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Based on entropy considerations and the arrow of time Penrose argued that the Universe must have
started in a special initial singularity with vanishing Weyl curvature. This is often interpreted to be at odds
with inflation. Here we argue just the opposite, that Penrose’s persuasions are in fact consistent with
inflation. Using the example of power law inflation, we show that inflation begins with a past null
singularity, where Weyl tensor vanishes when the metric is initially exactly conformally flat. This initial
state precisely obeys Penrose’s conditions. The initial null singularity breaks T-reversal spontaneously and
picks the arrow of time. It can be regulated and interpreted as a creation of a universe from nothing, initially
fitting in a bubble of Planckian size when it materializes. Penrose’s initial conditions are favored by the
initial Oð4Þ symmetry of the bubble, selected by extremality of the regulated Euclidean action. The
predicted observables are marginally in tension with the data, but they can fit if small corrections to power
law inflation kick in during the last 60e-folds.
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I. INTRODUCTION

Complex things which break do not reassemble on their
own. Putting them together takes a toll and this toll is
exacted by the increase of entropy of the system describing
the process of breaking and reassembly. This trend can be
used to define a global arrow of time in the universe, in
contrast to generic microphysical phenomena which
typically respect time reversal.
Penrose has taken this observation a step further [1],

arguing that this phenomenon implies that the universe
originated from a special initial state, characterized by a
singularity in whose vicinity the geometry of the universe is
very well approximated by conformal flatness, with
(almost) vanishing Weyl tensor. This is also often inter-
preted as a problem for inflation (for a range of viewpoints,
see [2–10]). Recall that the idea of inflation [11–13] is to
blow up a universe from an initially small region, whose
initial contents is much smaller than the vast complexity
observed in the universe today. This is regardless of how
the contents is inventoried, naively by counting over the
initial volume, or more consistently by using the initial
apparent horizon size. Either way, the late universe has far
more contents than the early one. The difficulty with this
obvious fact is that something other than inflation seems to
be needed to select this seemingly improbable initial state.
In other words, if the entropy count is used as a measure of

likelihood, it seems to suggest that inflation presupposes an
unlikely initial state.
Curiously, this argument overlooks the simple experi-

ential fact that in many models of inflation the initial state
of inflation is both singular and has an almost conformally
flat geometry, in full accord with the technical aspects of
Penrose’s hypothesis. Indeed, the now-classic Borde-Guth-
Vilenkin theorem asserts that inflationary spacetimes are
past geodesically incomplete [14] (see also [15]), which at
least at the semiclassical gravity level implies that inflation
starts out of a singularity. Moreover, once inflation sets in,1

it quickly dilutes initial deviations from homogeneous and
isotropic Friedman-Robertson-Walker (FRW) metric [16–
25], which being conformally flat has vanishing Weyl
tensor, by symmetry. Thus it seems that at least “mechan-
ically,” if we accept Penrose’s argument that the initial state
is singular and Weyl flat, it is completely consistent to get
inflation to spring forth from it. In some sense, actually, this
state would appear to favor subsequent inflation as the
origin of observed structures, since Weyl flatness favors a
very smooth initial universe and something is requi-
red to break that smoothness spontaneously, instead of
explicitly—precisely what inflation is intended to do.
To make our point, we employ the example of power law

inflation [26–29]. We explain that the inflationary past
ultimately begins with a past null singularity [30,31], for
both spatially flat and spatially open FRW metrics. Since
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1A careful critic would without doubt express a concern right
now that maybe inflation never sets in. We postpone our reply
aimed at dispelling this concern for later in this paper.
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both of these metrics are initially exactly conformally flat,
they have vanishing Weyl tensor. Clearly, the initial null
singularity breaks time-reversal and picks the arrow of
time. Thus both of these metrics, maximally extended into
the past satisfy Penrose’s Weyl curvature hypothesis and
hence describe universes with an arrow of time which
nevertheless inflate. We do not think our examples are
unique. Other examples may also exist, which feature
spacelike instead of null singularities, such as the closed
universe arising from the instantons in the no-boundary
proposal. In fact, when we regulate the null singularity
examples, which we consider in detail below, the regulators
may be spacelike surfaces, which we comment later on.
The point we are trying to make, however, is that regardless
of the specific nature of the singularity, the selection of
the initial state which realizes Penrose’s Weyl curvature
hypothesis might be a consequence of the quantum
completion of inflation, which is anyway necessary, instead
of needing a completely separate mechanism.
The question about what specifically selects the initial

singularity can be addressed using quantum cosmology and
no-boundary proposal. The past null singularity can be
understood in terms of the singular Hawking-Turok instan-
tons [32–36],2 which can be regulated and interpreted as an
expanding nonsingular bubble (for various approaches
see [38–42]). Using this approach gives the reason for
the selection of the initial Weyl-flat state of inflation: it
minimizes the Euclidean action thanks to the Oð4Þ sym-
metry of the configuration and the smallness of the
primordial bubble which seeded the universe [43,44].
The model actually yields predictions close to the current

