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Dense clouds of neutrinos and antineutrinos can exhibit fast collective flavor oscillations. Previously, in
[S. Bhattacharyya and B. Dasgupta, Phys. Rev. Lett. 126, 061302 (2021).], we proposed that such flavor
oscillations lead to depolarization—i.e., an irreversible mixing of the flavors—whose extent depends on
the initial momentum distributions of the different flavors. In this paper, we elaborate and extend this
proposal, and compare it with related results in the literature. We present an accurate analytical estimate for
the lower resting point of the fast flavor pendulum and underline the relaxation mechanisms—i.e.,
transverse relaxation, multipole cascade, and mixing of flavor waves—that cause it to settle down. We
estimate the extent of depolarization, its dependence on momentum and net lepton asymmetry, and its
generalization to three flavors. Finally, we prescribe approximate analytical recipes for the depolarized
distributions and fluxes that can be used in supernova/nucleosynthesis simulations and supernova neutrino
phenomenology.
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I. INTRODUCTION

Neutrinos change their flavor with a time-periodic
probability—e.g., sin2 2θ sin2 ½ωt=2� in vacuum—due to
quantum interference of two eigenstates evolving with a
frequency difference ω ¼ Δm2=ð2EÞ [1–3]. In ordinary
matter, forward-scattering off the background particles
modifies the mixing angle θ and the oscillation rate ω
[4,5]. However, often one is interested in the flavor com-
position after a sufficiently long time, when the flavor con-
version probability is found to become time-independent—
e.g., 1

2
sin2 2θ for averaged oscillations in vacuum [6–8].

Generally, this is because of decoherence, which can occur
in two ways: Either the flavor evolution of an individual
neutrino becomes stochastic—e.g., due to collisions [9,10].
Or observational limitations—such as spatial, temporal, or
energy resolution—result in a pooling together of many
neutrinos, each with a slightly different relative phase
between its two components [11]. See Ref. [12] for a clear
exposition. It should be noted that the nature and extent of
the late-time neutrino mixing, even after the oscillations
have ceased, can have nontrivial dependence on energy/

momentum and can encode information about the system
[6–8].
Flavor oscillations of neutrinos from dense astrophysi-

cal sources—e.g., deep in a supernova, merging neutron
stars, or the early Universe—exhibit an additional novelty.
These neutrinos can frequently forward-scatter off other
oscillating neutrinos, leading to novel collective flavor
oscillations [13]. The effect depends on the neutrino-
neutrino forward-scattering rate μ ¼ ffiffiffi

2
p

GFnν [14,15],
which typically exceeds the average oscillation rate hωi
in these environments. Under its influence, neutrinos can
collectively oscillate at a synchronized rate hωi [16], or
the bipolar/slow rate

ffiffiffiffiffiffiffiffiffiffi
μhωip

[17], or the fast rate μ [18].
Remarkably, collective oscillations are predicted to occur
with large amplitudes even for the matter-suppressed
mixing angles expected in dense regions [19–22].
Collective oscillations display a rich phenomenology,

but most remarkably they can lead to novel signatures of
flavor mixing at late times. For slow collective effects, a
prominent signature is a set of energy-dependent swaps
between the flavor spectra [23–25], with subleading
decoherence effects [26,27]. For fast oscillations, the
signature is less clear, but it is plausible that the
decoherence effects are more important. There are two
noteworthy issues: First, one cannot therefore derive the
late-time decoherent limit by straightforwardly averaging
over a known coherent oscillation probability. This is
because all neutrinos evolve interdependently, with unusu-
ally weak dependence on both θ and ω, and an analytical
solution is not available in general—see, however,
Ref. [28]. Second, fast oscillations can occur very quickly.
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While slow instabilities develop over a few hundred kilo-
meters or more, fast oscillations and their associated
decoherence effects can occur over much smaller distances
∼10−4 m. Thus, their impact can be important already
inside the star—e.g., stellar heating and nucleosynthesis
could be affected [29,30]. See Refs. [31–37] for studies in
this direction. As a result, it is both challenging and
important to understand the late-time behavior of fast
oscillations.
Starting with the first explorations of fast flavor

oscillations in the nonlinear regime [38], it was seen
that the survival probability eventually stops oscillating,
and it instead approaches a quasisteady state [39]. The
phase-space distributions of the different flavors get
irreversibly mixed [40,41]. We note that this is because
of dephasing, and not because of collisions, which help
kickstart but do not overwhelm fast oscillations [42]. To
emphasize this distinction, we denote this as depolari-
zation [40,41]. The moniker is borrowed from optics,
where it is used to refer to the shrinking of the polari-
zation sphere (i.e., the Stokes parameters Q, U, V get
smaller) without dissipation (i.e., loss in intensity I). We
use it also to draw attention to the novel associated flavor
conversion—full/partial equilibration of the flavor spec-
tra, depending on velocity, while conserving the lepton
asymmetry.
In two previous papers, Refs. [40,41], we have explored

this phenomenon in detail. The purpose of this work is to
elaborate on these results, and to compare them with
several closely related works. First, we compare our
predictions for the behavior of the so-called fast flavor
pendulum with those by Johns et al. [43], and the recent
work by Padilla-Gay et al. [44]. Then we compare our
depolarization proposal with work by Wu et al. [45], and
by Richers et al. [46,47], which contain closely related
results. We also compare and contrast our results with
those by Martin et al. [48,49], where they do not find a
depolarized steady state. Although our study is not
intended to supplant a systematic code comparison, the
comparisons provided here should clarify a number of
conceptual issues. See Refs. [50–56] for related studies
of fast oscillations in the nonlinear regime. A separate body
of work has focused on the initial growth of fast insta-
bilities; see Refs. [57–68].
This paper is structured as follows: We outline our setup

in Sec. II. Section III presents an accurate estimate for the
lower resting point of the fast flavor pendulum, as well as
analyses of transverse relaxation, cascading of multipoles,
and mixing of flavor waves. Section IV gives an estimate of
the extent of depolarization and its generalization to three
flavors. Section V contains recipes for the depolarized
distributions and fluxes in a form that is usable for
supernova simulations or neutrino phenomenology.
Finally, in Sec. VI, we conclude with a summary and
outlook.

II. FRAMEWORK AND METHODS

We use natural units throughout, with ℏ ¼ c ¼ 1. In each
phase-space cell d3pd3x, one has [69]

ið∂t þ v · ∂xÞρp ¼ ½Hp; ρp�; ð1Þ

where ρp is the matrix of densities and Hp is the flavor
Hamiltonian matrix. The phase-space cells are taken to be
sufficiently large that position and momentum can be
simultaneously specified [70]. We ignore momentum-
changing collisions, external forces, and neutrino mass-
mixing [71], which are typically negligible on timescales of
the fastest neutrino oscillations. The velocities v ¼ p=jpj
and energies E ¼ jpj do not change and serve as immutable
labels. The range of E is from −∞ to þ∞ in order to
include antineutrinos of energy E by writing them as if they
were neutrinos of energy −E. Axisymmetry restricts that
the flavor evolution depends on a single spatial coordinate
z, a single momentum coordinate v, and, of course, on time.
This is a simple model for neutrino flavor evolution in a
supernova, after it starts free streaming.
Under these assumptions, the flavor content encoded in

each ρv evolves as [40,41]

ð∂t þ v∂zÞSv ¼ μ0

Z þ1

−1
dv0Gv0 ð1 − vv0ÞSv0 × Sv: ð2Þ

Here, Sv is the Bloch vector encoding the flavor state for
neutrino modes with velocity v, with jvj < 1. We denote
flavor-space vectors by sans-serif letters (e.g., S), and the
components parallel to the ê3 direction by ð…Þ k . The
transverse vector confined to the ê1 − ê2 plane for any
flavor-space vector (for, e.g., S) is defined through the
following vector formula:

S⊥ ¼ S − S k ê3: ð3Þ

Magnitudes are shown in the usual font (e.g., S ¼ jSj).
The ELN distribution function Gv is the excess of the

phase space distribution of νe over νμ (and ν̄μ over ν̄e),
integrated over E2dE and divided by a typical density, say
nν. Only the product of μ0 and Gv appears, though one
defines a rate μ0 ∝ GFnν as the collective potential.
Hereafter, we set μ0 ¼ 1, and express z and t in units of
μ−10 . The ELN becomes dimensionless in these units. For
this paper, we will mainly consider three families of ELN
distributions, shown in Fig. 1:

GB
v ¼

�
1 if 0 < v < þ1

A − 1 if − 1 < v < 0;
ð4aÞ

GL
v ¼

8<
:

2ðv − vcÞ if vc < v < þ1

2
ð1−vcÞ2−A
ð1þvcÞ2 ðv − vcÞ if − 1 < v < vc;

ð4bÞ
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GC
v ¼

�
4v3 if 0 < v < þ1

4ð1 − AÞv3 if − 1 < v < 0:
ð4cÞ

GB
v is a “Box” spectrum, piecewise constant in v on either

side of the crossing at v ¼ 0.GL
v is piecewise “Linear,”with

an adjustable crossing at vc. Similarly, GC
v is “Cubic.” In

addition, we will also study the ELNs G3a
v and G4b

v as
defined in Refs. [48,49], as well as the ELN in Ref. [45], to
compare our results. For all the ELNs, the lepton asym-
metry is denoted by A ¼ R

dvGv. All these ELNs are
inspired by supernova (SN) ELNs with a single crossing,
where νe dominates over ν̄e in the forward direction v > 0
and vice versa, and we restrict our study to A > 0. We study
the dependence of the flavor state on lepton asymmetry A
and on the crossing velocity vc.
In all our numerical computations, we solve Eq. (2) with

initial conditions that all neutrinos—with any velocity v
and at all locations in the periodic one-dimensional box of
length L—are emitted in the electron flavor—i.e.,
Sv½t ¼ 0; z� ¼ þê3. The numerical setup—i.e., discretiza-
tions, dimensionality, tolerances, etc.—has been kept
exactly the same as in Ref. [41].
To start the flavor evolution, we supply tiny initial

perturbations to the transverse components of the Bloch
vectors. These are referred to as seeds, and they are a
numerically efficient means of initiating the flavor evolu-
tion. In reality, neutrino mass terms would provide the

initial misalignment from a pure flavor state, but as we have
set them to zero in the fast oscillation limit, we resort to this
numerical alternative. See the Supplemental Material of
Ref. [41] for details, including a discussion of the depend-
ence on seeds. Unless stated otherwise, we will assume a
spatially extended seed with transverse perturbations of
amplitude 10−6 and random relative phases.

III. FLAVOR PENDULUM AND RELAXATION

Defining the vectorMn½z; t� ¼
Rþ1
−1 dvGvLnSv½z; t� as the

nth moment of the Bloch vector Sv, with Ln½v� being the
nth Legendre polynomial in v, we can rewrite Eq. (2) in
multipole space as [26,72]

∂tMn −M0 ×Mn ¼ ∂zTn −M1 × Tn; ð5Þ

where

Tn ¼
n

2nþ 1
Mn−1 þ

nþ 1

2nþ 1
Mnþ1: ð6Þ

Using periodic boundary conditions, and the approxima-
tion that spatial averaging factorizes over the dot and cross
products of vectors, one can write the spatially averaged or
coarse-grained version of Eq. (5) as

∂thMni − hM0i × hMni ¼ −hM1i × hTni: ð7Þ

FIG. 1. Benchmark ELN models: The four panels show four classes of ELN distributions, GB
v , GC

v , GL
v ½vc ¼ 0�, and GL

v ½vc ≠ 0�, as a
function of v for different values of the lepton asymmetry A and crossing velocity vc.
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For brevity, hereon we will mostly omit writing h…i for the
spatially averaged quantities. Instead, when we occasion-
ally need to refer to quantities which are not spatially
averaged, we will explicitly show the z dependence—e.g.,
Sv½z�—as opposed to the averaged version Sv. Hopefully,
the distinction will also be clear from the context.
Equation (7) represents an infinite tower of equations.

We will truncate this tower beyond n ¼ 3, effectively
assuming that the n ≥ 4 multipoles are negligible. This
gives a set of four coupled ODEs:

∂tM0 ¼ 0; ð8aÞ

∂tM1 ¼ D ×M1; ð8bÞ

∂tD ¼ B ×M1; ð8cÞ

∂tB ¼ K ×M1; ð8dÞ

where

D ¼ M0

3
þ 2M2

3
; ð9aÞ

B ¼ 2M3

5
−
9M1

35
; ð9bÞ

K ¼ −
3M0

35
: ð9cÞ

Note that Eqs. (8a)–(8d) are written in a frame rotating
aroundM0 with a frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0 ·M0

p
, so that the common

rotation of all Mn around the axis M0, encapsulated in the
second term on the left side of Eq. (7), is undone.
Equation (8a) is the usual lepton-number conserva-

tion which gives M0 ¼ constant, whose third compo-
nent is

R
1
−1Gvdv ¼ A, which is the lepton asymmetry.

Equations (8b) and (8c) are similar to Eq. (7) in Ref. [22]
and can be combined to get

M1 × ∂
2
tM1 þ ðD:M1Þ∂tM1 ¼ M2

1B ×M1; ð10Þ

which is the familiar pendulum equation forM1 with lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 ·M1

p
. However, the vector B that acts akin to gravity is

not a constant, and instead obeys Eq. (8d). We remind the
reader that M1 is spatially averaged.
Figure 2 shows the numerical solution of Eq. (2) for the

parallel component of M1. The first thing to note is that it
does not continue to oscillate forever. Rather, it comes to
rest after a few cycles of oscillations. The late-time resting
point depends on the lepton asymmetry (A), the zero-
crossing position (vc), and the nature of ELN. Note also
that relaxation leads to a lower final resting point than the
lower turning point of the first few oscillations, especially
for the smaller values of A.

A. Resting point for M1

We now compute the resting point of the M1 pendulum
starting from the equations of motion. We will not assume
that the moment vectors have constant lengths, and instead
assume that certain phases randomize. In doing so, our
approach departs from Ref. [43], or the more recent
Ref. [44], where spatial dependence and relaxation are
absent. Thus, rather than deriving the lower turning point of
the periodic M1 pendulum, we focus on deriving the lower
resting point of the relaxed M1 pendulum.
According to Eqs. (8a)–(8d), the energy and spin of M1

pendulum are

E ¼ D · D
2

þM1 · B ¼ const:; ð11aÞ

σ ¼ M1 · D ¼ const:; ð11bÞ

which are conserved quantities in time t. The motion ofB in
Eq. (8d) allows us to write two more conserved quantities in
time—i.e.,

B · B
2

þ K · D ¼ const:; ð12aÞ

B · K ¼ const:: ð12bÞ

We give a name to the parallel component of the
pendulum vector M1:

M k
1 ¼ 1

L

Z
L

0

dz
Z

1

−1
dvvGvS

k
v ½z�≡m: ð13Þ

We also use some temporary shorthand notation to elimi-
nate excess clutter in the derivation to follow, until
Eq. (21d):

D k ≡ u; ð14aÞ

B k ≡ b; ð14bÞ

K k ≡ k: ð14cÞ

The quantities in Eqs. (13)–(14c) will be denoted with
subscripts, i at the initial time t ¼ 0, and f at the late time
when the system becomes steady. We do not use subscripts
for quantities that are constant in time—e.g., for b and k.
Our aim is to derive mf—i.e., the ê3 component of the

steady-state relaxed M1 pendulum. The key idea is to use
the steady-state condition and to eliminate any unknown
late-time perpendicular components in terms of conserved
quantities.
At the resting point of M1, one must have

