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The dynamical tide can play an important role in the orbital motion of close eccentric double white dwarf
binaries. As the launching of the space-based gravitational-wave detector, the Laser Interferometer Space
Antenna (LISA), is just around the corner, detection of gravitational wave signals from such systems is
anticipated. In this paper, we discuss the influence of the dynamical tide on eccentric orbits, focusing on the
effect on periastron precession. We show that, in orbits with a high eccentricity, resonance can cause a large
precession when a harmonic of the orbital frequency matches the natural frequencies of the normal modes
of the star. In contrast to the case with circular orbits, each mode can encounter multiple resonances
with different harmonics and these resonant regions can cover about 10% of the frequency space for orbits
with close separations. In this case, the tidal precession effect is distinct from the other contributions and
can be identified with LISA if the signal-to-noise ratio is high enough. However, within the highly
eccentric-small separation region, the dynamical tide causes chaotic motion and the gravitational wave
signal becomes unpredictable. Even not at resonance, the dynamical tide can contribute up to 20% of the
precession for orbits close to Roche-lobe filling separation with low eccentricities and LISA can resolve
these off-resonant dynamical tide effects within the low eccentricity-small orbital separation region of the
parameter space. For lower mass systems, the dynamical tide effect can degenerate with the uncertainties of
the eccentricity, making it unmeasurable from the precession rate alone. For higher mass systems,
the radiation reaction effect becomes significant enough to constrain the eccentricity, allowing the
measurement of the dynamical tide.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA), [1]
planned to launch in 2034, covers the 0.1–100 mHz part of
the gravitational wave (GW) spectrum, which is expected
to contain a variety of sources different from those covered
by the current ground-based detectors. Double white dwarf
(DWD) systems within the MilkyWay Galaxy are expected
to be one of the most promising sources among those, and
we can expect about 104 of such systems within the
resolvable frequency range of LISA [2,3]. The majority
of these systems are expected to have circularized during
the early evolution stage due to tidal interactions, and the
frequency shift from orbital decay within the observation
time is also expected to be much smaller than the signal
frequency [4]. Hence, the signal is considered quasimono-
chromatic and is mainly characterized by three parameters:
the amplitude, frequency, and time derivative of the
frequency. For the cases with non-negligible eccentricities,

the signal contains multiple harmonics that have additional
dependence on the precession rate and the eccentricity [5],
with the former one modulating the signal amplitude
and the latter governing the relative amplitudes of the
harmonics.
How do highly eccentric DWDs form? The major

formation channels of isolated DWD systems involve their
progenitors going through two mass transfer processes,
with one or more common envelope stages [6–8]. The
binary has to be close enough and the tidal interaction is
expected to circularize the system before forming the two
WDs. To form an eccentric DWD, dynamical processes are
required. The study by Willems et al. [9] has estimated the
population of these eccentric DWD systems formed inside
the globular clusters within the Milky Way, based on the
simulations of different globular cluster models in [10].
They conclude that there are at least a handful of such
systems within the LISA band that can be detected with
more than one harmonic at a signal-to-noise ratio (SNR)
higher than 8. Other than that, a close binary of DWD
within a hierarchical triple system can also possess a high
eccentricity [11,12] through the Kozai-Lidov mechanism
[13,14]. A rough estimation of the population of these
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sources is given by Gould [15], stating that there may be
∼200 of these sources within 1 kpc detectable by LISA.
However, more detailed triple system parameters and
orbital evolution models are required to obtain an accurate
estimate of the population.
The argument of the pericenter of an eccentric orbit

precesses due to the non-Keplerian effects such as the
corrections from general relativity (GR). This results in
a slow amplitude modulation on the waveform ampli-
tude, splitting each harmonic into three modes. The
precession rate can be measured from the signal as half
of the frequency difference of the splitting. This has
been demonstrated in Willems et al. [16], which studies
the precession from the tide and the so-called first post-
Newtonian order (1PN) leading GR effect. In particular,
the tidal effect is treated in the static limit and has
shown a significant contribution to the precession of the
orbit at intermediate separations. The full tidal contri-
bution, however, contains also a dynamical part that
depends on the excitation of individual oscillation
modes of the WDs and can also affect the orbit in
various ways.
Previous studies have shown the dynamical tide effects

on the orbital motion in different time scales. In McNeill
et al. [17], the dynamical tide has been shown to induce
eccentricities on circular DWD orbits and give rise to
nonzero amplitudes in the first and third harmonics of the
orbital frequency in the emitted GW signal. On the orbital
evolution, Fuller and Lai [18,19] and Burkart et al. [20]
considered the effect of the dissipation from gravity modes
(g-modes) on the tidal synchronization. The latter has
examined the resonance locking [21] in which the system
stays near the resonance of one oscillation mode.
Dynamical tide has also been shown to cause chaotic
motion in highly eccentric systems with small pericenter
separations [22].
In this study, we focus on the effect of the dynamical tide

on the orbital precession. We derive the formula of the
precession rate caused by the full tidal effect using the
method of osculating orbit. This allows us to compare it
with the other contributing factors to the precession rate.
We then explore the parameter space where such an effect
becomes significant and estimate the influence on the
signal detected by LISA.
The paper is organized as follows: In Sec. II, we briefly

introduce the formulation of the linear tidal problem. Then,
we discuss the results of the tidal precession on the orbit in
Sec. III. In Sec. IV, we discuss the effect of precession
caused by the dynamical tide on waveform detection by
LISA. Lastly, we summarize our findings in Sec. V and
provide potential future avenues.
We use the following notation throughout this paper: We

define m1, R1 to be the mass and radius of one of the WDs
(denoted as WD 1), and m2, R2 for those of the other one
(WD 2).

