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Although quasi-dilaton massive gravity is a well-defined gravitational theory, it exhibits instabilities and
suffers from the strong coupling problem. In this work we construct an extension of the theory through the
inclusion of the aether field. Focusing on flat Friedmann-Lemaître-Robertson-Walker geometry, we show
the existence of exact, self-accelerating solutions at the background level, characterized by an effective
cosmological constant arising from the graviton mass. Additionally, we perform a detailed perturbation
analysis, investigating separately the tensor, vector, and scalar perturbations, extracting the dispersion
relation of gravitational waves, and determining the stability conditions for vector and scalar sectors. As we
show, there are always regions in the parameter space in which the obtained solutions are free from ghost
instabilities, as well as from the strong coupling problem. Hence, although the aether field does not play an
important role in the background self-accelerating solutions, it does play a crucial role in the alleviation of
the perturbation-related problems of the simple quasi-dilaton massive gravity.

DOI: 10.1103/PhysRevD.106.103502

I. INTRODUCTION

The origin of the late-time accelerated expansion of the
Universe, supported by accumulating observational data
from supernova Ia [1,2], cosmic microwave background
(CMB) radiation [3,4], baryon acoustic oscillations [5,6],
etc, is one of the essential issues of the standard cosmo-
logical paradigm. It is noticeable that the accelerated
expansion can been explained in the context of general
relativity, which is a unique theory of a massless Lorentz-
invariant spin-2 particle in four dimensions [7], by consid-
ering the cosmological constant [8,9], or the dark energy
sector [10–13].
On the other hand, one may explain the accelerated

expansion through the paradigm of modified gravity [14–18].
One direction within this framework is curvature-based
gravity, such as fðRÞ gravity [19], fðGÞ gravity [20], fðPÞ
gravity [21], Lovelock gravity [22], Horndeski/Galileon
scalar-tensor theories [23,24] etc. Alternatively one may
proceed with torsion-based modified gravity, such as fðTÞ
gravity [25,26], fðT; TGÞ gravity [27], fðT; BÞ gravity [28],
scalar-torsion theories [29] etc.

One interesting subclass of gravitational modification is
massive gravity, in which the propagation of gravity
corresponds to a spin-2 massive graviton [30–35]. The first
analysis to describe the massive spin-2 field theory was
performed by Fierz and Pauli in 1939. They presented the
unique Lorentz-invariant linear theory without ghosts in a
flat spacetime, by considering a massive spin-2 particle that
consists of a specific combination of the mass terms,
resulting in five physical degrees of freedom [36]. In the
following decades, van Dam, Veltman and Zakharov found
that the Fierz-Pauli theory in the massless limit does not
reduce to the massless theory, since there is a discontinuity
(van Dam-Veltman-Zakharov (vDVZ) discontinuity)
[37,38]. Hence, Vainshtein argued that in order to avoid
the vDVZ discontinuity the theory should be extended to the
nonlinear level [39]. However, Boulware and Deser reported
that the nonlinear theory of Fierz and Pauli exhibits a ghost,
namely an instability that was later called the Boulware-
Deser ghost [40]. Finally, de Rham, Gabadadze, and Tolley
(dRGT) presented a fully nonlinear massive gravity without
the Boulware-Deser ghost in a certain decoupling limit,
namely the dRGT massive gravity [30,31].
While dRGT massive gravity can explain the accelerated

expansion of the Universe for an open Friedmann-Lemaître-
Robertson-Walker (FLRW) geometry, it cannot present any
solutions for homogeneous and isotropic Universe [41].
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Furthermore, due to the strong coupling problem and the
nonlinear ghost instability, the scalar and vector perturba-
tions would vanish [42]. Thus, the quasi-dilaton massive
gravity theory has been introduced in order to solve these
problems [43,44] (see also [45–59]). Nevertheless, in the
quasi-dilaton massive gravity there is an instability in the
scalar perturbation analysis [60–62].
In order to solve the above issue, in this work we