∂tmjf ¼ 0: ð15Þ
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Note that this resting point, defined above, allows for
relaxed solutions arising due to the assumption of dephas-
ing in deriving our approximate Eq. (7) from the exact
Eq. (5). In contrast, the turning point of D1 [as given in
Eq. (14) of Ref. [43] or Eq. (13) of Ref. [44] ] explicitly
excludes the spatial dependence of D1. Equations (15) and
(8b) imply Df ¼ ð0; 0; ufÞ. This, along with the conserva-
tion of σ between the initial and final positions of the M1

pendulum, implies

miui ¼ mfuf: ð16Þ

Equation (16) and the conservation of E and B2

2
þ K · D

predict that

u2f − u2i
2

¼ bðmi −mfÞ −M⊥
1;fB

⊥
f cos θMB

f ; ð17aÞ

ðB⊥
f Þ2 ¼ 2kðui − ufÞ: ð17bÞ

Note that θMB
f is the angle between M⊥

1;f and B⊥ at t ¼ tf,
and the lengths M⊥

1;f and B⊥
f have to be calculated by first

taking the magnitudes of M⊥
1;f½z� and B⊥

f ½z� at each spatial
location, followed by spatial averaging.
At the resting position of the M1 pendulum, ∂tmjf ≈ 0,

and from Eq. (8b), one has D⊥
f ≈ 0. Then, using the

conservation of σ per Eq. (11b) implies

∂tD k jf ¼ −
miui
m2

f

∂tmjf ≈ 0 ð18Þ

and gives B kM1 at t ¼ tf—i.e., θMB
f ≈ 0—resulting in

�
b
B⊥
f

�
2

¼
�

mf

M⊥
1;f

�
2

: ð19Þ

Using Eqs. (17a) and (17b), ignoring the trivial solution
mf ¼ mi, helps to simplify Eq. (19) in terms of the desired
variable mf:

ð2b2m2
f þ ðmf þmiÞbu2i Þ2 − 16k2u2i m

4
f ¼ 0: ð20Þ

FIG. 2. Settling down of theM1 pendulum: We show m ¼ 1
L

R
L
0 dz

R
1
−1 dvvGvS

k
v ½z�—i.e., the spatially averaged counterpart of the ê3

component of M1½z�, computed by appropriately averaging the solution to Eq. (2). It initially oscillates but eventually settles down to a
steady value at late times. The four panels are for the ELNs GB

v , GC
v , and GL

v ½vc ¼ 0� for various lepton asymmetries A, and for
GL

v ½vc ≠ 0� with different crossing velocities vc and A ¼ 0.8.
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The solutions of Eq. (20) are

mþþ
f ¼ −bu2i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2u4i − 4ð2b2 þ 4kuiÞbu2i mi

p
4b2 þ 8kui

; ð21aÞ

m−þ
f ¼ −bu2i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2u4i − 4ð2b2 þ 4kuiÞbu2i mi

p
4b2 þ 8kui

; ð21bÞ

mþ−
f ¼ −bu2i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2u4i − 4ð2b2 − 4kuiÞbu2i mi

p
4b2 − 8kui

; ð21cÞ

m−−
f ¼ −bu2i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2u4i − 4ð2b2 − 4kuiÞbu2i mi

p
4b2 − 8kui

: ð21dÞ

Only mþ−
f in Eq. (21c) has the correct qualitative behavior

with A and vc to qualify as a solution. Note that mi, ui, b,
and k, and thus mþ−

f , are known from the ELN.
In Fig. 3, we plotmþ−

f , as obtained from Eq. (21c), in the
cases of GB

v , GC
v , and GL

v . In all these plots, the blue disks
show the numerical solution of m at t ∼ 30. We find
excellent agreement, with correct dependence on A and

vc. The other solutions, m
þþ
f , m−þ

f , and m−−
f , are spurious

and do not have the correct scaling with A and vc.
The qualitative dependence of the resting point on A or

vc can be understood as follows: The kinetic energy of the
M1 pendulum is

Ek ¼
D · D
2

∼
ð∂tM1Þ2
2M1 ·M1

þ σ2

2M1 ·M1

: ð22Þ

Clearly, σ is a constant and can be determined from the
initial conditions. For example, if we consider GL

v ½vc�,

σ ∼
A
2
þ
�
2

3
−
A
3

�
vc: ð23Þ

For the case with A ≠ 0 and vc ¼ 0, one has σ ∼ A=2;
whereas for A ¼ 0.8, vc ≠ 0, one has σ ∼ 0.4ð1þ vcÞ. As a
result, in the limit A → 0 or vc → −1, we have σ → 0, so
the impact of internal spin σ is small. Thus, the pendulum
swings like an ordinary pendulum resting at a smaller mf.
In the other limit, when σ is large, one can approximately
neglect the M1 × ∂

2
tM1 term in Eq. (10) so that the M1

pendulum equation becomes a simple spin-precession

FIG. 3. Lower resting point ofM1: The dots in the four panels showmf as a function of A forGB
v ,GC

v ,GL
v ½vc ¼ 0�, and as a function of

vc for GL
v ½vc ≠ 0� with A ¼ 0.8, computed by appropriately averaging the solution to Eq. (2). We have also shown the comparison with

the analytical prediction via Eq. (21c) (blue curve, labeled “our work”) and the lower turning point estimated by Ref. [43] (gray curve,
for the cubic ELN only). The purple dashed curve shows the initial value mi.
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equation indicating mf ≈mi. This is roughly the case with
large A or vc → þ1.
The resting point need not coincide with the lower

turning point given in Eq. (14) of Ref. [43] (the factor
of 9 therein should be 5=4, which has been corrected here).
For the ELNs GB

v and GL
v , which do not have a cubic term,

one does not expect a sensible estimate from Eq. (14) of
Ref. [43] (since it formally diverges for D3 ¼ 0). However,
even for the ELNs where a cubic term is present, and one
ought to get a sensible estimate, we see that the turning
point is not the resting point [gray line marked as J20 in the
top-right plot of Fig. 3]. Reference [44] solves the fast
flavor pendulum, assuming homogeneity. Equation (13)
therein is an accurate description of the strictly homo-
geneous evolution, but it cannot be applied in more general
inhomogeneous settings—e.g., to our Eq. (2). In fact, the
homogeneous mode is typically stable for our ELNs.
Reference [44] also notes that the truncated multipole
approach is not accurate for homogeneous evolution.
However, note that in our case, inhomogeneity and dephas-
ing are present. For all ELNs we have checked, the mf in
Eq. (21c), derived by assuming dephasing and a truncated
multipole tower, agrees well with the spatial average of
M1½z; t → ∞� computed using Eq. (2).

B. Transverse relaxation

The spatially averaged version of the flavor evolution
given by Eq. (2) can be derived using approximations
similar to those used in deriving Eq. (7) from Eq. (5), to get

∂tSv ¼ hv × Sv ¼
�
−
�
1

3
Aþ 2

3
M k

2

�
M̂0 − vM1

�
× Sv

ð24Þ

in a special corotating frame where we ensure that
Hamiltonian for M1 is purely transverse. Note that M̂0 ¼
M0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0 ·M0

p
denotes the unit vector alongM0. While this

frame has a complicated motion in general, if we neglect

changes in the length of M k
2 , it simply rotates about M0

with an extra frequency 4
3
Aþ 2

3
M k

2 relative to the frame in
which Eqs. (8a)–(8d) are written. See Sec. II C 2 of
Ref. [40] for a derivation. In the remainder of this paper,
“corotating frame” will refer to this special frame.
The length of each coarse-grained Bloch spin Sv is

predicted to remain constant according to Eq. (24). This
is not borne out by numerical calculations. The reason is
simply that the spatially averaged equations are approxi-
mate in the first place. To understand this analytically, one
needs to study the pre-coarse-grained partial differential
equation in Eq. (5). Here, we draw an analogy to the
nuclear magnetic resonance of macroscopic samples to
obtain a semiquantitative understanding.