BICEP/Keck bounds [45], which can be improved with
small corrections3 to the potential during the last 60e-folds.
Alternatively, if the resolution of the H0 tension is Early
Dark Energy (EDE) [46–48], the CMB fits need a slightly
higher scalar spectral index nS ∼ 0.98–0.995 [49–51],
which is readily retrofitted by power law inflation.
Interestingly, for the parameters which are close to the
observationally favored values, the regime of universe self-
reproduction in power law inflation is relegated to the
cutoff physics, and so are superseded by the primordial
bubble. This means, once fixed by the birth of the universe,
the arrow of time remains unaffected by subsequent
dynamics.
A very interesting question is how to interpret the

cosmological perturbations, both scalar and tensor, which
arise during inflation from the entropic point of view. Scalar
perturbations are model dependent, although in all models
of inflation they are an intrinsic ingredient of inflationary
dynamics. Tensor perturbations are however universal,

depending only on the scale of inflation. Both modes
however utilize the same “seed,” which is the uncertainty
principle of quantum fluctuations in the inflationary vac-
uum. In (quasi)-de Sitter geometries this leads to the
spontaneous emergence and growth of anisotropies and
inhomogeneities, which may be viewed as an avatar of de
Sitter instability [52–57]. This instability, from the entropic
point of view, indicates that the pure de Sitter, appearing as
the state with vanishing Weyl curvature, is a special state of
the theory that dynamically evolves into the more generic
states, which include the perturbations. It would be
interesting to test this idea in more detail.

II. POWER LAW INFLATION

Power law inflation is driven by a scalar field with an
exponential potential, with the field rolling off to ϕ ¼ ∞.
The potential is parametrized by [26–29]

VðϕÞ ¼ V0e−cϕ=MPl ; ð1Þ

where ϕ is a canonically normalized scalar field, c is a
numerical constant of order unity, andMPl ∼ 2 × 1018 GeV
is the Planck scale. Clearly, V0 is degenerate with the initial
value of ϕ. Alternatively, the dynamics can also be para-
metrized by an equation of state

p ¼ wρ; ð2Þ

where p and ρ are pressure and energy density, respectively.
In general, for homogeneous solutions the equation of state
parameter w is a function of time until the self-similar
attractor is reached. When c ≪

ffiffiffi
2

p
(which is the require-

ment that the geometry describes an accelerating expan-
sion) a typical configuration will settle into the attractor
fixed point within a few Hubble times, and w → const.
The scalar sources the FRW metric

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

�
: ð3Þ

Here we will be particularly interested in the k ¼ 0;−1
cases, with spatially flat or open hyperbolic slices.
Equations of motion are

3H2 þ 3
k
a2

¼ ρ

M2
Pl

; _ρþ 3Hðρþ PÞ ¼ 0; with

ρ ¼
_ϕ2

2
þ V; p ¼

_ϕ2

2
− V; ð4Þ

where the Hubble parameter is H ¼ _a=a.
To find the attractor, we substitute ρ and p into (2) and

hold w fixed, which gives the first order equation
_ϕ2=2 ¼ 1þw

1−w V. This is easy to solve; after straightforward
algebra, we find the attractor form of ρ (with p ¼ wρ),

2A different method to start the universe with a null singularity
has been proposed in [37].

3We will ignore the specific form of those corrections here, and
work with purely exponential potentials because the causal
structure analysis is considerably simpler.
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ρ ¼ 4

c2
1

1þ w
M2

Pl

t2
: ð5Þ

Next, the conservation equation yields ρ ¼ ρ0ða0=aÞ3ð1þwÞ,
and so comparing with (5) we find a ∼ t

2
3ð1þwÞ. The

Friedmann equation then shows that unless w ¼ −1=3,
the curvature contribution is subleading relative to the
attractor energy density. Neglecting it and substituting ρ
of (5) into it yields, using H ¼ 2

3ð1þwÞt,

1þ w ¼ c2

3
: ð6Þ

Clearly, imposing w → −1 requires jcj ≪ 1. In any case,
the attractor is [26–29] (since 2

3ð1þwÞ ¼ 2
c2, and using

_ϕ2

2
¼ 2

c2
M2

Pl
t2 )

a ¼ a0

�
t
t0

� 2

c2 ; ϕ ¼ ϕ0 þ
2MPl

c
ln

�
t
t0

�
: ð7Þ

Here a0, t0 and ϕ0 are integration constants; a0 is pure
gauge, which we can fix to unity choosing aðt0Þ ¼ 1. The
others satisfy V0e−cϕ0=MPlt20 ¼ 2M2

