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Although quasi-dilaton massive gravity is a well-defined gravitational theory, it exhibits instabilities and
suffers from the strong coupling problem. In this work we construct an extension of the theory through the
inclusion of the aether field. Focusing on flat Friedmann-Lemaitre-Robertson-Walker geometry, we show
the existence of exact, self-accelerating solutions at the background level, characterized by an effective
cosmological constant arising from the graviton mass. Additionally, we perform a detailed perturbation
analysis, investigating separately the tensor, vector, and scalar perturbations, extracting the dispersion
relation of gravitational waves, and determining the stability conditions for vector and scalar sectors. As we
show, there are always regions in the parameter space in which the obtained solutions are free from ghost
instabilities, as well as from the strong coupling problem. Hence, although the aether field does not play an
important role in the background self-accelerating solutions, it does play a crucial role in the alleviation of
the perturbation-related problems of the simple quasi-dilaton massive gravity.
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I. INTRODUCTION

The origin of the late-time accelerated expansion of the
Universe, supported by accumulating observational data
from supernova la [1,2], cosmic microwave background
(CMB) radiation [3,4], baryon acoustic oscillations [5,6],
etc, is one of the essential issues of the standard cosmo-
logical paradigm. It is noticeable that the accelerated
expansion can been explained in the context of general
relativity, which is a unique theory of a massless Lorentz-
invariant spin-2 particle in four dimensions [7], by consid-
ering the cosmological constant [8,9], or the dark energy
sector [10-13].

On the other hand, one may explain the accelerated
expansion through the paradigm of modified gravity [14—18].
One direction within this framework is curvature-based
gravity, such as f(R) gravity [19], f(G) gravity [20], f(P)
gravity [21], Lovelock gravity [22], Horndeski/Galileon
scalar-tensor theories [23,24] etc. Alternatively one may
proceed with torsion-based modified gravity, such as f(T)
gravity [25,26], f(T, T) gravity [27], f(T, B) gravity [28],
scalar-torsion theories [29] etc.
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One interesting subclass of gravitational modification is
massive gravity, in which the propagation of gravity
corresponds to a spin-2 massive graviton [30-35]. The first
analysis to describe the massive spin-2 field theory was
performed by Fierz and Pauli in 1939. They presented the
unique Lorentz-invariant linear theory without ghosts in a
flat spacetime, by considering a massive spin-2 particle that
consists of a specific combination of the mass terms,
resulting in five physical degrees of freedom [36]. In the
following decades, van Dam, Veltman and Zakharov found
that the Fierz-Pauli theory in the massless limit does not
reduce to the massless theory, since there is a discontinuity
(van  Dam-Veltman-Zakharov (vDVZ) discontinuity)
[37,38]. Hence, Vainshtein argued that in order to avoid
the vDVZ discontinuity the theory should be extended to the
nonlinear level [39]. However, Boulware and Deser reported
that the nonlinear theory of Fierz and Pauli exhibits a ghost,
namely an instability that was later called the Boulware-
Deser ghost [40]. Finally, de Rham, Gabadadze, and Tolley
(dRGT) presented a fully nonlinear massive gravity without
the Boulware-Deser ghost in a certain decoupling limit,
namely the dRGT massive gravity [30,31].

While dRGT massive gravity can explain the accelerated
expansion of the Universe for an open Friedmann-Lemaitre-
Robertson-Walker (FLRW) geometry, it cannot present any
solutions for homogeneous and isotropic Universe [41].
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Furthermore, due to the strong coupling problem and the
nonlinear ghost instability, the scalar and vector perturba-
tions would vanish [42]. Thus, the quasi-dilaton massive
gravity theory has been introduced in order to solve these
problems [43,44] (see also [45-59]). Nevertheless, in the
quasi-dilaton massive gravity there is an instability in the
scalar perturbation analysis [60—62].

In order to solve the above issue, in this work we
introduce the aether-quasi-dilaton massive gravity. In fact,
we introduce the new extension of the quasi-dilaton
massive gravity by considering the aether field in the
action, and this novel extension exhibits instability-free
perturbations. We mention here that although Lorentz
violation has not been experimentally observed [63], it
cannot be theoretically excluded, and thus gravitational
models which violate Lorentz symmetry have been studied
in detail [64—69]. In these lines, Einstein-aether theory is
one of the Lorentz violating theories that has attracted
attention [70-74]. In several studies, the Einstein-aether
theory has been used to describe different aspects of the
gravitational system [75—79]. We mention that this theory is
a second-order one, and can explain the classical limit of
Horava-Lifshitz gravity [80].

