on two
different masks for 2 ≤ l ≤ 29 and 30 ≤ l ≤ 100, respec-
tively. Selected unbinned covariances matrices are shown
in Figs. 5–7. As discussed at the beginning of this section,
the covariance between Ĉϕϕ

l and ĈTT
l can be neglected and

is not discussed here.

1. TT-TT covariance

In addition to the empirical covariance of the spectra
from simulations, we also built a couple of improved
estimates to the covariance, showing that, for all practical
purpose, the nonidealities of the CMB maps (apart of
masking) and the noise contribution can be safely
neglected. The dense filtering matrix F of Sec. II A 1, in
conjunction with the input CMBs, allows us to test for the
importance of nonidealities in the CMB and noise FFP10
simulations. To do this, we improve the convergence rate

of the empirical covariance by subtracting a covariance
estimate built from the input CMBs and the dense filtering
matrix, and adding the exact analytic mean of this estimate.
This subtracts most of the ideal-CMB realization-dependent
variance, giving off-diagonal coefficients that are smaller by
about a factor of 10 or so. The resulting covariance matrix
accelerated in this way shows no significant feature at all,
except for the expected mode coupling. Our prediction of
the covariance from the densematrix seems to be an excellent
fit to the empirical matrix, and is used for our covariance in
what follows.

2. ϕT-TT covariance

Since the large-scale temperature modes are effectively
unlensed, and that the lensing map is built from high
multipoles only, the expected covariance only comes from
the mode-coupled disconnected Gaussian signal propor-
tional to the product of ϕT and TT sky spectra. The cross-
correlation of lensing to temperature sharply decays with
multipole as the ISW signal decays, so this covariance
should only be relevant on the very largest scales. To get a
more precise unbinned estimate of this Gaussian covariance
than just the naive empirical covariance, we may proceed as
follows: According to Wick’s theorem, the Gaussian part
consists of the product of the two pairs (neglecting scaling
factors and constants for simplicity)

Cov½ÂϕTÂTT �l1l2 ∝
X
m1;m2

hϕ̂l1m1
TWF;†
l2m2

ihTWF
l1m1

TWF;†
l2m2

i: ð2:14Þ

The pairing of large-scale temperatures on the right-hand
side contains so little noise that we can use an analytic

FIG. 4. Left panel: Unbinned Wiener-filtered temperature spectrum fiducial amplitude coupling matrix [see Eq. (2.6)], for the
multipole ranges 2 ≤ lobs ≤ 99 and 2 ≤ lsky ≤ 120 (by construction our filtering has vanishing response to the CMB dipole), obtained
as described in the main text. For l < 30, results are built on a larger sky fraction (86%), resulting in almost perfectly diagonal responses
and covariances. For plotting the matrix is rescaled by its diagonal elements (of order unity, shown in the inset), as for a cross-correlation
matrix. Right panel: Same for the ϕT spectrum amplitude estimates, defined in Eq. (2.11), where some residual Monte Carlo noise
remains visible.
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formula for it, assuming the noise model in the filter
matches that of the data. Under this assumption, and
defining the matrix K as

Kl2m2

l1m1
≡ hTWF

l1m1
TWF;†
l2m2

i; ð2:15Þ
we then have

K ¼ CTT;fidT †Cov−1T CTT;fid ¼ FCTT;fid: ð2:16Þ

The matrix K can computed by brute force from F, defined
in Eq. (2.7). Hence, we may write

Cov½ÂϕTÂTT �l1l2 ∝
X
m1;m2

hϕ̂l1m1
Kl2m2

l1m1
TWF;†
l2m2

i: ð2:17Þ

For a single Monte Carlo simulation, and each l1, l2,
Eq. (2.17) is now in the form of matrix-vector multi-
plications, which can easily be performed. Such an estimate
will contain little Monte Carlo noise. Figure 6 shows
the empirical covariance estimate using the 480 FFP10
simulations, and our Gaussian covariance estimate, which
seems be a perfectly adequate model.

