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Extreme-mass-ratio inspirals are important sources for space-borne gravitational-wave detectors. Such a
source normally consists of a stellar-mass black hole (BH) and a Kerr supermassive BH (SMBH), but
recent astrophysical models predict that the small body could also be a stellar-mass binary BH (BBH). A
BBH reaching several gravitational radii of a SMBH will induce rich observable signatures in the
waveform, but the current numerical tools are insufficient to simulate such a triple system while capturing
the essential relativistic effects. Here we solve the problem by studying the dynamics in a frame freely
falling alongside the BBH. Since the BBH is normally nonrelativistic and much smaller than the curvature
radius of the Kerr background, the evolution in the free-fall frame reduces essentially to Newtonian
dynamics, except for a perturbative gravitoelectromagnetic force induced by the curved background. We
use this method to study the BBHs on near-circular orbits around a SMBH and track their evolution down
to a distance of 2–3 gravitational radii from the SMBH. Our simulations reveal a series of dynamical effects
that are not shown in the previous studies using conventional methods. The most notable one is a radial
oscillation and azimuthal drift of the BBH relative to the SMBH. These results provide new insight into the
evolution and detection of the extreme-mass-ratio inspirals containing BBHs.
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I. INTRODUCTION

The idea that two stellar-mass compact objects (∼10M⊙)
could form a binary and merge near a supermassive black
hole (SMBH, ≳106M⊙) is an old one. It could date back to
the 1970s, soon after Weber reported a strong signal in his
gravitational-wave (GW) experiment [1]. Several authors
proposed that the signal could come from a GW source,
such as a merging binary, near the innermost stable circular
orbit (ISCO) around the SMBH in the Galactic Center
[2–4]. The signal appeared strong because it was gravita-
tionally lensed by the SMBH. This idea, however, went
largely unnoticed since the controversy of Weber’s result.
The recent observations of GWs by the Laser Inter-

ferometer Gravitational-wave Observatory (LIGO) and the
Virgo detectors has revived the interest in the very same idea.
So far, LIGO and Virgo have detected nearly 100 binary
black holes (BBHs) [5]. The majority of them seem
significantly more massive than the black holes (BHs) found
previously in x-ray binaries. The sharp contrast raises an
interesting question about the origin of these massive
objects. More than one astrophysical channels may be
responsible for producing them (see [6–8] for summaries).

Among the many possibilities is a BBH orbiting around and
dynamically interacting with a SMBH.
On one hand, the SMBH could accelerate the merger of

the BBH by exciting its eccentricity, due to either the Von
Zeipel–Lidov-Kozai mechanism when the mutual inclina-
tion of the triple system is high [9–11], or the evection
resonance when the inclination is small [12–15]. In either
case, the postmerger BH is likely retained in the vicinity of
the SMBH due to the large escape velocity, and hence could
participate in another merger [16]. The repeated mergers
could explain the large BH mass detected by LIGO/Virgo.
On the other, if the SMBH has an accretion disk, as would
be the case in an active galactic nucleus (AGN), a BH
embedded in the disk could grow by accreting the sur-
rounding gas. More importantly, BBHs could form and
merge more frequently in the assistance of the gas [17–20].
Interaction with the other compact objects in the accretion
disk may further enhance the merger rate of BBHs [21,22].
It has been shown that the merger rate could be comparable
to the LIGO/Virgo event rate in the above astrophysical
scenarios [23–30].
The GW signal from such a BBH orbiting a SMBH is the

focus of many recent studies. It has been shown that the
GWs emitted from the BBH will be periodically modulated
by the Doppler shift [31–34] as well as an aberrational effect
[35]. This modulation may be negligible for a LIGO/Virgo
event, because the signal is too short (< 1 s) compared with
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the orbital period around the SMBH, therefore does not
allow the velocity of the c.m. of the BBH to substantially
change [36]. However, the effect is detectable by the space-
borne Laser Interferometer Space Antenna (LISA), because
LISA could track a BBH for as long as several years [37].
The long waveform can also reveal the variation of the
internal eccentricity of the BBH, which is induced by the
aforementioned Von Zeipel–Lidov-Kozai cycle [32,38–41].
If the SMBH is spinning, then the frame-dragging effect will
further perturb the BBH and leave a detectable imprint in the
GW signal [42,43].
These earlier studies normally assume that the BBH is

hundreds to thousands of gravitational radii away from the
SMBH. This assumption is partly motivated by the earlier
theoretical predictions (e.g., [9,18]) and partly due to a
practical reason, that is the relativistic effect at such
intermediate distances is mild so that it can be modeled
with the post-Newtonian (PN) formalism [44]. However,
more recent studies suggest that the BBH could reach
a distance as small as ten gravitational radii from the
SMBH, due to the interaction with other stars in the
nuclear star cluster or an accretion disk surrounding
the SMBH [29,45–47]. Such events are expected to come
mainly from extra galaxies, and the event rate is estimated
to be between 0.03 and 0.4 Gpc−3 yr−1 depending on the
formation channel [45,47]. The fact that the upper limit
could account for ð1 − 2Þ% of the current LIGO/Virgo
detection rate [48] indicates that one or two BBHs out of
the ∼100 detected events may come from the vicinities of
SMBHs. Such a system resembles in many ways an
important category of LISA sources, known as extreme-
mass-ratio inspirals (EMRIs) [49]. But the distinction is
also clear. Instead of having only one stellar-mass BH,
now the system contains two stellar-mass BHs, bound by
their self-gravity.
As the distance between the BBH and the SMBH

decreases, interesting phenomena emerge, which have
attracted intense scrutiny lately. (i) The Doppler and gravi-
tational redshift becomes so strong that in the detector frame
the BBH will appear more massive and more distant [50].
The same effect can also lower the observed GW frequency
of a binary neutron star and make its detection easier for
ground-based observatories [51]. (ii) The large spacetime
curvature around the SMBH could bend the null geodesics
of the GWs emitted by the BBH, producing lensed images
[52,53], echoes [54], as well as a Shapiro delay [55]. If the
SMBH is spinning and the BBH lies in the equatorial plane,
then the GWs leaving the BBH may be amplified by a
Penrose-like process [56]. (iii) When the frequency of the
GWs from the BBH matches a quasinormal mode of the
SMBH, the SMBH could be resonantly excited [57].
(iv) The fast motion of the BBH around the SMBH can
distort the pattern of its GW radiation due to aberration,
which will induce additional higher modes in the GW signal
[58]. (v) Since the coalescence of the BBH produces

high-frequency GWs (10 − 102 Hz) and its motion around
the SMBH generates low-frequency ones (∼10−3 Hz), the
triple system at its final evolutionary stage becomes a
multiband GW source. Such a source is ideal for measuring
the energy and momentum carried away by GWs, as well as
constraining the mass of gravitons [59].
Despite the increasing interest in considering a smaller