In the following we will show the existence of self-
accelerating solutions, and we will perform the perturbation
analysis for the aether-quasi-dilaton massive gravity. In
particular, in the perturbations analysis we will extract the
modified dispersion relation of gravitational waves, and we
will present the stability conditions of vector and scalar
perturbations. The paper is organized as follows. In Sec. 11
we present the aether-quasi-dilaton massive gravity, and we
derive the background equations of motion, extracting self-
accelerating solutions. In Sec. III we present the cosmo-
logical perturbations analysis, which consist of tensor,
vector, and scalar perturbations. Finally, in Sec. IV we
summarize the obtained results. Throughout the manuscript
we consider natural wunits, where ¢=#%A=1 and
Mlz,l = 87G = 1, with G the Newton’s constant.

II. AETHER-QUASI-DILATON MASSIVE
GRAVITY

In this section we introduce the new extension of quasi-
dilaton massive gravity, which is constructed by adding the
action of aether field. The total action is

Stotal = SQDMG T S Acther- (1)

The quasi-dilaton massive gravity theory includes the
massive graviton term and the quasi-dilaton term [43],
namely it has the action

1
SopmG = 5/ d*x{y/=g[R — wg"*d,60,0

+2mgU(K)]}, (2)

where R is the Ricci scalar, w is a dimensionless constant, &
is a scalar field, g,, is the physical dynamical metric and
/=9 is its determinant. Note that the origin of the graviton
mass m, is the potential U which consists of three parts, i.e.,

UK) = U, +a3Us + ayUy, (3)

with a3 and @, dimensionless free parameters. In the above
expression we have [31]

Uy = 5 (KP - [K7)

Uy = ¢ (I = 3K+ 20K7),

Uy = % ([KT* = 6K [K?] + 8[KI[K] + 3[K2]2 = 6[KF]).
(4)

where “[-]” is construed as the trace of the tensor inside the

brackets. Note that the building block tensor X can be
defined as

IC’;:(S/;—eU\/g/mfm/, (5)

where f,, is the fiducial metric defined through

foux = aa¢cau¢dncdf (6)

with 7., the Minkowski metric (¢, d = 0, 1, 2, 3) and ¢ the
Stueckelberg fields which are introduced to restore general
covariance. Notice that the theory is invariant under the
global dilation transformation ¢ — ¢ + o [43].

In addition, the aether action in (1) corresponds to the
aether field u*, namely [70]

1 .
SAelher = _5/ d4x{ V _g[ﬂl (G)MU’MZ’{D;II

+ Ba(0) (9" 1) + Bi(0)uuy,

+ﬁ4(o—)uﬂu0u;ﬂuv _’I(uﬂuv =+ 1)]}7 (7)
where f3(0), p»(0),B3(c), and p4(c) are the coefficient
functions that define the coupling between the aether field
and the scalar field. Lastly, 4 should be considered as a

Lagrange multiplier, which ensures the aether-field unitar-
ity, namely v*u, +1 =0 [80,81].

A. Background cosmological evolution
Let us apply the above theory in an FLRW metric at the
background level. The dynamical and fiducial metrics are
expressed as

G = diag[-N?, a* a* a?], (8)

f/w = diag[_f(t)z’ L1, 1}’ (9)
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with a the scale factor and N the lapse function of the
dynamical metric, which relates the coordinate-time dt to
the proper-time dr via dr = Ndt [82,83]. Moreover, the
function f(t) is the Stueckelberg scalar function, with ¢° =
F(1) and °F = (1) [84].