introduce the aether-quasi-dilaton massive gravity. In fact,
we introduce the new extension of the quasi-dilaton
massive gravity by considering the aether field in the
action, and this novel extension exhibits instability-free
perturbations. We mention here that although Lorentz
violation has not been experimentally observed [63], it
cannot be theoretically excluded, and thus gravitational
models which violate Lorentz symmetry have been studied
in detail [64–69]. In these lines, Einstein-aether theory is
one of the Lorentz violating theories that has attracted
attention [70–74]. In several studies, the Einstein-aether
theory has been used to describe different aspects of the
gravitational system [75–79]. We mention that this theory is
a second-order one, and can explain the classical limit of
Horava-Lifshitz gravity [80].
In the following we will show the existence of self-

accelerating solutions, and wewill perform the perturbation
analysis for the aether-quasi-dilaton massive gravity. In
particular, in the perturbations analysis we will extract the
modified dispersion relation of gravitational waves, and we
will present the stability conditions of vector and scalar
perturbations. The paper is organized as follows. In Sec. II
we present the aether-quasi-dilaton massive gravity, and we
derive the background equations of motion, extracting self-
accelerating solutions. In Sec. III we present the cosmo-
logical perturbations analysis, which consist of tensor,
vector, and scalar perturbations. Finally, in Sec. IV we
summarize the obtained results. Throughout the manuscript
we consider natural units, where c ¼ ℏ ¼ 1 and
M2

Pl ≡ 8πG ¼ 1, with G the Newton’s constant.

II. AETHER-QUASI-DILATON MASSIVE
GRAVITY

In this section we introduce the new extension of quasi-
dilaton massive gravity, which is constructed by adding the
action of aether field. The total action is

STotal ¼ SQDMG þ SAether: ð1Þ

The quasi-dilaton massive gravity theory includes the
massive graviton term and the quasi-dilaton term [43],
namely it has the action

SQDMG ¼ 1

2

Z
d4xf ffiffiffiffiffiffi

−g
p ½R − ωgμν∂μσ∂νσ

þ 2m2
gUðKÞ�g; ð2Þ

where R is the Ricci scalar, ω is a dimensionless constant, σ
is a scalar field, gμν is the physical dynamical metric andffiffiffiffiffiffi−gp

is its determinant. Note that the origin of the graviton
massmg is the potentialU which consists of three parts, i.e.,

UðKÞ ¼ U2 þ α3U3 þ α4U4; ð3Þ

with α3 and α4 dimensionless free parameters. In the above
expression we have [31]

U2 ¼
1

2
ð½K�2 − ½K2�Þ;

U3 ¼
1

6
ð½K�3 − 3½K�½K2� þ 2½K3�Þ;

U4 ¼
1

24
ð½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�Þ;

ð4Þ
where “½·�” is construed as the trace of the tensor inside the
brackets. Note that the building block tensor K can be
defined as

Kμ
ν ¼ δμν − eσ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
; ð5Þ

where fαν is the fiducial metric defined through

fαν ¼ ∂αϕ
c
∂νϕ

dηcd; ð6Þ

with ηcd the Minkowski metric (c, d ¼ 0, 1, 2, 3) and ϕc the
Stueckelberg fields which are introduced to restore general
covariance. Notice that the theory is invariant under the
global dilation transformation σ → σ þ σ0 [43].
In addition, the aether action in (1) corresponds to the

aether field uμ, namely [70]

SAether ¼ −
1

2

Z
d4xf ffiffiffiffiffiffi

−g
p ½β1ðσÞuν;μuν;μ

þ β2ðσÞðgμνuμ;νÞ2 þ β3ðσÞuν;μuμ;ν
þ β4ðσÞuμuνu;μuν − λðuμuν þ 1Þ�g; ð7Þ

where β1ðσÞ; β2ðσÞ; β3ðσÞ, and β4ðσÞ are the coefficient
functions that define the coupling between the aether field
and the scalar field. Lastly, λ should be considered as a
Lagrange multiplier, which ensures the aether-field unitar-
ity, namely uμuμ þ 1 ¼ 0 [80,81].

