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We present a new approach to studies of bubble dynamics in fluids. Relying on particle-based
simulations, this method is general and suitable for cases where the commonly used perfect fluid
description fails. We study expanding true vacuum bubbles surrounded by free or self-interacting particles
and quantify how self-interactions affect the terminal bubble wall velocity. We find that, for sufficiently
strongly self-interacting fluids, local thermal equilibrium is maintained around the bubble wall and the fluid
profile is similar to that obtained with the perfect fluid description.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by LIGO [1]
started a new era in astrophysics and cosmology. With
many new GWexperiments planned in the coming decades
[2–11] the potential of probing the early Universe through
searches of stochastic GW backgrounds will increase
tremendously. In fact, pulsar timing experiments have
recently been reporting possible hints of a stochastic
background at very low frequencies [12–15] that might
have originated from the early Universe [16–26]. We focus
on first order phase transitions that are a common phe-
nomenon in particle physics models and a possible GW
source [27–29].
First order phase transitions are characterized by the

nucleation of bubbles of the broken phase in the symmetric
phase background [30–32]. These bubbles then expand until
they collide and convert the entire Universe to the broken
phase. Interaction of the bubble walls with the ambient fluid
is among the key topics currently under investigation by the
community as it is key in determining the terminal velocity of
the wall. Crucially, whether the walls reach a steady state
before colliding dictates if theGWsignal is primarily sourced
bybubble collisions [33–41] or fluid related sources [42–49].
In the latter case, accurate modeling of the fluid motions
induced by the growing bubbles is important for precise GW
spectrum estimates [48–51]. The wall velocity is crucial also
for the possible generation of baryon asymmetry during the
transition [52–58].

Several approaches have been developed to compute the
wall velocity in particle physics models. For relatively
weak transitions, the starting point is local thermal
equilibrium [59–65], and accurate estimates also include
perturbations around the equilibrium [66–68] found
by solving a system of Boltzmann transport equations
[57,58,69–76]. However, the result can be approximated
assuming equilibrium, if the wall reaches a steady state with
a shell of heated fluid around the bubble [58,76]. If the wall
accelerates beyond that point and only the fluid inside the
bubble is heated, the solution describes a detonation [77].
In this case, the friction drops to the point where we reach
large wall velocities for which perturbations become large,
and a different computational method is necessary. This
brings us to strong transitions where the wall is thin
compared to the wavelength of particles in the fluid, and
interactions can be treated in terms of transmission and
reflection coefficients in the WKB approach [78]. The
leading order result predicts a friction term proportional to
the mass difference between particles on each side of the
wall [79]. For ultrarelativistic walls, emission of soft gauge
bosons upon wall crossing becomes important [80]. The
scaling of friction with velocity is still a matter of some
debate [81–83].1
Dynamical simulations of the fluid in local thermal

equilibrium have been conducted with an effective cou-
pling between the scalar field and the fluid [88,89]. These
results were crucial for determining the GW spectrum
[43,45,47] produced by the fluid motion after the transition
and the fate of its remnants, such as heated fluid droplets
still in the old symmetric phase [89,90]. However, with this
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1Holographic methods [84] have been employed to compute
the wall velocity in strongly coupled theories [85–87].
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modeling, the connection to particle physics is unclear. The
effective coupling needs to be traded for the wall velocity,
which has to be computed beforehand and depends on the
fluid profile around the wall.
In this work, we propose a novel dynamical approach for

studying the coupledwall-plasma system.As an application,
by starting with physical parameters, we compute the wall
velocity and find the fluid profiles. Our description is easily
applied to nonequilibrium cases [91–94].Wemodel thewall
as a phase boundary with energy conservation determining
whether particles will penetrate the wall or be reflected.