Plð6 − c2Þ=c4.
This solution applies at late times. At early times, it may

be altered at small t If the universe is spatially curved,
specifically open, with k ¼ −1, and the curvature initially
dominates. In that case, the scale factor changes to
a ¼ t=t0, while the scalar field configuration remains
largely the same.
In either case, it is evident that t → 0 is an initial

singularity. In fact, when w ≤ −1=3, this hypersurface is
null [30,31], as we will review below. Here we merely note
that the requirement of using Einstein’s equations consis-
tently near the singularity imposes a physical cutoff on t0.
Since

M2
PlR ¼ 48M2

Pl

c4t20

�
1 −

c2

4

�
; ð8Þ

requiring that the effective curvature remains below some
cutoff M4

UV imposes

t20 ≳ 48M2
Pl

c4M4
UV

�
1 −

c2

4

�
: ð9Þ

Since MUV ≲MPl=
ffiffiffiffi
N

p
where N is the number of light

field theory species [58,59], and jcj ≪ 1, this implies that
t0 ≫ 1=MPl. We will see that this essentially pushes the
self-reproduction regime of inflation too close to singu-
larity, and cuts it out of the semiclassical regime.
Let us now turn to observables. The scalar and tensor

perturbations spectra evaluated on the attractor are

PS ¼
�
H2

2π _ϕ

�
2

; PT ¼ 8H2

ð2πÞ2M2
Pl

: ð10Þ

Taking t� as the instant when the attractor evolution starts to
dominate, corresponding to the value ϕ�, and introducing
N ¼ lnðaðtÞ=a�Þ as the number of e-folds that transpired
until time t, we find that the field variation is
Δϕ=MPl ¼ cN , and that the scalar power, tensor power,
spectral index nS, and the tensor-scalar ratio during this
epoch are [26–29]

PS ¼ PSðt�Þ
�
k
k�

�
−2c2=ð2−c2Þ

; PT ¼ rPS;

nS ¼ 1 −
2c2

2 − c2
; r ¼ 8c2; ð11Þ

where PSðt�Þ; k� are the Planck normalization values,
PSðt�Þ ≃ 2.1 × 10−9 [60]. These formulas are totally inde-
pendent ofN , which is only determined by the variation of
ϕ in the field space, cN ¼ Δϕ=MPl. Note that as conse-
quence in these models the spectral running vanishes,
α ¼ dnS

d ln k ¼ 0. These examples are a special case of constant
roll inflation [61]. If we normalize the parameters by setting
nS ≃ 0.965 for the CMB anisotropies, we find c ≃ 0.185
and r ≃ 0.274. As it stands, this is in conflict with bounds
on r from BICEP/Keck [45], calibrated to plain vanilla
ΛCDM late universe. However, since the exponential
potential by itself can’t be the whole story, after all needing
corrections to accommodate reheating at the very least [39],
those deviations could fit [45]. Alternatively, if the reso-
lution of theH0 tension forces a modification ofΛCDM, by
for example inclusion of the EDE [46–48], the primordial
scalar spectrum may need to be slightly modified to
compensate for the change in the evolution of fluctuations
[49–51].
For example, if we pick c such that r≲ 0.036, to match

the bounds of [45], we find

c≲ 0.067; nS ≳ 0.995: ð12Þ

To fit the CMB we may need a slightly higher scalar
spectral index nS ∼ 0.98–0.995 [49–51]. This means that
nominally the exponential potentials satisfying (12) might
still be in the game. For those values of c, the power
controlling the attractor expansion rate is 2=c2 ≳ 444.
Further, as noted above, the total variation of ϕ for

N e-folds is

Δϕ ¼ cMPlN ; ð13Þ

which for N ∼ 60 yields Δϕ ≃ 4MPl, in some tension with
the purported swampland bounds [62], but not much. We
will not worry too much about this issue here. We do note,
however, that for these values of parameters, the bound on
the cutoff t0 of Eq. (9) leads to
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t0 ≳ 4
ffiffiffi
3

p

c2

�
MPl

MUV

�
2

M−1
Pl : ð14Þ

At earlier times t < t0, quantum gravity is doing most of
the driving.