According to the above discussion, we result to the total
Lagrangian

_ -2 A 3
e 3aa [1_'_ (0)]_'_% )

N 2 2N
+m2{Na*(Y - 1)[3(Y - 2)
(Y =-4)(Y-1az - (Y - 1)2a4]
+F ()@Y (Y =1)[3=3(Y = Daz + (Y = 12y},
(10)
where
A(o) = p1(0) + 3, (0) + Bs(0),
ng. (11)

We proceed by considering the unitary gauge, namely
f(t) =1, and thus a constraint equation is obtained by
varying with respect to f, i.e.,

oL _ ,d
sf Mg
+(Y—1)

{a'Y(Y = 1)[3-3(Y - Day
fay]} =0. (12)

By varying with respect to the lapse function N, we obtain
the Friedmann equation

%%=3H2{1+M] —9< +i>2

a’ 6N 2 2 NY
—my(Y = 1)[(Y =4)(Y = 1)as
(Y = 1)2a, = 3(Y —2)] = 0. (13)

Similarly, the equation of motion related to the scalar field
o is given by

1 6L o Ao)
——— = -3H"
a’Ndo {N+ 2 }
+miY{6(r+1)(ay +2a; + 1)Y
—B+r(3+3a; +a4)
—3@r+ 1)(ay +a3)Y? +4ra, Y3} =0, (14)
where r = § and H = 5. Furthermore, using the notation

of (11), we can write the expression

& Y . _d iV

Since the Stueckelberg field f introduces a time repar-
ametrization invariance, there is a Bianchi identity that
relates the four equations of motion, namely

55 . dsS .8
= =2 =0. 16
5ff NaoN T %%a (16)

Hence, the equation of motion corresponding to the scale
factor a can be eliminated.

B. Self-accelerating background solutions

We can now examine whether the above theory accepts
self-accelerating solutions. By integrating the Stueckelberg
constraint (12) we obtain

YY-1D[3-3Y-Daz+ (Y= 1)’ay] xa™. (17)
Hence, in an expanding universe the right-hand side of (17)
will decrease as a—*. Therefore, Y leads to a constant value,
Ysa, which is the saturate of Y, and it is clear that Yg4 is a
root of the left-hand side of (17).

As we can see, one of the solutions of (17) is ¥ = 0.
However, if we consider ¥ =0 the system leads to
6 — —oo, which implies that this solution leads to strong
coupling in the vector and scalar sectors, and thus we do not
study it [43]. Hence, we have

(¥ = 1)B=3(¥ = s + (¥ = D2aly_y, = 0. (I8)

Moreover, another obvious solution is ¥ = 1. However, by
considering this solution the cosmological constant would
vanish and the system would encounter inconsistency, and
thus we do not study it either [43]. Therefore, the two
remaining solutions of (17) are

3oz + 204 9(1% — 1204

Y, = 19
i Y (19)
The modified Friedmann equation (13) leads to
A o
where A is the saturate of A(s), and AZ, is given by

Ay =my(Yg, = 1)[6 =3Y5, + (Y5, —4)(Y5s — Das
+ (YSA - 1)20‘4}- (21)

Note that using (19), the above equation can be rewritten as
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(rsa=1)

-20

-30

FIG. 1. The quantity rsﬁ)_l, using (24), for m,/H =~ 1, in the case

0 < Y&, < 1. The excluded regions are illustrated in gray.

L _3mil 3 /9.2 2
Ay = 55 |95 £ 3034/ 903 — 12a4 — 180304
20,
F daza4/903 — 1204 + 6a£] . (22)

We solve Eq. (20) to calculate the H?, so we have

2AS
H> = "% (23)
3A—-w+6
Additionally, from (14) we obtain rg, as
HZ
= (24)

S mgYEx(asYsy —az =2)

We mention that we have acquired a result for rg, similar
with that of [60], which implies that the aether part of the
theory does not affect rq,. However, we stress that there is
not any strong coupling in this condition, and thus this
theory possesses well-behaved self-accelerating solutions
with an effective cosmological constant. This is one of the
main results of the present work.

In order to present the above results in a more transparent
way, in Figs. 1 and 2 we illustrate the allowed parameter
regions for (24). Note that these figures are generated by
considering m,/H ~ 1 [50]. We mention that by adjusting
the value of the parameter a4 it is possible to have a sizeable
value of rgu.