separation between the BBH and the SMBH, the numerical
tools we have today may not be adequate to model the
dynamics of such a triple system. The commonly used PN
approximation breaks down as the separation shrinks to the
order of ten gravitational radii because the velocity of the
BBH relative to the SMBH becomes a significant fraction
of the speed of light. A more subtle issue is that many
earlier studies, in order to simplify the computation of the
waveform, treated the BBH as a single body and modeled
its orbit around the SMBH with a geodesic line (e.g.,
[40,41]). The validity of this treatment has not been tested
when the separation is so small. In the end, a binary has
internal structures and for this reason differs from a test
particle.
One possible solution is to take advantage of the

equivalence principle and investigate the problem in a
frame freely falling together with the BBH. Especially
when the BBH is nonrelativistic, the dynamics in this free-
fall frame (FFF) is essentially Keplerian, except for a
perturbing force induced by the curvature of the SMBH
background. We notice that a similar method has been used
to model a binary star close to a Schwarzschild SMBH [60],
though in their work the authors implicitly assumed that the
c.m. of the binary follows a geodesic line. Here we revise
their method to simulate the evolution of a BBH down to a
distance of 2–3 gravitational radii from a Kerr SMBH and,
at the same time, self-consistently track the c.m. of the
BBH, which turns out to be nongeodesic.
The paper is organized as follows. In Sec. II we describe

the theoretical framework of simulating the evolution of the
BBH in its FFF. Based on the observation that the
perturbation by the Kerr background induces gravitoelec-
tromagnetic (GEM) forces in the FFF, we argue that these
GEM forces will drive the c.m. of the BBH away from a
geodesic line. In Sec. III we carry out numerical simulations
to test our prediction. We also analyze the evolution in
different frames to better understand the cause and the
effects of the geodesic deviation. In Sec. IV we vary the
initial conditions to showcase the richness of the dynamical
effects induced by the close interaction between the BBH
and the SMBH. In Sec. V, we also compare our results with
those derived from PN and Newtonian simulations to
highlight the difference. Based on our simulation results,
we discuss in Sec. VI the possible observational signatures
imprinted in the GW signal of such a triple system. Finally,
we conclude in Sec. VII and point out several caveats of the
current work, as well as their possible solutions. Throughout
the paper, we use geometrized units where G ¼ c ¼ 1.
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II. THEORY

A. Equation of motion

The system of our interest consists of a SMBH with a
mass of M (106 ≲M ≲ 109) and a BBH within a distance
of r≲ 10M from the SMBH. Following the convention, we
refer to the self-gravitating BBH as the “inner binary” and
the trajectory of its c.m. around the SMBH as the “outer
orbit.” We consider a rotation of the SMBH and denote the
dimensionless spin parameter as s. We further denote the
masses of the two BHs of the BBH as m1 and m2. Then the
total mass of the inner binary is m12 ¼ m1 þm2, which is
typically tens of solar masses.
Although the outer orbit is highly relativistic, the inner

one is much simpler. On one hand, the semimajor axis of
the inner binary, which we denote by a, is 102–103 times
smaller than r [45–47], and hence also much smaller than
the curvature radius of the background Kerr metric. This
fact indicates that the spacetime is sufficiently flat suffi-
ciently close to the BBH. On the other hand, a is typically
103–104 times greater than m12, so that the relative speed
between the two small BHs (∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m12=a

p
) is nonrelativistic.

Given the above hierarchy, it is the most convenient to
use the Fermi normal coordinates to describe the inner
orbit [60]. They are the coordinates a free-fall observer
would naturally choose since sufficiently close to the
observer the metric is approximately Minkowskian. We
denote these coordinates as ðτ;xÞ ¼ ðτ; x; y; zÞ, where the
origin of the spatial coordinates coincides with the location
of the observer.1 In such a frame, the perturbation to the
Minkowski metric by the SMBH is of the order of ðx=rÞ2,
which is small in our case of jxj ≃ a ≪ r. We choose
the origin of the FFF (the free-fall observer) to coincide with
and has the same velocity as the c.m. of the BBH. Then the
initial velocities of the BHs in the FFF are Keplerian, and
our problem reduces essentially to Newtonian dynamics.
We note that the origin of the FFF by construction follows a
geodesic line, but the c.m. of the BBH does not necessarily
follow the same geodesic, as we will show later.
The aforementioned quadratic-order perturbation to the

Minkowskian metric induces GEM forces in the FFF [61].
These forces can be formulated with

F ¼ −mE − 2mv ×B; ð1Þ

where m is the rest mass of an object, v ≔ dx=dτ is its
velocity in the FFF, and E and B are, respectively, the
gravitoelectric and gravitomagnetic fields. The minus signs
in the above equation reflect the fact that mass has a
negative charge in gravitoelectromagnetism. To first order in
x, the components of the GEM fields can be calculated with

Eiðτ;xÞ ¼ R0i0jðτÞxj; ð2Þ

Biðτ;xÞ ¼ −
1

2
ϵijkRjk

0lðτÞxl; ð3Þ

where R0i0j and Rjk
0l are the components of the Riemann

tensor, ϵijk is the Levi-Civita symbol, and i, j, k, and l are
spatial indices which take the values 1,2,3.
Combining the Newtonian and GEM forces, we can

write the equation of motion in the FFF as

ma
d2xa

dτ2
¼ −mamb

xa − xb

jxa − xbj3
þ Faðτ;xa; vaÞ; ð4Þ

where a, b ¼ 1; 2, denoting the two stellar-mass BHs. We
note that the last equation is valid even when the c.m. of
the BBH deviates from the origin of the FFF. The validity
of this equation only requires that the position of the
c.m., xc:m: ¼ ðm1x1 þm2x2Þ=m12, satisfies the condition
jxc:m:j ≪ r. Otherwise, if the BBH wanders too far away
from the origin of the FFF, the perturbation term ðx=rÞ2 in
the metric will no longer be small and the formulas for the
GEM fields will be invalid.

B. Calculating the gravitoelectromagnetic forces

Although it is the simplest to write the equation of
motion in the FFF, it is not straightforward to calculate the
GEM fields in the same frame. This is caused by the fact
that the Riemann tensor is conventionally derived in the
“locally nonrotating frame” (LNRF [62]), a frame not in
free fall. Here we will show that the FFF in general differs
from the LNRF by a boost and a rotation. Based on this
understanding, we will derive the GEM forces in the FFF.
We start from the well-known Boyer-Lindquist coordi-

nates ðt; r; θ;ϕÞ in which the metric is

ds2¼−ð1−2Mr=ΣÞdt2−ð4Msrsin2θ=ΣÞdtdϕþðΣ=ΔÞdr2
þΣdθ2þðr2þs2þ2Ms2rsin2θ=ΣÞsin2θdϕ2; ð5Þ

and the functions Δ, Σ, and A are defined by

Δ ≔ r2 − 2Mrþ s2;

Σ ≔ r2 þ s2 cos2 θ;

A ≔ ðr2 þ s2Þ2 − s2Δ sin2 θ: ð6Þ

The bases of the Boyer-Lindquist coordinates are not
orthonormal. Therefore, it is not easy to derive the
Riemann tensor in this frame.
On the contrary, the LNRF has orthonormal coordinates.