III. CAUSAL STRUCTURE

We now turn to the causal structure of the power law
inflation models, following [30,31]. Our particular interest
is in the maximally extended past of the solutions with
k ¼ 0;−1. We already know that the geometries with
power law scale factor are singular at t → 0, but the
question is, what kind of a singularity is that. For simplicity,
we start with k ¼ 0, and extend the scale factor

aðtÞ ¼
�
t
t0

� 2
3ð1þwÞ

; ð15Þ

over the whole real semiaxis ð0;∞Þ. At future infinity, this
scale factor is unbounded; however the curvature goes to
zero and locally the flat space approximation becomes ever
better. To understand the global picture, we look at the
Penrose diagram describing such spacetimes. To obtain it,
we conformally map the solution on a section of the
Einstein static universe, which is a direct product R × S3

with the metric

ds2 ¼ −dτ2 þ dχ2 þ sin2ðχÞdΩ2: ð16Þ

The section of R × S3 which describes power law inflation
is the region bounded by the images of the singularities
and/or past and future causal boundaries.
We find the required conformal map as a composition of

two maps. First we transition to the conformally flat metric
ds2 ¼ ω2ðx̄Þημνdx̄μdx̄ν. In the second step, we map this
metric to the static Einstein. The first map comprises of
changing coordinates by

ð1þ 3wÞ t̄
t0
¼ 3ð1þ wÞ

�
t
t0

� 1þ3w
3ð1þwÞ

;

ωðt̄Þ ¼
�

1þ 3w
3ð1þ wÞ

t̄
t0

� 2
1þ3w

: ð17Þ

When −1 < w < −1=3, the coordinate t̄ is negative and
inversely proportional to t, varying from −∞ to 0 as t
changes from 0 to∞: the t̄-axis has the same orientation as
the t-axis.
The second map is defined by

r
t0
¼ 1

2

�
tan

�
χ þ τ

2

�
þ tan

�
χ − τ

2

��
;

t̄
t0
¼ 1

2

�
tan

�
χ þ τ

2

�
− tan

�
χ − τ

2

��
: ð18Þ

Since r ∈ ½0;∞Þ, t̄ ∈ ð−∞; 0Þ, and χ ∈ ½0; π�, it follows
that τ ∈ ½−π; 0�. Putting together these formulas, the flat
power law inflation metric is

ds2 ¼ C2t20
½cosðχ−τ

2
Þ cosðχþτ

2
Þ� 4

j1þ3wj−2

4sin
4

j1þ3wjðjτjÞ
× ð−dτ2 þ dχ2 þ sin2ðχÞdΩ2Þ; ð19Þ

where C is an Oð1Þ constant, and

j1þ 3wj
6ð1þ wÞ

�
t
t0

� j1þ3wj
3ð1þwÞ ¼

�
tan

�
χ − τ

2

�
− tan

�
χ þ τ

2

��
−1
:

ð20Þ

Using this, we see that the ultimate future of power law
inflation, t → ∞, for any fixed value of r, maps onto
tanðχ−τ

2
Þ ¼ tanðχþτ

2
Þ: i.e., precisely the latitude circle τ ¼ 0

on the cylinder. Because the spacetime ends there, we cut
out the portion of the cylinder R × S2 above it. On the other
hand, the singularity corresponds to the limit t → 0 for any
fixed r. By (18), (20), we see that it maps onto the curve
tanðχ−τ

2
Þ → ∞, which corresponds to τ ¼ χ − π. It is clear

that this is the null semicircle connecting the points ð−π; 0Þ
and ð0; πÞ on the cylinder. Since this hypersurface is the
ultimate singular past of power law inflation, we must
throw out the portion of the cylinder beneath it. Then we
unwrap what remains, and find the causal structure
of Fig. 1.
Each point in Fig. 1 corresponds to an angular S2. The

ultimate past, which realizes the outcome of the Borde-
Guth-Vilenkin theorem [14], is a null singularity. If power
law inflation never ends, the future is a spacelike infinity.
Any observer must have a future horizon, which in their rest
frame is the null inward line ending in the upper left corner

FIG. 1. Causal structure of a spatially flat endless power law
inflation. Depicted are the event horizon, the apparent horizon
RAH and r ¼ const: and t ¼ const: hypersurfaces.
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of the diagram. Any observer would find the universe at any
given finite time to be of finite size, being able to causally
explore only the interior of the diamond bounded by the
horizon and the singularity.
The causal structure analysis so far concerns spatially

flat geometry k ¼ 0. What if the universe is open, k ¼ −1?
As we noted above, in this case, the expansion rate is set by
a competition between spatial curvature and the exponen-
tial potential. At late times, the potential wins because of
the attractor behavior. However, early on the curvature can
be dominant. When that happens, the scale factor is a linear
function of the comoving time, a ¼ t=t0. In this limit the
metric is

ds2 ¼ −dt2 þ
�
t
t0

�
2
�

dr2

1þ r2
þ r2dΩ2

�
: ð21Þ

At first glance one might think the metric is locally just a
Milne wedge of the flat Minkowski in an accelerated
reference frame. However, thanks to t0 this is not so: there
is a real curvature singularity at t → 0. The singularity is
again null, as we can see by mapping the slice of the
spacetime near t ¼ 0 onto the static Einstein universe. In
this case the analog of Eq. (17) is