In Eq. (24), the Bloch vector Sv can be interpreted as the
net spin of a macroscopic sample volume being acted on by
a magnetic field equivalent to the corotating Hamiltonian
hv. In reality, the macroscopic spin is composed of several
microscopic spins bunched together, similar to how we
have defined the coarse-grained Sv from the pre-coarse-
grained Sv½z�. Initially, hv is along the êð3Þ direction, and
the Bloch spins remain aligned with hv. However, as M1

tips over, h k
v decreases, and concomitantly h⊥v increases.

As a result, for some velocity modes, the transverse
component of hv can become of similar size to its parallel
component. We remind the reader that the spatially aver-
aged lengths of the parallel and transverse components of

hv—i.e., h k
v and h⊥v , respectively—are defined as follows:

h k
v ¼ 1

L

Z
L

0

dz

���� − A
3
−
2

3
M k

2 − vM k
1

����; ð25aÞ

h⊥v ¼ 1

L

Z
L

0

dzjM⊥
0 ½z� − vM⊥

1 ½z�j: ð25bÞ

In Eq. (25b), we have used the fact that the length of the
transverse vector remains invariant under the rotation about
ê3. The Bloch spins for those velocity modes develop a
large precession angle to reach the transverse plane. At this
juncture, the dispersion of the magnetic field hv½z�, within
the coarse-graining volume, can lead the constituent micro-
scopic spins to precess at different rates at different
locations within the coarse-graining volume. This causes
the transverse component of the macroscopic spins to
become smaller over a timescale T2—a process known
as T2 relaxation. The transverse components ofM1 relax in
the same way. As M1 oscillates, for some velocity modes
the relaxation turns on and off repeatedly.
The above analogy predicts that relaxation is strongest

when the corotating Hamiltonian develops a large trans-

verse component—i.e., when h⊥v ∼ h k
v . Roughly, this must

coincide withM1 developing a large transverse component.
Further, one expects that transverse relaxation is prominent
for those velocity modes for which h⊥v becomes comparable

to h k
v . Conversely, for velocity modes whose transverse

corotating Hamiltonians never grow too large, relaxation
should be less efficient.
We will demonstrate the development of transverse

relaxation using our numerical results for GL
v ½vc ¼ 0�,

for two values of lepton asymmetry, A ¼ 0.8 (Figs. 4
and 5) and A ¼ 0.2 (Figs. 6 and 7). The former case shows
a slower rate and lesser degree of relaxation, while the
latter shows faster and more extensive relaxation. For
these four plots, we use a localized nonrandom seed:
S⊥
v ½z� ¼ 10−6 exp½−ðz − L=2Þ2=5�ðê1 þ iê2Þ—i.e., the ini-

tial transverse components are taken to be ≈10−6, with
fixed relative phase, localized around the center of the box.
This choice of seed (i.e., not random, unlike elsewhere in
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this paper) is to emphasize that even if we do not select
random relative phases by hand, the system generates
effective random phases on its own. The long-term results
will be at best mildly sensitive to the seeds.
We begin with GL

v ½vc ¼ 0� with A ¼ 0.8. In Fig. 4, at
t ¼ 0, the transverse components of the Bloch vectors at all
locations start out in phase (as set by the initial seeds in this
case). By t ≈ 8, they begin to get dephased relative to each
other, though the transverse vector is still very small at most
locations. By t ≈ 12, this dephasing is essentially complete.
In other words, the transverse components of S⊥

v ½z� become
large and randomized across different locations z, as was
shown in the bottom-panel results of Fig. 6 in Ref. [40].
One thing to note is that S⊥v ½z� ≠ 0 without coarse graining
in z, but vanishes upon coarse graining in z. Obviously, the
transverse components of the coarse-grained multipole
moments of S⊥

v also decay due to this relaxation. In
Fig. 5, the left panel shows the growth of the transverse
components for v ¼ −0.5. One sees that up to t ≈ 8, the

evolution is linear. Yet, relative dephasing causes jhS⊥
v ij to

become smaller than hjS⊥
v ji. Around t ≈ 10, close to the

time of the first dip of the M1 pendulum, nonlinearity sets
in. The transverse components quickly grow to Oð10−2Þ
and saturate. In the middle panel, one sees that h k

v − h⊥v
starts decreasing around t ≈ 10, owing to the growth of h⊥v .
For the v < 0 modes, after t ≈ 15, one has h k

v − h⊥v < 0
intermittently or permanently, leading to the relaxation of
corresponding modes (as seen in the right panel). For

v > 0, one has h k
v > h⊥v , so that S k

v ≈ 1 always.
For GL

v ½vc ¼ 0� with A ¼ 0.2, the relaxation is quicker,
stronger, and more ubiquitous. In Fig. 6, one can see that
the transverse components of the Bloch vectors at all
locations start out in phase (as set by the initial seeds in
this case). By t ≈ 4, they start to get dephased relative to
each other, though the transverse vector is still very small at
most locations. By t ≈ 6, this dephasing is essentially
complete. In Fig. 7, the left panel shows the growth of

FIG. 4. Relative dephasing of Bloch vectors: Each blue line starting from the origin indicates the size and orientation of the transverse
Bloch vector, ImS⊥

v ½z� vs ReS⊥
v ½z�, at 4096 different spatial locations at three different instants in time: t ¼ 0, t ¼ 8, and t ¼ 12. For this

calculation, we use a nonrandom seed (see text). All panels show the data for v ¼ −0.5 forGL
v ½vc ¼ 0� and A ¼ 0.8. One sees that at late

times, here after t ≈ 12, the transverse Bloch vectors become large and random.

FIG. 5. Relaxation and Hamiltonians: The leftmost plot shows the growth of transverse vectors for v ¼ −0.5. The other two plots show
that the velocity modes that experience longitudinal depolarization are those that feel a large transverse Hamiltonian, as seen from the

relative sizes of h k
v and h⊥v vs t in the middle panel and the behavior of S k

v vs t in the rightmost panel. The ELN is GL
v ½vc ¼ 0�, with

A ¼ 0.8. Note that theM1 pendulum has its first dip at t ≈ 12 in this case (see Fig. 2), coinciding with the epoch of transverse relaxation.
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the transverse components for v ¼ −0.5. One sees that up
to t ≈ 4, the evolution is linear. Yet, relative dephasing
causes jhS⊥

v ij to become smaller than hjS⊥
v ji. Around t ≈ 4,

close to the time of the first dip of the M1 pendulum,
nonlinearity sets in. The transverse components quickly
grow toOð10−2Þ and saturate. In the middle panel, one sees

that h k
v − h⊥v starts decreasing around t ≈ 4, owing to the

growth of h⊥v . After t ≈ 8, one has h k
v − h⊥v < 0 for all the

velocity modes, leading to the relaxation of corresponding
modes (as seen in the right panel). In other words, one finds

that the depolarization of S k
v ½z� occurs if and when one has

h⊥v ≳ h k
v . We have found this expected correlation for all

the ELNs we have considered in this paper.
In Ref. [45], doubts were raised whether the transverse

relaxation mechanism holds in general, as they failed to
find the correlation noted above. We investigated by
repeating the computations of Ref. [45]. Our results for
the survival probability Pee, as shown in Fig. 8, are in quite

good agreement for the survival probabilities, showing
partial depolarization. However, unlike Ref. [45], we
clearly see the correlation expected from T2 relaxation.