It is the frame used by an observer whose world line
follows constant r and θ but different ϕ, when viewed from
the Boyer-Lindquist coordinates. The coordinates of the

1Here we use τ to label the time in the free-fall frame, and we
save the symbol t to denote the time in the Boyer-Lindquist
coordinate.
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LNRF, ðXt; Xr; Xθ; XϕÞ, is related to the Boyer-Lindquist
coordinates as

dXt ¼ ðΣΔ=AÞ1=2dt;
dXr ¼ ðΣ=ΔÞ1=2dr;
dXθ ¼ Σ1=2dθ;

dXϕ ¼ −
2Msr sin θ

ðΣAÞ1=2 dtþ
�
A
Σ

�
1=2

sin θdϕ: ð7Þ

It has been shown that the Riemann tensor is much simpler
to derive in the LNRF than in the Boyer-Lindquist
coordinates [62]. In the following, we denote the
Riemann tensor in the LNRF as Rμνρσ.
To transform Rμνρσ into the FFF, we notice that at any

instance in time, the local frame of a free-fall observer
differs from the LNRF at the observer’s location by a
Lorentz transformation [62]. Therefore, given the velocity
of the FFF relative to the LNRF, we can in principle derive
the Riemann tensor in the FFF by a Lorentz transformation.
However, because the velocity in general is not aligned
with any of the spatial axes of the LNRF, the Lorentz
transformation will be a complicated one.
In practice, we can simplify the Lorentz transformation

according to the problem we are dealing with. We notice
that BBHs could be delivered to the vicinities of spinning
SMBHs along near-circular orbits in the equatorial planes
of the SMBHs. This situation has been predicted by the
previous models related to AGNs, and the corresponding
event rate is estimated to be about 0.4 Gpc−3 yr−1 [47]. In
this case, it is natural to choose a free-fall observer on a
circular orbit in the equatorial plane. Viewed from the
LNRF, this observer is moving in the azimuthal (Xϕ)
direction. The speed is

u ¼ �M1=2ðr ∓ 2sM1=2r1=2 þ s2Þ
Δ1=2ðr3=2 � sM1=2Þ ; ð8Þ

where the upper signs refer to prograde orbits and the lower
ones refer to retrograde orbits [62]. Given these conditions,
the simplest coordinate system the free-fall observer can
use to calculate the Riemann tensor is such that one spatial
axis is in the same direction as the velocity (Xϕ direction),
and the other two are aligned, respectively, with the Xr and
Xθ axes of the LNRF. Then the Lorentz transformation
matrix has the simple form

Λμ
μ0 ¼

0
BBBB@

γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ

1
CCCCA; ð9Þ

where β ¼ u=c, γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is the Lorentz factor, and the

primed index μ0 refers to a coordinate in the boosted

(observer’s) frame. The transformation of the Riemann
tensor, Rμ0ν0ρ0σ0 ¼ Λμ

μ0Λ
ν
ν0Λ

ρ
ρ0Λ

σ
σ0Rμνρσ, is also significantly

simplified.
However, to appropriately use the Riemann tensor

Rμ0ν0ρ0σ0 , we must notice a subtle but important difference
between the frame where Rμ0ν0ρ0σ0 is derived and the FFF
where the equation of motion, i.e., Eq. (4), applies. The
FFF uses Fermi normal coordinates that, by construction,
form an inertial frame along the entire geodesic of the free-
fall observer. However, Rμ0ν0ρ0σ0 and the corresponding
GEM fields are calculated in a different frame, which is
a Lorentz boost of the LNRF in a specific direction. Such a
boosted frame is an inertia frame only locally, at one
instance in time, but not along the entire geodesic because
the direction of the boost changes with time. For example,
consider a free gyro placed at the origin of this boosted
frame. As the gyro moves along a geodesic around the
SMBH, its spin axis is fixed in the FFF but in general will
precess relative to the spatial coordinates of the LNRF, as
well as the boosted frame. For this reason, the boosted
frame is also known as the “local inertial frame” (LIF).
The relationship between the LNRF, LIF, and FFF is

illustrated in Fig. 1, where we have considered a circular
orbit for the free-fall observer. The rotation of the LIF
relative to the FFF is clearly shown. The corresponding
angular velocity viewed from the FFF can measured by the
precession of a free gyro, and is ω ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
M=r3

p
[63]. The

minus sign indicates that the angular velocity vector ω is
pointing in the −y direction when the free-fall observer is
moving on a prograde orbit around the Kerr SMBH.
Having understood the relationship between the LIF and

FFF, we can derive the GEM forces in the FFF as follows.

FIG. 1. Different reference frames used in this paper and their
relative orientation as they rotate around the SMBH. The curved
cyan arrow shows the direction of rotation and the Roman
numerals indicate the sequence of the evolution. The red dotted
arrows mark the x and z axes of the free-fall frame when it has
completed one revolution around the SMBH. The axes misalign
with the original ones because of precession.
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Given the mass m, position x ¼ ðx; y; zÞ, and velocity v of
an object in the FFF, we first calculate its position x0 ¼
ðXr0 ; Xθ0 ; Xϕ0 Þ and velocity v0 in the LIF with

Xr0 ¼ x cosðωτÞ − z sinðωτÞ; ð10Þ

Xθ0 ¼ y; ð11Þ

Xϕ0 ¼ x sinðωτÞ þ z cosðωτÞ; ð12Þ

and v0 ¼ v − ω × x. Notice that ω < 0 (ω > 0) if the FFF
is moving along a prograde (retrograde) circular orbit
around the SMBH. The above transformation reflects the
fact that the LIF differs from the FFF by a rotation. Using
x0 and the Riemann tensor Rμ0ν0ρ0σ0, we can construct the
GEM fields in the LIF, namely, E0 and B0. Then the GEM
force in the LIF, F0 ¼ ðFr0 ; Fθ0 ; Fϕ0 Þ, is computed with
F0 ¼ −mE0 − 2mv0 ×B0. Finally, rotating F0 around the
Xθ0 axis by an angle of ωτ, we get the GEM force in the
FFF. Mathematically, the rotation is performed with