A. Background cosmological evolution

Let us apply the above theory in an FLRW metric at the
background level. The dynamical and fiducial metrics are
expressed as

gμν ¼ diag½−N2; a2; a2; a2�; ð8Þ

fμν ¼ diag½− _fðtÞ2; 1; 1; 1�; ð9Þ
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with a the scale factor and N the lapse function of the
dynamical metric, which relates the coordinate-time dt to
the proper-time dτ via dτ ¼ Ndt [82,83]. Moreover, the
function fðtÞ is the Stueckelberg scalar function, with ϕ0 ¼
fðtÞ and ∂ϕ0

∂t ¼ _fðtÞ [84].
According to the above discussion, we result to the total

Lagrangian

L ¼ −3a _a2

N

�
1þ AðσÞ

2

�
þ ωa3

2N
_σ2

þm2
gfNa3ðY − 1Þ½3ðY − 2Þ

− ðY − 4ÞðY − 1Þα3 − ðY − 1Þ2α4�
þ _fðtÞa4YðY − 1Þ½3 − 3ðY − 1Þα3 þ ðY − 1Þ2α4�g;

ð10Þ

where

AðσÞ ¼ β1ðσÞ þ 3β2ðσÞ þ β3ðσÞ;

Y ≡ eσ

a
: ð11Þ

We proceed by considering the unitary gauge, namely
fðtÞ ¼ t, and thus a constraint equation is obtained by
varying with respect to f, i.e.,

δL
δf

¼ m2
g
d
dt

fa4YðY − 1Þ½3 − 3ðY − 1Þα3
þ ðY − 1Þ2α4�g ¼ 0: ð12Þ

By varying with respect to the lapse function N, we obtain
the Friedmann equation

1

a3
δL
δN

¼ 3H2

�
1þ AðσÞ

2

�
−
ω

2

�
H þ

_Y
NY

�
2

−m2
gðY − 1Þ½ðY − 4ÞðY − 1Þα3

þ ðY − 1Þ2α4 − 3ðY − 2Þ� ¼ 0: ð13Þ

Similarly, the equation of motion related to the scalar field
σ is given by

1

a3N
δL
δσ

¼ −3H2

�
ω

N
þ A0ðσÞ

2

�
þm2

gYf6ðrþ 1Þðα4 þ 2α3 þ 1ÞY
− ð3þ rÞð3þ 3α3 þ α4Þ
− 3ð3rþ 1Þðα4 þ α3ÞY2 þ 4rα4Y3g ¼ 0; ð14Þ

where r≡ a
N and H ≡ _a

Na. Furthermore, using the notation
of (11), we can write the expression

_σ

N
¼ H þ

_Y
NY

; σ̈ ¼ d
dt

�
NH þ

_Y
Y

�
: ð15Þ

Since the Stueckelberg field f introduces a time repar-
ametrization invariance, there is a Bianchi identity that
relates the four equations of motion, namely

δS
δσ

_σ þ δS
δf

_f − N
d
dt

δS
δN

þ _a
δS
δa

¼ 0: ð16Þ

Hence, the equation of motion corresponding to the scale
factor a can be eliminated.

B. Self-accelerating background solutions

We can now examine whether the above theory accepts
self-accelerating solutions. By integrating the Stueckelberg
constraint (12) we obtain

YðY − 1Þ½3 − 3ðY − 1Þα3 þ ðY − 1Þ2α4� ∝ a−4: ð17Þ

Hence, in an expanding universe the right-hand side of (17)
will decrease as a−4. Therefore, Y leads to a constant value,
YSA, which is the saturate of Y, and it is clear that YSA is a
root of the left-hand side of (17).
As we can see, one of the solutions of (17) is Y ¼ 0.

However, if we consider Y ¼ 0 the system leads to
σ → −∞, which implies that this solution leads to strong
coupling in the vector and scalar sectors, and thus we do not
study it [43]. Hence, we have

ðY − 1Þ½3 − 3ðY − 1Þα3 þ ðY − 1Þ2α4�jY¼YSA
¼ 0: ð18Þ

Moreover, another obvious solution is Y ¼ 1. However, by
considering this solution the cosmological constant would
vanish and the system would encounter inconsistency, and
thus we do not study it either [43]. Therefore, the two
remaining solutions of (17) are