II. THEORETICAL BACKGROUND

A. Particle-wall interactions

We consider a classical system of point particles whose
mass depends on the value of a scalar field ϕ. For
generality, we start with a generic curved background.
Omitting particle self-interactions, the action of such
systems is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∂ϕÞ2 − VðϕÞ

�

−
X
n

Z
dτmðϕðxμnÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνx0

μ
nx0νn

q
; ð1Þ

where x0μ ≡ dxμ=dτ, τ parametrizes the trajectories, and n
labels the particles. The scalar field obeys2

□ϕþ V 0 ¼ −
X
n

_snffiffiffi
g

p δ3ðxi − xinðtÞÞ∂ϕmðϕÞ

¼ −
Z

d3p
ð2πÞ32Efðx; pÞ∂ϕm2ðϕÞ; ð2Þ

where the dot denotes derivative with respect to t,

_sn ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _x

μ
n _xνn

q
, and fðx; pÞ is the particles’ phase space

distribution. In equilibrium, the right-hand side of Eq. (2) is
the derivative of the thermal contribution to the scalar field
effective potential [70,95]. In our approach, the fluid is
described as a collection of particles, thus the corrections toV
are explicitly accounted for by particle-wall interactions.
The action (1) does not contain interactions between

particles. The Boltzmann equation, describing an interact-
ing gas, has the general form LðfÞ ¼ CðfÞ, where L and
C, denote the Liouville and the collision operator, respec-
tively [96]. The Liouville operator is linear in f, describes
the motion of noninteracting particles, including inter-
actions with the wall, and is fully determined by the action
(1). The nonlinear collision operator is responsible for
maintaining thermal equilibrium and the responsible

particle self-interactions must be implemented separately.
This will be addressed in Sec. III. We will consider both
free and self-interacting particles.
By the action (1), the equations of motion of particles are

ðmx0μÞ0 þmΓμ
ρσx0ρx0σ − ∂

μm ¼ 0, where Γμ
ρσ denotes the

Christoffel symbols, and reduce to the geodesic equations
with a constant m. In terms of the canonical momenta
pμ ≡ −∂L=∂x0μ, they can be expressed asp0μ þ Γμ

ρσpρx0σ ¼
∂
μm and imply the on-shell condition ðp2 −m2Þ0 ¼ 0.
Consider now a scalar field bubble. We assume that the

interactions of the particles with the bubble wall are
sufficiently localized in spacetime so that curvature can
be neglected, and that the wall profile does not change
during particle-wall interactions. This amounts to working
in Minkowski spacetime, where we recover the usual
4-momentum pμ ¼ mðγ; γ _xiÞ with γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. In the

bubble wall frame and the x axis normal to the wall, the
equations of motion simplify to _E ¼ _py ¼ _pz ¼ 0 and
_px ¼ −γ−1∂xm. The change in 4-momentum is thus com-
pletely characterized by p2

x þm2 ¼ constant.
Consider the wall centered at x ¼ 0, assume that mðxÞ

approaches asymptotically a constant, m� ¼ mð�∞Þ and
choose mþ > m−. A particle coming from x < 0 towards
x > 0 can either penetrate the wall if E > mþ or get
reflected from the wall, px → −px, if E < mþ. In the
former case, the momentum of the particle decreases as
p2
x → p2

x þm2
− −m2þ. Since mþ > m−, a particle coming

from x > 0 towards x < 0 always penetrates the wall and
its momentum increases as p2

x → p2
x þm2þ −m2

−.
Interactions with a moving boundary can be derived by

boosting the above results to the fluid frame. We can use the
walls normal nμ to express the change of the particle
momentum in a manifestly covariant way,

pμ → pμ þ nμn · pF ð−n · pÞ; ð3Þ

where the function F depends on the direction from which
the particle approaches the wall. For particles approaching
the wall from the m− region, it is given by

F−ðuÞ≡
8<
:

2; 0 < u < Δm;

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δm2

u2

q
; u ≥ Δm;