Fx ¼ Fr0 cosðωτÞ þ Fϕ0 sinðωτÞ; ð13Þ

Fy ¼ Fθ0 ; ð14Þ

Fz ¼ −Fr0 sinðωτÞ þ Fϕ0 cosðωτÞ: ð15Þ

C. Deviation from free fall

We notice that one assumption which is implicitly
adopted by many earlier works is that the outer orbit
follows the geodesic of a test particle (e.g., [40–43]). If this
assumption is valid, then we can find a FFF whose origin
always coincides with the c.m. of the BBH.Wewill show in
this subsection that it is not the case because of the
existence of the gravitomagnetic force.
In the FFF defined above, the total force exerted on the

c.m. of the BBH is m1d2x1=dτ2 þm2d2x2=dτ2. Now
consulting Eq. (4), we can immediately eliminate the total
force due to Newtonian gravity because the gravitational
forces on the two stellar-mass BHs are of the same
magnitude but in opposite directions. As for the GEM
force, i.e., the second term on the right-hand side of Eq. (4),
we first notice that the gravitoelectric field, Ea, is propor-
tional to the position xa of an object. Therefore, the total
gravitoelectric force, FE

c:m: ¼ −m1E1 −m2E2, scales with
m1x1 þm2x2, which is m12xc:m:. As a result, if at one
instance we choose the origin of the FFF to coincide with
the c.m. of the BBH, then the total gravitoelectric force will
vanish. In summary, the self-gravity and the gravitoelectric
force will not induce acceleration to the c.m. if initially we
place the BBH at xc:m: ¼ 0 in the FFF. Consequently, these
forces will not cause the outer orbit to deviate from the
geodesic of a test particle.

The effect of gravitomagnetic force is different because
the force, −2mv ×B, is not a linear function of the position
x. For example, consider an initial condition of xc:m: ¼ 0.
This condition leads to m1B1 þm2B2 ¼ 0 because Ba is a
linear function of xa. From the above relationship, we
further derive

FB
c:m: ¼

X2
a¼1

−2maðva − ω × xaÞ × Ba; ð16Þ

¼ 2m2ω× ðx2−x1Þ×B2− 2m2ðv2− v1Þ×B2; ð17Þ

where B2 denotes the gravitomagnetic field at the position
of x2. The last equation shows that the total gravitomag-
netic force FB

c:m: depends not on xc:m:, but on the relative
position x2 − x1 and the relative velocity v2 − v1 of the two
small BHs. Neither of them is zero. Therefore, FB

c:m: in
general does not vanish.
Now we can understand why the c.m. of the BBH does

not follow a geodesic. This is because the nonvanishing
gravitomagnetic force will inevitably drive the c.m. of the
BBH away from the origin of the FFF, even if initially
xc:m: ¼ 0. Furthermore, a small displacement in xc:m: will
be quickly amplified by the gravitoelectric force because
the magnitude of the force scales with m12jxc:m:j. As the
BBH revolves around the SMBH, the direction of the
gravitoelectric force will, most of the time, point away from
the origin of the FFF, causing the c.m. to displace further
away from the geodesic of a test particle.

III. NUMERICAL SIMULATION

A. Initial conditions

Now we use numerical simulations to showcase the
effects of the GEM forces on the evolution of a BBH
around a SMBH. In our fiducial model, the parameters of
the BHs are M ¼ 4 × 106M⊙, s ¼ 0.9, m1 ¼ 15M⊙, and
m2 ¼ 10M⊙. We choose such an value for M to mimic the
SMBH in the Galactic Center, but the result is applicable to
other SMBHs. In particular, it is worth mentioning that
such a triple system is unlikely to be found in the Galactic
Center because of the low event rate [45,47], but more
likely to be found in extra galaxies.
Regarding the initial semimajor axes of the inner and

outer orbits, we are interested in the case when (i) the GEM
forces are not negligible relative to the self-gravity of the
inner binary and (ii) the inner binary can withstand the tidal
force of the SMBH (i.e., the gravitoelectric force). To
identify the relevant values of the semimajor axes, we start
from the acceleration of a test particle around a spinning
SMBH,

d2X
dt2

¼ gþ V ×H; ð18Þ
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which is derived in the limit of weak field and slow motion
[64,65]. Here V ¼ dX=dt is the velocity of the particle
relative to the SMBH,

H ¼ 2

�
S − 3ðS · nÞn

r3

�
ð19Þ

stands for the gravitomagnetic field, S is the spin angular
momentum of the SMBH, and n is the unit radial vector.
Although Eq. (18) is an approximation (1.5PN), it allows us
to quickly estimate the relative acceleration between m1

and m2 induced by the GEM forces, which is

A12 ¼ Atidal þ δV ×H0 þ V0 × δHðrÞ; ð20Þ

where the subscript 0 denotes the position of the c.m. of
the inner binary. The three terms on the right-hand side of
the equation are, respectively, the tidal force (i.e., the
gravitoelectric force), the gravitomagnetic force caused
by different velocities, and the gravitomagnetic force
due to a small radial displacement. The magnitude of each
term is

Atidal ¼
2Ma
r3

; ð21aÞ

jδV ×H0j ¼
ffiffiffiffi
m
a

r
2sM2

r3
; ð21bÞ

jV0 × δHðrÞj ¼
ffiffiffiffiffi
M
r

r
2sM2

r3
3a
r
; ð21cÞ

where we have considered a coplanar triple system and
assumed that a ≪ r.
Comparing the self-gravity of the inner binary,

Asg ≃m12=a2, with the accelerations given by the last
three equations, we can identify the region in the param-
eters space of r and a where the conditions (i) and (ii) are
both satisfied. Figure 2 shows the result for our fiducial
model. We find that at r≲ 10M the two areas correspond-
ing to the above conditions (i) and (ii) start to overlap.
In the light of Fig. 2, we set the initial semimajor axis of

the BBH (inner binary) to a0 ¼ 2; 500m12, so that it is
tidally stable as long as the binary is outside the ISCO of

the SMBH. The inner orbital period is τ0 ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a30=m12

q
≃

98 s in its rest frame. Since a0 is much smaller than the
curvature radius of the background SMBH (∼r), the
precision in the calculation of the GEM forces can be
guaranteed. For simplicity, we assume that the inner orbit is
initially circular. The corresponding GW radiation time-
scale is 5a40=ð64m1m2m12Þ ≃ 50 yrs [66], which is much
longer than the mission duration of LISA. The orbital plane
is chosen to be coplanar with the outer orbit, which is
motivated by the prediction that BBHs could be delivered

to the vicinities of SMBHs by the accretion disks of
AGNs [47].
For the outer orbit, we adopt the initial conditions of a

test particle on a circular, prograde orbit in the equatorial
plane of the SMBH. Therefore, both the inner and outer
orbits are inside the equatorial plane. The orbital semimajor
axis is either r ¼ 3.3M or 2.8M, to cover the region of our
interest while keeping the inner binary outside the ISCO
and tidally stable. The corresponding orbital periods,
measured by a distant observer, are 2π=Ω ≃ 866 s and
702 s, where Ω is the orbital angular velocity in the Boyer-
Lindquist coordinates [62].