Y�
SA ¼ 3α3 þ 2α4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
2α4

: ð19Þ

The modified Friedmann equation (13) leads to

3H2

�
1þ Ã

2
−
ω

6

�
¼ Λ�

SA; ð20Þ

where Ã is the saturate of AðσÞ, and Λ�
SA is given by

Λ�
SA ≡m2

gðY�
SA − 1Þ½6 − 3Y�

SA þ ðY�
SA − 4ÞðY�

SA − 1Þα3
þ ðY�

SA − 1Þ2α4�: ð21Þ

Note that using (19), the above equation can be rewritten as
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Λ�
SA ¼ 3m2

g

2α34

�
9α43 � 3α33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q
− 18α23α4

∓ 4α3α4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

q
þ 6α24

�
: ð22Þ

We solve Eq. (20) to calculate the H2, so we have

H2 ¼ 2Λ�
SA

3Ã − ωþ 6
: ð23Þ

Additionally, from (14) we obtain rSA as

rSA ¼ 1þ ωH2

m2
gY2�

SAðα3Y�
SA − α3 − 2Þ : ð24Þ

Wemention that we have acquired a result for rSA similar
with that of [60], which implies that the aether part of the
theory does not affect rSA. However, we stress that there is
not any strong coupling in this condition, and thus this
theory possesses well-behaved self-accelerating solutions
with an effective cosmological constant. This is one of the
main results of the present work.
In order to present the above results in a more transparent

way, in Figs. 1 and 2 we illustrate the allowed parameter
regions for (24). Note that these figures are generated by
considering mg=H ≃ 1 [50]. We mention that by adjusting
the value of the parameter α4 it is possible to have a sizeable
value of rSA.

III. PERTURBATIONS ANALYSIS

In this section we perform the perturbation analysis of
the scenario at hand. The significance of such analysis
is that the stability conditions of the solutions can be
determined, too. Since we are interested in quadratic

perturbations, we expand the physical metric gμν in
terms of small fluctuations δgμν around the background
solution gð0Þμν :

gμν ¼ gð0Þμν þ δgμν: ð25Þ
We keep all terms up to quadratic order, and as usual the
metric perturbations can be split into three parts, namely
scalar, vector, and tensor perturbations. Thus, we have

δg00 ¼ −2N2Φ;

δg0i ¼ NaðBi þ ∂iBÞ;

δgij ¼ a2
�
hij þ

1

2
ð∂iEj þ ∂jEiÞ þ 2δijΨ

þ
�
∂i∂j −

1

3
δij∂l∂

l

�
E

�
: ð26Þ

As usual, the tensor perturbations are transverse ∂ihij ¼ 0,
and traceless hii ¼ 0, while the vector ones are transverse
∂
iEi ¼ ∂

iBi ¼ 0. Notice that all perturbations are functions
of time and space, and they are consistent with the
transformations under spatial rotations [50,85].
Additionally, we consider the perturbation of the scalar

field σ as

σ ¼ σð0Þ þ δσ; ð27Þ

moreover, we perturb the aether field as [86,87],

uμ ¼ uμð0Þ þ δuμ ¼ 1

a
ð1 −Ψ; ∂iV þ iSiÞ; ð28Þ

where

δuμ ¼ 1

a
ð−Ψ; ∂iV þ iSiÞ; ð29Þ

here V is the longitudinal scalar mode and Si is the
transverse vector mode i.e., ∂

iSi ¼ 0. In the vector

FIG. 1. The quantity rSA−1
ω , using (24), formg=H ≃ 1, in the case

0 < Y�
SA < 1. The excluded regions are illustrated in gray.

FIG. 2. The quantity rSA−1
ω , using (24), formg=H ≃ 1, in the case

Y�
SA > 1. The excluded regions are illustrated in gray.
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perturbations, it can be possible to restrict ourselves to the
condition where the Aether field would be defined by the
Khronon [88–92]. The Khronometric model is a version of
Einstein-Aether where the Aether field is constrained via a
scalar field σ. This way, the field can be considered as

uμ ¼ −
∂μσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gαβ∂ασ∂βσ
q ; ð30Þ

and thus the timelike unit norm constraint should be satisfied
automatically. This way, the Aether is restricted to be
orthogonal to a set of spacelike surfaces defined by σ. At
background order it can be proposed σ ¼ σðtÞ and therefore
from the above equation we have uμ ¼ ð1; 0; 0; 0Þ.
Consequently, the choice of the Khronon definition has
no effect on background dynamics. In the khronometric
model, the σ sets a preferred global time coordinate. In [88],
it was investigated how this model explains the low energy
limit of the consistent extension of Horava gravity which is a
quantum theory of gravity. At low energies, this reduces to a
Lorentz-violating scalar-tensor gravity theory. For thevector
perturbations, so we have