ð4Þ

where Δm2 ≡m2þ −m2
−, and for particles approaching the

wall from the mþ region by

FþðuÞ≡ θð−uÞ
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δm2

u2

s !
; ð5Þ

where θ denotes the step function. We fix n2 ¼ −1 and the
sign of nμ by nμ ∝ ∂μm so that the normal is directed
towards mass growth. For example, for a spherical wall

2The particle density is nðxÞ≡ jgj−1=2Pn δ
3ðxi − xinðtÞÞ ¼R d3p

ð2πÞ3 fðx; pÞ.
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enclosing them− region moving at velocity vw, the nonzero
components of nμ are nt ¼ vwγw and nr ¼ γw.
The number of collisions from the þ and − regions per

time interval dt on a surface element dS is

d2N�
dtdS

¼∓
Z

d3p
ð2πÞ3 f�ðpÞθð∓ vrelÞvrel; ð6Þ

where vrel ¼ −n · p=ðEγwÞ is the relative velocity between
the particle and the wall in the direction of n⃗, and f�ðpÞ
denotemomentum distributions near thewall. ByEq. (3), the
energy transferred in each collision is n0n · pF ð−n · pÞ. The
pressure difference across the bubble wall caused by particle
collisions is determined by energy transfer δE from the
bubble to the particles as the bubble’s volume changes by δV,

ΔP≡ δE
δV

¼
Z

d3p
ð2πÞ3

X
i∈�

fiðpÞ
ðn · pÞ2

Ei
F ið−n · pÞ; ð7Þ

where E2
� ¼ m2

� þ p2. We will assume a spherical bubble
and isotropic f�ðpÞ so that the pressure is uniform across the
wall and ΔP is independent of nμ.
In the limit jvwj → 1 or, equivalently, ðn · pÞ2 → ∞, one

of the F� coefficients always vanishes because n · p > 0
when vw → 1 and n · p < 0 when vw → −1, and we find

lim
vw→�1

ΔP ¼ �Δm2

Z
d3p
ð2πÞ3

f∓ðpÞ
2E∓

; ð8Þ

agreeing with the pressure difference found in Ref. [79].
For example, assuming a relativistic species with particle
density n that follows Maxwell-Boltzmann distribution, we
find that ΔP ¼ �Δm2n∓=ð4T∓Þ. However, our result (7)
is more general and allows us to estimate the terminal
bubble wall velocity.

B. Bubble dynamics

Consider anOð3Þ symmetric scalar field configuration in
which the field interpolates between two minima of its
potential separated by a potential energy difference ΔV
chosen such that outside the bubble V ¼ 0 and inside
V ¼ −ΔV < 0. In the thin-wall limit, the scalar field action
of the bubble in vacuum is [35,97]

Sϕ ¼
Z

dt
�
−4πσR2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
þ 4π

3
R3ΔV

�
; ð9Þ

where R denotes the bubble radius and σ ≡ R dϕ
ffiffiffiffiffiffi
2V

p
is

the surface tension. Correspondingly, the energy of the
bubble is

Eϕ ¼ 4πσ
R2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p −
4π

3
R3ΔV: ð10Þ

In vacuum, the bubble’s energy is conserved and the
equation of motion for the bubble radius follows from
_Eϕ ¼ 0.
To include the effect of interactions with the surrounding

particles, we assume that the total energy of the system is
conserved. Thus, R obeys

R̈þ 2
1 − _R2

R
¼ ð1 − _R2Þ3=2

σ
ðΔV − ΔPÞ; ð11Þ

where we used energy conservation to write _Eϕ=4π _RR2 ¼
−ΔP, with ΔP given in Eq. (7).
We consider expanding true vacuum bubbles relevant for

cosmological phase transitions3 and a single particle
species. The bubble expansion is driven by the potential
energy difference ΔV > 0 and, because the particles are
heavier inside the bubble than outside, the pressure ΔP is
positive and increases with the bubble wall velocity vw. The
bubble wall asymptotically reaches a terminal velocity,
determined by how fast ΔP increases with vw, if ΔP
asymptotically reaches ΔV.
We consider scenarios in which particles exist only

outside the bubble with the Maxwell-Boltzmann distribu-
tion, f−ðpÞ ¼ e−E−=T− , and m− ≪ T−. The system is
characterized by the temperature far outside of the bubble
T−=mþ, the mass ratio m−=mþ, and the strength of the
transition,