B. Dynamics in the FFF

The FFF, in which we will integrate Eq. (4), is set up
according to the following two requirements. (i) The origin
of the FFF initially has the same position and velocity as the
c.m. of the BBH. (ii) The x, y, and z axes initially align with
the Xr0 , Xθ0 , and Xϕ0

axes of the LIF (see Fig. 1). Such a
setup allows us to use the method described in Sec. II B to
simplify the calculation of the GEM forces. We note that
the initial conditions we chose restrict the motion of the
inner binary to the x-z plane, although the method is more
general and can be used in misaligned cases.
In our fiducial model, the outer orbit initially has a radius

of r ¼ 3.3M. The angular momentum of the inner binary
points in the −y direction, so that the inner orbit rotates in
the same sense as the rotation of the outer orbit. Following
the previous works [67–71], we refer to this orientation
as the “prograde” one. Viewed from the FFF, the inner
binary initially rotates much faster than the LIF. In fact, the

FIG. 2. The parameter space in which the inner binary (BBH) is
tidally stable (blue shaded area) or the gravitomagnetic force is
not negligible (gray shaded area). The blue dashed and red solid
lines are derived, respectively, according to Asg ¼ 10Atidal and
Asg ¼ jV0 × δHðrÞj. The black lines are calculated according to
Asg ¼ ηjδV ×H0j, and the solid, dashed, and dotted ones
correspond to η ¼ 1, 10, and 100 to explore the relevant
parameter space of long-term interaction. The other parameters
are M ¼ 4 × 106M⊙, m12 ¼ 25M⊙, and s ¼ 0.9.
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angular velocity of the inner binary, jωbj ¼ jv2 − v1j=
jx2 − x1j, is about six times greater than that of the LIF,
jωj. Note that both ωb and ω have negative values in our
fiducial model. Therefore, the second term in Eq. (17)
predominates, and the c.m. of the BBH will receive a
gravitomagnetic force.
Figure 3 shows the evolution of the BBH in the FFF. The

trajectory of the c.m. is shown as the black solid curve.
Initially, the c.m. is at the origin, ðx; zÞ ¼ ð0; 0Þ. Then it is
displaced by a small amount in the positive-x direction due
to the nonvanishing gravitomagnetic force. Afterwards, it
spirals further away from the origin, which is driven mainly
by the gravitoelectric force. The spiral pattern reflects the
fact that the E field is rotating in the FFF with a constant
angular velocity of ω due to the rotation of the LIF.
This result confirms the prediction we made at the end
of Sec. II C that the outer orbit does not follow a geodesic.

C. Dynamics in the LIF

To see more clearly the directions of the GEM forces, we
shown in Fig. 4 the evolution of the BBH in the LIF, where
the GEM fields do not rotate. In this frame, besides the self-
gravity of the binary, there are four types of additional
forces acting on the BHs.

(i) The gravitoelectric force is shown as the blue
arrows. It vanishes only at the origin and increases
with the distance from the origin.

(ii) The gravitomagnetic force is induced by the grav-
itomagnetic field. The B field is parallel to the Xθ0

axis (pointing out of the page) and its magnitude is
indicated by the color. We can see that it is linearly
proportional to Xr0 , which is a direct result of the
simplicity of the Riemann tensor in the LIF.
To see the direction of the gravitomagnetic force,

we notice that our BBH rotates clockwise in Fig. 4.
Moreover, the binary remains relatively circular in
our fiducial model, as is suggested by the upper
panel of Fig. 5. Furthermore, the sign of the B field

changes when one moves from the upper half-plane
in Fig. 4 into the lower one. Combining the above
factors, we find that the gravitomagnetic force on
either BH, −2mav0a × Ba, always has a component
pointing in the positive-Xr0 direction, unless Xr0 ¼ 0
in which case the B field vanishes. Meanwhile, the
Xϕ0

component of the gravitomagnetic force oscil-
lates between positive and negative values due to the
rotation of the binary. The oscillatory component
averages out to zero over one orbital period, but the

FIG. 3. Evolution of a prograde BBH in the FFF. The initial
distance to the central SMBH is r ¼ 3.3M. The blue and the
orange curves show the trajectories of the two BHs, and the black
spiral curve corresponds to the center of mass of the BBH.

FIG. 5. Upper: evolution of the semimajor axis (black line) and
eccentricity (red line) of the prograde BBH, viewed from the free-
fall frame. Notice that time is in the unit of the initial orbital
period τ0 of the BBH. Lower: evolution of the radial components
of the total gravitomagnetic (blue curve) and gravitoelectric
(black curve) forces acting on the center of mass of the BBH.
The red dashed line is the time-averaged value of the above
gravitomagnetic force, computed according to Eq. (23). The
values shown here are in simulation units.

FIG. 4. Evolution of the prograde BBH in the LIF. The blue,
orange, and black curves have the same meanings as in Fig. 3. The
blue arrows show the direction of the gravitoelectric force acting on
an object with unit mass. The length is proportional to the strength
of the force. The background color indicates the strength of the
gravitomagnetic field, which is perpendicular to the Xr0 − Xϕ0

plane according to the initial conditions of our model.
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Xr0 component does not. As a result, the total
gravitomagnetic force acting on the c.m. of the
BBH also has a nonvanishing Xr0 component.

(iii) A centrifugal force is also present because the LIF
rotates with respect to the FFF, the latter of which is
an inertial frame globally. The magnitude of the

centrifugal force, mω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXr0 Þ2 þ ðXϕ0 Þ2

q
, is also

proportional to the distance to the origin, but com-
pared with the gravitoelectric force, which is of the

order of ðmγ2=r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXr0 Þ2 þ ðXϕ0 Þ2

q
, the centrifugal

force is smaller by a factor of γ2ðr=MÞ, about 4.7 in
our fiducial model.

(iv) The rotation of the LIF also induces a Coriolis force,
−mω × v0. It causes the velocity vector of a moving
object to rotate counterclockwise in Fig. 4.

The black solid curve in Fig. 4 shows the trajectory of the
c.m. of the BBH, which starts at the origin of the
coordinates. To understand its behavior, we first notice
that the gravitoelectric, centrifugal, and Coriolis forces
initially do not induce any acceleration on the c.m. of the
BBH, because their values depend on either m1x1 þm2x2

or m1v1 þm2v2, both vanish according to our initial
conditions.
The only nonvanishing force acting on the c.m. is the

gravitomagnetic force. We have mentioned above that it has
a nonzero component pointing in the positive-Xr0 direction.
To be more quantitative, we can calculate the Xr0 compo-
nent of FB

c:m: according to Eq. (17). Assuming that
jxc:m:j=a ≃ 0 and initially the BBH is aligned with the
Xr0 axis, we find that

er0 · FB
c:m: ¼ 2μðω − ωbÞa2Rt0r0r0ϕ0 cos2 ½ðωb − ωÞτ�; ð22Þ

where er0 is the basis vector associated with the Xr0 axis,
μ ¼ m1m2=m12 is the reduced mass of the binary, and we
have used the fact that in the LIF the B field only has a Xθ0

component and the magnitude is Rt0r0r0ϕ0Xr0 . Now we can
see that this component is positive definite, unless the binary
is aligned with the Xϕ0

axis so that cos ½ðωb − ωÞτÞ� ¼ 0.
We show the value of this component in the lower panel of
Fig. 5 as the blue solid curve. The red dashed line in the
same panel shows the time-averaged value,

her0 · FB
c:m:i ¼ μðω − ωbÞa2Rt0r0r0ϕ0 : ð23Þ

Since it is positive, we can attribute the initial upward
motion of the c.m. in Fig. 4 to the Xr0 component of FB

c:m:.
As soon as the c.m. leaves the origin, the centrifugal

force and, more importantly, the gravitoelectric force (see
the black solid curve in the lower panel of Fig. 5) start to
take effect and further accelerate the c.m. As the speed
increases, the Coriolis force,