3. ϕT-ϕT covariance

Here, we also we assume the disconnected contractions
provide a good model. There are two such terms, one
proportional the product of the T̂ T̂ and ϕ̂ ϕ̂ autospectra,
and the other the square of ϕ̂ T̂,

Cov½ÂϕTÂϕT �l1l2 ∝
X
m1m2

hϕ̂l1m1
ϕ̂†
l2m2

ihTWF;†
l1m1

TWF
l2m2

i

þ
X
m1m2

hϕ̂l1m1
TWF;†
l2m2

ihTWF
l1m1

ϕ̂†
l2m2

i:

ð2:18Þ

The first term strongly dominates almost everywhere. To
isolate the contributions, we proceed as follows: For the
first term in Eq. (2.18) we use the form

Cov½ÂϕTÂϕT �l1l2 ∋ hϕ̂l1m1
Kl2m2

l1m1
ϕ̂†
l2m2

i; ð2:19Þ

similar to Eq. (2.17), where we average over lensing
estimates from the FFP10 simulations. To obtain the second
contribution, we use the ISW-paired noise-free CMB
simulations of Sec. II A 2 to build

Cov½dÂϕT
l1
dÂϕT

l2
� − hδϕ̂l1m1

Kl2m2

l1m1
δ̂ϕ̂†

l2m2
i; ð2:20Þ

with δϕ̂≡ ϕ̂w:ISW
lm − ϕ̂n:ISW

lm and (we are suppressing through-
out ð2lþ 1Þ and other prefactors to avoid cluttering)

dÂϕT
l ¼

X
m

TWF
lm δϕ̂

†
lm: ð2:21Þ

This term is at most a percent-level correction to that in
Eq. (2.19) on the lowest multipoles, and could have been
safely ignored. The error bars for ÂϕT

l calculated in this way

FIG. 5. Unbinned cross-correlation matrices for our unbinned TT (left panel) and ϕT (right panel) spectrum amplitude estimates, on
the multipole range 2 ≤ l ≤ 99, built on the lensing mask of fsky ¼ 67%. In each panel, the upper triangle shows the raw empirical
covariance matrices obtained from the FFP10 simulation suite, and the lower triangle our refined model as described in the main text.
The insets show the square root of the diagonal of the corresponding covariance matrices (solid lines, blue for the FFP10 empirical
variances and orange for our model), together with the Δl ¼ 2 diagonal of the cross-correlation matrix, which is the most relevant offset
diagonal owing to the approximate symmetry of the Planck lensing mask with respect to the galactic equator.
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accurately match the empirical errors from the FFP10
simulation suite, as shown in Fig. 5 (right panel).

4. ϕT-ϕϕ covariance

Due to the separation of scales between the modes used
for lensing and for TWF, the covariance of ÂϕT with Âϕϕ is
expected to come from the ISW signal itself. The
Gaussian isotropic approximation predicts a positive
cross-correlation of size ∼0.3 at the quadrupole down
to a percent level for l ∼ 100. To obtain a good unbinned
covariance model from the FFP10 simulations, we reduce
primordial CMB variance by estimating the covariance
using the covariance of ÂϕTISW

, where

TISW
lm ¼ CϕT

l

Cϕϕ
l

ϕlm ð2:22Þ

is the input ISW-signal part of the simulated temperature
map. We use our dense filtering matrix for this purpose.
The resulting covariance matrix has much lower
Monte Carlo noise and appears almost diagonal, as can
be seen in Fig. 7.