III. PERTURBATIONS ANALYSIS

In this section we perform the perturbation analysis of
the scenario at hand. The significance of such analysis
is that the stability conditions of the solutions can be
determined, too. Since we are interested in quadratic

(rsa=1)

1.0

FIG.2. The quantity %, using (24), for m,/H ~ 1, in the case
Y, > 1. The excluded regions are illustrated in gray.

perturbations, we expand the physical metric g,, in
terms of small fluctuations &g, around the background
solution g,a?,):

0
9w = g/(w) + 59/41/' (25)
We keep all terms up to quadratic order, and as usual the
metric perturbations can be split into three parts, namely
scalar, vector, and tensor perturbations. Thus, we have

5900 = —2N2q),
6901' = Na(B,» + 0,-B),
1
5gij = [12 |:h,] + E (azEj + a]El) + Zéljlp
1
+ <a,.aj - §(s,,a,al> E] . (26)

As usual, the tensor perturbations are transverse 0’ h; i =0,
and traceless h;' = 0, while the vector ones are transverse
0'E; = 0'B; = 0. Notice that all perturbations are functions
of time and space, and they are consistent with the
transformations under spatial rotations [50,85].

Additionally, we consider the perturbation of the scalar
field o as

o =0 + 5o, (27)
moreover, we perturb the aether field as [86,87],
u' = w0 4 sut = ;(1 -¥, 0V +iS,), (28)
where
S — é (—, 0V +iS)), (29)

here V is the longitudinal scalar mode and S; is the
transverse vector mode i.e., 0'S; =0. In the vector
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perturbations, it can be possible to restrict ourselves to the
condition where the Aether field would be defined by the
Khronon [88-92]. The Khronometric model is a version of
Einstein-Aether where the Aether field is constrained via a
scalar field . This way, the field can be considered as

wo— %O
M ’
\/—g“ﬂaaadﬁa

and thus the timelike unit norm constraint should be satisfied
automatically. This way, the Aether is restricted to be
orthogonal to a set of spacelike surfaces defined by o. At
background order it can be proposed ¢ = o(¢) and therefore
from the above equation we have u* = (1,0,0,0).
Consequently, the choice of the Khronon definition has
no effect on background dynamics. In the khronometric
model, the o sets a preferred global time coordinate. In [88],
it was investigated how this model explains the low energy
limit of the consistent extension of Horava gravity which is a
quantum theory of gravity. At low energies, this reduces to a
Lorentz-violating scalar-tensor gravity theory. For the vector
perturbations, so we have

a el
ou, = o [—6,,56 + aﬂa(‘l’ + 7)] ,

where do is the perturbed field. The time component is then
oug = a¥, which is a result of the timelike unit norm
constraint, as in Eq. (28). But, if we calculate the spatial
component we have

(30)

(31)

Su; = — = 9,60 — S; =0, (32)
(o2

thus, there is no propagating transverse vector mode. For the
scalar perturbation of aether field, we redefine § 0;60 = 0;V.
Thus, the scalar sector for generalized Einstein-Aether and
the Khronon should be completely equivalent [89].

Furthermore, as usual the actlons are expanded in
Fourier plane waves, namely V> — —k2, d®x — dk, while
the spatial indices are raised and lowered by 5" and &;;.
Lastly, since all calculations are performed in the unitary
gauge, we do not need to specify gauge-invariant combi-
nations [60].

A. Tensor perturbations

We start our investigation by analyzing the tensor
perturbations. Among others this analysis provides the
speed of gravitational waves, and moreover it can deter-
mine the stability of the solutions.

For convenience, we calculate the perturbed action at
second order separately for the different parts. The general
relativity (GR) part is written as

~

1 hyh'? (K2 4H
Sen 8/d3kdt 3N[ 3 —( +W+6H2>h”h }

(33)

Additionally, the quasi-dilaton part of the perturbed action
reads as

2 I
Sé&asi—dilaton = 8 / d3kdl‘(l%N[(N )h jhzj:| ’ (34)
while the aether part is found to be
g
2
Sfoe =1 | Phtta’N |
K 4H
( +W+6H2> hiih; }A( ). (35)
Finally, the massive gravity part becomes
() _1 3 3072 3
Siassive = 3 dkdta’ Nmy[(as + ag)rY
— (14 2a3 4+ ay)(1 +3r)Y?
+ (34303 +ay)(3+2r)Y
—2(6+4a3 + ay)|i’ Jhl-j. (36)

In summary, assembling the above terms, the second—
OEd)er pe(rturbed actlon for tensor perturbations s
SGR + S + Sdether + S massive’ becomes

quasi-dilaton

total —

1 hhy;
s = . / d3kdm31v{ 2 (14 A)]

}h’lfh,-j}, (37)

- {’;2 [1+A(0)] + M&y

where
4H w
Mo = (6 )1+ Ala)] + 5 . (38)
and with
X:m{zmg{yétA{YétA[YgtA(rSA +1)—6]+6} -2}
SA

1
- (rSA_ 1)Y§E§N
2w+ NA'(0)]}}.