t̄ ¼ t0 lnðt=t0Þ þ…; ωðt̄Þ ¼ e
t̄
t0 þ…: ð22Þ

and so

lnðt=t0Þ þ… ¼ 1

2

�
tan

�
χ þ τ

2

�
− tan

�
χ − τ

2

��
: ð23Þ

The ellipses denote the subleading terms when t → 0.
Hence the singularity again maps on the past null semi-
circle τ ¼ χ − π.
At larger values of t this geometry changes into the

attractor-controlled section, where the curvature is locally
negligible. If power law inflation lasts forever, the Penrose
diagram is very similar to Fig 1, except for the local
differences near the null singularity, as depicted in Fig 2.
Clearly, both of these cases are reminiscent of the

spatially flat charts of de Sitter, with the exception that
the past horizon is replaced by a null singularity.
Nevertheless as long as the metrics are purely FRW—
isotropic and homogeneous—Weyl tensor vanishes there.
Unlike in de Sitter the future horizon is not at constant
spatial separation from the observer, but grows according to
(w < −1=3)

LH ¼ aðtÞ
Z

∞

t

dt0

aðt0Þ ¼
3ð1þ wÞ
j1þ 3wj t; ð24Þ

which shows that the volume of any spacelike hypersurface
inside the causal diamond grows extremely large. Yet the
volume outside grows even larger [30,31].

The cosmic inventory, as tallied by a single observer who
receives the signals from their past, can be accounted for by
the capacity of the holographic screen, which is bounded by
the area of the apparent horizon [63–65]. The apparent
horizon RAH is a boundary of the normal region of space,
which colloquially we may think of the largest region that
behaves as a locally Minkowski space. Specifically, it is the
largest region inside which the beams of all outward
geodesics, future or past oriented, spread out. On the
apparent horizon, at least one class refocuses. This means,
the apparent horizon behaves like a lens. In our case, the
exterior of the apparent horizon in all our examples is an
antitrapped region, meaning that all past oriented null
geodesics outside of the apparent horizon, inward or
outward bound, are converging. This is because of the
null singularity in the past.
To find the location of the apparent horizon, recall that it

is the hypersurface where at least one family of null lines
has vanishing expansion. If we consider a sphere of radius
ar with area A ∼ a2ðtÞr2, along the radial null geodesics
dt ¼ �aðtÞdr, the gradient of A is A0 ∼ a0rþ ar0 where the
prime denotes the derivative with respect to the affine
parameter of the null line. The extremum yields the
comoving size of the apparent horizon to be r ¼ 1= _aðtÞ,
and so the proper apparent horizon size is4

RAH ¼ 1

H
¼ 3ð1þ wÞ

2
t: ð25Þ

Clearly, since RAH=LH ¼ j1þ 3wj=2 < 1 for
−1 < w < −1=3, RAH is always inside the future horizon.

FIG. 2. Causal structure of a spatially open power law inflation.
It is an amalgam of the past k ¼ −1 regime and a future power
law attractor, matched together at a time ∼t̂ (which in reality is a
slab of world volume few Hubble times thick).

4In truth,RAH ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k=a2

p
, but we neglect the curvature

term assuming the attractor to be a long stage. In the regime where
the curvature term dominates over the scalar the variation ofRAH is
slower than linear, but it still goes to zero on the singularity.
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On the diagram of Fig. 1, it is the arc RAH between the
lower left corner and the upper left corner.
Given the discussion above, it should be obvious that to

get a realistic cosmology out of power law inflation, we
need to end inflation and reheat the universe. We also need
to perturb the reheating surface with the scalar and,
unavoidably, tensor fluctuations which we discussed in
the previous section. Under those conditions, it is easy to
see that the causal structure of such a universe is repre-
sented by the Penrose diagram of Fig. 3. There we allow for
the possibility that very early on the universe is open and
curvature dominated, then transitions to the attractor
regime, which ends globally with reheating. The reheating
surface will be smooth only down to one part in 10 000, due
to the inflationary fluctuations. As we discussed in the
preceding section, the dynamics can match the observa-
tions, with some tweaks.
It is interesting to get an idea of the complexity of this

universe at its various stages. We pick an observer and let
them count what they see, from the comfort of their rest
frame. They do so by collecting the photons arriving from
afar, and originating from as early as near the null
singularity (or gravitons instead of photons, since the
universe is far more transparent for those). As those null
rays approach the observer—they are future oriented
inward geodesics—they cross the apparent horizon and
focus to the origin in the normal region of spacetime
surrounding the observer. The total amount of information
coming in must satisfy the horizon area bound [63–65],