α≡ ΔVT

ρ−
; ΔVT ≡ ΔV − T

Z
d3p
ð2πÞ3 f−ðpÞ; ð12Þ

where ρ− denotes the energy density of the fluid far outside
of the bubble and ΔVT the potential energy difference
including the thermal corrections integrated from the last
term in Eq. (2) for the Maxwell-Boltzmann distribution. By
Eq. (11) with ΔV − ΔP ¼ ΔVT , the surface tension σ
determines the critical radius Rc ¼ 2σ=ΔVT . If R > Rc, the
bubble expands.

III. SIMULATION SETUP

We study the dynamics of the coupled system consisting
of the fluid and a scalar field bubble with N-body
simulations. The simulation box, as which we consider a
cube with periodic boundary conditions, is initialized in
such a way that it includes the thin-wall bubble and
particles inside and outside the bubble with the chosen
number densities. The positions of the particles are chosen
randomly from a uniform distribution, and their velocities
are picked from the chosen momentum distribution.

3We consider false vacuum bubbles relevant for collapse of the
last false vacuum regions in phase transitions [89,90,98,99] or
false vacuum patches of inflationary origin [100–102] in a
separate study [103].
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To include particle self-interactions, we consider a
simple model of elastic 2 → 2 scatterings based on hard
spheres. The self-interaction strength is characterized by
the interaction radius rc, and the collision is assumed to
occur when the two particles are within distance 2rc in the
center of mass (c.m.) frame, that is, when

ðp̂ × δx⃗Þ2 þ γ2ðp̂ · δx⃗Þ2 ≤ ð2rcÞ2; ð13Þ

where �p̂ are the directions of 3-momenta of the particles,
δx⃗ denotes their separation, and γ is the c.m.-frame Lorentz
factor that accounts for length contraction. To obtain the
Maxwell-Boltzmann distribution as the system reaches
equilibrium, the collisions must occur with a probability
∝

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
, when the collision criterion is satisfied within a

time step. We take the c.m. scattering angle to be random
after the collision.
The simulation proceeds in time step by step and at each

time step the following operations are carried out:
(1) The positions of particles are evolved using the Euler

method and their collisions with the wall are
checked. If the particle collides with the wall, the
time step is split so that, first, the particle is evolved
to the bubble wall, then its momentum is changed
according to Eq. (3), and finally, the particle is
evolved until the end of the time step with the new
momentum. The energy of the particle changes
when it collides with the wall. At the end of each
time step, the total change in the particle energies is
used to infer the collision induced pressure on the
wall and, consequently, its contribution to the
acceleration of the wall.

(2) The 2 → 2 collisions between the particles are
checked. The input parameter that determines the
strength of the self-interactions is a length scale rc,
which roughly speaking corresponds to the radius of
the hard spheres. In order to avoid checking all
particle pairs, the simulation volume is divided into
cubic cells of the size ð2rcÞ3, and the condition for
collisions is checked only with the particles in the
same and the nearest cells. As particles do not
interact at distances greater that 2rc, such a cell
size is sufficient. If the collision condition is sat-
isfied, the momenta of the two colliding particles are
changed so that in the c.m. frame the momenta are
back to back with a randomly chosen direction. The
particles are not moved in the collisions, and
collisions of particles at different sides of the wall
are not allowed.

(3) The bubble radius is evolved with the Euler method
using Eq. (11). We stop the simulation before the
fluid profile that builds up in front of the wall
reaches the boundary of the box.