{HZ[YSiA(Y:StA _3)(Y§CA’SA -2)-2]
(39)

The last relation is obtained using (19) and (24) to
substitute a; and ay.

In summary, expression (38) determines the dispersion
relation of gravitational waves in aether-quasi-dilaton
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massive gravity. In particular, in order to guarantee the
stability of long-wavelength gravitational waves, the mass
square of gravitational waves should be positive,
namely M%y, > 0.

B. Vector perturbations

We proceed by performing the vector perturbation
analysis. We consider

(40)

B, — {A(a)a—l— 2kta(r? — 1) } E;

2a°H?*w + k*(r* = 1) A
Note that the field B; is nondynamical, and thus we handle

it as an auxiliary field in the main action. Thus, a single
propagating vector is obtained, namely

k2
2 = [ PhaieoN (L 1EP -0 EF ). 41
where
k2 k2<r2 _ 1) -1
p= 2 [1 + 2a°H*w } (42)

It should be pointed out that in the case ~ ;1 >0, we have
no critical momentum scale. On the other hand, for -

we have a critical momentum scale which is k2 = %
to avoid a ghost. We mention that the physical critical
momentum scale is vital in order to acquire stability, and
this scale should be above the ultraviolet cutoff scale of
effective field theory, namely

k)

2H?w
1 -7

2
AUV 5

(43)

Moreover, the canonically normalized fields are defined
to determine other instabilities in the vector modes:

Thus, the sound speed for vector modes becomes

H?u?(1 + 4u?)

c%:MéW(1+u2)—W, (46)
where the dimensionless quantity u” is
kK (r? -1
2=k -1 (47)

2¢*H*w

Lets us proceed by elaborating the stability conditions.
Observing the first part of (46) we deduce that if MZ, < 0
and u?> > 0 then we encounter tachyonic instability. In
order to avoid this condition, one requires

2Hw
Aoy S5— 48
UV ~TT (48)
in the case “2 D>o0. It is interesting to note that if all

physical momenta are considered below the UV cutoff
Ayv, then the rate of instability growth would be lower than
the cosmological scale. Furthermore, by looking at the
second part of (46), two cases can be ascertained. First, if
we consider u?> > 0, there are not any instabilities faster
than the Hubble expansion. On the other hand, for u? <0,

due to the no-ghost condition (43), in order to avoid

1
A3y

instabilities in the second part of (46) In summary, in order
to maintain the stability of the vector modes, we demand
¢t > 0 and M%,, > 0.

instabilities we require |u?| < k—2 Hence, we have no

C. Scalar perturbations

We proceed to the investigation of scalar perturbations,
which are crucial for the growth of the Universe structure.
Observing the perturbation form (26), we can handle ® and

E. B as auxiliary fields, since they are free of time derivatives.
PE;
{i= 5 (44) In particular, we have
By substituting into (41), we have 2 -1 1 . .
B = 5 {H(wéa —20) +— (KPE+6¥)|, (49)
| |C |2 waH 3N
S = /d3kdt 3N< - V|C,-|2>. (45)
2 and
|
A(o)(K2E + 6W) 1
db=—"=——""[1-¥Y+4+V 4k*w*(E + 3
12HN | +V] +48k2(r2 - 1) - 12H*d’w(w — 6) o (E+3)
3a’H? 3a’H?
x (zkz(ﬂ—l)— a “’)50+12w<2k2+ - “’)lp
r—1 r—
12Hdw(ws6 — 6%¥)  8k2(r? — 1)(K*E + 6¥
N HN
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Hence, substituting the above expressions into the action,
we remain with four fields, namely E, ¥, V, and do. In
addition, we can use another nondynamical combination,
1.€.,