II. THE FORMULATION OF THE TIDAL
PROBLEM

The classical Lagrangian perturbation theory [23,24]
allows us to describe the fluid motion inside the WD at any
instant in terms of the Lagrangian displacement vector
ξðt;xÞ. In the center-of-mass frame of the WD 1, the
position vector of a fluid element in the perturbed star is
given by xþ ξðt;xÞ, where x is the original position of the
fluid element in the unperturbed WD. The vector ξðt;xÞ
satisfies the equation of motion:

ρ̈ξ ¼ f ½ξ� − ρ∇U; ð1Þ

where f ½ξ� represents the internal restoring force with
respect to the equilibrium configuration, ρ is the density
and U is the tidal potential due to WD 2. We follow the
formulation in [25] to determine the tidal response and
the corresponding backreaction on the orbit. In this section,
we briefly review the main equations. For further details,
we refer the readers to [25,26].
We first focus on the deformation of WD 1. The induced

quadrupolar deformation causes WD 1 to exert an extra
force in addition to the point-mass contribution onto the
orbit. The contributions from WD 2 on the orbital motion
are completely symmetric to that from WD 1 and can be
found by switching the labels, as well as noting that the
azimuthal angle Φ from WD 2 differs by a phase of π.
Following [25], we expand the phase space vector as

�
ξ
_ξ

�
¼

X
α

qαðtÞ
�

ξαðxÞ
−iωαξαðxÞ

�
: ð2Þ

Here, ξα represents an eigenmode with an eigenfrequency
ωα, qαðtÞ is the excitation amplitude of the mode and the
subscript α represents the set of quantum numbers that
specifies an eigenmode, as well as the sign of the frequency
to account for a phase space mode and its complex
conjugate. The eigenvalue problem is written as

−ρω2
αξα ¼ f ½ξα�: ð3Þ

The eigenmodes are normalized such that

2ω2
α

Z
d3xρξ�α · ξα ¼

Gm2
1

R1

: ð4Þ

The detail of Eq. (3) and the eigenvalue problem can be
found in, e.g., [27,28]. In Table I, we list the parameters of
the WDs in this study, which are constructed using the zero
temperature equation of state of a degenerate electron gas
and ions with mean molecular weight per electron μe ¼ 2.
The important nonradial mode, known as the fundamental
mode (f mode), dominates the tidal deformation at the
quadrupolar order (l ¼ 2) in such models. For simplicity,
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we consider only the contributions from the l ¼ 2 f-mode
in the following as the overlap integrals of other modes,
e.g., the pressure modes (p-modes), are smaller by at least
one order of magnitude.
In the comoving frame of WD 1, the mode amplitude

qαðtÞ satisfies the equation [25,26]

_qα þ iωαqα ¼ iωαUα; ð5Þ

where

Uα ¼
m2

m1

X
lm

WlmIαlm

�
R1

D

�
lþ1

e−imΦ: ð6Þ

Here, D is the orbital separation, Φ is the azimuthal
coordinate of WD 2 as seen by WD 1, and Wlm is given
by ½4π=ð2lþ 1Þ�Ylmðπ=2; 0Þ. We have also defined the
overlap integral Iαlm

Iαlm ¼ 1

m1Rl
1

Z
d3xρξ�α · ∇½rlYlmðθ;ϕÞ�; ð7Þ

where Ylm are the spherical harmonics and ðr; θ;ϕÞ are the
spherical coordinates with the origin at the stellar center of
theWD 1. Note that since we have not included the Coriolis
force in Eq. (1), Iαlm ¼ Iαδl;lαδm;mα

, where δi;j is the
Kronecker delta function and lα, mα are the spherical
harmonic indices contained in α. Following Appendix C of
[26], the orbital acceleration due to the tidally deformed
WDs is given by

atide ¼ −
GM
R2
1

X
αlm

WlmIαlm

�
R1

D

�
lþ2

e−imΦ

× q�α½ðlþ 1Þnþ imλ�; ð8Þ

where M ¼ m1 þm2, n is the unit vector in the radial
direction fromWD 2 to WD 1 and λ is the unit vector in the
tangential direction.

III. PRECESSION RATE DUE TO THE
DYNAMICAL TIDE

The dynamical tide provides a non-Keplerian force that
leads to the precession of the pericenter. Willems et al. [16]
have studied precession in DWD systems due to equilib-
rium tide, rotation, and 1PN correction and have shown that

detecting the various precession effects with LISA allows
one to probe the interior structure of WDs (also see [29]
which extends the work by considering more detailed WD
models). Unlike these factors that have a relatively simple
dependence on the parameters of the WD or the orbit, the
effect of dynamical tide depends on the details of the
interplay between the oscillation modes and the orbital
motion. In this section, we investigate the precession rate
due to the dynamical tide and its effects on the GW signal.

A. The precession formula

A useful way to quantify the amount of precession
caused by the tidal interaction is to employ the method of
osculating orbits. At any given moment, the orbit can be
described by a set of orbital elements of a Keplerian orbit
with the same instantaneous position and velocity. This
allows us to express the perturbed orbit with time-changing
orbital elements caused by the tidal interaction. In particu-
lar, we employ the precession rate equation from [30]

dγ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þ
GMe2

s �
−ar cosΦþ aϕ sinΦ

�
2þ e cosΦ
1þ e cosΦ

��
:

ð9Þ
Here, γ is the argument of pericenter, a is the semimajor
axis, e is the eccentricity, ar and aϕ are the radial and
tangential components of the tidal acceleration given in
Eq. (8), respectively. The secular change of γ over one
complete radial orbit is denoted by Δγ.
We express the driven part of the solution of Eq. (5) as a

Fourier series in the orbital frequency Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a3

p
.

Together with the introduction of the Hansen coefficients,
Xl;m
k ðeÞ, defined by

�
a
D

�
lþ1

e−imΦ ¼
X
k

Xl;m
k ðeÞe−ikΩt; ð10Þ

we have

Δγ ¼
X
αlm

ðWlmIαlmÞ2
�
R1

a

�
lþ1X

k

�
ω2
α

ω2
α − k2Ω2

�
Xl;m
k Al;m

k ;

ð11Þ

where k is the Fourier series index of the Hansen coef-
ficients and

Al;m
k ¼ 2π

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

lþ 1

2
−m

�
Xl;m−1
k

þ
�
lþ 1

2
þm

�
Xl;mþ1
k þ e

4
½ðlþ 1 −mÞXl;m−2

k

þ 2ðlþ 1ÞXl;m
k þ ðlþ 1þmÞXl;mþ2

k �
�
: ð12Þ

TABLE I. WD parameters obtained by solving the eigenvalue
problem Eq. (3). The eigenfrequency and overlap integral, ωα and
Iαlm, of the l ¼ 2 f-modes are listed.