S≲AAH=4GN . Since the apparent horizon expands, the
information contents grows, but during the accelerated
epoch the variation is very slow. The apparent horizon area
evolves according to _AAH=AAH ¼ c2H, which by using
N ¼ lnða=a�Þ we can express as variation per e-fold,

dAAH

AAH
¼ c2dN ; ð26Þ

and so during the attractor stage since c ≪ 1, the maximal
entropy is growing very slowly. This slow increase5

continues until the end of inflation, after which the growth
rate changes to dAAH=AAH ¼ Oð1ÞdN , with the precise
details being controlled by the postinflationary cosmic
inventory.
The evolution in the semiclassical regime being adia-

batic, with a globally fixed arrow of time as selected by the
null singularity, means the “entropy” is crossing the
apparent horizon during inflation very slowly, and after
inflation much more rapidly. Still, close to the singularity
the geometry may still undergo a phase of self-reproduc-
tion. If so then different segments of the attractor regime of
inflation could be subject to different perturbations, that can
trigger the onset of exit at different times, or perhaps even
prevent it altogether. If so those phenomena could alter the
arrow of time in some parts of the spacetime. However, if
we demand that the attractor dynamics yields observables
close to the current limits, the self-reproduction regime is
excised out of the semiclassical limit. We can verify this as
follows. The boundary of self-reproduction is approxi-
mately given by the field values where PS ≃ 1, or more
accurately the equality of the classical field variation
integrated over a Hubble time and the quantum fluctuation
induced by cosmic acceleration,

Z
Hubble time

dϕ ≃
H
2π

: ð27Þ

In other words, where the field variation is slow enough, the
quantum Brownian drift can compensate it, and “reboot”
inflation. Using _ϕ ¼ 2MPl

ct and H ¼ 2
c2t yields for c ≪ 1

tboundary ¼
1

πc3
M−1

Pl : ð28Þ

Self-reproduction could only occur for t < tboundary, and
the slow roll regime of inflation for t > tboundary (we could
have phrased this condition in terms of the gauge invariant
variable ϕ instead, but since we gauge fixed the solution
that is not necessary). However: our result for the cutoff t0
of Eq. (14) severely obstructs the self-reproduction regime.
Namely, comparing (14) and (28),FIG. 3. Causal structure of a spatially open power law inflation

which exits to radiation and matter dominated FRW. It is an
amalgam of the past k ¼ −1 regime, a future power law attractor,
and the postinflationary decelerating FRW.

5Which could be associated with the horizon crossing of the
perturbations [66,67].

GUIDO D’AMICO and NEMANJA KALOPER PHYS. REV. D 106, 103503 (2022)

103503-6



t0
tboundary

≳ 4
ffiffiffi
3

p
πc

�
MPl

MUV

�
2

≃ 4
ffiffiffi
3

p
πcN; ð29Þ

where as we noted aboveN is the number of light species in
the theory, below the cutoff. If we take those to only count
the Standard Model degrees of freedom, N ∼ 120, and so
the right-hand side is ∼2612c. If we further require that nS
is not greater than 0.998, we find c≳ 0.044. This means
that for the values of c closest to fitting the data, the ratio of
Eq. (29) is much greater than unity, t0

tboundary
≫ 1. Since only

the time interval t > t0 is allowed in the effective theory, it
means that the regime of self-reproduction is basically
confined to the spacetime sliver right next to the null
singularity in Fig. 3 that it is pointless to think about it. In
other words, the self-reproduction regime is behind the
Planckian cutoff surface above the null singularity, and it
makes no sense physically in the solutions depicted by
Fig. 3. As a result, the arrow of time, once set, remains
preserved in those solutions. Taking the solution to start
from the null singularity as a homogeneous and isotropic
FRW implies the vanishing of its Weyl tensor in the far past.
This will be violated later, by evolution, since quantum
fluctuations of the scalar will perturb the geometry, and this
will contribute to the entropy production in the late
universe. This is all fully consistent with Penrose’s Weyl
curvature hypothesis. The question is, what selects this
initial condition.

IV. COSMIC BUBBLES

A rationale for selecting the initial condition which
approximates really well the null singularity with vanishing
Weyl tensor could be provided using the framework of no
boundary proposal for quantum cosmology [68] and
weighing the probabilities by the tunneling wave function
prescription for the initial conditions [69,70]. We will argue
below that the process which mediates the creation
of the universe depicted by the causal structure of Fig. 3
is closely related to the Hawking-Turok instanton [32–36].
We start by first briefly reviewing the Hawking-Turok
instanton.
The idea is to imagine a theory of open inflating universe

which tunnels from nothing, with a generic potential that
can support 60e-folds of inflation. This universe originates
by a formation of a bubble of spacetime, and the universe is
its dynamical interior. The pre-genesis stage is described by
an Euclidean geometry which resembles a squashed sphere
[32]. The scalar gradients will get large in some region of
the Euclidean space, and produce a singularity which lies
on the hypersurface of vanishing extrinsic curvature along
which the analytical continuation is carried out [32–36]. In
this regime, the simple limit of relevant equations is