As shown in Fig. 9, for v < 0 modes, one has h⊥v ∼ h k
v at

around t ∼ 250, and around the same time S k
v → 0. For the

v ¼ þ1 mode, h⊥v ≪ h k
v , while for the v ¼ þ0.5 mode,

h⊥v < h k
v ; but the difference is less compared to the v ¼ þ1

mode, and thus one finds almost no depolarization for the
v ¼ þ1 mode, whereas there is partial depolarization for
the v ¼ þ0.5 mode. In Ref. [45], this comparsion was not
made in the corotating frame, and h⊥v was computed as
the magnitude of the spatial average of the vectors h⊥v ½z�
(which is always close to zero due to dephasing), as
opposed to the average of the magnitudes, leading to
their conflicting observation. Correcting for these
misunderstandings, we find that the computations in
Refs. [40,41], as well as in Ref. [45], are consistent with
each other. The final depolarized state is almost entirely

FIG. 6. Relative dephasing of Bloch vectors: Each blue line starting from the origin indicates the size and orientation of the transverse
Bloch vector, ImS⊥

v ½z� vs ReS⊥
v ½z�, at 4096 different spatial locations at three different instants in time: t ¼ 0, t ¼ 4, and t ¼ 6. For this

calculation, we use a nonrandom seed (see text). All panels show the data for v ¼ −0.5 for GL
v ½vc ¼ 0� and A ¼ 0.2. At late times, here

between t ¼ 4 and 6, the transverse Bloch vectors get large and random.

FIG. 7. Relaxation and Hamiltonians: The leftmost plot shows the growth of transverse vectors for v ¼ −0.5. The other two plots show
that velocity modes that experience longitudinal depolarization are those that feel a large transverse Hamiltonian, as seen from the

relative sizes of h k
v and h⊥v vs t in the middle panel and the behavior of S k

v vs t in the rightmost panel. The ELN is GL
v ½vc ¼ 0�, with

A ¼ 0.2. Note that theM1 pendulum has its first dip at t ≈ 6 in this case (see Fig. 2), coinciding with the epoch of transverse relaxation.
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identical in both computations, and more importantly, the
mechanism of T2 relaxation seems to work as we predicted
when their example is analyzed as we recommended. There
are minor differences because our code uses fast Fourier
transform for differentiation in a way that creates ring-down
effects around features that are sharp on the scale of the
discretization scale.1 Smoother initial conditions do not get
affected by this. Despite this difference, our predictions for
the final survival probability agree to within better than 5%
rms error for the tested example.

C. Multipole cascade

The discussion in the previous subsection was limited to
the first four multipole moments. In this subsection, we
review the nonlinear behavior of the higher multipole
moments, as given in Ref. [41]. Spatially averaging over
Eq. (5), assuming periodic boundary conditions on z, and
taking n ≫ 1 gives

∂tMn ¼
M1

2

�
∂
2
nMn þ

1

n
∂nMn

�
: ð26Þ

Note that in our approximation, jhA · Bij ∼ jhA × Bij ∼
hAihBi and h∂n;tAi ∼ ∂n;thAi. See the Supplementary
Material of Ref. [41] for the detailed derivation.
Equation (26) is a diffusion-advection equation where n
plays the role of space and M1 is the diffusion coefficient.
Note thatMn½t� ¼ 1

L

R
Mn½z; t�dz is the net power present in

each multipole n. Using the n → an and t → a2t scaling
invariance, one can derive the solution for Eq. (26) as

Mn½t� ¼ c1Ei½−n2=ð2M1tÞ� þ c2; ð27Þ

where c1 and c2 are integration constants, with Ei½x� ¼R
x
−∞ dyey=y. Equations (26) and (27) together indeed
indicate that there is a diffusion of the quantity Mn½t� from
low- to high-n multipoles as time passes, causing irrevers-
ibility in the system. Due to such leakage of power from
smaller moments, Mn½t� for large n starting from some
initial value grows exponentially to peak roughly around
tpeakn ≈ n2=ð2M1Þ and then asymptotes to some steady final
value at late times. Note that tpeakn increases with n. In
Ref. [41], we had shown this for the box-type ELNs
denoted here by GB

v . We have now verified that it holds
for all the ELNs considered in this paper. An example is
shown in the top-panel plot of Fig. 10 with GL

v for vc ¼ 0
and A ¼ 0.2. The takeaway is that the flavor difference
increasingly gets moved to high multipoles. If a physical
process does not distinguish closely spaced momentum
modes, it no longer sees the flavor difference stored in high
multipoles.

D. Mixing of flavor waves

Flavor waves also cascade to smaller distance
scales, similar to the cascading to smaller momentum
scales we just discussed. This was shown very clearly in
Refs. [46,47]. To understand this, we take the Fourier
transform of Eq. (2), using Sv½k; t� ¼

R
L
0 eikxSv½x; t�dx to

rewrite the following equation:

ð∂t þ ivkÞS⊥
v ½k; t� ¼ iμ0

Z þ∞

−∞
dk0

Z þ1

−1
dv0Gv0 ð1 − vv0Þ

× ð−S⊥
v ½k0; t�S k

v0 ½k − k0; t�
þ S k

v ½k0; t�S⊥
v0 ½k − k0; t�Þ: ð28Þ

Initially, in the linear regime, one has S k
v ½k0; t� ≈ 1 for all k0.

Thus, in Eq. (28), S⊥
v ½k; t� for different k modes evolves

independently. When the system reaches nonlinearity,

S k
v ½k0; t� and S k

v0 ½k − k0; t� start deviating from unity, and
the different k modes get coupled.
We check this behavior by plotting Sv½k; t� as a function

of various k modes at different times t, as shown in the

FIG. 8. Comparison with Ref. [45]: Survival probability for
different velocity modes at late time. The red dots are obtained by
digitizing the red curve in the top panel of Fig. 6 in Ref. [45]. The
black curve is our result for gν½v� − 1.1gν̄½v�, where gν=ν̄½v� is the
same as given in Eq. (5) of Ref. [45].

FIG. 9. T2 relaxation in the ELN models considered in
Ref. [45]: h k

v ; h⊥v vs t in the left panel, and S k
v vs t in the right

panel. The ELN is the same as in Fig. 8.

1We thank Meng-Ru Wu and Zewei Xiong for helpful and
collegial discussions that pinpointed this to us.
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bottom panel of Fig. 10. We see that for t ≤ 2, the system
is in the linear regime, and the power, defined to be
S⊥v ½k; t� for a specific k mode, does not cascade to other k
modes. Until about t ¼ 2, each curve grows with time
exponentially for each k, but with its characteristic
k-dependent linear growth rate ImΩ½k�. In the linear
regime, one can clearly see that the footprint of instability
is limited to the k modes within ∼ð5–15Þ for our chosen
example. By t ≈ 2.5, the modes close to k ≈ 8 have
become large, and they start affecting the growth of
modes close to k ∼ 0, enhancing them considerably. This
sudden distortion is a signature of mode coupling in
Eq. (28). Further, mode coupling also allows the large-jkj
modes with smaller amplitude to grow in a cascade, at
the expense of the modes that start with higher ampli-
tudes, and thus spread the flavor instability to almost all
k modes. This moves the flavor differences to smaller and
smaller distance scales. If a physical process does not
distinguish closely spaced locations, it does not see the
flavor difference that is now stored in very high-jkj
modes. Multipole diffusion and mode coupling together
create extremely fine structures in the phase space, which
upon coarse graining present themselves as effective
depolarization.

E. Flavor waves vs depolarization

In Ref. [49], the authors speculated that the simulation
tools used in our previous work in Refs. [40,41] may
have failed to maintain causality. This speculation stemmed
from the persistence of wavelike numerical solutions
found in Refs. [48,49], as opposed to a depolarized state.
In the meantime, other groups have found results that are
broadly consistent with depolarization seen in our previous
works (see, e.g., Refs. [45–47]). Here, we reproduce the
key results of Ref. [48] to show that our code produces
results identical to theirs, if restricted to the regime they
have explored. If extended to longer times, one finds
depolarization.
To benchmark our code against the calculation in

Ref. [48], we focus on their G3a and G4b ELNs. Our

results for S⊥
v¼1½z�, S k

v¼1½z�, and Psurv½z� ¼
R
1
−1GvS

k
v ½z�dv

as functions of z at various time snapshots up to t ¼ 900 are
shown in Fig. 11. The results agree, with excellent fidelity,
with their counterparts in Fig. 3 of Ref. [48]. One clearly

FIG. 10. Mixing in phase space: The top panel shows Mn½t� vs
t, and the bottom panel shows Sv½k; t� vs k at six different times
for v ¼ −0.5, for GL

v with vc ¼ 0 and A ¼ 0.2. One sees
multipole cascades in velocity space (in the top panel) and
k-mode mixing indicated by the development of wiggles (in the
bottom panel). All solutions are computed using Eq. (2).