Mass M⊙ Radius 103 km ωα s−1 Iαlm

0.20 14.66 0.135 0.234
0.60 8.84 0.520 0.216
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The full tidal contribution to Δγ is separated into the
equilibrium component and the dynamical component,
Δγ ¼ Δγeq þ Δγdyn, by decomposing the factor in the
mode amplitude as

�
ω2
α

ω2
α − k2Ω2

�
¼ 1þ

�
k2Ω2

ω2
α − k2Ω2

�
; ð13Þ

where the first term denotes the equilibrium component and
the second one is the dynamical component.
For kΩ not near ωα, we can take the leading order of

Δγdyn, given by

Δγoff-res ¼
X
αlm

m2

m1

ðWlmIαlmÞ2
�
R1

a

�
2lþ1

×

�
Ω
ωα

�
2X

k

k2ðXl;m
k Al;m

k Þ: ð14Þ

Here, we define Δγoff-res as the off-resonant approximation
of Δγdyn, which has a simple power law dependence on the
orbital frequency as Ω16=3 obtained by applying the
Kepler’s third law of orbital motion on 1=a5.

B. Comparison with other factors of precession

It has been shown in [16] that the equilibrium tide
contribution to the precession rate dominates at intermedi-
ate separations, while the 1PN contribution becomes
important at larger separations. The equilibrium tide
precession in the quadrupolar order, Δγeq, can be written
in a simple form (see, e.g., [31])

Δγeq ¼ 30πk1
m2

m1

�
R1

að1 − e2Þ
�
5
�
1þ 3

2
e2 þ 1

8
e4
�
; ð15Þ

where k1 is the l ¼ 2 tidal Love number of WD 1. This
quantity depends on the mass distribution of the WD and is
related to the overlap integral by

k1 ¼
X

n
jmj≤2

ðW2mIα2mÞ2;

≈
4π

5
I2f-mode; ð16Þ

where If-mode is the overlap integral of the l ¼ 2 f-mode.
The 1PN precession is given by

Δγ1PN ¼ 6π
GM

c2að1 − e2Þ : ð17Þ

Both precession effects are positive, meaning they are in the
same direction as the orbital motion.
In Fig. 1, we compare the full tidal contribution, Eq. (11),

for the precession rate averaged over one orbit, _γ ≡ Δγ=P,
with Eqs. (15) and (17) for a (0.2, 0.6) M⊙ DWD system

with e ¼ 0.5 and (0.6, 0.6) M⊙ systems with e ¼ 0.1, 0.5,
0.8 at different orbital periods, denoted by P. We also show
the off-resonant approximation of the dynamical tide
from Eq. (14).
The full tidal contribution is calculated using Eq. (11),

summing up k from −kmax to kmax, where the value of kmax
is chosen to be

kmax ¼ 16kperi ¼ 16 Int

� ð1þ eÞ2
ð1 − e2Þ3=2

�
; ð18Þ

where Int[…] means taking the nearest integer of the
argument, and kperi represents the harmonic corresponding
to the motion closest to pericenter passage. The result
shows a resonant response when the frequency of a
harmonic comes close to the f-mode frequency, causing
a series of narrow peaks at different P. Unlike the
equilibrium tide and the 1PN effect, the precession caused
by resonance can be orders of magnitude larger than the
other effects and can be negative for orbits just inside the
resonance. As the eccentricity increases, the resonance
peaks also become more significant and cover a larger
range of P. Note that even though the peaks appear only in
the part with small P in Fig. 1, they are evenly distributed
along the horizontal axis. For peaks at larger P, it requires a
more refined grid to show them in the plot due to the
decreased width of resonance. We shall discuss these
resonant effects on orbital precession in Sec. III D.
The 1PN, equilibrium tide, and the off-resonant part of

the dynamical tide all contribute to positive precession of
the orbit, and have power law dependence of P−5=3, P−13=3

and P−19=3, respectively. As a result, the 1PN effect
dominates at large separations, while the tidal contribu-
tions, mainly the equilibrium tide, become the dominant
effects at small separations. The off-resonant contribution
from the dynamical tide is a relatively small effect but
increases rapidly when the system is close to Roche-lobe
filling separation, becoming comparable to the equilibrium
tide for extremely close orbits. Comparing the (0.2, 0.6)
and (0.6, 0.6)M⊙ cases, an increase in mass causes the tidal
effect on _γ to decrease for orbits with the same period and
eccentricities. However, the more massive systems can also
have closer orbits before filling the Roche lobe, which
results in a larger maximum tidal effect.

C. Off-resonant contribution to precession

While the effect of resonance is enormous, it only occurs
in a narrow region of the frequency space. To quantify the
maximum potential of the off-resonant contribution from
the dynamical tide, we explore its dependence on the orbital
parameters at the e → 0 limit of Eq. (14) that contains a
small number of terms:

Δγoff-res ¼ 447.5

�
m2

m1

��
1þm2

m1

�
ðIαlmÞ2

�
R1

a

�
8

; ð19Þ
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where we have used the low eccentricity expansion of Xl;m
k

(see, e.g., [26]):

Xl;m
k ðeÞ ¼ δk;m þ e

2
½ðlþ 1 − 2mÞδk;m−1

þ ðlþ 1þ 2mÞδk;mþ1� þOðe2Þ; ð20Þ

and we have assumed that ωα is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm1=R3

1

p
.