III. CONSTRAINTS ON T0

The background CMB temperature today, T0, is usually
fixed in cosmological analyses because it has been mea-
sured with tight error bars by the FIRAS instrument,
achieving T0 ¼ ð2.7255� 0.0006Þ K [25] when combined
with WMAP data. This measurement uncertainty is suffi-
ciently small that for current data marginalizing over it

affects parameter constraints at a negligible level. The
FIRAS measurement remains the only measurement of T0

at this precision, though there are previous measurements
of comparable precision [26]. Subsequent observations
have calibrated using the FIRAS result, so Planckmeasures
ΔT=T and then scales the results to be reported in units of
TFIRAS ≡ 2.7255 K without giving any direct temperature
measurement. It is therefore interesting to consider what
happens if we do not impose the T0 constraint, and we now
describe how our new ISW likelihood can be used to
constrain the CMB temperature independently.
In a homogeneous and isotropic cosmology, the CMB

temperature scales T ∝ 1=a, where a is the scale factor,
and so will appear different to observers at different times.
The CMB temperature T0 can then be thought of as
parameterizing when we are in this cosmology. Clearly a
range of temperatures are consistent with exactly the same
underlying evolution, just with different measured values of
the Hubble parameter and a different scale factor at the time
of observation. Since recombination happens at a fixed
known temperature, the comoving angular diameter dis-
tance to last scattering also changes, because for lower
observed temperatures the CMB is more distant. This
means that observers at different times will see identical
CMB acoustic peak structures, but the angular scale will be
shifted to smaller scales at later times.
Within the framework of ΛCDM cosmologies, models

related by differing values of the cosmological constant
have the same early-universe physics, but different dis-
tance-redshift relations, so a shift in angular scale can also
be compensated by a change in the cosmological constant
while keeping nearly identical early universe physics.

FIG. 6. Unbinned cross-correlation matrix of the TT-ϕT amplitude estimates on the multipole range 2 ≤ lϕT , lTT ≤ 99, built on the
lensing mask of fsky ¼ 67%, as seen empirically on the FFP10 simulations (left panel) and for our refined model (right panel). The color
scales are not identical. The inset show the diagonal elements for both cases (blue and orange respectively).
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From observations of the linear CMB, there is therefore a
very near parameter degeneracy between T0 and ΩΛ (and
henceH0, the ‘geometric degeneracy’). This is illustrated in
Fig. 1, and discussed further in Refs. [27–29]. The acoustic
peak structure of the linear CMB power spectrum therefore
gives almost no information about the CMB temperature.

This geometric degeneracy is broken on the small-scale
anisotropies by CMB lensing, though only weakly. It is
also broken to a comparable degree by the effect of the
ISW signal on the large-scale temperature, which changes
significantly with the change in cosmological constant
required to keep the angular acoustic scale fixed as the

FIG. 8. Left panel: Posteriors onH0 and T0 using Planck PR4 data in our ΛCDMþ T0 MCMC chains, with and without the inclusion
of the lensing and lensing-ISW data. Dark blue shows the fixed-temperature ΛCDM results, including CMB and lensing data, for
comparison. See Table I for summary statistics and Fig. 9 for the full parameter set constraints. Right panel: Same for the PR3 data, with
a somewhat different CMB-only constraint due to its greater preference for more lensing smoothing in the temperature spectrum.

FIG. 7. Unbinned cross-correlation matrix of the Tϕ-ϕϕ amplitude estimates, on the multipole range 2 ≤ lϕT , lϕϕ ≤ 99, built on the
lensing mask of fsky ¼ 67%, as seen empirically on the FFP10 simulations (left panel) and for our refined model (right panel) described
in the text. The inset show the diagonal elements for both cases (blue and orange respectively).
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CMB temperature varies. The CMB temperature therefore
shows up as a strong dependency of the lensing-ISW cross-
correlation spectrum, as shown in Fig. 1. The different
mapping between redshift and time also affects the reio-
nization signal, though for Planck this effect cannot be
separately distinguished without knowing the true redshift
evolution of reionization. Here we focus on the large-scale
ISW signal, and see whether our new likelihood can

constrain the CMB temperature without using any non
Planck data.
We assume a base ΛCDM cosmology and follow

the notation, assumptions and priors of Ref. [30]. We use
camb2 [31] to compute the theoretical power spectra and