ds2 ¼ dσ2 þ b2ðσÞðdψ2 þ sin2 ψdΩ2Þ; ð30Þ

for the Euclidean metric and

ϕ00 þ 3
b0

b
ϕ0 ¼ ∂ϕV;

b00

b
¼ −

1

3M2
Pl

�
ϕ02

2
þ V

�
;

b02

b2
¼ 1

b2
þ 1

3M2
Pl

�
ϕ02

2
− V

�
; ð31Þ

for the scalar and gravitational equations. The prime is a
derivative with respect to σ. In this regime, the field ϕ is
rolling in the upside-down potential −V. Let us initially
consider a point where the geometry is regular, and hence
sufficiently close to it must be locally R4. If we place the
coordinate origin at that point, near it we must have
b → σ þ � � �, and by symmetry ϕ0 → 0;ϕ → const: (other-
wise we would encounter a singularity in ϕ00, and con-
sequently in ϕ too). Moving away from this point, b grows,
but at a rate which is decreasing due to the b00 equation. So
b reaches a maximum, and turns around. Past it, the scalar
derivatives grow fast for generic potentials, and take over,
forcing ϕ to diverge at some σ ¼ σ�. In this limit b →

ð3
2

C2

M2
Pl
Þ1=6ðσ� − σÞ1=3 and ϕ → const: −

ffiffi
2
3

q
MPl lnðσ� − σÞ.

Note that this behavior generalizes the spherical limit
b ¼ sin σ which describes ϕ ¼ const:, with a constant
potential.
The metric (30), with these properties of b, can now be

analytically continued in two steps. First, changing the
latitude coordinate ψ to ψ ¼ π=2þ iτ at the equatorial
hypersphere gives

ds2 ¼ dσ2 þ b2ðσÞð−dτ2 þ cosh2 τdΩ2Þ; ð32Þ

which describes an anisotropic cosmology just “north” of
the equator [32], which has a timelike singularity at σ ¼ σ�.
This geometry also has a horizon at σ ¼ 0, where its
Euclidean counterpart had a regular point. We can ana-
lytically continue across σ ¼ 0, therefore, by using τ ¼
iπ=2þ χ and σ ¼ it, while defining aðtÞ ¼ −ibðitÞ [32].
Since b has no singular points along the imaginary axis,
aðtÞ is well defined. The metric in this latter region is

ds2 ¼ −dt2 þ a2ðtÞðdχ2 þ sinh2 χdΩ2Þ; ð33Þ

i.e. precisely an open universe. This is precisely the same
metric as our metric of Eq. (3), with one exception: here,
t → 0 is a regular null hypersurface, a horizon rather than a
null singularity. The singularity is now resolved, and
hides in the past of the horizon, as depicted in Fig. 4
(see [32–36]). Notice that since the metrics are analytic
continuations of each other, and, e.g., (30) is conformally
flat, Weyl tensor remains zero everywhere. This shows that
the replacement of the null past singularity by a timelike
regulator which asymptotes to null does not affect the
interpretation of the solutions.
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In the final step, as in [38–42] we excise the region
around the singularity and replace it with a bubble,
surrounded by a domain wall with some tension. We will
not repeat all the technical procedure here, instead referring
the reader to the various options in [38–42]. The important
point is that the world volume of the spherical domain wall
asymptotes the past horizon from below. The surface
energy density of the bubble is controlled by its initial
size, and so the smaller it starts, the larger the density will
be. In turn, this controls the scale of the Euclidean action of
the resolved configuration. For example in perhaps the
simplest regularized case, where the bubble’s interior is a
ball of flat space, replacing the singular region.
Note that the metric surgery with cutting and pasting

various pieces together across a domain wall will not
change the Weyl tensor of the configuration for the metrics
which areOð4Þ symmetric. The reason is that the symmetry
conditions are very restrictive for the metric, and only allow
a single “free” function to appear in the metric—the scale
factor, which is also the conformal factor. It is the only term
in the metric which picks up the boundary conditions. Thus
the Weyl tensor remains insensitive to the singularity
regulator. If Weyl is zero without the regulator, it remains
zero with it.
Garriga found that the matching conditions b0=bjout ¼

−κjCj=3b3 and b0=bjin ¼ 1=b with the bubble wall tension
modeled by μ ¼ μ0 − αeκϕ yield the regulator contribution
to the Euclidean action which is