FIG. 11. Comparison with Fig. 3 of Ref. [48]: S k
v¼1½z� as a

function of z in the top panels, S⊥
v¼1½z� in the middle panels (with

the real part shown as solid lines and the imaginary part as
dotted), and Psurv½z� in the bottom panels. For legibility, the
curves are vertically offset from each other, by 2 in the top and
middle panels and by 0.1 in the bottom panels. The left and right
panels are for G3a and G4b, respectively. The curves above
t ¼ 900 shown in the top (dark gray line) and middle panels are
for the same ELN scaled by a factor G0 ¼ 100 at tNL ¼ 12,
showing the state at late times.
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notices flavor waves in space, and the region over which
they exist extends with time as they propagate. Note that the
flavor waves show a convective and absolute nature forG3a
and for G4b, respectively.
However, we believe that two important issues were

ignored in Refs. [48,49]. First, the numerical results were
shown only up to t ¼ 900, when the system does not reach
sufficient nonlinearity. Second, the quantities were not
coarse grained over a spatial volume. Both of these were
important to obtain the irreversible steady-state depolarized
solution in our previous work. To clarify these two points,
we scale up the neutrino ELNs G3a and G4b by a factor
G0 ¼ 100 (i.e., instead of G3a and G4b, we consider the
ELNs to be 100 ×G3a and 100 × G4b, respectively) and
otherwise retain exactly the same specifications—i.e., the
same box size, spatial discretization, initial condition,
boundary condition, and so on, as in Ref. [48]. Since with
G0 ¼ 1 both of the examples show a linear growth rate of
Oð10−2Þ, choosing G0 ¼ 100 makes the initial flavor
evolution 100 times faster. Thus, instead of t ∼Oð100Þ,
the systems now reach nonlinearity roughly around
tNL ∼Oð1Þ. With this scaled ELN, we check for the
extreme nonlinear behavior of the solution. In the topmost
curves for the top and middle panels of Fig. 11, we show

our numerical results for S k
v¼1½z� (dark gray) and S⊥

v¼1½z�
(dark or light gray lines) as a function of z, choosing G0 ¼
100 and tNL ¼ 12. One can clearly see that flavor waves
break down after reaching nonlinearity. Note that this
respects L=2 ≫ tNL, required to avoid boundary effects
due to the periodic boundary condition at late times. We

show S k
v¼1 (after spatial averaging) vs t in Fig. 12, which

shows that the system indeed reaches a flavor-depolarized
steady state.

IV. FLAVOR DEPOLARIZATION

To quantify the amount of flavor depolarization, we
define a depolarization factor in the following way:

fDv ¼ 1

2

�
1 −

S k
v ½tf�

S k
v ½0�

�
: ð29Þ

Note that tf is chosen to be large enough that the system has
reached steady state. Full flavor depolarization leads to
fDv ¼ 0.5, whereas no depolarization is given by fDv ¼ 0,
and partial depolarization by a fDv value between 0 and 0.5.
Sometimes, one may find fDv > 0.5. This happens because
the system first changes flavor almost completely, corre-
sponding to a flavor conversion probability of 1, and then
depolarizes partially.
We show our numerical solution for fDv as a function of

different velocity modes v in Fig. 13, considering GB
v , GL

v ,
and GC

v for various choices of A > 0. Our numerical
analysis suggests that depolarization is velocity dependent:
the negative-velocity modes are almost always fully flavor
depolarized for A > 0, but the positive ones are partially
flavor depolarized. The extent of partial flavor depolari-
zation depends on lepton asymmetry A and the zero-
crossing position of neutrino angular distributions vc.

A. Extent of depolarization

In this subsection, we analytically explain the functional
dependence of fDv on A, v, and vc and give an explicit
linearized formula for fDv in terms of quantities determined
from initial conditions. To derive this, we use the numerical

observation that S k
v ½tf� ≈ 0—i.e., fDv ≈ 1

2
, for v < 0—in all

four cases based on our numerical analysis in Fig. 13. This
assumption, for A > 0, is motivated by our qualitative
understanding of which modes get more depolarized.
Using this and enforcing lepton-number conservationR
1
−1 dvGvS

k
v ¼ A, to zeroth order in v, one can write

S k
v ½tf� ≈ A

γ0
for v > 0modes, where we define the “forward”

moments of the ELN as

γn ¼
Z

1

0

vndvGv: ð30Þ

To obtain the linear order correction to the above result, we

expand S k
v ½tf� as a function of v as

S k
v ½tf� ≈

s0
2
þ 3s1

2
v; ð31Þ

where s0, s1 are space-time-independent constants but can
depend on A and the nature of Gv. Note that s0, s1 can be
determined from the following formula:

sn ¼
Z

1

−1
S k
v ½tf�Ln½v�dv: ð32Þ

For our chosen form ofGv, withA > 0 and a forward excess,

we use S k
v>0½tf� ≈ A

γ0
and S k

v<0½tf� ≈ 0 to deduce s0 and s1
from Eq. (32) as

FIG. 12. Depolarization for the ELNs inspired by Ref. [48]:

S k
v¼þ1 vs t for the ELNs 100G3a and 100G4b.
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s0 ≈
A
γ0

ð33Þ

and

s1 ≈
A
2γ0

: ð34Þ

Using Eqs. (31), (33), and (34), we can write fDv as

fDv ≈

8<
:

1
2
− A

4γ0
− 3A

8γ0
v if 1 ≥ v ≥ 0;

1
2

if − 1 ≤ v ≤ 0:
ð35Þ

In the case of GB
v , GC

v , we find γ0 ¼ 1, but for GL
v ,

γ0 ¼ 1–2vc. Clearly, the functional dependence in
Eq. (35) indicates that fDv for v > 0 modes decreases with
an increase in A and decrease in γ0 (or, in other words,
vc → 1). Plugging in the values for γ0, A, and vc, we get a
good agreement between the numerical and analytical
solutions of fDv as a function v with v > 0 modes for all
the cases exceptGC

v , as shown in Fig. 13. For cubic ELN, our
linear approximations used in the above derivation might be

inappropriate, sinceGC
v itself contains only terms higher than

linear order. Also, even for v < 0 modes, S k
v ½tf� to 0 is not

entirely correct, as we see. However, for reasonable values of
asymmetry A ≈ 0.2, our prescriptions seem to work quite
reasonably, because the naive equilibration hypothesis with
fDv ¼ 0.5 for all modes is already a good approximation, and
one only needs to “fix” the lepton-number conservation
constraint that is violated by naive equilibration. A small
linear correction, as provided by our approach, provides such
an improved estimate.

B. Three-flavor generalization

Now that we have an estimate of the depolarization for
two flavors, we seek its generalization to the real-world
situation with three flavors. In general, this requires a
completely new analysis [63,65]. However, if the μ and τ
flavors are taken to behave identically, the treatment is very
simple. In such a case, the three-flavor oscillations are
treated in a restricted manner—with the νe oscillating to νμ
and ντ, democratically, and the oscillations between νμ and
ντ being very efficient. Here, one can guess the effective
three-flavor depolarization factor from symmetry consid-
erations alone.