δuμ ¼
a
σ0

�
−∂μδσ þ ∂μσ

�
Ψþ δσ0

σ0

��
; ð31Þ

where δσ is the perturbed field. The time component is then
δu0 ¼ aΨ, which is a result of the timelike unit norm
constraint, as in Eq. (28). But, if we calculate the spatial
component we have

δui ¼ −
a
σ0
∂iδσ → Si ¼ 0; ð32Þ

thus, there is no propagating transverse vector mode. For the
scalar perturbation of aether field,we redefine 1

σ0 ∂iδσ ¼ ∂iV.
Thus, the scalar sector for generalized Einstein-Aether and
the Khronon should be completely equivalent [89].
Furthermore, as usual the actions are expanded in

Fourier plane waves, namely ∇⃗2 → −k2, d3x → d3k, while
the spatial indices are raised and lowered by δij and δij.
Lastly, since all calculations are performed in the unitary
gauge, we do not need to specify gauge-invariant combi-
nations [60].

A. Tensor perturbations

We start our investigation by analyzing the tensor
perturbations. Among others this analysis provides the
speed of gravitational waves, and moreover it can deter-
mine the stability of the solutions.
For convenience, we calculate the perturbed action at

second order separately for the different parts. The general
relativity (GR) part is written as

Sð2ÞGR ¼ 1

8

Z
d3kdta3N

� _hij _hij
N2

−
�
k2

a2
þ 4 _H

N
þ 6H2

�
hijhij

�
:

ð33Þ

Additionally, the quasi-dilaton part of the perturbed action
reads as

Sð2ÞQuasi-dilaton ¼ −
1

8

Z
d3kdta3N

��
ω

N2
_σ2
�
hijhij

�
; ð34Þ

while the aether part is found to be

Sð2ÞAether ¼
1

16

Z
d3kdta3N

� _hij _hij
N2

−
�
k2

a2
þ 4 _H

N
þ 6H2

�
hijhij

�
AðσÞ: ð35Þ

Finally, the massive gravity part becomes

Sð2Þmassive ¼
1

8

Z
d3kdta3Nm2

g½ðα3 þ α4ÞrY3

− ð1þ 2α3 þ α4Þð1þ 3rÞY2

þ ð3þ 3α3 þ α4Þð3þ 2rÞY
− 2ð6þ 4α3 þ α4Þ�hijhij: ð36Þ

In summary, assembling the above terms, the second-
order perturbed action for tensor perturbations Sð2Þtotal ¼
Sð2ÞGR þ Sð2Þquasi-dilaton þ Sð2Þaether þ Sð2Þmassive, becomes

Sð2Þtotal ¼
1

8

Z
d3kdta3N

� _hij _hij
N2

½1þ AðσÞ�

−
�
k2

a2
½1þ AðσÞ� þM2

GW

�
hijhij

�
; ð37Þ

where

M2
GW ¼

�
4 _H
N

þ 6H2

�
½1þ AðσÞ� þ ω

N2
_σ2 þ χ; ð38Þ

and with

χ¼ 1

ð2Y�
SA−2Þf2m

2
gfY�

SAfY�
SA½Y�

SAðrSAþ1Þ−6�þ6g−2g

−
1

ðrSA−1ÞY�2
SAN

fH2½Y�
SAðY�

SA−3ÞðY�
SArSA−2Þ−2�

· ½2ωþNA0ðσÞ�gg: ð39Þ

The last relation is obtained using (19) and (24) to
substitute α3 and α4.
In summary, expression (38) determines the dispersion

relation of gravitational waves in aether-quasi-dilaton
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massive gravity. In particular, in order to guarantee the
stability of long-wavelength gravitational waves, the mass
square of gravitational waves should be positive,
namely M2

GW > 0.

B. Vector perturbations

We proceed by performing the vector perturbation
analysis. We consider

Bi ¼
�
AðσÞaþ 2k2aðr2 − 1Þ

2a2H2ωþ k2ðr2 − 1Þ
�

_Ei

4N
: ð40Þ

Note that the field Bi is nondynamical, and thus we handle
it as an auxiliary field in the main action. Thus, a single
propagating vector is obtained, namely