FC
c:m: ¼ −2m12ω × v0c:m:; ð24Þ

becomes stronger and eventually exceeds the gravitoelec-
tric force. Since the Coriolis force makes the velocity vector
to rotate, the trajectory in Fig. 4 bends over and finally
comes back to the Xϕ0

axis.
Interestingly, as soon as the c.m. is back on the Xϕ0

axis,
its velocity in the LIF vanishes. This can be seen as a
consequence of the conservation of the Jacobian energy in a
rotating frame. More specifically, in our fiducial model the
inner binary remains circular so that neither its internal
energy nor the angular momentum significantly changes, as
we have shown in the upper panel of Fig. 5. Therefore, the
Jacobian energy of the outer orbit is approximately a
constant. The vanishing of the velocities restores the initial
condition in the LIF. As a result, the dynamical evolution
described above repeats. This is the reason that the black
solid curve in Fig. 4 shows a periodic pattern.

D. Evolution of the outer orbit

The difference between the outer orbit and the geodesic
of a test particle can be more clearly seen in the Boyer-
Lindquist coordinates, as is shown in Fig. 6. The black
solid curves correspond to the results from our fiducial
model. From the upper panel, we find that the c.m.
periodically takes excursions to slightly larger r and comes
back. The period is much longer than that of the outer orbit,
as can be read from the values of the azimuthal coordinate ϕ
where one orbital period corresponds to Δϕ ¼ 2π.
We can compare such a radial migration with the

shrinkage of the outer orbit due to GW radiation. In the
former case, we have seen that the radius has changed by a
factor of Δr=r ∼ 10−4 during one to two revolutions of the
outer orbit. In the latter case, where the GW radiation

FIG. 6. Variation of the radial (upper panel) and azimuthal
(lower panel) Boyer-Lindquist coordinates with respect to a
circular geodesic. The black curves refer to our fiducial model
in which the c.m. has no initial velocity in the FFF or LIF. The red
dashed curves show the results when an initial velocity is added
to the c.m. to cancel the radial component of the gravito-magnetic
force (see Sec. IVA).
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timescale is approximately ðM=m12Þðr=MÞ5=2 times the
orbital period [66], we find that the outer orbit in our
fiducial model would shrink by an amount of Δr=r ∼ 10−6

during two orbital periods. Therefore, the GEM force could
dominate the radial evolution of the outer orbit even when
the system already enters the final stage of GW radiation.
The lower panel of Fig. 6 shows the difference in the

orbital phase. The black solid curve suggests that the c.m.
of our BBH is lagging behind the test particle on a circular
orbit. The phase difference is accumulative, increasing by
about 10−3 radian during each excursion of the c.m. As a
result, we would expect a phase difference of about
0.0025 radian in one hour, or as large as 1 radian in about
17 days. Such a deviation will result in observable
signatures, as we will discuss in Sec. VI.

IV. VARYING THE INITIAL CONDITIONS

A. Velocity of the c.m.

We have seen that if the outer orbit starts on a circular
geodesic, it will soon deviate from circular motion by
oscillating radially. The oscillation is driven initially by
the gravitomagnetic force, which on average accelerates the
c.m. of the BBH along the radial direction.
We notice that such a force can be balanced by the

Coriolis force if we relax the initial condition, giving the
c.m. of the BBH an extra velocity in the Xϕ0

(azimuthal)
direction. Introducing such a Coriolis force, in principle,
could reduce the radial acceleration and hence suppress the
amplitude of the radial oscillation. In this way, a circular
orbit may be sustained.
To test the above postulation, we give the c.m. an initial

velocity along the Xϕ0
axis (z axis in the FFF). The

magnitude of this velocity is given by equating Eqs. (23)
and (24). To transfer this velocity into the FFF, we use the
fact that initially v0c:m: ¼ vc:m: because xc:m: ¼ 0.
The results are shown in Fig. 6 as the red dashed curves.

The upper panels shows that, indeed, the radial oscillation
is significantly smaller than that in the previous case, where
the c.m. has no initial velocity in the azimuthal direction.
However, the amplitude of the oscillation is not zero. This
can be explained by the fact that the gravitomagnetic force
is oscillatory but the Coriolis force is varying more
smoothly. Therefore, an initial azimuthal velocity could
reduce, but not completely suppress the radial oscillation of
a binary around a SMBH.
The red dashed curve in the lower panel of Fig. 6 shows

that the phase shift is also much smaller when an azimuthal
velocity is initially added to the c.m. of the BBH.
Therefore, detecting such BBH would require much longer
observing time.

B. Orientation of the inner orbit

In our fiducial model, the inner binary initially rotates in
the same direction as the outer orbit. We have seen that in

such a prograde case, the c.m. of the inner binary will drift in
the negative azimuthal direction. If we flip the rotation axis
of the inner binary to make it counterrotating with respect to
the outer orbit, according to Eq. (17), then the dominant part
of the gravitomagnetic force, i.e., the term proportional to
v2 − v1, will change sign. Then the c.m. of the inner binary
initially accelerates in the opposite direction relative to the
fiducial case. We expect that the subsequent azimuthal drift
of the c.m. will also flip direction.
Figure 7 shows the result from our simulation of a

retrograde inner binary. Comparing with the trajectory of
the c.m. shown in Fig. 4, we find that the inner binary
indeed reverses the drift direction when its rotation axis
flips. Figure 8 compares the Boyer-Lindquist coordinates
of the c.m. in the prograde and retrograde cases. We can see
that in both the radial (upper panel) and the azimuthal
directions (lower panel), the direction of the drift flips as
the sign of the angular momentum of the inner binary
changes.

FIG. 7. Same as Fig. 4 but the BBH is rotating in the retrograde
direction, i.e., the angular momentum is pointing out of the page.
The c.m. of the BBH starts from the origin, ðXr0 ; Xϕ0 Þ ¼ ð0; 0Þ.