FIG. 13. Extent of depolarization: fDv vs v at t ¼ tf ≈ 30 in the bottom-left panel for GL
v ½vc ¼ 0�, in the top-left panel for GB

v , in the
top-right panel for GC

v , and in the bottom-right panel for GL
v ½vc ≠ 0�. Various colors indicate the different A values in the first three plots

but different vc values in the bottom-right plot. The continuous and dashed lines represent the numerical and analytical solutions,
respectively.
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In Fig. 14, we show a section of the three-flavor Bloch
volume—the so-called êð3Þ-êð8Þ triangle [73]—on which lie
the states corresponding to pure flavor states. This region is
an equilateral triangle with sides of unit length, with the
vertices corresponding to flavor states. The two-flavor
depolarization factor fDv is the distance of the tip from
the top vertex along the left (or right) edge. For three
flavors, assuming μ-τ symmetry, the tip of the Bloch vector
lies along the vertical perpendicular bisector. Note that
transverse components of the Bloch vector (i.e., compo-
nents out of the plane, in analogy to components orthogo-
nal to an edge of the triangle for a two-flavor scenario) get
T2-relaxed. The three-flavor depolarization factor fD;3 flavv ,
to be used in Eq. (37), is then easily recognized as

fD;3 flavv ¼
8<
:

4fDv
3

if fDv < 1
2
;

1þ2fDv
3

if fDv > 1
2
;

ð36Þ

in terms of the two-flavor depolarization factor. Note that
our analytical estimate of the two-flavor fDv , as in Eq. (35),
stays between 0 and 1=2, which corresponds to fD;3 flavv

being in the range 0 to 2=3, as one would expect.
Numerically, one finds that the two-flavor fDv can

sometimes exceed 1=2. This corresponds to a predominant
flavor conversion from νe, to say, νμ, and then partial
depolarization. Here, one expects a similar transition to the
third flavor ντ as well. The combined action projects the
Bloch vector, as shown by the lighter dashed grey lines. It is
easy to see why: if νe almost fully converts to νμ (while νμ
and ντ are symmetric), in a three-flavor framework, νe has
zero survival probability, with an equal conversion prob-
ability of 1=2 to both νμ and ντ.

V. PRESCRIPTIONS

The takeaway is that we expect depolarization to be the
end state of neutrinos that have undergone fast oscillations.
Below, we provide two easily usable sets of expressions
related to fast oscillated neutrinos. Our intended users are
supernova simulators in the first instance, and supernova
neutrino phenomenologists for the second.

A. Subgrid recipe for SN simulations

In supernova simulations, one computes the neutrino
distribution function—whether in detail or using moments.
See, e.g., Refs. [74–79]. The finite elements for these
simulations are about 0.1 km in size, and it is inconceivable
for the foreseeable future how one could faithfully include
fast oscillations occurring on sub-centimeter scales into
these already hugely expensive supernova hydrodynamic
calculations.
Our proposal is that one should first identify each “pixel”

in the star where fast instabilities can exist. This can be
accomplished using a variety of methods, including com-
putationally efficient and increasingly more reliable
approximations involving the moments of the neutrino
distributions [80–82], or simply applying the crossing
criterion [67,68]. Therein, to obtain an estimate of the
effect of flavor oscillations, one should replace the original
phase-space distributions Fini with the depolarized distri-
butions Fdepol:

Fνe;depol
v;E ¼ ð1 − fD;3 flavv ÞFνe;ini

v;E þ fD;3 flavv Fνx;ini
v;E ;

Fνx;depol
v;E ¼

�
1 −

1

2
fD;3 flavv

�
Fνx;ini
v;E þ 1

2
fD;3 flavv Fνe;ini

v;E ;

Fν̄e;depol
v;E ¼ ð1 − fD;3 flavv ÞFν̄e;ini

v;E þ fD;3 flavv Fν̄x;ini
v;E ;

Fν̄x;depol
v;E ¼

�
1 −

1

2
fD;3 flavv

�
Fν̄x;ini
v;E þ 1

2
fD;3 flavv Fν̄e;ini

v;E ; ð37Þ

where x ¼ μ=τ. As fast oscillations are insensitive to
neutrino energy E, the same fD;3 flavv applies to neutrinos
and antineutrinos. Note that this does not impose naive
equalization of all flavors, but a much less extreme mixing
consistent with conservation laws. Of course, if perfect
depolarization is allowed, then the νe distribution becomes
1
3
Fνe;ini
v þ 2

3
Fνx;ini
v . This is easily recognized as the usual

1∶1∶1 mixture of the three flavors.
The main advantage of this subgrid prescription is that

one can avoid performing the expensive fast oscillation
calculation, using an analytically precomputed lookup table
instead. Further, it implements a meaningful estimate of the
oscillated distributions—conserving the relevant lepton
asymmetry and carrying nontrivial momentum dependence
of the degree of depolarization.

FIG. 14. A section of the three-flavor Bloch volume, with the
vertices of the unit equilateral triangle corresponding to pure
flavor states. The distance of the tip of the Bloch vector (blue dot)
away from the top vertex (black dot) along the left edge is the
two-flavor depolarization factor fDv (blue double arrow). The
three-flavor depolarization factor fD;3 flavv , assuming μ-τ sym-
metry, is related to the corresponding distance along the
perpendicular bisector (red double arrow, obtained by projecting
along the dashed gray lines).
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B. Depolarized flavor-dependent flux

To compute the terrestrially observable neutrino fluxes,
we need the fluxes at a radius of, say, about 100 km from
the center of the star, where fast oscillations have ceased,
and one has to then include slower collective effects, MSW
transitions, etc. The procedure to include these slower
effects is by now well understood. But suppose we only
have the undepolarized primary fluxes provided by existing
supernova simulations. How can we include an estimate
of the depolarization? In general, this is complicated.
However, by making some symmetry assumptions, a
simple estimate is possible.
We assume that the neutrino emission is axially sym-

metric at each point in the star, and that the star is axially
symmetric about the axis joining the star and Earth. Thus,
the net observable flux from all source regions is simply
given by summing over the velocity modes that leave
that region in the direction parallel to the axis. The
appropriately velocity-weighed depolarization factor is
then given by

f0 ¼ fD;3 flavv ¼ 4

3

R
1
0 f

D
v dvR

1
0 dv

¼ 2

3
−

7A
12γ0

: ð38Þ

Since we are considering fast oscillations, we approximate
the putative neutrino sphere as an infinite wall. As a result,
only the v > 0 modes can be observed, with fDv < 1=2
always. Note that γ0 is the zeroth forward moment of the
ELN, cf. Eq. (30). Similarly, we can define the nth forward
moment of fD; 3 flavv in the following way:

fn ¼ vnfD;3 flavv

¼ 4

3

�
1

2ðnþ 1Þ −
A

4γ0ðnþ 1Þ −
3A

8γ0ðnþ 2Þ
�
: ð39Þ

Setting n ¼ 0 in Eq. (39) gives back Eq. (38). The total flux
per unit energy detected at a distance r from the neutrino
sphere of radius R is

Φνα=ν̄α ½E; r� ∝ r2

R2
E2

Z
1

0

vdvFνα=ν̄α
v;E ½r�; ð40Þ

where α ¼ e, μ, τ. If we consider no oscillation, then
Fνα=ν̄α
v;E ½r� ¼ Fνα=ν̄α;ini

v;E , and considering only depolarization
due to fast oscillations, but neglectingMSW, slow collective,
or vacuum oscillations, one has Fνα=ν̄α

v;E ½r� ¼ Fνα=ν̄α;depol
v;E . So,

the ratio of depolarized to the unoscillated flux is given by

Φνe=ν̄e
dep ½E; r�

Φνe=ν̄e
unosc½E; r�

¼
R
1
0 vdvð1 − fD;3 flavv ÞFνe=ν̄e;ini

v;ER
1
0 dvvF

νe=ν̄e;ini
v;E

þ
R
1
0 vdvf

D;3 flav
v Fνx;ini

v;ER
1
0 dvvFνe=ν̄e;ini

v;E

; ð41Þ

Φνx=ν̄x
dep ½E; r�

Φνx=ν̄x
unosc½E; r�

¼
R
1
0 vdvð1 − fD;3 flavv

2
ÞFνx=ν̄x;ini

v;ER
1
0 vdvF

νx=ν̄x;ini
v;E

þ
R
1
0 vdv

fD;3 flavv
2

Fνe=ν̄e;ini
v;ER

1
0 vdvF

νx=ν̄x;ini
v;E

: ð42Þ

For our calculation, we assume the following v dependence
of Fνα=ν̄α;ini

v;E :