The length of the time step Δt is chosen such that at each
time step the distance that particles can travel is much

smaller than the box size,Δt ¼ L=1000, whereL is the edge
length of the simulation cube. At each time step, we monitor
the total energyof the system andwe find that the total energy
is conserved in the simulation at permil accuracy, as shown in
the right panel of Fig. 2. Moreover, we have checked that the
probability that the particle interacts with the wall twice
within a time step is negligible, Oð10−8Þ, and that the
probability that a particle collides more than once within a
time step is relatively small, Oð10−2Þ.
The particle self-interactions relax the momentum dis-

tribution of the particles towards the relativistic Maxwell-
Boltzmann distribution. In Fig. 1 we show the momentum
distribution of the particles at different times. This simu-
lation does not contain a bubble in the simulation box, and
the momentum distribution of the particles is initialized to a
Dirac delta function at momentum p ¼ T. We see that, due
to the momentum exchange between particles in 2 → 2
collisions, the distribution quickly reaches the Maxwell-
Boltzmann distribution.
In Fig. 2 we show the bubble wall velocity vw, the

pressure difference across the wall ΔP, and the total energy
of the system (particlesþ bubble) as a function of the
bubble radius in a benchmark case with T−=mþ ¼ 0.3 for
self-interaction strengths of the particles. The velocity is
averaged over 10 time steps and the pressure difference
over 100 time steps. The oscillations in these curves reflect
particle number in the simulation and we have checked that
these oscillations get smaller with increasing particle
number. From the right panel, we see that the total energy
of the system is conserved at per mil accuracy and the
violations in the energy conservation increase with increas-
ing self-interaction strength.
In Fig. 3 we show snapshots of the radial velocity

distribution of particles in two of the benchmark cases
shown in Fig. 2. We see that the distribution at early times
includes large uncertainties, which smooth out as the
bubble grows.

tinit

t n

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10–4

0.001

0.010

0.100

1

p/T

p
f(
)

FIG. 1. The evolution of the momentum distribution of self-
interacting particles starting from a Dirac delta function distri-
bution at p ¼ T. The black dashed line shows the Maxwell-
Boltzmann distribution.
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The simulation runs very quickly if the strength of the
self-interactions is small. However, with sizable self-inter-
actions, it can take a relatively long time. For example, the
simulation with the strongest self-interactions from which
the results are shown in Figs. 2 and 3, including 6.4 × 106

particles, took 16 h on a single core on a Apple M1 Pro,
whereas in the case without self-interactions and the same
number of particles the running time was only 2.5 min.
Currently, the code cannot be run in parallel, but, as for any
N-body simulation, parallelization is possible.

IV. RESULTS

A. Free particles

The case of free particles is expected to approximate
scenarios where the particles’ mean free path exceeds the
thickness of the fluid shell surrounding the bubble. As

shown in Fig. 4, the simulation results match well with
analytical estimates obtained from Eq. (7) with fþðpÞ ¼ 0.
Moreover, we see that ΔP reaches its maximum at vw < 1.
This is because the particles can penetrate the wall if vw is
sufficiently large, and consequently, by Eq. (4), less energy is
transferred away from the wall. For fixed α, we further find
that ΔP=ΔV ∝ m2þ=T2

− in the relativistic limit. This is
expected asΔP ∝ m2þT2

− and fixingα implies thatΔV ∝ T4
−.

The terminal velocity can be estimated analytically using
Eq. (7) with fþðpÞ ¼ 0 by finding the wall velocity vw for
which ΔP ¼ ΔV.4 As shown in Fig. 5, the terminal
velocity is determined by α and T−=mþ, and increases
with both of them. In the gray region, the pressure can never
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FIG. 2. The wall velocity, the pressure difference across the wall and the total energy of the system as a function of the bubble radius
for T−=mþ ¼ 0.3 and different self-interaction strengths indicated by the color coding.
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FIG. 3. Snapshots of the fluid velocity profile at different times for T−=mþ ¼ 0.3. The upper and lower panels show the free and self-
interacting cases.