Sð2Þvector ¼
1

8

Z
d3kdta3N

�
β

N2
j _Eij2 −

k2

2
M2

GWjEij2
�
; ð41Þ

where

β ¼ k2

2

�
1þ k2ðr2 − 1Þ

2a2H2ω

�
−1
: ð42Þ

It should be pointed out that in the case r2−1
ω ≥ 0, we have

no critical momentum scale. On the other hand, for r
2−1
ω < 0

we have a critical momentum scale which is k2c ¼ 2a2H2ω
1−r2 ,

to avoid a ghost. We mention that the physical critical
momentum scale is vital in order to acquire stability, and
this scale should be above the ultraviolet cutoff scale of
effective field theory, namely

Λ2
UV ≲ 2H2ω

1 − r2
: ð43Þ

Moreover, the canonically normalized fields are defined
to determine other instabilities in the vector modes:

ζi ¼
βEi

2
: ð44Þ

By substituting into (41), we have

S ¼ 1

2

Z
d3kdta3N

�j _ζij2
N2

− c2V jζij2
�
: ð45Þ

Thus, the sound speed for vector modes becomes

c2V ¼ M2
GWð1þ u2Þ −H2u2ð1þ 4u2Þ

ð1þ u2Þ2 ; ð46Þ

where the dimensionless quantity u2 is

u2 ≡ k2ðr2 − 1Þ
2a2H2ω

: ð47Þ

Lets us proceed by elaborating the stability conditions.
Observing the first part of (46) we deduce that ifM2

GW < 0
and u2 > 0 then we encounter tachyonic instability. In
order to avoid this condition, one requires

Λ2
UV ≲ 2H2ω

r2 − 1
; ð48Þ

in the case ðr2−1Þ
ω > 0. It is interesting to note that if all

physical momenta are considered below the UV cutoff
ΛUV, then the rate of instability growth would be lower than
the cosmological scale. Furthermore, by looking at the
second part of (46), two cases can be ascertained. First, if
we consider u2 > 0, there are not any instabilities faster
than the Hubble expansion. On the other hand, for u2 < 0,
due to the no-ghost condition (43), in order to avoid
instabilities we require ju2j≲ k2

a2
1

Λ2
UV
. Hence, we have no

instabilities in the second part of (46). In summary, in order
to maintain the stability of the vector modes, we demand
c2V > 0 and M2

GW > 0.

C. Scalar perturbations

We proceed to the investigation of scalar perturbations,
which are crucial for the growth of the Universe structure.
Observing the perturbation form (26), we can handleΦ and
B as auxiliary fields, since they are free of time derivatives.
In particular, we have

B ¼ r2 − 1

ωaH2

�
Hðωδσ − 2ΦÞ þ 1

3N
ðk2 _Eþ 6 _ΨÞ

�
; ð49Þ

and

Φ ¼ AðσÞðk2 _Eþ 6 _ΨÞ
12HN

½1 − Ψþ V� þ 1

48k2ðr2 − 1Þ − 12H2a2ωðω − 6Þ
�
4k4ω2ðEþ 3Þ

×

�
2k2ðr2 − 1Þ − 3a2H2ω

r − 1

�
δσ þ 12ω

�
2k2 þ 3a2H2ω

r − 1

�
Ψ

−
12Ha2ωðωδ _σ − 6 _ΨÞ

N
þ 8k2ðr2 − 1Þðk2 _Eþ 6 _ΨÞ

HN

�
: ð50Þ
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Hence, substituting the above expressions into the action,
we remain with four fields, namely E, Ψ, V, and δσ. In
addition, we can use another nondynamical combination,
i.e.,