Fνe;ini
v;E ¼

X
n

an½E�vn; ð43aÞ

Fν̄e;ini
v;E ¼

X
n

ān½E�vn; ð43bÞ

Fνx;ini
v;E ¼ Fν̄x;ini

v;E ¼ bn½E�vn: ð43cÞ

Using Eqs. (43a)–(43c), one can simplify Eqs. (41) and
(42) as

Φνe
dep½E; r�

Φνe
unosc½E; r� ¼

P
nanð 1

nþ2
− fnþ1Þ þ bnfnþ1P

n
an
nþ2

; ð44aÞ

Φν̄e
dep½E; r�

Φν̄e
unosc½E; r�

¼
P

nānð 1
nþ2

− fnþ1Þ þ bnfnþ1P
n

ān
nþ2

; ð44bÞ

Φνx
dep½E; r�

Φνx
unosc½E; r� ¼

P
nbnð 1

nþ2
− fnþ1

2
Þ þ an

fnþ1

2P
n

bn
nþ2

; ð44cÞ

Φν̄x
dep½E; r�

Φν̄x
unosc½E; r�

¼
P

nbnð 1
nþ2

− fnþ1

2
Þ þ ān

fnþ1

2P
n

bn
nþ2

: ð44dÞ

Thus, knowing the distributions, one can compute the
coefficients an, ān, and bn, as well as the moments of the
depolarization factor fn. Together, these allow one to
compute the depolarized fluxes from the unoscillated
fluxes.2 For multidimensional simulations, one may have

2Note that the differential ELN distribution is

gv;E ¼
�
Fνe;ini
v;E − Fνx;ini

v;E ; E > 0

Fνx;ini
v;E − Fν̄e;ini

v;E ; E < 0
: ð45Þ

Writing gv;E ¼ P
n gn½E�vn, one clearly notices an ¼ gn þ bn

and ān ¼ bn − gn, which can be used to rewrite Eqs. (44a)–(44d)
in terms of the ELN and Fνx;ini.
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more detailed information that allows summing over the
momenta appropriately, and the recipe in the previous
section is superior in that case. However, if a neutrino
phenomenologist wants to approximately readjust the
primary fluxes predicted by a supernova simulation to
include potential effects of fast depolarization, the above
recipe gives a crude but meaningful estimate.

VI. SUMMARY AND OUTLOOK

In this paper, we have presented detailed analytical as
well as numerical analysis of the late-time nonlinear
behavior of a dense neutrino gas undergoing fast collective
oscillations in the collisionless quantum kinetics approxi-
mation. Our study includes time dependence, but it is
restricted to one spatial dimension and one nontrivial
momentum coordinate that we have taken to be the radial
velocity. Unbroken azimuthal symmetry around the radial
coordinate is assumed. Under these assumptions, we find
the following results:
(1) The evolution of the average flavor content is similar

to the motion of a pendulum. However, this pen-
dulum neither preserves its length nor retains its
periodic motion, as seen in Fig. 2. It settles down to a
resting point, which is analytically known in terms
of the ELN and its moments, cf. Eq. (21c), and
shown in Fig. 3.

(2) The shrinking of the length of the pendulum and its
settling down can be traced to a number of relaxation
mechanisms. These fundamentally stem from the
quenching of the transverse components of the
flavor polarization vectors due to relative dephasing.
Such dephasing begins already in the linear regime
of flavor growth, as shown in Figs. 4 and 6.
However, the depolarization depends strongly on
which velocity modes experience a large transverse
Hamiltonian; see Figs. 5 and 7.

(3) In the nonlinear regime, n-multipole cascade and
k-mode mixing lead to spreading of the flavor
disturbance in momentum space and position space,
respectively, as shown in Fig. 10.

(4) The broad results on depolarization and its extent, as
well as the mixing of velocity multipoles and k
modes, are now confirmed by other groups—i.e.,
Wu et al. [45] and Richers et al. [46,47]. The
apparent conflicts are resolved, with Wu et al.
[45] as shown in Fig. 8, and with Martin et al.
[48,49] as shown in Fig. 11. The conflicts arose from
minor misunderstandings: the former applied our
criterion of comparing the Hamiltonian components
in a nonstandard way (see Fig. 9), and the latter did
not show results after spatial averaging at suffi-
ciently late time (see Fig. 12).

(5) The flavor content eventually acquires an approx-
imately time-independent character. This is called
depolarization. The extent of depolarization is

nonuniform over neutrino and antineutrino momen-
tum, as shown in Fig. 13. In general, it depends on
the ELN. This is essentially because the net lepton
asymmetry needs to remain conserved.

(6) The extent of depolarization, encoded in the depo-
larization factor, can be predicted—if the range of
fully depolarized modes is assumed. The prediction
is based on a series expansion of the final flavor
composition and enforces lepton-number conserva-
tion. Equation (35) gives an estimate to linear order
in v, in the two-flavor approximation.

(7) The above result is in the two-flavor approximation.
Equation (36) generalizes it to a restricted three-
flavor scenario where the initial conditions and
evolution of the μ and τ flavors are taken to be
identical.

(8) The depolarized flavor distributions (in Eq. (37)) and
the depolarized fluxes (in Eqs. (44a)–(44d)) are
given in terms of the original distributions (in
Eqs. (43a)–(43c)) and forward moments fn of the
depolarization factor (in Eq. (39)). These are
approximate but readily usable ingredients for im-
plementation in supernova/nucleosynthesis simula-
tions and for computations of neutrino signals.

Dephasing leads to qualitatively different results than
purely coherent evolution. This is the fundamental result
we hope to have conveyed. Our treatment of depolarization
rests on the idea that there is dephasing of many modes. It is
the dephasing assumption that allows going from Eq. (2) to
Eq. (7), allows truncation of the multipole equations,
introduces irreversibility, leads to the steady-state solution
in Eq. (21c), and allows a description of depolarization.
While we do not use the truncated or dephased equations
for any numerical computations, rather preferring to solve
Eq. (2) directly and then average the solutions appropri-
ately, the analytical results of the relaxed and truncated
multipole equations—e.g., Eq. (21c)—provide remarkable
agreement with the numerical solutions of the full equa-
tions at late times.
The reader may see parallels with the “derivation” of the

Boltzmann equation [83,84]. Hamilton’s equations for many
interacting particles can be expressed as the BBGKY
hierarchy, but there is no way to truncate that hierarchy
without assuming something more, viz. molecular chaos,
coarse graining, etc. These assumptions serve to introduce,
by hand, the loss of correlation required to explain irrevers-
ibility. While the derivation continues to be a matter of
discussion, there is no doubt that its end result—i.e., the
Boltzmann equation—is extraordinarily useful and describes
macroscopic reality much more appropriately than the
technically better justified microscopic equations of motion.
We conclude this paper with our outlook for further work

on this subject. We believe that an immediate task is to
arrive at a better estimate of the range of depolarized
modes. Perhaps the answer will lie in devising an impro-
ved criterion on the Hamiltonian, or finding the exact
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depolarization envelope. With that, the problem of comput-
ing the depolarized final state of fast oscillating neutrinos
would be largely accomplished. It is our belief that this will
be important and useful for any practical study accounting
for the fast flavor oscillations of neutrinos in supernovae.
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