Ssing ¼
1

3
SGH ¼ π2jCj

κ
: ð34Þ

With the inflationary potential also included, one will
find additional contributions. A very thorough survey of
possible instantons and the actions which govern their
nucleation rate is given in [40]. In the case when the
Hawking-Turok instanton is regulated by a tensional
domain, the full Oð4Þ Euclidean action is given by [40]

SHT=D ¼ −
24π2

3M2
PlH

2
ð1 − cosðHσmÞÞ: ð35Þ

where 3M2
PlH

2 ¼ UðϕinitialÞ and σm is the location of the
domain wall which serves as a seam between two geom-
etries. The trick used by [40] to construct the regular
solution is to orbifold around the wall6 instead to think of it
as a boundary between the Hawking-Turok solution in the
bulk and a ball of flat space excising the singularity. This
can be interpreted as a creation of two jointed open
universes, or by identifying the two, a single Hawking-
Turok geometry with a singularity excised by a wall at the
end of the world. This actually may assist with obstructing
the interpretation of the regulated solution as coming from a
bubble of nothing in 6D, which may be problematic for its
use as a regulator of Hawking-Turok processes [41,42]. We
will not delve into this very interesting issue any further
here. Instead we will treat the action of (35) as an estimate
of the Hawking-Turok nucleation rate, even thought it is
probably sensitive to the precise details of the UV com-
pletion of the configuration.
Note, that the wall will get closer—i.e., approach its

asymptotically null world volume—the faster the smaller it
starts, because it starts closer to the horizon initially. The
regulated geometry is depicted in Fig. 5. It should be clear
that for all practical intents and purposes, if the universe
arises as the interior of an initially small bubble, whose
energy density is at or above the cutoff, this wall will
behave practically as an almost null singularity: its world
volumewill be approximately null, and its energy density at
the cutoff. Near the wall Weyl tensor will still be zero, and
the geometry will behave to leading order just like the
solution depicted in Fig. 3.
Using the tunneling from nothing probability prescrip-

tion to estimate the likelihood of such a universe, [69,70],

P ∼ eSeuclidean ≃ e
− 24π2

3M2
Pl
H2ð1−cosðHσmÞÞ

; ð36Þ

explains the selection of the initial conditions. First off, the
Oð4Þ symmetry is favored over more complicated initial
configurations by minimizing the action. Second, the initial
values of ϕ which maximize the initial value of the
potential are preferred over those which make it small.
Both of these conditions select inflationary history, and the

FIG. 4. Resolving the singularity: on top, a spatially open
power law inflation which can exit to radiation and matter
dominated FRW; t ¼ 0 null surface is now a horizon. There is
a timelike singularity behind it. This singularity can be excised by
cutting out the region of space around it and replacing it with a
bubble of flat space surrounded by a tensional domain wall [38],
whose world volume lies between the singularity and the t ¼ 0
horizon, or its generalizations [39–42].

6This is very similar to warped braneworld constructions of,
e.g., [71–74].
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exponential potential cuts off the possible attainable num-
ber of e-folds—by not plateauing in the UV. This explains,
at least in this context, how inflation starts.7 Likewise, these
conditions are also compatible with Penrose’s conjecture,
since the initially Oð4Þ invariant geometry gives a vanish-
ing Weyl tensor, and the (almost) null (regulated) singu-
larity picks the global time direction. One can then study
entropy production, initially by studying metric perturba-
tions, as in, e.g., [75,76], and later with the contributions
from reheating and postinflationary evolution. The evolu-
tion of the apparent horizon area, Eq. (26), is consistent
with postnucleation entropy growth. Since many of the

specific details can be found in the literature, we will not
delve into the details here.

V. SUMMARY

In this article, we have presented an argument that
Penrose’s vanishing Weyl curvature hypothesis, along with
the initial singularity in the universe, motivated by the
entropy considerations and the observed global arrow of
time, is actually consistent with the inflationary paradigm.
As an example, we used power law inflation which initially
starts with a Hawking-Turok nucleation process, with
likelihood described by the tunneling from nothing prob-
ability. Note that here we demonstrated the compatibility of
Penrose’s Weyl curvature hypothesis and inflation—where
by inflation we mean the (semi)classical evolution of the
background augmented with the selection of tunneling
from nothing probability as a theory of initial conditions—
without explicitly showing a more microscopic origin of
either of these premises. That suffices for our purposes
here. Going beyond this goal requires a more precise
exploration of the realms of quantum gravity, not easily
accessible by present means.

Curiously, the resulting dynamics could even be in
marginal agreement with the current data. We note however
that similar conclusions should hold for other models of
inflation which start with the universe in a small bubble.
The presence of the past (null) singularity will be generic
for flat or open FRW universes in the extreme past
whenever the field value and the potential in that regime
are not exactly constant. The gradients near the past horizon
will induce a large backreaction, and require regularization.
Thus the general conclusions presented here may hold even
for potentials which fit the data better.
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