FIG. 8. Same as Fig. 6 but only showing the simulations
without an initial c.m. velocity in the FFF or LIF. The black solid
and red dashed curves, respectively, refer to the simulations with
retrograde and prograde BBHs.
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C. Distance to the SMBH

To study the evolution of the BBH at a smaller distance
to the SMBH, we reduce the initial radius of the outer orbit
to r ¼ 2.8M and rerun the simulation. The other parameters
are kept the same as those in the fiducial model.
Figure 9 shows the resulting trajectories of the two stellar

mass BHs and their c.m. in the FFF (left) and the LIF (right
panel). We can see that the inner binary is no longer
circular. The trajectory of the c.m. is also more irregular
compared with that in the fiducial model. In particular, the
direction of its azimuthal drift reverses several times, as can
be seen in the LIF. These behaviors are qualitatively
different compared with that at a larger distance from
the SMBH.
To understand the cause of the irregularity, we show in

the upper panel of Fig. 10 the evolution of the semimajor
axis and the eccentricity of the inner binary. Now both
parameters vary with significantly larger amplitude com-
pared with the variation in the fiducial model (Fig. 5). The
larger amplitude is a result of the stronger GEM forces at
smaller r. Furthermore, we find that the eccentricity of the
inner binary is quasiperiodically excited to a value as large

as 0.9, on a timescale roughly ten times longer than the
initial orbital period of the inner binary (τ0). The evolution
does not resemble the Von Zeipel–Lidov-Kozai cycle not
only because of its irregularity but also because the Von
Zeipel–Lidov-Kozai cycle requires the inner and outer
orbits to be misaligned, but they are coplanar in our case.
The irregularity of the inner orbit also makes the GEM

forces on individual BHs more complex. As is shown in the
lower panel of Fig. 10, neither the gravitomagnetic nor the
gravitoelectric force behaves according to a simple sinus-
oidal curve. However, the Xr0 component of the gravito-
magnetic force remains positive, reflecting the fact that the
inner binary remains rotating in the prograde direction. On
the contrary, the Xr0 component of the gravitoelectric force
could reach large negative values during the evolution,
suggesting that the c.m. of the BBH has wandered far into
the lower half-plane of the LIF.
Figure 11 shows the variation of the Boyer-Lindquist

coordinates of the outer orbit. Comparing it with the results
from the fiducial model, we find that the variation in the
radial direction has larger amplitude now. More importantly,
the amplitude seems to increase with time. This behavior

FIG. 9. Evolution of a prograde BBH when the initial distance to the SMBH is r ¼ 2.8M. The left panels shows the evolution in the
FFF and the right one in the LIF. The lines, arrows, and colors have the same meanings as in Figs. 3 and 4.

FIG. 10. The same as Fig. 5 but for r ¼ 2.8M. FIG. 11. The same as Fig. 6 but for r ¼ 2.8M.
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can be understood as the consequence of an exchange of
energy between the inner BBH and the outer orbit.
Moreover, the phase shift in the azimuthal direction, Δϕ,
also accumulates much more quickly when r is smaller.
More quantitatively, the magnitude of Δϕ could reach
0.005 radian in about two hours, which amounts to 1 radian
in about eight days.
Because of its irregular variation, the gravitomagnetic

force can no longer be counterbalanced by a constant
Coriolis force in the LIF. Therefore, we find that introducing
an initial velocity to the c.m. will not reduce the amplitude
of the radial or azimuthal drift in the LIF. For this reason, we
do not show the corresponding results in Fig. 11.
It is worth mentioning that the gravitomagnetic force

plays an important role in stabilizing the inner binary. For
example, Fig. 12 shows the evolution of the inner BBH
when we suppress the gravitomagnetic force by hand. The
other parameters are the same as in Fig. 10. The binary
breaks after about 45 revolutions. The reason is as follows.
The main effect of the gravitomagnetic force is to rotate the
velocity vector of each BH. The rotation of the velocity
prevents the BHs from venturing far away from the origin
of the FFF. Without the gravitomagnetic force, the BHs can
travel in opposite directions for a longer time. As a result,
the average distance between the two BHs are larger, and
the binary becomes more susceptible to tidal disruption.
More importantly, since the gravitomagnetic force gener-
ally increases with the spin parameter s of the SMBH, we
expect that a larger spin could in general make the BBH
more stable.

V. COMPARE WITH PN SIMULATIONS

As we have mentioned at the beginning of the paper, the
PN formalism is not suitable for our problem because it is
derived in the limit of low velocity. To see the difference
between the PN orbit and the orbit from our method, we

simulate the triple evolution using the PN formalism
presented in [72]. We include the terms up to 2PN order,
so that the effect of spin-orbit coupling is present. We
neglect the 2.5PN and higher-order terms, because they
become important only after tens of thousands of revolu-
tions of the outer orbit.
To allow easier comparison, in the PN simulation we

place the c.m. of the BBH initially on a circular orbit
coplanar with the equatorial plane of the spinning SMBH.
Notice that the circular velocity in the PN simulation is
calculated from

−
V2

rh
n ¼ −

M
r2h

nþM
r2h

nðA2 þ A4Þ þ V ×H; ð25Þ

where A2 ¼ −V2 þ 4M=rh and A4 ¼ −ðM=rhÞ2 [73]. The
radius rh refers to the harmonic coordinate [73]. It is related
to the Boyer-Lindquist coordinate as

rh ¼ ðr −MÞ cos
�

s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − s2

p ln
r − r−
r − rþ

�

þ a sin

�
s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − s2

p ln
r − r−
r − rþ

�
ð26Þ

with r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − s2

p
, if the orbit is inside the equa-

torial plane [74]. The result for a test particle is

V� ¼ −sα2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2α4 þ αð1 − αÞð1 − 4αþ 9α2Þ

p
1 − α

; ð27Þ

where α ¼ M=rh (also see [75]). We can see that it is
different from the one given by Eq. (8).
We then replace the test particle with our BBH, and run

three-body simulations using three different methods,
namely, the 2PN formalism, our GEM method, and an
additional Newtonian simulation for reference. Figure 13
compares the evolution of the inner binary when r ¼ 6M.
Notice that we have increased the semimajor axis of the
inner binary to a ¼ 6000m12 to place it in the dark-shaded
region in Fig. 2. The masses of the BHs and the spin of the
SMBH are the same as in our fiducial model. We find that
both the PN and the Newtonian simulations underestimate
the variation of the semimajor axis and eccentricity of the
inner binary. The difference in e is more prominent: while
the variation can be as large as Δe ≃ 0.6 in our GEM
simulation, the Δe given by the PN and Newtonian
simulations remains smaller than 0.25. The difference also
suggests that tidal force alone cannot produce the large
eccentricity shown in Fig. 10.
Figure 14 shows the difference of the outer orbit given by

the aforementioned three methods. We find that the
Newtonian simulation gives the smallest variation in a.
Both the PN and our GEM simulations result in much
larger variations in a. Although the variation of a is the

FIG. 12. The same as the upper panel of Fig. 10, but
suppressing the effect of the gravitomagnetic force. Conse-
quently, the BBH breaks by the end of the simulations.
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largest in the PN simulation, the orbital phase is different
from the one given by the GEM simulation. Therefore, we
conclude that the PN formalism is inadequate to simulate
the system of our interest.
To test the robustness of the above conclusion, we also

run simulations at r ¼ 10M with a ¼ 9000m12. The results
are shown in Figs. 15 and 16. We can see that the difference
between the GEM and PN orbits remains significant. We do
not explore larger r because the GEM effect would become
subdominant according to Fig. 2.