We choose the proportionality constant such that ωα ¼
0.52 s−1 when m1 ¼ 0.6 M⊙ and R1 ¼ 8840 km. The
maximum possible effect from detached DWD is when
a equals the Roche-lobe filling separation, aRL. We employ
Eggleton’s formula ([32]) to approximate aRL, which is a
function of mass ratio q̃ ¼ m1=m2 and R1. Equation (19)
can be further simplified by relating the WD radius to the
mass, which we employ the approximate relation by [33].
The overlap integral, Iαlm, has a weak dependence on the
mass and is set to 0.2. Hence, from Eq. (16), k1 ≈ 0.1.
The expressions in Eqs. (15) and (19) are plotted in

Fig. 2 for different q̃ including the contributions from both
WDs. The precession effect of both the dynamical tide and

equilibrium tide reaches a maximum at q̃ ¼ 1. We see
that the off-resonant dynamical tide contributes to a
maximum of about 20% of the precession caused by the
overall tidal effect.
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FIG. 1. The absolute value of the precession rate of DWDs with different masses and eccentricities. The upper left panel has (0.2, 0.6)
M⊙ and e ¼ 0.5, and the others have (0.6, 0.6) M⊙ and e ¼ 0.1, 0.5, 0.8. The full tidal contribution is given in solid black lines. The
individual factors of precession include the equilibrium tide (dash-dotted red), 1PN (dotted green), and off-resonant dynamical tide
(dashed blue). The smallest P corresponds to the separations where the WDs fill the Roche lobe at pericenter.
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FIG. 2. The precession angle caused by the different compo-
nents of the tide of DWDs at e → 0 limit with pericenter
separation rp ¼ aRL with different mass ratio q̃ ¼ m1=m2. We
only include the off-resonant contribution for dynamical tides.
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As the DWD system approaches the Roche-lobe filling
separation, the dynamical tide precession starts to deviate
significantly from the off-resonant approximation due to
the increase in the resonance width. In the following
subsection, we focus on analyzing the significance of these
resonance peaks.

D. The width of resonance

As the pericenter separation, rp, gets closer to aRL, the
harmonics near kperi, which have large Hansen coefficients,
have frequencies closer to the f-mode frequency. As a
result, we expect a stronger resonance effect when the
system is close to Roche-lobe filling. To quantify the
significance of such an effect, we calculate the width of
the resonance where the contribution from a single mode
dominates the overall precession due to tides.
We rearrange the summations in Eq. (11) to write it as a

sum of contributions from each harmonic

Δγ ¼
X
k

Δγk: ð21Þ

At any orbital frequency, there is one harmonic closest to
the f-mode frequency, which the harmonic order is denoted
by kr. The resonance width,ΔΩkr , is defined to be the range
of frequency where the magnitude of a single mode
contribution to the precession exceeds the overall equilib-
rium tide contribution, i.e., the region with condition
jΔγkr j ≥ Δγeq. The width-to-separation ratio of the reso-
nance, ΔΩkr=ΔΩs, of DWDs with different eccentricities
are shown in Fig. 3. Here, ΔΩs is the frequency difference
between subsequent resonance, taken to be ωα=ðkr − 1Þ. It
shows that within the more eccentric systems, the width of

resonance takes about 10% of the separation between
harmonics when the system is close to Roche-lobe filling
separations. This ratio decays very rapidly as the orbital
period increases. For systems with small eccentricities,
only a few resonance peaks with the smallest P have
significant width. This ratio increases with eccentricities
since ΔΩs scales as ð1 − eÞ3, while ΔΩkr stays within the
same order of magnitude at a fixed pericenter distance for
different eccentricities.

E. The effect of spin

So far we have ignored the effect of rotation of the WD
on the dynamical tide. One reason is the complexity when
we include the Coriolis force, which changes the spectrum
of eigenmodes [34]. Also, the angular dependence of the
modes can no longer be expressed simply by a single
spherical harmonic [28]. Here we want to estimate how the
Coriolis force affects the results without including the full
details. If we treat the effect of the Coriolis force as a small
perturbation to the mode frequency and ignore the changes
to Iαlm, the mode amplitudes in the inertial frame have a
similar expression as those in the nonrotating case:

qðkÞα ¼ σα
σα − kΩþmΩs

UðkÞ
α ; ð22Þ

where Ωs is the spin rate of the WD and σα is the mode
frequency including the correction due to Coriolis force
observed in the rotating frame, which is given in the leading
order of the spin rate by (see, e.g., [28,35,36])

σα ¼ ωð0Þ
α −mΩsCnl; ð23Þ

where ωð0Þ
α is the eigenfrequency of the nonrotating WD,

i.e., the quantity denoted by ωα in Sec. II and the rest of the
paper where the WD’s rotation is not included, and the
coefficient Cnl depends on the mode eigenfunctions of
the nonrotating WD. The explicit form of this coefficient
can be found in, e.g., [28,35]. In this subsection, we take
Cnl ¼ 1=l for f-modes, which can be shown to be the exact
result for an incompressible star and is a good approxi-
mation for the WD models.
Including this change on the mode frequencies and

amplitudes, we have the precession angle Δγ̃dyn with spin
correction given by

Δγ̃dyn ¼
m2

m1

X
αlm

X
k

ðWlmIαlmÞ2Xl;m
k Al;m

k

×

�ðkΩ −mΩsÞðkΩ −mΩs þmCnlΩsÞ
ωð0Þ2
α − ðkΩ −mΩs þmCnlΩsÞ2

�
: ð24Þ

This equation shows that the resonance frequency of
the f-mode is split into the modified mode frequencies

ωð0Þ
α þmð1 − CnlÞΩs.
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��
k r
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e = 0.5
e = 0.8

(0.6, 0.6) M

FIG. 3. The width-to-separation ratio of the resonance of (0.6,
0.6) M⊙ DWDs with different eccentricities. The smallest P of
each curve corresponds to the orbital period with a harmonic in
resonance right before Roche-lobe filling.
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To estimate the effect of a range of rotation rates, we vary
the spin from 0 to twice the pseudosynchronous value, Ωps,
determined using the weak friction model by Hut [37],

Ωps ¼
Ω

ð1 − e2Þ3=2
�
16þ 120e2 þ 90e4 þ 5e6

16þ 48e2 þ 6e4

�
: ð25Þ

This equation describes the spin rate of the WD such that
there is no net torque from the equilibrium tide onto the
orbit. The more general tidal synchronization problem
involving dynamical tide involves the damping mecha-
nisms of the eigenmodes and is not considered here.
In Fig. 4, we show the change ofΔγ̃dyn normalized by the

precession angle of the nonrotating WD, Δγdyn, when the
spin rate of both of the WDs increases from 0 to 2Ωps, with
the pericenter separation fixed at 2 aRL. As the spin rate
increases, Δγ̃dyn decreases and crosses zero at some value
larger than Ωps depending on the eccentricity. It shows that
if the WD has a high spin rate, the dynamical tide
precession is suppressed or even becomes negative. As
the eccentricity increases, the Ωs at which Δγ̃dyn crosses
zero increases until it stays above zero when e≳ 0.8.
The precession angle of the lower eccentricity orbits has

a steeper dependence on Ωs. We illustrate a specific
example with the e → 0 limit of Eq. (24) that contains a
small number of terms, which we explicitly write down as