4This estimate assumes planar walls or large bubbles for which
the second term on the r.h.s of Eq. (11) is small.
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become large enough to stop the wall from accelerating.
The last effect can also be understood from Fig. 4, in which
ΔP=ΔV < 1 for the curves with T−=mþ ≤ 0.35 for any vw.
For comparison, the dashed curve shows the Bodeker and
Moore result [79] that, as ΔP has a maximum at vw < 1
while Ref. [79] considered only the vw → 1 limit of ΔP,
slightly underestimates the limiting value of α. We note,
however, that our analysis includes only 1 → 1 processes at
the bubble wall, but, as shown in [80], 1 → n processes can
forbid the runaway behavior even if the pressure arising
from the 1 → 1 processes is not large enough.

B. Self-interacting particles

As shown in the left panel of Fig. 6, the self-interactions
keep the distribution thermal around the wall. Our

simulations conserve the particle number, so the momen-
tum distribution includes a nonvanishing chemical potential
around the bubble wall and inside the bubble. As high-
momentum particles are more likely to penetrate the wall,
the momentum distribution inside the bubble is peaked at
higher momentum than outside the bubble. Allowing for
strong number changing processes, the chemical potential
would remain zero everywhere and the maximum of
p2fðpÞ inside the bubble would move towards lower
momenta, reflecting the smaller fluid energy density. In
the free case, the particles making up the overdensity
around the wall move away from it and rise to the high
momentum bump in the right panel of Fig. 6.
We compute the particle’s mean free path l in terms of

their mean separation d̄ ≈ n−1=3− by counting the number of
collisions per time step. As shown in Fig. 7, the terminal
velocity reaches a constant value if l is small enough. The
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FIG. 4. Pressure on the bubble wall caused by free particles for
α ¼ 0.6 and T− ≫ m−. The dashed contours show the analytical
result (7) and the solid curves are from numerical simulations.

FIG. 5. The labeled curves show the terminal bubble wall
velocity in a bath of free particles with f−ðpÞ ¼ e−p=T− and
fþðpÞ ¼ 0 obtained using (7). In the gray region, the wall does
not reach a terminal velocity. The stars indicate the benchmark
cases in Figs. 7 and 8. The dashed curve shows the Bodeker and
Moore limit for runaway bubble walls.
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FIG. 6. Momentum distribution of particles in spherical shells
around the bubble center at radius r indicated by the color coding
with (left panel) and without (right panel) self-interactions for
α ¼ 0.6, T− ¼ 0.3mþ and m− ¼ 0.01mþ. The the dashed black
curve shows fðpÞ ¼ e−p=T− and the vertical dashed line high-
lights p ¼ 2T−.
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FIG. 7. Terminal bubble wall velocity at R ¼ 64Rc as a
function of the inverse of the mean free path l of the particles
in the fluid for α ¼ 0.6 and m− ¼ 0.01mþ. The points with 95%
error bars are obtained from the simulations and the solid curves
show fitting functions.
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numerical results can be approximated well by a four-
parameter fitting function5 shown with the solid curves.
The velocities are shown when R ¼ 64Rc. We find that for
weak self-interactions the velocity of the wall still slowly
changes at the end of the simulation, indicating that the wall
may always reach the same terminal velocity in infinite
time. This is expected as l should be compared to the
thickness of the fluid shell around the wall, which increases
with the bubble radius.
Figure 7 shows that the terminal velocity can be either

smaller or larger in the self-interacting case than in the free
case. Interactions tend to heat the fluid and increase its
number density around the wall. The first process results in
a decrease in pressure, thus increasing the terminal velocity,
while the latter has the opposite effect. Whether the
terminal velocity increases or decreases depends on which
effect dominates. The simulations indicate that stronger
interactions slow down the wall if the wall moves faster
than sound, i.e. , when vw ≳ cs ≈ 1=