FIG. 9. 68% pairwise confidence regions and marginal posteriors on the 7-parameters ΛCDMþ T0 model for the Planck PR4
(NPIPE) data, for CMB-only (green), CMBþ lensing (grey), CMBþ ISW-lensing (red), or all in combination (blue). Dark blue shows
the PR4 ΛCDM only (CMB and lensing) results, where the CMB temperature is fixed to the FIRAS value. Fig. 8 reproduces the T0-H0

subspace results and in comparison to PR3.

2https://camb.info.
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COBAYA
3 [32] to sample cosmological parameters with

MCMC. Both these codes self-consistently handle varying
the true CMB background temperature while allowing data
constraints to be fixed in units of the FIRAS CMB temper-
ature TFIRAS. In camb we use the Recfast recombination
model [33,34], generalized in camb 1.3.6 to scale consis-
tentlywithCMB temperature.Weuse thePlanckPR4NPIPE
TTTEEE CMB likelihood of Ref. [35], together with the

Planck 2018 (PR3) low-l temperature and EE polarization
likelihoods [30]. The EE likelihood mainly constrains the
optical depth, with little dependence on the exact shape of
the reionization history producing the polarization signal,
and hence in itself does not help to break the T0 degeneracy.
For comparison we also show results using the official
PR3 Planck TTTEEE PLIK likelihood (which uses less sky
area than Ref. [35], as well as different foreground and
other modeling).
We sample ωb=T3

0, ωc=T̄3
0, AsT̄

ns−1
0 (with T̄0 ≡ T0=

TFIRAS and ωx ≡Ωxh2), together with ns, θ⋆, T0, and obtain

FIG. 10. Same as Fig. 9 for the Planck 2018 PR3 data.

3https://github.com/CobayaSampler/cobaya/.
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H0 as derived parameter. In this parameter space we do not
constrainΩΛ to be positive, in contrast to Ref. [28]. Figure 8
shows the relevant H0-T0 subspace results, and Figs. 9
and 10 the constraints on the full parameter space. We obtain
chains using the CMB spectra-only likelihood, and with
lensing and lensing-ISW alone and in combination, as well
as one reference PR4 and PR3 ΛCDM Planck chain where
T0 is fixed to the FIRAS value. For the reasons explained
above, none of theΛCDM early universe physical parameter
constraints change significantly compared to that reference
case, butH0 becomes largely unconstrained. The PR4 CMB-
spectra prefer a lower H0, and, as visible in Fig. 8, and the
PR3 spectra an even lower value. This is due to the well-
known shape of the residuals of the high-lTT Planck
spectrum, preferring a higher level of lensing-like peak
smoothing in ΛCDM [[30], Fig. 24], which is also achiev-
able with a higher CMB temperature in ΛCDMþ T0

(second panel of Fig. 1). High CMB temperatures can
remain acceptable to the low-lTT data, and (to a smaller
extent) to the lensing auto-spectrum data, but eventually give
a very strongly negative ISW-lensing signal (negative
cosmological constant) that is ruled out by our ĈϕT

l
measurements. For PR3 and PR4, the lensing-ISW data
constraining power outperforms that of the lensing spectrum.
Simple summary statistics are listed in Table I.