Δγ̃dyn ¼
m2

m1

X
α

ðπIαlmÞ2
�
R1

a

�
5
��

9

5

�
Ω2

ωð0Þ2
α − Ω2

þ
�
3

10

� ðΩ − 2ΩsÞ½Ω − 2ð1 − CnlÞΩs�
ωð0Þ2
α − ½Ω − 2ð1 − CnlÞΩs�2

−
24ðΩ −ΩsÞ½Ω − ð1 − CnlÞΩs�
ωð0Þ2
α − 4½Ω − ð1 − CnlÞΩs�2

þ
�
147

10

� ð3Ω − 2ΩsÞ½3Ω − 2ð1 − CnlÞΩs�
ωð0Þ2
α − ½3Ω − 2ð1 − CnlÞΩs�2

�
: ð26Þ

The value of Ωs which causes Δγ̃dyn to become zero can be
solved analytically in the off-resonant approximation. The

result is independent of ωð0Þ
α and is found to be Ωs ¼

ð81 − ffiffiffiffiffiffiffiffiffiffi
1041

p Þ=30Ωps ≈ 1.62Ωps, where we used Ω ¼ Ωps

when e ¼ 0 from Eq. (25).
The centrifugal force from the rotating WDs deforms the

stars and causes extra precession. Willems et al. [16]
compared this effect with that of the 1PN and equilibrium
tide. They showed that for systems close to pseudosynchro-
nous, it gives a precession rate with the same power law
dependence on orbital separation as the equilibrium tide, but
several times smaller in size. Therefore, while the Coriolis
force suppresses the dynamical part of the tide, the centrifugal
force gives an extra precession that enhances the equilibrium
tide effect by an amount depending on the rotation rate.

IV. THE EFFECT OF PRECESSION ON
GRAVITATIONAL WAVE DETECTION

A. The parameter space affected by the dynamical tide

The detection of the dynamical tide effect is limited
by the resolution of LISA. A shift in phase over the

observation period is resolvable if it exceeds 2π. In Fig. 5,
we show the total phase shift (in units of 2π) caused by
dynamical tide precession over four years within the (e, P)
parameter space for a (0.2, 0.6) M⊙ and a (0.6, 0.6) M⊙
DWD system. The phase shift increases towards the large e
and small P region. The horizontal strips appearing in the
high eccentricity region correspond to the large phase shift
due to resonance between a certain harmonic and the f-
mode. These resonances provide a phase shift larger than
2π even for relatively large P. Note that due to the limited
resolution of the plot, the resonances appear to vanish at
lower eccentricity as the resonance width decreases, even
though they are expected to extend all the way to the low
eccentricity region.
The maximum orbital period required for the precession

caused by the equilibrium tide and the off-resonant
dynamical tide to remain resolvable by LISA are repre-
sented by the green dashed line and the black solid line,
respectively. Similarly, the leading order effect on the
frequency shift due to GW emission, i.e., the 2.5PN effect
(given in [38]), is also subject to this limit and is shown
with the red dash-dotted line. In the (0.2, 0.6) M⊙ system,

0 1 2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(0.6,0.6) M
�
� d

yn
/�
� d

yn

�
S

(�
ps

)

e = 0.02
e = 0.1
e = 0.3
e = 0.5
e = 0.8

FIG. 4. The normalized precession angle of the (0.6, 0.6) M⊙
DWDs including the correction on the mode frequency due to the
Coriolis effect at different spin rates. TheWDs are in an orbit with
rp ¼ 2aRL. A horizontal dotted line is used to indicateΔγ̃dyn ¼ 0.
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the off-resonant dynamical tide effect is resolvable for a
larger range of P than the 2.5PN effect, while it is the
opposite for the (0.6, 0.6) M⊙ system. In both cases, the
equilibrium tide effect has the largest resolvable range for
all eccentricities.
The parameter space within the gray region at high

eccentricities corresponds to chaotic evolution of the orbit.
This phenomenon is caused by dynamical tide in highly
eccentric binaries, first studied in [22] (see also [39–41]).
Ivanov and Papaloizou [40] illustrate that such a chaotic
behavior due to the secular accumulation of mode energy
over many pericenter passages can be understood as a kind
of stochastic instability, as the mode amplitude receives a
phase change at each passage which can be approximated
as a uniformly distributed random variable. Here, we
employ the result by [40,41] to approximately map out
the chaotic region for the DWD system, which is written as
jωαΔPj ≥ 1, with ΔP being the change in orbital period
over one orbit due to the tide. In the case of (0.2, 0.6) M⊙,
we consider only the jωαΔPj of the 0.2 M⊙ WD, as it is
expected to provide the dominant tidal effect inside the
binary.
This region of chaotic behavior limits the detectability

of the GW signal itself in the highly eccentric small
separation regions, as the waveform is no longer predict-
able. In Fig. 6, we show the frequency domain strain signal
jhIj [Eq. (A4), see also Appendix] of a system within the
gray region of the (0.6, 0.6)M⊙ case due to the influence of
full tide and equilibrium tide, respectively. The initial
conditions are chosen such that the pericenter separation
is 1.2 aRL, and the osculating Keplerian orbit has an
eccentricity of 0.82. The distance from the source is set
as 10 kpc. We see that the waveform inside the chaotic
region has a spread of power along the frequency domain,

instead of concentrating in the vicinity of each harmonic.
This behavior completely alters the waveform, making it
impossible to detect with template matching. Note that even
though the waveform becomes chaotic, it still has larger
amplitudes in the vicinity of the harmonics corresponding
to the angular speed near the pericenter, which is similar to
the periodic waveform without dynamical tides.
The orbital period corresponding to Roche-lobe filling

separation is indicated with the yellow dotted line in Fig. 5,
setting the lower bound of the orbital period of detached

FIG. 5. The total phase shift caused by the dynamical tide precession (including both resonant and off-resonant contributions) divided
by 2π in a 4-year observation, Δγ4 yr

dyn =ð2πÞ (color contours). The maximum P for the frequency change caused by the precession from
the off-resonant dynamical tide (black solid line), equilibrium tide (green dashed line), and the chirping of the 2.5PN orbital decay (red
dash-dotted line) to be within the resolution of LISA are also shown. The orbital period corresponding to Roche-lobe filling separation is
indicated with the yellow dotted line. The DWD systems have masses (0.2, 0.6)M⊙ (left panel) and (0.6, 0.6)M⊙ (right panel). The gray
region indicates the parameter space for which the orbit performs chaotic motion.