ffiffiffi
3

p
, and speed it up

otherwise.
Self-interactions make the front of the density profile

steeper and decrease the energy density inside the bubble,
as is shown in Fig. 8. For comparison, Fig. 8 also shows the
hydrodynamic profiles for the values of vw and α corre-
sponding to the self-interacting case. The hydrodynamic
shell profile in front of the wall is considerably thinner and
lighter. This is likely because we do not simulate particle
number-changing processes. Such processes would heat the
fluid in front of the wall, and therefore, more particles could
penetrate the wall. Since a heavier shell is expected to slow
down the wall more than a lighter one, the number-
changing processes would also affect the terminal velocity
of the wall.

The purpose of simulating particle-particle interactions is
to model the effect of the collision term in the Boltzmann
equation. Although currently we make several simplifying
assumptions about the nature of such interactions, there are
no fundamental obstacles for simulating general collision
terms. In particular, the approach can be straightforwardly
applied to several particle species allowing, for example,
annihilation or bremsstrahlung processes, and interactions
whose strength depends on the phase. To model quantum
statistics, the collision probability can be adjusted by
appropriate Bose enhancement/Pauli blocking factors esti-
mated from the local phase space density in the simulation.
Finally, the simulated particles do not have to correspond to
individual particles, but to collections of particles analo-
gously to smoothed particle hydrodynamics.

V. CONCLUSIONS

We have formulated a new particle-based approach to
bubble dynamics in fluids. As a proof of concept, we
simulated expanding thin-wall bubbles interacting with a
single species of particles with conserved particle number.
We adopted a framework similar to the so-called ballistic
limit, which in the earlier literature is used to describe very
strong transitions, and extended this approach to describe
also slower walls. This allowed us to compute the friction
exerted on the bubble wall and its final velocity depending
on particle masses and their momentum distribution. In
particular, in the case in which interactions between
particles can be neglected, we have derived these quantities
analytically. We have included also particle self-inter-
actions to quantify the thermalization of the surrounding
fluid and its effect on bubble dynamics. This allowed us to
make contact with the existing results which assume local
thermal equilibrium.
The main advantage of this approach is its ability to

describe processes without local equilibrium. One example
of this comes with strongly supercooled transitions where
particles outside the bubble are diluted by expansion and
their interactions can be neglected. In such transitions also
the profile of the fluid shell behind the wall becomes very
sharp and it is not safe to assume that particles there are in
equilibrium either. Other examples are cases involving
heavy particles out of thermal equilibrium. This is naturally
realized in models of filtered dark matter [91,104], where
large mass change upon wall crossing may have a crucial
effect on the wall velocity.
Another key advantage of our method is its ability to

treat the wall expansion in dynamical situations. The
collapse of false vacuum bubbles at the end of phase
transition is one such example, specifically the interactions
between the squeezed particles and the wall. This phe-
nomenon has been already described assuming the fluid
remains in local equilibrium [89,90]. However, recently
many studies try and use squeezing of heavy out-of-
equilibrium particles as a source of black hole formation
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FIG. 8. Fluid density profiles with (solid) and without (dashed)
self-interactions for α ¼ 0.6. The mean free paths in the self-
interacting cases are l ¼ 1.0d̄ (left) and l ¼ 1.8d̄ (right). The thin
gray curves show the profiles obtained by the hydrodynamic
approach, and the vertical gray dashed lines the position of the
bubble wall.

5The fitting function can be parametrized as
a1=½ð1þ ða1 − 1Þe−a2d̄=lÞð1þ a3e−a4d̄=lÞ�.
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[93,99,105] while neglecting the backreaction on the wall.
Our method is perfectly suited to model both light and
heavy species and check if the force they exert on the wall
would not spoil the mechanism.
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