- 1
¥ =5 (¥ o) (51)

Since ¥ is free of time derivatives, namely

¥ = <1 LAl (1442 H2N(r + )30 — KN (630 + v/2E) + 32 H(12(r + 1)é0 + fer)])_l

12Nr

2V2K*E (e 24a’H? N 22 H* I (—w? + r(48 — (6 — 0)w))\ ~
- —k* — c
3(4k*> — a®H*(6 — w)w) r(r—=1) (r—1)(4k?* — a*H?*(6 — o))
2¢°H (3 (6 —w)(2k3(r — 1) + 3d®H?w) & V2a*HI2 (6 — o) E
- o
N \r (r=1)(4k*-d*H*(6 — 0)w) 3N(4k* — a*H*(6 — w)w)
A \%4 ~ ~ - .
% (144a2H>N(r + 1)66 — K*Nr(660 + V2E) 4+ 3a*H(12(1 4 r)éo + xﬁrE))}, (52)
-
it can be used as an auxiliary field in order to eliminate the . 18k*wa® H?
sixth degree of freedom. Finally, we consider the orthogo- Fu=2ko+ (r—1)2

nal combination

1
Ve

We can now write the action in terms of P, 5~o-, E and V.
Introducing the notation P = (5o, E, V), we have

Sc

(¥ - 60). (53)

1 Pt p pPf P
S=—= | Pkdta®?N|—F —+—DP+ P DI —— PTw?P|.
2/ a {N}—N—'_N + N ()

(54)
In the above expression D is a real antisymmetric 2 x 2

matrix, and F and w? are real symmetric 2 x 2 matrices.
The components of the F matrix are

K 15

FIG. 3. The region corresponding to absence of ghost insta-
bilities in the scalar perturbations, corresponding to positive
determinant (58).

2k*a’*H* [0® + (6 — w)w?r]?
4 = (6 - @)wdH(r - 1)% (53)

2kt 22K + (6= w)or]
]:12_(r_1)_[12k20)—3(6—w)a)2a2H2](r_1)’ (56)

k4_a) kK*a*H?* (6 — w)*w
36 144k*> —36a*H*(6 —w)o’

Fon = (57)

In order to examine the sign of the eigenvalues, we
calculate the determinant of the kinetic matrix F as

3kSw?a*H*
detF = .7:11?22 _f%Z = . (58)
|wa? H? — 2 (r = 1)

Hence, in order to avoid ghost instabilities in the scalar
sector, we require

k 6w — w?

< —

2H > (59)

In Fig. 3 we depict the region corresponding to absence of
ghost instabilities. As we observe, in order not to have
ghosts we require 0 < @ < 6. Moreover, by demanding the
left-hand side of (20) to be positive, we deduce that the
aether field in the saturate condition A should be positive,
ie, A>0.

IV. CONCLUSIONS

In this manuscript we presented the aether-quasi-dilaton
massive gravity. This theory arises from the inclusion of the
aether field in the framework of quasi-dilaton massive
gravity. After constructing the action of the theory, we
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extracted the general field equations and then we applied
them in a flat FLRW geometry.

We started our analysis at the cosmological background
level, showing the existence of exact, self-accelerating
solutions, characterized by an effective cosmological con-
stant arising from the graviton mass.

However, the interesting feature of the scenario was
revealed performing a detailed perturbation analysis. In
particular, investigating separately the tensor, vector, and
scalar perturbations we showed that the aether-quasi-
dilaton massive gravity is free of ghost instabilities as well
as of the strong coupling problem.

In particular, concerning the tensor perturbations we
extracted the dispersion relation of gravitational waves.
Additionally, performing the vector and scalar perturbation
analysis we determined the stability conditions. As we saw,
there are always regions in the parameter space in which the
obtained solutions are well-behaved at both background
and perturbation levels.

Hence, although the aether field does not play an
important role in the background self-accelerating solu-
tions, it does play a role in the alleviation of the perturba-
tion-related problems of the simple quasi-dilaton massive
gravity. This result is a good motivation for further
investigation of the theory, and in particular of its early-
and late-time cosmological application. Since such a study
lies beyond the scope of this first work, it is left for a future
project.
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