FIG. 6. Frequency domain waveform amplitude of a (0.6, 0.6)
M⊙ DWD system inside the chaotic regime obtained by numeri-
cally integrating the orbital equation of motion Eq. (A2) for a
duration of 0.25 years. The initial eccentricity and pericenter
distance are set to be 0.82 and 1.2 aRL (P = 14.7 min) respectively
(within the gray region in Fig. 5), and the distance is at 10 kpc.
The waveform including only equilibrium tide is shown in blue
lines and is rescaled by a factor of 1=10.
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DWDs. This line crosses the chaotic boundary with the
chaotic region covering a larger P at e≳ 0.5. The crescent
shape region in between the black solid curve and the lower
bounds set by the Roche-lobe filling separation or the
chaotic boundary, together with the resonant regions,
represent the parameter space where the dynamical tide
is resolvable by LISA.
Within these regions, the dynamical tide can have an

impact on the waveform analysis, which we discuss in
detail in the next subsection. However, it still requires a
detailed Fisher analysis in order to quantify the actual
measurability in parameter estimation. We shall leave it for
future work.

B. The effect of precession on waveform analysis

The waveform from the eccentric DWDs consists of a
superposition of nearly monochromatic signals at every
orbital harmonic, with each of them split into a triplet with
frequencies kΩ, kΩ� 2_γ [5,16]. The precession rate
contains the combined effects of the tide and the 1PN
effect. In the following, we consider whether it is possible
to separate the dynamical tide from the other factors
through waveform analysis.
A useful quantity that determines the distinguishability

of two waveforms h1 and h2 with or without the dynamical
tide effect is given by

jjδhjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼I;II

hh1;j − h2;jjh1;j − h2;ji
s

; ð27Þ

where j ¼ I; II is the interferometer index of LISA ([42]).
The inner product between two signals aðtÞ, bðtÞ is
defined by

hajbi ¼ 4R
Z

∞

0

df
ãðfÞb̃�ðfÞ
SnðfÞ

; ð28Þ

where ãðfÞ and b̃ðfÞ are the Fourier transforms of aðtÞ and
bðtÞ. The symbolR denotes taking the real part, and SnðfÞ
is the noise spectral density of LISA, which we use the
fitting formula in [43]. jjδhjj can be interpreted as the SNR
of the difference between the signals. The two waveforms
are said to be indistinguishable if jjδhjj < 1 [44–46]. Here,
we employ the Peters and Mathews waveform model with
precession for the plus and cross polarizations [5,16,38,47],
whose explicit form is described in Appendix. The wave
amplitude of this model at each harmonic follows that of a
Keplerian eccentric orbit, which is found to be a good
approximation based on our preliminary calculations using
the numerical waveform in Appendix for comparison. The
antenna pattern acts to project the two polarizations into the
detector strain signal, and is also given in Eq. (A4).
We assume the actual signal contains the full tidal

contribution as well as the 1PN effect, and compute

jjδhjj by using a template without the dynamical tide
component to estimate the difference caused by it. The
eccentricity of the template is adjusted to match the
precession rate with the signal. When the chirp is small,
this is expected to maximize its match with the signal.
In Fig. 7, we illustrate the effect of dynamical tide on the

eccentricity measurement by showing the fractional differ-
ence of the eccentricities between the precession rate
models with and without the dynamical tide. We assume
the model with the full tidal contribution has eccentricity e,
while the other model with the equilibrium tide contribu-
tion alone has eccentricity eþ δe, such that the two models
have the same precession rates and orbital frequencies. The
result shows that the fractional shift in the eccentricity due
to not including dynamical tide can be of the size of unity
for orbits with low eccentricities at closest separations. At
higher eccentricities, this shift is below several percent and
is insignificant even for close orbits except at resonance.
This is because the off-resonant dynamical tide precession
effect decreases for orbits with larger eccentricities and
fixed pericenter separations. On the other hand, the near-
resonant cases appear as narrow peaks and can have an
order of magnitude difference in jδe=ej from the off-
resonant cases.
We show the dependence of jjδhjj on P for the (0.2, 0.6)

and the (0.6, 0.6) M⊙ DWD systems with different
eccentricities in Fig. 8. For illustrative purposes, we assume
the signal is observed for 0.25 years and the distance from
the source is 10 kpc. The maximum SNR of the signal
ranges from 0.5 to 2.5 for the (0.2, 0.6) M⊙ systems and

1 10 100
1 × 10-3

0.01

0.1

1

|�
e/

e|
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e=0.1
e=0.5
e=0.8

FIG. 7. The fractional difference of the eccentricities of the two
different waveform models with and without the dynamical tide
effect on the precession as a function of the orbital period P.
Here, we fix the precession rate and orbital frequency in the two
models to determine the fractional difference in e. The DWD
systems have masses (0.2, 0.6) M⊙ (black lines) and (0.6, 0.6)
M⊙ (blue) at different P. The pericenter separation of the smallest
P of each curve corresponds to the Roche-lobe filling separation,
except for the e ¼ 0.8 case in which the closest separation is
limited by the chaotic boundary in Fig. 5.