VI. OBSERVABLE SIGNATURES

In our model, we have chosen an inner binary with an
orbital frequency of about 10 mHz in its rest frame. Taking
into account the facts that the GW frequency of a circular

binary is twice the orbital frequency and the observed
frequency would be further modulated by a factor of a few
due to the gravitational and Doppler redshifts [76], we find
that the inner binary, i.e., the BBH, remains in the sensitive
band of LISA.
The GW signal from such an inner binary has been

studied in detail in recent years. These earlier studies have
revealed a significant shift of the GW phase which can be
used to distinguish the BBHs around SMBHs (see a
summary in Sec. I). Here we point out an additional phase
shift based on the results shown Figs. 5 and 10. We can see
that the semimajor axis and eccentricity of the inner binary
oscillate rapidly. The oscillation of these orbital elements
will affect how the orbital phase, and hence the GW phase,
increases with time. The associated timescale is the rotation
period of the BBH, which is much shorter than the period of
the outer orbit or the Von Zeipel–Lidov-Kozai cycle. The
short timescale is closely associated with the driving
mechanism, which is the variation of the GEM forces
during the mutual rotation of the two small BHs. Therefore,
detecting a phase shift on a timescale comparable to the
period of the GWs might indicate that the BBH is close to
a SMBH.

FIG. 14. Variation of the radial coordinate of the c.m. of the
BBH. The red, blue, and black lines show, respectively, the results
from the GEM, PN, and Newtonian simulations. The parameters
are the same as in Fig. 13.

FIG. 15. The same as Fig. 13 but for r ¼ 10M, a ¼ 9000m12.

FIG. 16. The same as Fig. 14 but for r ¼ 10M, a ¼ 9000m12.

FIG. 13. Evolution of the semimajor axis (upper panel) and
eccentricity (lower panel) of the inner binary based on our GEM
method (red), the PN formalism (blue), and Newtonian gravity
(black). Note that we have introduced a offset to the semimajor
axis to show more clearly the result from each simulation.
Initially, we set r ¼ 6M, a ¼ 6000m12, and the other parameters
are the same as in Fig. 10.
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The outer orbit of our system, seen by a distant observer,
has a frequency of about 1 mHz. Therefore, the GWs emitted
by the outer orbit may also be detectable by LISA. While the
previous studies of similar triple systems have modeled the
outer orbit with a geodetic motion (free fall), our work
clearly shows that the orbit is not in free fall. In principle, the
deviation is detectable by contrasting the observed signal
with the template of a standard EMRI, i.e., an EMRI with
only one stellar-mass BH whose mass is m12. A mismatch
by one radian would be sufficient to reveal the peculiarity of
the small object around the SMBH. Finding such a mismatch
needs only one to two weeks of data, according to the phase
shifts shown in Figs. 6, 8, and 11. In practice, distinguishing
such a phase shift from the effect caused by other environ-
mental factors, such as a perturbation by the surrounding gas
or stars [77–81], might be difficult and requires further
investigation.
Another interesting signature revealed by our simulations

is that the direction of the phase shift of the outer orbit is
correlated with the orientation of the inner binary. As is
shown in the lower panel of Fig. 8, a prograde inner binary
drifts along the negative azimuthal direction, while a
retrograde one drifts towards the positive azimuthal direc-
tion. Such a difference can be used in future EMRI
observations to infer the orientations of the inner binaries.
According to the previous studies, knowing the orientation
would help us understand the dynamical processes respon-
sible for the production of stellar-mass BHs around SMBHs
[67–71].

VII. CONCLUSION AND FUTURE WORK

In this study, we have investigated the evolution of a
BBH at a distance of only 2–3 gravitational radii from a
Kerr SMBH. We showed that such a highly relativistic
triple can be modeled using Newtonian dynamics plus a
perturbative GEM force if one takes advantage of its
hierarchy and investigate the dynamics in a frame freely
falling alongside the BBH. Our main finding is that the c.m.
of the BBH does not follow a geodesic line. We identified
the cause of the geodetic deviation to be a nonvanishing
GEM force on the c.m. We pointed out that within several
weeks, the deviation will be large enough to be detectable
by LISA. Find such a signal could reveal the binarity of the
small object in an EMRI source, as well as put constraint on
the orientation of the inner binary.
So far, we have restricted ourselves to the systems with

near-circular outer orbits. Although this choice is motivated
by a class of astrophysical models, our method in principle
can be applied to elliptical, parabolic, or hyperbolic outer
orbits with a slight modification, e.g., by choosing an
appropriate free-fall observer on the same orbit. Such an
improvement is useful because noncircular orbits could
also be populated with BBHs due to a dynamical process
called “tidal capture” [45,46].

Our current method is insufficient to track the BBH
when it wanders substantially far away from the origin of
the FFF. This is because when the separation between the
origin of the coordinates and the c.m. of the BBH is
comparable to M, the perturbation induced by the back-
ground Kerr SMBH to the metric of the FFF will no longer
be small. However, as long as the size of the BBH remains
small relative to M, we can circumvent the problem by
resetting the FFF, making it centered on the BBH. The
accuracy of such a method needs to be tested. A real
difficulty is simulating an outer orbit which lies outside
the equatorial plane of the central spinning SMBH. In this
case, the c.m. of the BBH will oscillate up and down the
equatorial plane, invalidating our method of calculating
the Riemann tensor. Moreover, the Riemann tensor
in the FFF becomes more asymmetric so that the c.m. of
the BBH will deviate from the origin of the FFF more
quickly.
We have not included the effect of GW radiation in our

simulations. For the inner BBH, we can include the effect
by adding PN corrections to the equation of motion since
the semimajor axis a is much larger than m12. These
corrections will become important when the BBH obtains
high eccentricity, as we have seen in the case of a small
distance between the BBH and the SMBH (r ¼ 2.8M). In
particular, the dissipative PN terms will drive the BBH to
coalesce when e is large. Therefore, we will be able to test
the correlation between a small r and a higher probability of
BBH coalescence, as was envisioned in [76]. For the outer
orbit, the GW radiation will lead to a gradual shrinkage
of r. It might result in an interesting situation in which the
effect of GW radiation is counter-balanced by the increase
of r as we have seen in Figs. 6 and 11. This could be a new
way of trapping BBHs at the last few gravitational radii
from a SMBH, in addition to the mechanism proposed in a
previous work [47].
Although there is still much space for improvement, the

current work has established a practical framework to
quickly generate the orbit of a BBH very close to a
SMBH (r≲ 10M) while keeping most of the essential
relativistic effects included. This framework will also
enable us to build more accurate waveform templates,
which are crucial to the detection of such triple systems in
future GW missions like LISA.
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