Ψ̃ ¼ 1ffiffiffi
2

p ðΨþ δσÞ: ð51Þ

Since Ψ̃ is free of time derivatives, namely

Ψ̃ ¼
�
1þ AðσÞ

12Nr
½144a2H2Nðrþ 1Þ eδσ − k2Nrð6 eδσ þ

ffiffiffi
2

p
EÞ þ 3a2Hð12ðrþ 1Þ _eδσ þ

ffiffiffi
2

p
r _EÞ�

�
−1

�
−

2
ffiffiffi
2

p
k4E

3ð4k2 − a2H2ð6 − ωÞωÞ þ
�
−k2 −

24a2H2

rðr − 1Þ þ
2a2H2k2ð−ω2 þ rð48 − ð6 − ωÞωÞÞ

ðr − 1Þð4k2 − a2H2ð6 − ωÞωÞ
� eδσ

þ 2a2H
N

�
3

r
þ ð6 − ωÞð2k2ðr − 1Þ þ 3a2H2ωÞ

ðr − 1Þð4k2 − a2H2ð6 − ωÞωÞ
�

_eδσ þ
ffiffiffi
2

p
a2Hk2ð6 − ωÞ _E

3Nð4k2 − a2H2ð6 − ωÞωÞ

þ AðσÞ þ V
12Nr

ð144a2H2Nðrþ 1Þ eδσ − k2Nrð6 eδσ þ
ffiffiffi
2

p
EÞ þ 3a2Hð12ð1þ rÞ _eδσ þ

ffiffiffi
2

p
r _EÞÞ

�
; ð52Þ

it can be used as an auxiliary field in order to eliminate the
sixth degree of freedom. Finally, we consider the orthogo-
nal combination

eδσ ¼ 1ffiffiffi
2

p
k2

ðΨ − δσÞ: ð53Þ

We can now write the action in terms of Ψ̃, eδσ, E, and V.
Introducing the notation P≡ ð eδσ; E; VÞ, we have

S¼ 1

2

Z
d3kdta3N

�
_P†

N
F

_P
N
þ

_P†

N
DPþP†DT

_P
N
−PTϖ2P

�
:

ð54Þ

In the above expression D is a real antisymmetric 2 × 2
matrix, and F and ϖ2 are real symmetric 2 × 2 matrices.
The components of the F matrix are

F 11 ¼ 2k4ωþ 18k2ωa2H2

ðr − 1Þ2

−
2k4a2H2½ω3 þ ð6 − ωÞω2r�2
½4k2 − ð6 − ωÞωa2H2�ðr − 1Þ2 ; ð55Þ

F 12¼
ffiffiffi
2

p
k4r

ðr−1Þ−
2

ffiffiffi
2

p
k6½ω2þð6−ωÞωr�

½12k2ω−3ð6−ωÞω2a2H2�ðr−1Þ ; ð56Þ

F 22 ¼
k4ω
36

−
k4a2H2ð6 − ωÞ2ω

144k2 − 36a2H2ð6 − ωÞω : ð57Þ

In order to examine the sign of the eigenvalues, we
calculate the determinant of the kinetic matrix F as

detF ≡ F 11F 22 − F 2
12 ¼

3k6ω2a4H4

½ωa2H2 − 4k2
ð6−ωÞ�ðr − 1Þ2 : ð58Þ

Hence, in order to avoid ghost instabilities in the scalar
sector, we require

k
aH

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ω − ω2

p

2
: ð59Þ

In Fig. 3 we depict the region corresponding to absence of
ghost instabilities. As we observe, in order not to have
ghosts we require 0 < ω < 6. Moreover, by demanding the
left-hand side of (20) to be positive, we deduce that the
aether field in the saturate condition Ã should be positive,
i.e., Ã > 0.

IV. CONCLUSIONS

In this manuscript we presented the aether-quasi-dilaton
massive gravity. This theory arises from the inclusion of the
aether field in the framework of quasi-dilaton massive
gravity. After constructing the action of the theory, we

FIG. 3. The region corresponding to absence of ghost insta-
bilities in the scalar perturbations, corresponding to positive
determinant (58).
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extracted the general field equations and then we applied
them in a flat FLRW geometry.
We started our analysis at the cosmological background

level, showing the existence of exact, self-accelerating
solutions, characterized by an effective cosmological con-
stant arising from the graviton mass.
However, the interesting feature of the scenario was

revealed performing a detailed perturbation analysis. In
particular, investigating separately the tensor, vector, and
scalar perturbations we showed that the aether-quasi-
dilaton massive gravity is free of ghost instabilities as well
as of the strong coupling problem.
In particular, concerning the tensor perturbations we

extracted the dispersion relation of gravitational waves.
Additionally, performing the vector and scalar perturbation
analysis we determined the stability conditions. As we saw,
there are always regions in the parameter space in which the
obtained solutions are well-behaved at both background
and perturbation levels.

Hence, although the aether field does not play an
important role in the background self-accelerating solu-
tions, it does play a role in the alleviation of the perturba-
tion-related problems of the simple quasi-dilaton massive
gravity. This result is a good motivation for further
investigation of the theory, and in particular of its early-
and late-time cosmological application. Since such a study
lies beyond the scope of this first work, it is left for a future
project.
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