PERIASTRON PRECESSION EFFECT OF F-MODE … PHYS. REV. D 106, 103038 (2022)

103038-9



8 to 25 for the (0.6, 0.6) M⊙ systems depending on the
eccentricity. We choose the observation period of 0.25 years
for computational efficiency, and for a 4-year long signal,
the SNR can be enhanced by a factor of 4. In both systems,
jjδhjj shows narrow peak features at small P near reso-
nance. The number of peaks appearing depends on the
width of the resonance and the resolution of the plot.
For orbits very close to resonance, the dynamical tide

precession is much stronger than the other factors and
cannot be replicated by choosing a waveform with an
eccentricity within the reasonable range. The overlap
between h1 and h2 will be small and the value of jjδhjj
can therefore be approximated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjh1jj2 þ jjh2jj2

p
, where

jjh1jj and jjh2jj are the SNRs of h1 and h2 with the same
eccentricities, respectively. We treat this as the maximum
jjδhjj at resonance, which are presented as red curves in
Fig. 8. The resonance can cause the dynamical tide effect
distinguishable from the other factors at a large P
(>20 min for small eccentricities with this parameter
choice) given a signal with large SNR. Note thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjh1jj2 þ jjh2jj2

p
is an approximate upper limit when

the two waveforms have a small match and is not
necessarily always greater than jjδhjj. For the e ¼ 0.1 orbit
of the (0.6,0.6)M⊙ system at P ≈ 2 min, jjδhjj exceeds this
value since

P
j¼I;IIhh1;jjh2;ji < 0.

Focusing on the region outside resonance, the quantity
jjδhjj is larger than 1 at small separations and approaches
the maximum value in the case of (0.6, 0.6) M⊙ but is less
than 1 for most separations in the (0.2, 0.6) M⊙ case, even
though the fractional difference in eccentricities between h1
and h2 are similar (Fig. 7). This different behavior of jjδhjj
is mainly caused by the chirp of the signal. Since the 2.5PN
effect also depends on eccentricity, measuring it helps
resolve the degeneracy between the tidal effect and the

eccentricity within the precession rate and allows us to
identify the effect of dynamical tide.1 This shows that LISA
has the potential to identify the dynamical tide effect for
high mass, eccentric DWD systems with low orbital
periods, or systems with a higher harmonic close to
resonance.

V. SUMMARY AND CONCLUSION

In this paper, we show that the dynamical tide has a
strong influence on the eccentric DWD systems when they
are close to the Roche-lobe filling separations, especially
when the orbital motion resonates with the oscillation
modes. At resonance, the dynamical tide causes a pre-
cession effect that can be orders of magnitude larger than
that from equilibrium tide alone and can become negative
in some frequency range as opposed to the equilibrium
tide effect and the 1PN effect that only causes the peri-
center to advance. The resonance is shown to take about
10% of the frequency space within the more eccentric
systems near Roche-lobe filling. On the other hand, the off-
resonant approximation shows that the dynamical tide can
contribute to ∼20% of the precession for the orbits with
small eccentricities at close separations. We also study the
effect of the WD rotations on the precession rate. The
Coriolis force from the rotation of the WDs has a
suppression effect on the dynamical tide precession and
can also cause negative precession if the spin is high
enough. Meanwhile, the centrifugal force induces a quad-
rupolar deformation of the WDs which gives extra positive
precession comparable to the equilibrium tide effect when
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FIG. 8. The quantity jjδhjj of the (0.2, 0.6)M⊙ system (left panel) and the (0.6, 0.6)M⊙ system (right) in Fig. 7 are shown with black
curves. The distance from the source, d, is taken to be 10 kpc. The observation time of the signal is set at 0.25 yr. The horizontal dashed
line corresponds to jjδhjj ¼ 1, the minimum value for the two signals to be distinguishable. The red curve shows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjh1jj2 þ jjh2jj2

p
, the

estimated value of jjδhjj when the waveform with full tidal contribution is at resonance and the two signals are completely mismatched.

1The 3.5PN effect on the phase [48] is found to cause less than
0.01%difference in jjδhjj for the (0.6, 0.6)M⊙ at close separations,
and hence is considered negligible in our calculations.
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the system is at a pseudosynchronous state, as shown in
Willems et al. [16].
We also study the effect of the dynamical tide precession

on the GW signal. Assuming a 4-year signal duration, we
show the parameter space where the dynamical tide
precession is resolvable by LISA. Compared to the fre-
quency shift due to 2.5PN radiation reaction in a (0.2, 0.6)
M⊙ system, this effect is resolvable within a larger range of
orbital parameters. At close separations, it causes ≳10%
systematic shift in the eccentricity measurement in less
eccentric systems since the precession rate depends on both
the eccentricity and the tidal parameters. For the case with
(0.6, 0.6) M⊙, the resolvable parameter range of the 2.5PN
effect is larger than that of the effect of the dynamical tide
except at resonance. Hence, a stronger chirp effect is
expected in systems with higher masses. The highly
eccentric systems at close separations can lie within the
chaotic regime, where the dynamical tide causes the orbit to
evolve chaotically, a phenomenon first illustrated by
Mardling [22]. This produces an unpredictable GW signal
that poses problems in the detection.
Assuming a nonchaotic signal, we show that the

dynamical tidal effect in the precession rate can be
distinguished from other factors by analyzing the waveform
if the chirp from the 2.5PN effect is strong enough, or if the
system is at resonance, given a high enough SNR.
Therefore, we conclude that LISA can measure the
dynamical tide within high mass eccentric DWD systems
or the low mass systems at resonance.
Regarding future work, a more detailed waveform

analysis of the influence of the precession effect on the
signal is required to analyze the measurement error in
parameter estimation. Besides, the effect of the g-modes on
the orbital motion and evolution of the eccentric DWDs can
also be an interesting direction to pursue. We anticipate that
the multiple harmonics in eccentric systems would lead to a
richer resonance behavior than in the circular case. This
allows us to potentially probe the dissipation mechanisms
and learn more about the interior structure of the WDs from
the excitation and damping of the modes.
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APPENDIX: GRAVITATIONAL WAVEFORM
MODELS