Combining all of our spectra, from PR4 data we find the
68% confidence limits

T0 ¼ ð2.86� 0.12Þ K
H0 ¼ ð63.5� 3.4Þ km s−1Mpc−1: ð3:1Þ

These combined constraints are very similar to that coming
from the PR3 release data,

T0 ¼ ð2.89� 0.13Þ K
H0 ¼ ð62.6� 3.8Þ km s−1Mpc−1: ð3:2Þ

A common extension to ΛCDM is allowing for nonzero
curvature ΩK . For this alone the ISW-lensing data does not
add substantial additional information compared to the
lensing spectrum. We noted though that Ref. [36], using the
Planck 2015 likelihoods, and opening both T0 andΩK (and
combining with other data to break the large degeneracies),
found a preference for a hotter and open Universe at high
confidence, and we sought to test this result including ĈϕT

l .
However, irrespective of our ISW-lensing likelihood, we
found that this preference completely disappears after
updating their analysis from 2015 to 2018 PR3 Planck
data. This is because this preference was coupled to a very
large optical depth,4 which is excluded by the much tighter
measurement of τ in the 2018 lowl.EE likelihood compared
to 2015 [since usage of the High Frequency Instrument data
for this purpose was finally possible]. This brings the
preferred temperature and curvature of this analysis in good
agreement with ΛCDM.

IV. CONCLUSIONS

With this paper we provide a new likelihood built from
Planck data that captures the lensing-ISW bispectrum
information, by cross-correlating the Planck lensing maps
to the large-scale temperature. The signal, probing the low-
redshift universe, is weak and detected at 4σ only. Current
lensing spectrum data measurements are about ten times
more precise, so the new cross-spectrum band powers are
not expected to bring much new information in standard
models. Nevertheless, these data points can prove useful in
some extensions of ΛCDM. Here we showed that they can
successfully break the very strong degeneracy between the
Hubble constant and the CMB temperature when con-
strained using CMB spectra alone. With the official 2018
Planck release data (PR3), the ISW-lensing constraint is
almost twice as strong as that from the lensing spectrum.
We also obtained results using the latest (and slightly more
precise) CamSpec CMB likelihood and lensing results
[14,35] (PR4). We found that combining all band powers
gives very similar results for both releases, and consistency
with the standard ΛCDM values. Of course the degeneracy
remains strong, and our new Planck internal joint meas-
urement of the CMB temperature and Hubble constant do
not come close to the precision in ΛCDM with fixed
temperature. Nevertheless, the resulting Hubble constant
best-fit value still lies in tension with local measurements
by Ref. [37] by approximately 3σ, with central value shifted
even further from the local measurement value. In models
where the background evolution changes, external data,
especially baryon acoustic oscillation (BAO) data, can be a
much more powerful way to break the geometric degen-
eracy. However, there may be extended models with
background evolution consistent with BAO that modify

TABLE I. 68% confidence regions on H0 and T0 from Planck
PR3 and PR4 data found in our ΛCDMþ T0 MCMC chains with
and without lensing and lensing-ISW data.

H0½km s−1 Mpc−1� T0½K�
PR3 CMB 40þ7

−10 3.66þ0.35
−0.23

CMBþ Ĉϕϕ
L 53þ8

−6 3.23þ0.22
−0.29

CMBþ ĈϕT
L

61.6� 4.4 2.92� 0.15

CMBþ Ĉϕϕ
L þ ĈϕT

L
62.6� 3.8 2.89� 0.13

CMBþ Ĉϕϕ
L (T0 ¼ TFIRAS) 67.40� 0.53 2.7255

PR4 CMB 49þ10
−9 3.33þ0.32

−0.35
CMBþ Ĉϕϕ

L 59.9þ5.2
−4.0 2.98þ0.14

−0.18

CMBþ ĈϕT
L

62.9� 4.1 2.88� 0.14

CMBþ Ĉϕϕ
L þ ĈϕT

L
63.5� 3.4 2.86� 0.12

CMBþ Ĉϕϕ
L (T0 ¼ TFIRAS) 67.23� 0.49 2.7255

4This was also speculated by the authors of Ref. [36] in private
communication.
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late-time perturbation growth in such a way that the ISW
likelihood still provides useful additional information.

The ISW-lensing likelihood is available in two flavors
at [38], and must be used in combination with the Planck
TT likelihoods in order to properly account for the
covariance between these new data points and the existing
Planck public data.
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