1. The numerical waveform

The far-field metric perturbation from the leading order
GW emission is given by the quadrupole formula

hij ¼
G
c4

2Q̈ij

d
; ðA1Þ

where c is the speed of light,Qij is the quadrupole moment
of the source while d is the distance between the source and
the point of observation. We consider only the quadrupole
moment of the orbit and ignore the effects from the
nonradial deformations of the individual WDs.
The orbit is governed by the equation

a ¼ −
GM
D2

nþ a1PN þ atide; ðA2Þ

where a1PN is the acceleration due to the 1PN effect while
the tidal acceleration term atide is given in Eq. (8). The
dissipative effects like radiation reaction are ignored here.
The 1PN effect is given by the Einstein-Infeld-Hoffmann
equation [49]:

a1PN ¼ −
GM
D2c2

��
ð1þ 3ηÞv2 − 3

2
ηðn · vÞ2

− 2ð2þ ηÞGM
D

�
n − 2ð2 − ηÞðn · vÞv

�
; ðA3Þ

where η ¼ m1m2=ðm1m2Þ2 is the symmetric mass ratio and
v is the relative velocity.
Equation (A2) is numerically integrated and the result is

substituted into Eq. (A1) to obtain the quadrupolar wave-
form of the plus and cross polarizations, hþ and h× in the
transverse-traceless gauge. The strain signal detected is
written as

hjðtÞ ¼ Fj
þðtÞhþðtÞ þ Fj

×ðtÞh×ðtÞ; ðA4Þ

where j ¼ I; II, andFj
þ,F

j
× are the antenna pattern functions

(see [42,47,50,51]). The functionsFj
þ andFj

× depend on the
source’s angular position (θS,ϕS) and its orientation (θL,ϕL)
in the ecliptic coordinate system. For simplicity, we set θL ¼
π=4 and the rest as zero in this study.

2. Peters and Mathews waveform

The Peters and Mathews waveform [38,47] describes the
leading order gravitational radiation emitted from a binary
system in an eccentric Keplerian orbit. In this section, we
write down the formulation of the waveform used in [38],
without including the full evolution equations of the orbital
elements.
Choosing the orbital plane as the x-y plane of the

coordinate system, with the pericenter lying on the positive
x axis initially, the plus and cross polarizations are written
as a sum of harmonics
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hþ ¼ G
c4d

X
k

fð1þ cos2 ιÞ½CðkÞ
a cos ðkΦÞ cosð2γÞ

− CðkÞ
b sin ðkΦÞ sinð2γÞ� þ CðkÞ

c cos ðkΦÞ sin2 ιg;
ðA5Þ

h× ¼ 2 cos ι
d

G
c4

X
k

½CðkÞ
a cos ðkΦÞ sinð2γÞ

þ CðkÞ
b sin ðkΦÞ cosð2γÞ�; ðA6Þ

where ι is the inclination angle of the source, given by

cos ι ¼ cos θL cos θS þ sin θL sin θS cos ðϕL − ϕSÞ; ðA7Þ

and the precession is given by γ ¼ _γt and CðkÞ
i , with i ¼ a,

b, c, are the Fourier coefficients of the quadrupole moment
components:

1

2
ðQ̈11 − Q̈22Þ ¼

X
k

CðkÞ
a cos kΦðtÞ; ðA8Þ

Q̈12 ¼
X
k

CðkÞ
b sin kΦðtÞ; ðA9Þ

1

2
ðQ̈11 þ Q̈22Þ ¼

X
k

CðkÞ
c cos kΦðtÞ: ðA10Þ

In the Keplerian orbits, the coefficients can be written in
terms of the Bessel functions:

CðkÞ
a ¼ −

k
2
μ

�
GΩM
c3

�
2=3

�
Jk−2ðkeÞ − 2eJk−1ðkeÞ

þ 2

k
JkðkeÞ þ 2eJkþ1ðkeÞ − Jkþ2ðkeÞ

�
; ðA11Þ

CðkÞ
b ¼ −

k
2
μ

�
GΩM
c3

�
2=3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

½Jk−2ðkeÞ

− 2JkðkeÞ þ Jkþ2ðkeÞ�; ðA12Þ

CðkÞ
c ¼ kμ

�
GΩM
c3

�
2=3

JkðkeÞ; ðA13Þ

where μ is the reduced mass of the binary. The effect of
the tide and 1PN correction are included only through _γ.
The amplitude corrections are not included as they are
expected to be small within the parameter range of interest.

The waveform model serves as a good approximation as
long as _γ is much smaller than Ω [5].
Without chirping, the precession effect splits each

harmonic of the waveform into three distinct frequencies
at kΩ and kΩ� 2_γ. This can be illustrated by reexpressing

Eqs. (A5) and (A6) in terms of AðkÞ
� cos ðkΩt� 2γÞ and

AðkÞ
0 cos ðkΩtÞ as in [5,50], where the amplitudes AðkÞ

� and

AðkÞ
0 are ðCðkÞ

a � CðkÞ
b Þ=2 and CðkÞ

c without the prefactor
μðGΩM=c3Þ2=3. Using the series expansion of the Bessel
functions, these amplitude terms can be shown to scale as

AðkÞ
þ ∼ ek−2 for k ≠ 1 and AðkÞ

þ ∼ e for k ¼ 1, AðkÞ
− ∼ ekþ2,

and AðkÞ
0 ∼ ek. Therefore, AðkÞ

þ has the largest amplitude
whileAðkÞ

− is the smallest out of the three harmonics for low
to intermediate eccentricities. The amplitude functions for
the k ¼ 1 harmonic at different eccentricities are shown in
Fig. 9. Except for large eccentricities (e≳ 0.5), the relation

jAðkÞ
þ j> jAðkÞ

0 j> jAðkÞ
− j holds for all harmonics [16].

The chirping can be included through expanding the
phase of each harmonic as ΦðtÞ ¼ Ωtþ _Ωt2=2, where _Ω
contains the 2.5PN radiation reaction effect [38] given by

_Ω ¼ 96

5

c6

G2

μ

M3
ð1 − e2Þ−7=2

�
GMΩ
c3

�
11=3

×

�
1þ 73

24
e2 þ 37

96
e4
�
: ðA14Þ

The Doppler phase term due to LISA’s motion (see [42]) is
not included in ΦðtÞ since we set θS ¼ 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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) |

e

(k)
+
(k)
-
(k)
0

FIG. 9. The waveform amplitudes AðkÞ
þ , AðkÞ

− and AðkÞ
0 at

different eccentricities for the k ¼ 1 harmonic.
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